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ABSTRACT

Multi-Constraint Shortest Path (MCSP) generalizes the classic short-
est path from single to multiple criteria such that more personalized

needs can be satisfied. However, MCSP query is essentially a high-

dimensional skyline problem and thus time-consuming to answer.

Although the current Forest Hop Labeling (FHL) index can answer

MCSP efficiently, it takes a long time to construct and lacks the

flexibility to handle arbitrary criteria combinations. In this paper,

we propose a skyline-cube-based FHL index that can handle the flex-
ible MCSP efficiently. Firstly, we analyze the relation between low

and high-dimensional skyline paths theoretically and use a cube

to organize them hierarchically. After that, we propose methods to

derive the high-dimensional path from the lower ones, which can

adapt to the flexible scenario naturally and reduce the expensive

high dimensional path concatenation. Then we introduce efficient

methods for both single and multi-hop cube concatenations and

propose pruning methods to further alleviate the computation. Fi-

nally, we improve the FHL structure with lower height for faster

construction and query. Experiments on real-life road networks

demonstrate the superiority of our method over the state-of-the-art.
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1 INTRODUCTION

Multi-criteria decision-making on path-finding is important in our

daily life due to the increasingly informative road networks that can

satisfy various user demands. For example, a usermay have a limited

budget to pay the toll charge of highways, bridges, tunnels, or

congestion. Some mega-cities require drivers to reduce the number

of big turns (e.g., left turns in the right driving case [16] as they have

a higher chance to cause accidents). There are other side-criteria

such as the minimum height of tunnels, the maximum capacity of

roads, the maximum gradient of slopes, the total elevation increase,

the length of tourist drives, the number of transportation changes,
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etc. However, most of the existing path-finding algorithms only

optimize one objective and ignore the other side-criteria, such as

minimum distance [10, 32, 64], travel time of driving [30, 31, 62] or

public transportation [55, 58], fuel consumption [29, 33], battery

usage [3], etc. In fact, it is these criteria and their combinations

that endow different routes with diversified meaning and satisfy

users’ flexible needs. For example, users’ requirements on path-

finding may change according to their current events or the means

of transport used: A commuter usually likes the most fuel-efficient

path within a limited time budget; a cyclist or walker may prefer the

shortest while labor-saving (gentle slope) way; a traveler prefers the

most attractive path within limited tolls. Hence, this flexible multi-
criteria route planning is more generalized while the shortest path is
its special case. Moreover, it is also an important research problem

in the fields of both transportation [22, 51] and communication

(Quality-of-Service constraint routing) [8, 25, 53, 54].

Motivations. Typically, skyline path [15, 27, 44] is applied to

find the result which is optimal in every criterion when there are

multiple optimization goals. It provides a set of paths that cannot

dominate each other in all criteria. However, skyline path computa-

tion is very time-consuming with time complexity 𝑂 (𝑐𝑛−1𝑚𝑎𝑥 × |𝑉 | ×
(|𝑉 | log |𝑉 | + |𝐸 |)), where |𝑉 | is the vertex number, |𝐸 | is the edge
number, 𝑐𝑚𝑎𝑥 is the largest criteria value, and 𝑛 is the number of

criteria [18] (𝑐𝑛−1𝑚𝑎𝑥 is the worst-case skyline number). In addition,

it is impractical to provide users with a large set of potential paths

for them to choose from. Therefore, the Multi-Constraint Shortest
Path (MCSP) is widely applied and studied. Specifically, it finds

the best path based on one objective while requiring other criteria

satisfying some predefined constraints. For example, suppose each

road has a distance𝑤 and two costs 𝑐1, 𝑐2, and we set the maximum

constraints 𝐶1 and 𝐶2 on the costs. Then this MCSP problem finds

the shortest path 𝑝 whose cost 𝑐1 (𝑝) ≤ 𝐶1 and 𝑐2 (𝑝) ≤ 𝐶2.

Nevertheless, it is non-trivial to solve the flexibleMCSP problem

where users could specify arbitrary constraint combinations based

on their current requirements. Firstly, it inherits all the challenges

from the skyline path search as proved in [36]. In fact, its simplest

version Constraint Shortest Path (CSP) (with only one constraint)

is already an NP-H problem [12, 19], and this is why most of the

existing works only focus on CSP queries and many of them trade

the result optimality for efficiency [18, 19, 23, 38, 53, 56]. Currently,

Forest Hop Labeling (FHL) [36] is the only CSP algorithm that can

achieve both accurate and efficient results. However, its MCSP ver-

sion [37] takes orders of magnitude longer time to construct the

path index because both the skyline path number and the skyline

validation cost soar up as the dimension increases. Moreover, FHL is
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only efficient for the MCSP queries with the same constraint num-

ber, but its performance deteriorates when the query’s constraint

is a subset due to its huge label redundancy and limited pruning

power. Another way to adapt to the flexibility is building indexes

for each constraint combination (Figure 1-(a) FHL-Multi), but it
would take a longer time to construct and result in a much larger

index space. Instead, in this work, we aim to design a single index

(Figure 1-(b) FHL-Cube) to support flexible MCSP queries. Detailed

analysis of these approaches is provided in Section 3.

!"!"""#	

!"!"" !"!"# !"""# "!"""#

!"! !"" !"# "!"" "!"# """#

𝐹𝐻𝐿(𝑤𝑐"𝑐$𝑐!)

𝐹𝐻𝐿(𝑤𝑐"𝑐$) 𝐹𝐻𝐿(𝑤𝑐"𝑐!) 𝐹𝐻𝐿(𝑤𝑐$𝑐!) 𝐹𝐻𝐿(𝑐"𝑐$𝑐!)

𝐹𝐻𝐿(𝑤𝑐") 𝐹𝐻𝐿(𝑤𝑐$) 𝐹𝐻𝐿(𝑤𝑐!) 𝐹𝐻𝐿(𝑐"𝑐$) 𝐹𝐻𝐿(𝑐"𝑐!) 𝐹𝐻𝐿(𝑐$𝑐!)

(a) 𝐹𝐻𝐿 −𝑀𝑢𝑙𝑡𝑖: Each criteria combination has an index

𝐿 𝑣!
𝐿 𝑣"
…

𝐿 𝑣!
𝐿 𝑣"
…

𝐿 𝑣!
𝐿 𝑣"
…

𝐿 𝑣!
𝐿 𝑣"
…

𝐿 𝑣!
𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣"
…

𝐿 𝑣!

𝐿 𝑣"

…
(b) 𝐹𝐻𝐿 − 𝐶𝑢𝑏𝑒: One index with each label contains a cube of all combination

Figure 1: FHL and FHL-Cube Comparison

Challenges. The flexible MCSP requires answering queries of

arbitrary criteria combinations, so the first challenge lies in how

to build an index to support the query flexibility. Even though the

higher dimensional MCSP queries take larger index space with

longer construction and query time than the lower ones, it is ob-

served that the query results of the low dimension also belong to

those of the high dimension. This insight provides us with a chance

to derive the high dimension skyline paths by accumulating those

from the low dimension. To this end, it is critical to distinguish

between low dimensional skyline paths and high dimensional ones

and establish their relations. Specifically, we first propose the ex-
clusive skyline path to determine the lowest dimension of a skyline

path, such that the skyline paths can be organized hierarchically

into a cube by categorizing them into different subspaces. Then, we

extend FHL to FHL-Cube by changing the index values from paths

of only one space to a cube that organizes all the spaces as shown

in Figure 1-(b). Next, we establish their relations and propose theo-

rems to derive high dimensional results from lower ones. Finally,

the higher dimensional cuboid (the basic component of cube) is

smaller than the lower ones (reverse to the FHL as indicated by the

database sizes), and the flexible MCSP can be handled naturally.

In addition, the cuberization of skyline paths involves cube con-

catenation in both index construction and query processing, which

would cause numerous intermediate skyline results with heavy com-

putation. The difficulty here is to improve the cube concatenation

efficiency such that the index construction and query processing

can be accelerated as well. Naively, we concatenate the skylines of

the corresponding cuboids from two-dimension to higher dimen-

sions, since the subspaces are organized hierarchically. However,

there are multiple two-dimension subspaces waiting for concate-

nation. Hence, we dedicate to prune the unnecessary computation

in cube concatenation through subspace pruning and hop pruning,

respectively. To be specific, we determine the path range of each

subspace through calculating the lower and upper bounds of each

dimension, such that the subspaces whose path range is dominated

by others could be safely pruned without affecting the correctness.

In terms of the hop pruning, we precompute the lower bound and

the upper bound of the path results concatenated by each hop and

those hops with their lower bound surpassing others’ upper bound

can be safely pruned. Moreover, it is proved that those pruned

subspaces or pruned hops of one specific dimension also applies

for all its higher dimensions. Finally, both the index construction

and query processing of FHL-cube is highly improved owing to the

proposed pruning techniques of cube concatenation.

Finally, it is observed that the tree height of the tree decom-
position structure during the index construction is usually large,

which seriously deteriorates the index performance since larger tree

height indicates more cube concatenation in both index construc-

tion and query processing. To alleviate this problem, we analyze

the forest structure and propose several principles to optimize the

index structure. As for the query processing, our index is flexible

for any combination of criteria because of the skyline path relation

established between low dimension and high dimension.

Contributions. 1) We introduce a novel flexible MCSP problem

and propose the FHL-Cube index for its query processing; 2) We

achieve the query flexibility by organizing and deriving paths with

different dimensions hierarchically as a cube, and further propose

pruning techniques for faster cube concatenation; 3) We optimize

the boundary label structure and concatenation method for faster

index construction and querying; 4) We conduct extensive evalua-

tions on real-world road networks to verify the superiority of our

approach compared with the state-of-the-art methods.

2 PRELIMINARY

2.1 Problem Definition

A multi-criteria road network is a 𝑛-dimensional graph 𝐺 (𝑉 , 𝐸),
where𝑉 is a vertex set and 𝐸 ⊆ 𝑉 ×𝑉 is an edge set. Each 𝑒 ∈ 𝐸 has

𝑛 criteria falling into two categories: a weight 𝑤 (𝑒) and a set of costs
{𝑐𝑖 (𝑒) |𝑖 ∈ [1, 𝑛 − 1]}. A path 𝑝 from 𝑠 ∈ 𝑉 to 𝑡 ∈ 𝑉 is a sequence of

consecutive vertices 𝑝 = ⟨𝑠 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑡⟩ = ⟨𝑒0, 𝑒1, . . . , 𝑒𝑘−1⟩,
where 𝑒𝑖= (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸,∀𝑖 ∈ [0, 𝑘 − 1]. Each path 𝑝 has a weight

𝑤 (𝑝)=∑𝑒∈𝑝 𝑤 (𝑒) and a set of costs {𝑐𝑖 (𝑝)=
∑
𝑒∈𝑝 𝑐𝑖 (𝑒)}. We assume

the graph is undirected and will extend to directed in Section 6.4.

We denote a 𝑛-dimensional space as 𝐷𝑛 = {𝑤, 𝑐1, ..., 𝑐𝑛−1} to map

each criterion in𝐺 . In addition, we use 𝛽 to represent a combination

of criteria for short. We define the MCSP queries as follows:

Definition 1 (constraint group). A constraint group C𝛽
is a set of values {𝐶𝑖 }, where 𝐶𝑖 ∈ R+, 𝑖 ∈ [1, 𝑛 − 1]. The size of the
group is |𝛽 | ∈ [1, 𝑛 − 1], and C |𝛽 | denotes all the groups with size |𝛽 |.

For example, given a 4-dimensional graph, constraint group

C{𝐶1,𝐶3 }
belongs to C2, and C{𝐶1,𝐶3,𝐶4 }

is another one that belongs
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to C3. For the ease of explanation, the notation of constraint group

is simplified,i.e., C{𝐶1,𝐶3,𝐶4 }
is written as C𝐶1𝐶3𝐶4

Definition 2 (FlexibleMCSPQuery). Given a𝑛-dimensional
graph𝐺 (𝑉 , 𝐸), a MCSP query𝑞(𝑠, 𝑡, C𝛽 ) returns an optimal path with
the minimum𝑤 (𝑝) while 𝑐𝑖 (𝑝) ≤ 𝐶𝑖 ,∀𝐶𝑖 ∈ 𝐶𝛽 .

Note that 𝛽 can be varying and it involves

∑𝑛−1
𝑖=1

(𝑛−1
𝑖

)
different

constraint groups. Thus, our solution will support queries from

all these groups, which highlights the flavor of the “flexibility” of

MCSP query answering. In the following, we also define fixed MCSP
query as a reference:

Definition 3 (FixedMCSP Query). Given a 𝑛-dimensional
graph 𝐺 (𝑉 , 𝐸) and a fixed constraint group C, a fixed MCSP query
𝑞(𝑠, 𝑡, C) returns an optimal path with the minimum 𝑤 (𝑝) while
𝑐𝑖 (𝑝) ≤ 𝐶𝑖 ,∀𝐶𝑖 ∈ C.

For brevity, the term “MCSP query" discussed in the remaining

paper refers to flexible MCSP query. As analyzed in Section 1, it

is impractical to answer a MCSP query by online graph search.

Therefore, in this paper, we resort to index-based method and study

the following problem:

Definition 4 (Index-based MCSP Query Processing).

Given a 𝑛-dimensional graph 𝐺 (𝑉 , 𝐸), we aim to construct a label-
based path index 𝐿 such that any flexible MCSP query 𝑞(𝑠, 𝑡, C𝛽 ) in
𝐺 can be answered efficiently only with 𝐿.

We assign each vertex 𝑣 ∈ 𝑉 a label 𝐿(𝑣) ∈ 𝐿. Specifically, 𝐿(𝑣)
contains the set of all the path index starting from 𝑣 and we use

𝐿(𝑣,𝑢) ∈ 𝐿(𝑣) to denote the set of path index from 𝑣 to 𝑢. Unlike

the shortest path index which stores the shortest distance from one

vertex to another, the MCSP index needs to cover all the possible

constraints of each criterion 𝐶𝑖 and any constraints’ combination

C𝛽 . In addition, we observe that the MCSP paths are essentially a

subset of the multi-dimensional skyline paths as introduced below.

2.2 Multi-Dimensional Skyline Path

Like the dominance relation of the skyline query in the 2-dimensional

space [46], we first define the dominance relation between any two

paths with the same source and destination vertices:

Definition 5 (𝑛-Dimensional Path Dominance). Given
two paths 𝑝1 and 𝑝2 with the same 𝑠 and 𝑡 , 𝑝1 dominates 𝑝2 in 𝐷𝑛

iff𝑤 (𝑝1) ≤ 𝑤 (𝑝2) and 𝑐𝑖 (𝑝1) ≤ 𝑐𝑖 (𝑝2),∀𝑖 ∈ [1, 𝑛 − 1], and at least
one of them is the strictly smaller relation.
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Figure 2: An Example Road Network

Definition 6 (𝑛-Dimensional Skyline Path). Given two
paths 𝑝1 and 𝑝2 with the same 𝑠 and 𝑡 , they are 𝑛-dimensional skyline
paths if they cannot dominate each other in 𝐷𝑛 .

We use 𝑃 (𝑠, 𝑡) to denote the set of skyline paths from 𝑠 to 𝑡 . Let

us take the sub-graph 𝐺1 shown in Figure 2-(b) as an example. We

assume that each edge contains four criteria. We can enumerate five

paths from 𝑣1 to 𝑣6: 𝑝1 = (3, 2, 7, 7); 𝑝2 = (5, 5, 5, 4); 𝑝3 = (7, 3, 4, 8);
𝑝4 = (7, 4, 6, 3); 𝑝5 = (5, 5, 11, 4).

𝑝2 dominates 𝑝5 so 𝑝5 is not a skyline path. Meanwhile, as the

other four paths cannot dominate each other, we obtain four 4-

dimensional skyline paths: 𝑃 (𝑣1, 𝑣6) = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. Next we
prove that skyline paths are essential for building any MCSP index:

Definition 7 (subspace path). 𝐷𝛽 is a sub-dimensional space
of 𝐷𝑛 , where |𝛽 | ≤ 𝑛 is the number of the dimensions in 𝐷𝛽 . 𝛽 (𝑝) is
the projection of path 𝑝 in 𝐷𝛽 .

Definition 8 (subspace skyline path). Given two paths 𝑝1
and 𝑝2 with the same 𝑠 and 𝑡 , their projections 𝛽 (𝑝1) and 𝛽 (𝑝2) are
subspace skyline path of 𝐷𝛽 if they cannot dominate each other.

Theorem 1. The skyline paths between any two vertices are
complete and minimal for all the possible MCSP queries.

Proof. We first prove the completeness. Suppose the skyline

paths from 𝑠 to 𝑡 are {𝑝1, . . . , 𝑝𝑘 }. Each cost dimension 𝑐𝑖 can be

divided into 𝑘 + 1 intervals: [0, 𝑐1
𝑖
), [𝑐1

𝑖
, 𝑐2

𝑖
), . . . , [𝑐𝑘

𝑖
,∞), where each

𝑐
𝑗
𝑖
is the 𝑗𝑡ℎ cost value of criterion 𝑐𝑖 sorted increasingly, and the

entire space can be decomposed into (𝑘 + 1) (𝑛−1) subspaces. Then
for the subspaces with any interval falling into [0, 𝑐1

𝑖
), there is no

valid path satisfying all the constraints at the same time. For the

subspaces with no interval falling into [0, 𝑐1
𝑖
), there is always at

least one path dominating all the constraints in it, and the one with

the smallest weight is the result.

Next we prove this skyline path set is minimal. Suppose we

remove any skyline path 𝑝 𝑗 = {𝑐 𝑗
𝑖
} from the skyline result set.

Then the MCSP query whose constraint is within the subspace

of [𝑐 𝑗
1
, 𝑐

𝑗+1
1
) × [𝑐 𝑗

2
, 𝑐

𝑗+1
2
) × · · · × [𝑐 𝑗

𝑘
, 𝑐

𝑗+1
𝑘
) will have no valid path.

Hence, 𝑝 𝑗 cannot be removed and the skyline path set is minimal

for all the MCSP queries between 𝑠 and 𝑡 . □

In summary, building an index for MCSP query is equivalent to

building the index for multi-dimensional skyline path query.
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2.3 Forest Hop Labeling (FHL)

Webriefly describe the FHL structure since it is the foundation of our
FHL-Cube. To reduce the large index size introduced by long skyline
paths, it first partitions 𝐺 into a set {𝐺1, . . . ,𝐺𝑘 } of vertex-disjoint
subgraphs such that

⋃
𝑖∈[1,𝑘 ] 𝑉 (𝐺𝑖 ) = 𝑉 (𝐺),𝑉 (𝐺𝑖 ) ∩ 𝑉 (𝐺 𝑗 ) =

∅(∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [1, 𝑘]). For example, Figure 3-(a) partitions Figure

2-(a) into {𝐺1,𝐺2,𝐺3,𝐺4}. If an edge connects two different sub-

graphs, it is a boundary edge and its end vertex is called boundary
vertex, such as the dashed edges in Figure 3-(a). Moreover, FHL
extracts all the boundary edges with their vertices to form a bound-
ary graph, such as Figure 3-(b). Note that FHL pre-computes the

skylines between each pair of boundary vertices in every partition

to ensure the correctness of index construction, and adds shortcuts

for them if they are not connected in the original graph (the red

edges). After that, it maps each subgraph into a small tree structure

by tree decomposition. Similarly, the boundaries of the small trees

form boundary tree. The small trees and the boundary tree together

form a forest. The tree decomposition is introduced below.

Definition 9 (Tree Decomposition). Given a graph𝐺 , its
tree decomposition 𝑇𝐺 is a rooted tree in which each node 𝑋𝑖 is a
subset of 𝑉 . It has the following tree properties: 1)

⋃
𝑋𝑖 = 𝑉 ; 2)

∀(𝑢, 𝑣) ∈ 𝐸, ∃𝑋𝑖 such that {𝑢, 𝑣} ⊆ 𝑋𝑖 ; 3) ∀𝑣 ∈ 𝑉 , the set {𝑋𝑖 |𝑣 ∈ 𝑋𝑖 }
forms a subtree of 𝑇𝐺 .
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𝑋# 𝑋$

𝑋%𝑋&

𝑣#

𝑣! 𝑣#
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Figure 4: Tree Decomposition and Bottom-Up Tree

For example in Figure 4-(a), the first vertex in each tree node is its

representative vertex. The index labels are assigned from a vertex to

all its ancestors in𝑇𝐺 . For example, 𝐿(𝑣4) contains labels from 𝑣4 to

𝑣1, 𝑣3, and 𝑣6. Besides, this structure has a Cut Property that can be

used to answer queries: ∀𝑠, 𝑡 ∈ 𝑉 and𝑋𝑠 , 𝑋𝑡 are their corresponding

tree nodes without an ancestor/descendant relation, their cuts are

in their Lowest Common Ancestor (LCA) node [6]. For example, the

tree nodes of 𝑣2 and 𝑣4 are𝑋2 and𝑋4, and their LCA is𝑋1 = {𝑣1, 𝑣3}.
Then these two vertices form a cut set between 𝑣2 and 𝑣4, and the

skyline results are 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 ({𝐿(𝑣2, 𝑣𝑖 ) ⊕ 𝐿(𝑣𝑖 , 𝑣4)}),∀𝑣𝑖 ∈ 𝑋1, where

⊕ is the concatenation operator of two skyline paths. For the queries
with 𝑠 and 𝑡 on different small trees in the forest, the MCSP results

are obtained with the help of the boundary tree.

3 ANALYSIS OF FHL ON FLEXIBLE MCSP

For a 𝑛-D space, there could be

∑𝑛
𝑖=2

(𝑛
𝑖

)
subspaces. Figure 4-(b)

shows a bottom-up enumeration tree for a 4D space𝑤𝑐1𝑐2𝑐3, and

each 𝑘-D (2 ≤ 𝑘 ≤ 𝑛) space can be divided into 𝐶2

𝑘
(𝑘 − 1)-D

subspaces. For instance, the 3D space 𝑤𝑐1𝑐2 can be divided into

three 2D subspaces: 𝑤𝑐1, 𝑤𝑐2, and 𝑐1𝑐2. In this section, we ana-

lyze the two FHL approaches for the flexible MCSP. We call the

one with index only on the highest dimension FHL [37], and the

one with index on every subspace FHL-Multi. Specifcially, because
FHL-Multi has the fastest query performance, we analyze its index

construction; because FHL has the smallest index, we analyze its

query performance.

1) Hardness of the High-Dimensional Skyline Path Concatenation.
Given two skyline path sets 𝑃 (𝑣, ℎ𝑖 ) and 𝑃 (ℎ𝑖 , 𝑢) with sizes of𝑚 and

𝑛, where {ℎ𝑖 } is the set of 𝑣 and 𝑢’s common hops (i.e., cut set), we

can compute the𝑑-D skyline paths 𝑃 (𝑣, ℎ𝑖 , 𝑢) from 𝑣 to𝑢 via eachℎ𝑖 ,

which is the skyline results from 𝑃 (𝑣, ℎ𝑖 ) ⊕ 𝑃 (ℎ𝑖 , 𝑢), with the time

complexity𝑂 (𝑁𝑙𝑜𝑔𝑚𝑎𝑥 (1,𝑑−2)𝑁 ), where𝑑 is the dimension number

and 𝑁 =𝑚𝑛 is the cardinality of generated data. It should be noted

that this time complexity does not just have a higher order of log as

it seems, the skyline paths sizes𝑚 and 𝑛 also increase exponentially

as the dimension number grows. Moreover, as𝑢 and 𝑣 have multiple

hops, it takes𝑂 (∑𝑘
𝑖=1 |𝑃 (𝑣, ℎ𝑖 , 𝑢) | log

∑𝑘
𝑖=1 |𝑃 (𝑣, ℎ𝑖 , 𝑢) |) time in total

to obtain the final skylines 𝑃 (𝑣,𝑢).
2) FHL Query Processing. To answer a query 𝑞(𝑠, 𝑡,𝐶𝛽 ), we first

compute the LCA 𝑋 of 𝑋 (𝑠) and 𝑋 (𝑡). We can compute the sub-

space skyline paths 𝑃 (𝑠, 𝑡) of 𝐷𝛽∪{𝑤}
through the concatenation:

𝑃 (𝑠, ℎ𝑖 ) ⊕ 𝑃 (ℎ𝑖 , 𝑡),∀ℎ𝑖 ∈ 𝑋 in 𝑂 (𝑁𝑙𝑜𝑔𝑚𝑎𝑥 (1, |𝛽 |−1)𝑁 ) time. After

that, we find the one with minimum𝑤 under the constraints of 𝐶𝛽

in constant time. If the query points are from different partitions,

similar process would occur three times (in the small trees and

boundary tree respectively). However, 𝑁 here comes from the high-

est dimensional space so it is much larger than the ones actually

needed. To make things worse, the pruning power among multi-

ple hops [37] also decreases due to high-overlapping in the high

dimensional space. So the efficiency using FHL for subspace MCSP
is incomparable with an FHL built speficially for that subspace.

3) FHL-Multi Index Construction. To adapt FHL to FHL-Multi, its
𝑛-D skyline paths are replaced with all their subspace skyline paths

based on the enumeration tree as shown in Figure 1-(a). During

the index construction, to compute a label from 𝑣 to each 𝑢, we

consider all the vertices in 𝑋𝑣 \ {𝑣} as their common hops. The

skyline paths are concatenated in each 𝐷𝛽
instead of one fixed

𝑑-D, so time complexity of the concatenation on each hop becomes

𝑂 (∑𝑛
𝑑=2

(𝑁
𝑑

)
· 𝑁𝑙𝑜𝑔𝑚𝑎𝑥 (1,𝑑−2)𝑁 ), and the total complexity on 𝑘

hops takes𝑂 (∑𝑛
𝑑=2

(𝑛
𝑑

)
·∑𝑘

𝑖=1 |𝑃 (𝑣, ℎ𝑖 , 𝑢) | log
∑𝑘
𝑖=1 |𝑃 (𝑣, ℎ𝑖 , 𝑢) |) time.

Besides, the index sizes also grows exponentially, which makes this

approach impractical for real-life applications.

In summary, fast query processing requires a huge index (FHL-
Multi), while a reasonable-size index (FHL) is not efficient enough

for query processing. Therefore, we describe our FHL-Cube that is
query efficient while having a reasonable index size.

4 FHL-CUBE CONSTRUCTION

FHL-Cube consists of two levels of index: a set of inner skyline-

cube trees for each partition and a boundary skyline-cube tree to

organize the inner trees. Because these two structures follow the

similar construction procedure, we describe how to construct the

skyline-cube tree first. Then we present how to further optimize

the boundary tree construction based on the problems in FHL.

4.1 Skyline Cube Tree Construction

Before constructing the index, we first compute the all-pair skyline

results of each partition’s boundaries on the original graph such
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that the path information detouring outside each partition is also

captured. After that, we add this boundary all-pair information to

each partition and start the index construction. The construction is

made up of three steps as shown in Algorithm 1. The first step (lines

2-6) forms the tree nodes by contracting the vertices in order (we

use the Minimum Degree Elimination [15, 34]), with the boundary

vertices the last to contract. We denote the vertex set including 𝑣

and it neighbor set 𝑁 (𝑣) at the time when 𝑣 is contracted as 𝑋𝑣 .

The contraction utilizes the single hop skyline cube concatenation.

Because the edges between the boundaries are already computed,

we can use the edge information directly without actual concatena-

tion. Secondly, a tree is formed by setting the parent of each 𝑋𝑣 as

𝑋𝑢 with 𝑢 ∈ 𝑋𝑣 the lowest-ranking vertex in 𝑋𝑣 (lines 8-9). Finally,

the labels are populated from the tree root in a depth-first fashion

by reusing the labeling of its ancestors’ (lines 11-15). Specifically,

we assign labels to 𝑣 from 𝑋𝑣 to all its ancestors 𝑋𝑢 , because the

vertices in 𝑋𝑣 naturally form a cut between 𝑣 and all its ancestors.

Then for any vertex pair (𝑠, 𝑡) with𝑋𝑣 as the lowest common ances-

tor of 𝑋𝑠 and 𝑋𝑡 , we can view the vertices in 𝑋𝑣 as their hops. We

use multi-hop cube concatenation to obtain the label cubes. Details

about the skyline cubes and cube concatenation will be introduced

in Section 5 and Section 6 respectively. Due to limited paper space,

we put the example index in [2].

Algorithm 1: FHL Cube Construction

Input: Graph𝐺 (𝑉 , 𝐸 )
Output: FHL-Cube Labeling 𝐿

1 // Tree Node Contraction

2 while 𝑣 ∈ 𝑉 has the minimum degree and𝑉 ≠ 𝜙 do

3 𝑋𝑣 = 𝑁 (𝑣) , 𝑟 (𝑣) ← Iteration Number

4 for (𝑥, 𝑦) ← 𝑁 (𝑣) × 𝑁 (𝑣) do
5 𝐶𝑢𝑏𝑒𝑥,𝑦 ← 𝐶𝑢𝑏𝑒 (𝐶𝑢𝑏𝑒𝑥,𝑣 ⊕ 𝐶𝑢𝑏𝑒𝑣,𝑦 ∪𝐶𝑢𝑏𝑒𝑥,𝑦 ) ;
6 𝐸 ← 𝐸 ∪ (𝑃 (𝑥, 𝑦) ) ,𝑉 ← 𝑉 − 𝑣, 𝐸 ← 𝐸 − (𝑥, 𝑣) − (𝑣, 𝑦) ;

7 // Tree Formation

8 for 𝑣 in 𝑟 (𝑣) increasing order do
9 𝑢 ←𝑚𝑖𝑛{𝑟 (𝑢 ) |𝑢 ∈ 𝑋 (𝑣) }, 𝑋𝑣 .𝑃𝑎𝑟𝑒𝑛𝑡 ← 𝑋𝑢

10 // Label Assignment

11 𝑋𝑣 ← Tree Root,𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑋𝑣 )
12 while𝑋𝑣 ← 𝑄.𝑝𝑜𝑝 ( ) do
13 for𝑢 ∈ {𝑢 |𝑋𝑢 is ancestor of𝑋𝑣 } do
14 𝑃 (𝑣,𝑢 ) ← 𝐶𝑢𝑏𝑒 (⋃𝐶𝑢𝑏𝑒𝑣,ℎ ⊕ 𝐶𝑢𝑏𝑒ℎ,𝑢 ) |∀ℎ ∈ 𝑋𝑣 ) ;
15 𝐿 (𝑣) ← (𝑢,𝐶𝑢𝑏𝑒𝑣,𝑢 ) ;
16 𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑋𝑢 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) , 𝐿 ← 𝐿 ∪ 𝐿 (𝑣) ;

4.2 Boundary Tree Construction

The boundary graph is made up of all partition boundaries. Same as

FHL, we can contract the boundaries in the unit of partition with the
same order used in the inner-partition index to keep the tree struc-

ture of the boundaries from the same partition stable. Moreover, all

the concatenations used between the boundaries from the same par-

tition can also be skipped as we have already obtained their cubes.

However, this contraction method still takes a very long time to

propagate on the boundary tree, which includes a series of skyline

path cube concatenations among the tree nodes. This is because

FHL constructs the boundary tree following the contracting order

of the small trees without considering the hierarchical structure

among the partitions. This makes the boundary tree become very

unbalance and the tree height increases dramatically. Moreover, as

discussed in Section 2.3, when we create a boundary graph, we first

build a complete graph for each partition and then connect them

together by all cutting edges. Therefore, it results in a very dense

graph with a large tree height.
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Figure 5: Contracting Orders with Different Principles

Hence, we propose a contraction method on the boundary graph

to achieve the balance of the boundary tree and then reduce the

computation on the propagation phase. To ensure the hierarchical

structure of the partitions, we first create a connected graph that

presents their connective relationships. Specifically, we treat each

partition as a node and add an edge between two nodes if their

corresponding partitions are connected in the original boundary

graph. For example, Figure 5 is the connected graph of Figure 3-(b).

It displays the procedure of contracting in two different orders.

Even though both Figure 5-(a) and Figure 5-(b) contract the graph

by the order of vertex degree, the contraction in Figure 5-(b) is

better than Figure 5-(a), because it can produce lower tree height.

As a consequence, we propose our observation as follows:

Lemma 2 (Single Child Tree Decomposition (SC-TD)).

If the vertices in a contracting order are consecutive and form a path,
then each node in its tree decomposition only has a single child.

Proof. When contracting each vertex 𝑣 , it will form a tree node,

including 𝑣 and its current neighbors. After contracting all vertices,

we check the vertices of each node 𝑋𝑣 , except 𝑣 , to find the vertex

𝑢 contracted prior to others, and select its corresponding node 𝑋𝑢
as the parent of 𝑋𝑣 . As the vertices in the contracting order are

consecutive, the next contracting vertex must be a neighbor of the

current contracting vertex. Therefore, the corresponding node of

the next contracting vertex will always be the child of the current

contracting one. This property degenerates the tree into a stick. □

Note that the SC-TD or the extremely unbalanced tree is very

common in dense graphs, such as the connected graph of New York

City, where most of its partitions connect to many other partitions.

Moreover, when the graph is complete, its tree decomposition must

be a SC-TD. Therefore, it is critical to solve this contracting problem
in the boundary graph. Based on Lemma 2, we aim to break the

consecutive of the contraction order: if several vertices following

the consecutive order can form a path on the graph, we reduce

its length as much as possible. Therefore, we iteratively choose a

vertex to contract with the following principles: 1) smallest degree;

2) if 𝑣 is the neighbor of the last contracted vertex, we find the

next one to extract; 3) the number of times each vertex 𝑣 appears

as a neighbor is recorded as 𝐶𝑜𝑢𝑛𝑡 (𝑣); 4) if 2) cannot be held, we
contract the vertex 𝑣 with the smallest 𝐶𝑜𝑢𝑛𝑡 (𝑣).
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5 SKYLINE PATH RELATIONS AND CUBE

Intuitively, concatenation in lower dimensions is much faster, so we

resort to “push it down" from higher to lower dimensions. Firstly,

we discuss the relationship between the lower-dimensional and

higher-dimensional skyline paths. Then we propose several ob-

servations to derive the higher dimensional skyline path from the

lower ones. Finally, we present the skyline path cube that orga-

nizes the skyline paths into different categories, which will further

improve the concatenation efficiency and support flexibility.

5.1 Skyline Path Categorization

Because two paths with the same value in one subspace may have

different values in other dimensions, we first distinguish the basic

types of non-dominated paths based on their values:

Definition 10 (Non-dominated Path Type). Given two
non-dominated paths 𝑝 and 𝑞, they are Indistinct if they have the
same values on all dimensions; otherwise they are Incomparable.

For example, 𝑝 = (1, 1, 2, 3) and 𝑞 = (1, 1, 3, 2) are incomparable,
while 𝑝 = (1, 1, 2, 3) and 𝑞 = (1, 1, 2, 3) are indistinct. Although two

paths are indistinct in 4D, they could have different values on other

dimensions. Therefore, we further discuss the path relations within

a specific subspace as follows:

Definition 11 (Skyline Subspace). Given a set 𝑃𝑠 of skyline
paths in subspace 𝐷𝛽 (𝛽 ∈ [2, 𝑛]), we say 𝐷𝛽 is: an Incomparable
Subspace 𝐷𝛽

⋏{𝑝} of 𝑝 if 𝛽 (𝑝) is incomparable with the projections

of other skyline paths in 𝐷𝛽 ; an Indistinct Subspace 𝐷𝛽
={𝑝} of 𝑝 if

∃𝑞 ∈ 𝑃𝑠 , 𝛽 (𝑝) and 𝛽 (𝑞) are indistinct in𝐷𝛽 ; aDominated Subspace
𝐷
𝛽
≺{𝑝} of 𝑝 if ∃𝑞 ∈ 𝑃𝑠 dominates 𝛽 (𝑝) in 𝐷𝛽 .

For example in Figure 6-(a), 𝑃𝑠 = {𝑝1, 𝑝3, 𝑝5} is a skyline path set

in subspace𝑤𝑐1, and 𝐷
𝑤𝑐1

is 1) 𝐷
𝛽
⋏{𝑝3} an incomparable subspace

for 𝑝3 because it has different values with 𝑝1 and 𝑝5; 2) 𝐷
𝛽
={𝑝1, 𝑝5}

an indistinct subspace as the their path values are the same in𝑤𝑐1;

3) 𝐷
𝛽
≺{𝑝2, 𝑝6} dominated, because their projection (3, 7) and (3,5)

in𝑤𝑐1 are dominated by𝑤𝑐1 (𝑝1) = (2, 4).
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Figure 6: 4D Path Example

Depending on the subspace types, we divide the 𝑛-D paths into

the following four types: Case I Path has at least one incomparable

subspace;Case II Path only has indistinct subspaces;Case III Path

has indistinct and dominated subspaces; Case IV Path only has

dominated subspaces.

Next, we will present the skyline path derivation using the cate-

gorization above.

5.2 Skyline Path Derivation

To establish the relations between the lower dimensions and the

higher dimension, we discuss the properties of these four path

categories. We first have the following theorem for the Case I Path:

Theorem 3 (Incomparable Lower Dominates Higher).

𝑝 is a skyline path in𝐷𝑛 if it has an incomparable subspace𝐷𝛽 ⊆ 𝐷𝑛 .

Proof. Suppose 𝐷𝛽
is 𝑝’s incomparable subspace. If 𝑝 is not a

skyline path in 𝐷𝑛
, then ∃𝑝′ dominates 𝑝 in 𝐷𝑛

, which dominates

𝑝 in 𝐷𝛽
. This contradicts with the incomparable definition. □

For example, given a 4D path 𝑝 (𝑤𝑐1𝑐2𝑐3), if it is a skyline path
in𝑤𝑐1 and 𝐷

{𝑤𝑐1 }
is its 2D incomparable subspace, then 𝑝 must be

a skyline path in all the superspaces of 𝐷 {𝑤𝑐1 } , including 𝐷 {𝑤𝑐1𝑐2 } ,
𝐷 {𝑤𝑐1𝑐3 } , and 𝐷 {𝑤𝑐1𝑐2𝑐3 } . When we generate the skyline paths to

higher dimensions, we can obtain the Case I Paths on the fly. More-

over, the number of Case I Paths keeps monotonically increasing

when the dimension increases, because the emerging subspaces

could be new incomparable subspaces, which can produce more

skyline paths. For Case II Paths, we have the following theorem.

Theorem 4 (Full Indistinct Dominates Higher). 𝑝 is a
skyline path in 𝐷𝑛 if any 𝐷2 is an indistinct subspace of 𝑝 .

Proof. We also prove it by contradiction. Suppose 𝑝 is indistinct

in all 𝐷2
but not a skyline path in 𝐷𝑛

, then ∃𝑝′ dominates 𝑝 in

𝐷𝑛
. Therefore, there exists at least one dimension 𝑐𝑖 such that

𝑝′ (𝑐𝑖 ) < 𝑝 (𝑐𝑖 ) while others are smaller or equal, so 𝑝 could not be

indistinct in those subspace 𝐷2
containing 𝑐𝑖 . □

For Case III Paths, we have the following theorem.

Theorem 5 (Partial Indistinct and Incomparable). ∀𝑞
that is indistinct skyline path of 𝑝 in some𝐷2 subspaces, 𝑝 is a skyline
path if it cannot be dominated by all these 𝑞 in other 𝐷2 subspaces.

Proof. If any indistinct 𝑞 can dominate 𝑝 in all the other spaces,

then 𝑞 can dominate 𝑝 in 𝐷𝑛
, so 𝑝 is not a skyline. □

As for the Case IV, it is a little tricky because it only has domi-

nated subspaces and it seems cannot be a skyline path. However,

this is not correct. For example in Figure 6-(a), 𝑝6 is dominated in

all the 𝐷2
subspaces, but it cannot be dominated in the 𝐷4

space.

Therefore, a path can be a skyline path even though it is dominated

in every 𝐷2
. This is caused by the fact that the skyline paths within

different dimensions cannot hold monotonicity [48]. The following

theorems help to rule out some non-skyline paths:

Theorem 6 (Non-Skyline Case IV). A Case IV Path 𝑝 cannot
be a skyline path in 𝐷𝛽∪𝛽 ′ if 𝑝 is dominated by the same path 𝑞 in
𝐷𝛽 and 𝐷𝛽 ′

Proof. Because 𝑞 can dominate 𝑝 in both 𝐷𝛽
and 𝐷𝛽 ′

, 𝑞 can

also dominate 𝑝 in𝐷𝛽∪𝛽 ′
, then 𝑝 is not a skyline path in𝐷𝛽∪𝛽 ′

. □

Theorem 7 (Skyline Case IV). Given a Case IV Path 𝑝 , sup-
pose 𝑆𝑖 is a set of skyline paths that can dominate 𝑝 in 𝐷2

𝑖
, where 𝐷2

𝑖

denotes the 𝑖𝑡ℎ 𝐷2 subspace. Then 𝑝 is a skyline path in
⋃

𝑖∈[0,𝑘 ] 𝐷
2

𝑖

iff
⋂

𝑖∈[0,𝑘 ] 𝑆𝑖 = Φ, where 𝑘 ≤
(𝑛
2

)
.
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Proof. This is the opposite of Theorem 6. Suppose 𝑝 is not a

skyline path, then there exists a path that can dominate 𝑝 in 𝐷𝑛

and every 𝐷2
, which contradicts to

⋂
𝑖∈[0,𝑘 ] 𝑆𝑖 = Φ. □

Theorem 3 to 5 can derive the skyline path results from lower to

higher dimensions, which satisfies our aim of “pushing down" the

skyline concatenations: with several fast lower-dimensional skyline

concatenations, we are able to obtain a large set of the lower dimen-

sional results, which can be used to answer the higher dimensional

queries directly. As for the results missed by the lower dimensional

results, Theorem 6 and 7 help to reduce the concatenation space

for the higher dimensional skyline paths.

5.3 Skyline Path Cube and Cuberization

Now we are ready to describe the structure of the skyline path cube.

Firstly, a skyline cube acts like a subspace that organizes the criteria

hierarchically. Apart from the subspaces, the skyline path cube also

allocates the skyline paths into different cuboids of the lattice. The

following definition categorizes the skyline paths according to the

dimension numbers, which can be further used to allocate the paths

into different levels of the cuboid:

Definition 12 (𝑘-Exclusive Skyline Path). A path 𝑝 is a
𝑘-exclusive skyline path if it can be derived from the 𝐷𝑘 but not from
𝐷𝑘−1. In other words, 𝑘 is the lowest dimension number to validate 𝑝
as a skyline.

Definition 13 (Skyline Path Cube). Given a set of skyline
paths from 𝑢 to 𝑣 in 𝐷𝑛 , a skyline cube 𝐶𝑢𝑏𝑒𝑛𝑢𝑣 is a mapping from
the 𝑘-exclusive paths to their corresponding 𝐷𝑘 cuboids.

Theorem 8 (Skyline Cube Disjoint and Completeness).

All the skyline are stored in one and only one level of the cuboids.

Proof. Obviously, a skyline path can only appear in one level

of the cuboid. As for the completeness, suppose 𝑝 is a skyline path

but does not exist in the cube. If 𝑝 does not exist in level 𝑘 , then

it must be either dominated by the skyline paths in 𝐷𝑘
, or exists

in the higher levels at least as a 𝑘 + 1-exclusive skyline path. If 𝑝
does not exist in level 𝑘 + 1, then it is at least a 𝑘 + 2-exclusive
skyline path. Therefore, when this procedure reaches 𝑘 = 𝑛, then 𝑝

is dominated by the paths in the cube, so such 𝑝 does not exist. □

Figure 6-(b) shows an example of the skyline cube of the paths

in (a). It should be noted that the skyline cube is another layer to

organize the skyline paths, so the original skyline paths are still

stored in a table like (a), and the cuboids only store the address of

the path in the table. Firstly, the cuboid 𝑃 {𝑤𝑐1 } has the path set

{𝑝1, 𝑝3, 𝑝5}, as the projections of them on 𝐷 {𝑤𝑐1 } are skyline paths.
Secondly, we can also derive that 𝑝1, 𝑝2, 𝑝3 and 𝑝4 are skyline paths

in the superspaces of their incomparable 𝐷2
subspaces. Specifi-

cally, 𝑝3 has three incomparable 𝐷2
subspaces 𝐷 {𝑤𝑐1 } ,𝐷 {𝑐1𝑐2 } and

𝐷 {𝑐1𝑐3 } . Therefore, 𝑝3 is also the skyline path in the superspaces

that contain any one of these incomparable subspaces, and it is a

skyline path in all the higher spaces. As for 𝑝5, it is indistinct in

𝐷 {𝑤𝑐1 } with 𝑝1 but it is not a skyline in its superspace 𝐷 {𝑤𝑐1𝑐2𝑐3 }

as it is dominated by 𝑝1. As for 𝑝6, it can only be found in 𝐷 {𝑤𝑐1𝑐2 }

and 𝐷 {𝑤𝑐2𝑐3 } , so it is a 3-exclusive skyline path.

We call the process to construct a skyline cube from a set of

paths Cuberization operation𝐶𝑢𝑏𝑒 (𝑝). Firstly, we validate the paths
from lower to higher dimensional cuboids. For the higher dimen-

sional cubes, we also need the results from their corresponding

sub-cuboids for path validation. Each time we finish a level of

cuboids, we can remove these paths from 𝑃𝛽 . To further reduce the

index size, we propose the following skyline cube bounds to prune

the impossible paths from the existing result:

Lemma 9 (Skyline Path Boundary). Given any 𝐷𝑐𝑖𝑐 𝑗 , its
skyline paths must exist within the boundary of [𝑐𝑖 .𝑚𝑖𝑛, 𝑐𝑖 .𝑚𝑎𝑥] ×
[𝑐 𝑗 .𝑚𝑖𝑛, 𝑐 𝑗 .𝑚𝑎𝑥], where the values obtained from its skyline path set.

We emphasize that if a subspace path 𝑝 in a 𝐷𝑐𝑖𝑐 𝑗
has the mini-

mum value on 𝑐𝑖 and on other paths have the same value with 𝑝 on

𝑐𝑖 , 𝑝 must be a subspace skyline path in 𝐷𝑐𝑖𝑐 𝑗
, and it determines the

maximum value of skyline paths on 𝑐 𝑗 . Hence, we sort the paths

in 𝑃 on the both 𝑐𝑖 and 𝑐 𝑗 with the increasing order. The top one

path on each criterion can determine the skyline path boundary

[𝑐𝑖 .𝑚𝑖𝑛, 𝑐𝑖 .𝑚𝑎𝑥] × [𝑐 𝑗 .𝑚𝑖𝑛, 𝑐 𝑗 .𝑚𝑎𝑥] if 𝐷𝑐𝑖𝑐 𝑗
is a incomparable sub-

space of them. For example in Figure 6-(a), as 𝑝2 has 𝑐2 .𝑚𝑖𝑛 = 7,

it determines the 𝑐3 .𝑚𝑎𝑥 = 10. 𝑝1 has 𝑐3 .𝑚𝑖𝑛 = 2. Then we lo-

cate 𝑐2 (𝑝1) = 10 as 𝑐2 .𝑚𝑎𝑥 . Thus, the skyline boundary of 𝐷𝑐2𝑐3
is

[𝑐2 (𝑝2), 𝑐2 (𝑝1)] × [𝑐3 (𝑝1), 𝑐3 (𝑝2)] = [7, 10] × [2, 10].

Definition 14 (Skyline Cube Bound). Given a set of sky-
line paths, its skyline cube bound is a hypercube 𝐵 = Π∀𝑐𝑖 ∈𝛽 [𝑐𝑖 .𝑚𝑖𝑛,

𝑐𝑖 .𝑚𝑎𝑥] such that all the skyline path values must exist in the corre-
sponding ranges.

To obtain a skyline cube bound of a set of skyline paths, we

sort them on each criterion, and locate two skyline results of each

𝐷 {𝑐𝑖𝑐 𝑗 } space: the first one on 𝑐𝑖 that has the 𝑐𝑖 .𝑚𝑖𝑛 and 𝑐 𝑗 .𝑚𝑎𝑥 ,

and the first one 𝑐 𝑗 that has the 𝑐 𝑗 .𝑚𝑖𝑛 and 𝑐𝑖 .𝑚𝑎𝑥 . After that, we

go through all the 𝐷2
boundaries and take the minimum/maximum

of each dimension as the final bounds. With such a bound derived

from the 𝐷2
, we can use it to prune the paths whose values are all

larger than each upper bound. The time complexity of Cuberization

can be loosely bounded by 𝑂 (∑ |𝛽 |
𝑖=2

( |𝛽 |
𝑖

)
× 𝑛 log |𝛽−1 | 𝑛), while the

actual running time is much faster due to the above pruning on the

higher dimensional exclusive path size.

6 SKYLINE CUBE CONCATENAITON

Different from FHL, whose label stores the skyline paths of a specific
𝐷𝛽

, FHL-Cube’s label stores the skyline path cube. During the index

construction and query processing, FHL-Cube needs to concatenate
two skyline path cubes in all non-empty subspaces instead of from

only one 𝐷𝛽
. In the following, we present how to concatenate the

skyline cubes efficiently in the single (Section 6.1) and multiple

(Section 6.2) hop scenarios, and how to utilize them during query

processing (Section 6.3).

6.1 Single Hop Cube Concatenation

Definition 15 (Skyline Path Cube Concatenation).

Given two skyline path cubes 𝐶𝑢𝑏𝑒𝑛
𝑢ℎ

and 𝐶𝑢𝑏𝑒𝑛
ℎ𝑣
, the concatenation

result 𝐶𝑢𝑏𝑒𝑛
𝑢ℎ𝑣

= 𝐶𝑢𝑏𝑒𝑛
𝑢ℎ
⊕ 𝐶𝑢𝑏𝑒𝑛

ℎ𝑣
= {𝐶𝑢𝑏𝑒𝛽

𝑢ℎ
⊕ 𝐶𝑢𝑏𝑒𝛽

ℎ𝑣
, |∀𝐷𝛽 ⊆

𝐷𝑛} contains all the skyline paths from 𝑢 to 𝑣 via ℎ, and these skyline
paths are organized in a skyline path cube 𝐶𝑢𝑏𝑒𝑛

𝑢ℎ𝑣
.
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The concatenation operation includes two phases: 1) Add up

the path values to generate a concatenated path set 𝑃𝑠 ; 2) Find the

skyline paths from 𝑃𝑠 for computing skyline cubes. As we can not

guarantee that all concatenated paths are still skyline paths [36, 37],

it will increase the complexity of computing skyline cubes. For ex-

ample, Table 1a and 1b are two𝐷4
skyline path sets 𝑃𝑢ℎ and 𝑃ℎ𝑣 . The

𝐷 {𝑐1𝑐3 } skyline paths in 𝑃𝑢ℎ are 𝑝1 and 𝑝3, while 𝑃ℎ𝑣 ’s are 𝑝
′
2
and

𝑝′
3
. When concatenate 𝐶𝑢𝑏𝑒

𝑐1𝑐3
𝑢ℎ
⊕ 𝐶𝑢𝑏𝑒𝑐1𝑐3

ℎ𝑣
, we can generate four

candidates 𝑝2
1
= (8, 10, 18, 5), 𝑝3

1
= (5, 9, 19, 6), 𝑝2

3
= (7, 7, 19, 6), 𝑝3

3
=

(8, 8, 18, 7). 𝑝3
1
and 𝑝3

3
are dominated by 𝑝2

3
in 𝐷 {𝑐1𝑐3 } . Therefore,

the final result of 𝐶𝑢𝑏𝑒
{𝑐1𝑐3 }
𝑢ℎ𝑣

is 𝑃
{𝑐1𝑐3 }
𝑢ℎ

⊕ 𝑃 {𝑐1𝑐3 }
ℎ𝑣

= {𝑝2
1
, 𝑝2

3
}.

Table 1: Skyline Path Concatenation of 𝑃𝑢𝑤 and 𝑃𝑤𝑣

(a) Skyline Path Set 𝑃𝑢ℎ
𝑃𝑢ℎ 𝑤 𝑐1 𝑐2 𝑐3
𝑝1 2 4 10 2

𝑝2 3 7 7 10

𝑝3 5 3 9 3

(b) Skyline Path Set 𝑃ℎ𝑣
𝑃ℎ𝑣 𝑤 𝑐1 𝑐2 𝑐3
𝑝′
1

6 6 8 3

𝑝′
2

2 4 10 3

𝑝′
3

3 5 9 4

We improve the concatenation efficiency from two aspects: 1)

Block Maintenance when concatenating two underlying skyline

paths; 2) Skyline Path Derivation when identifying all subspace

skyline paths in each Cube. In the following, we first introduce 1)

for reducing the size of the concatenated paths, which can further

reduce the computation time of Cubes in 2).

Block Maintenance. Given two sets of𝑚 and 𝑛 skyline paths,

the concatenation paths number𝑚𝑛 could be large and deteroiraets

the cube concatenation efficiency. To reduce𝑚𝑛 to a smaller value,

we first introduce the path entropy [14].

Definition 16 (Path Entropy 𝜖). Given a 𝑛-D path 𝑝 ∈ 𝑃𝑠 ,
its entropy 𝜖 (𝑝) = 𝑙𝑛𝑤 (𝑝) + ∑𝑛−1

𝑖=1 ln 𝑐𝑖 (𝑝). If 𝜖 (𝑝) is small, then 𝑝

has higher probability to dominate paths in 𝑃𝑠 .

Specifically, we maintain a Block of 𝑘 smallest entropy concate-

nated paths. For each 𝑝𝑖 ∈ 𝑃𝑠 , we can discard it if dominated by any

path in Block. Otherwise, we compute its entropy 𝜖 (𝑝𝑖 ) and replace
𝑝 𝑗 in Block if 𝜖 (𝑝 𝑗 ) > 𝜖 (𝑝𝑖 ). In addition, the Block maintenance

can be further optimized in the tree node contraction phase where

the cubes are concatenated when we compute skyline shortcuts

between the neighbour pairs of each vertex𝑤 . If an edge 𝑒 = (𝑢, 𝑣)
exists between𝑤 ’s two neighbours 𝑢 and 𝑣 , then it already includes

a skyline path set 𝑃𝑢,𝑣 , and we need to merge the concatenated

paths 𝑃𝑢,𝑤,𝑣 with 𝑃𝑢,𝑣 . As |𝑃𝑢,𝑤,𝑣 | can be much larger than |𝑃𝑢,𝑣 |,
we use the 𝑘 smallest entropy paths in 𝑃𝑢,𝑣 as the initial Block. In
practice, this method is effective especially in the boundary tree.

Cuberization with Skyline Path Derivation. We propose

to break down the expensive high-dimensional cube concatena-

tion into several cheap low-dimensional ones using the previously

discussed skyline path derivation and Cube prunings.
Given two skyline path sets 𝑃1 and 𝑃2, we first add their path val-

ues to obtain an all-pair concatenated path set 𝑃𝑠 . Then we sort the

paths in 𝑃𝑠 in ascending order on each criterion. As shown in Figure

7-(a), ∀𝑝𝑖 ∈ 𝑃𝑆 , the paths ranking before 𝑝𝑖 can dominate 𝑝𝑖 . On the

contrary, the paths after 𝑝𝑖 are dominated by 𝑝𝑖 . We denote the set of

paths dominating 𝑝𝑖 on a subspace 𝐷𝛽
as DG𝛽 (𝑝𝑖 ). Then, we pair

𝑝𝑖 to the correct 𝐶𝑢𝑏𝑒𝛽 by checking whether there is a common

𝐶𝑢𝑏𝑒! Remaining 𝐷≺!
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Skyline
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Figure 7: Sorting List and Pruning Area Examples

path 𝑝′
𝑖
ranking before 𝑝𝑖 on each criterion in 𝐷𝛽

. For example,

if DG𝑤 (𝑝𝑖 )
⋂DG𝑐1 (𝑝𝑖 ) = 𝑝′

1
, DG𝑤 (𝑝𝑖 )

⋂DG𝑐3 (𝑝𝑖 ) = 𝑝′
2
, we

can determine that 𝐷𝑤𝑐1
and 𝐷𝑤𝑐3

are two dominated subspace

𝐷
𝑤𝑐1
≺ (𝑝1) and𝐷

𝑤𝑐3
≺ (𝑝1). AsDG𝑤 (𝑝𝑖 )

⋂DG𝑐1 (𝑝𝑖 )⋂DG𝑐3 (𝑝𝑖 ) =
𝜙 , no path can dominate 𝑝𝑖 in 𝐷𝑤𝑐1𝑐3

. Thus, 𝑤𝑐1𝑐3 (𝑝1) is a 3-

exclusive skyline path and recorded in a 𝐶𝑢𝑏𝑒𝑤𝑐1𝑐3

Next, we find these common paths from lower to higher dimen-

sions. Firstly, we merge all the DG1 (𝑝𝑖 ) and form a new list L(𝑝𝑖 )
as shown in Figure 7-(c). Note that the paths 𝑝′

𝑖
in any DG1 (𝑝𝑖 )

can be ordered by the record location on the concatenated path set

𝑃𝑠 . The order range of 𝑝
′
𝑖
is in [0,𝑚𝑛 − 1]. Therefore, we can create

a hash-table based on the paths’ subscripts and the locations of 𝑃𝑠 .

It reduces the space complexity and avoids redundant access on L.
Specifically, we scan L(𝑝𝑖 ) from the start. When we visit each path

𝑝′
𝑖
, we mark on the 𝑖𝑡ℎ location of 𝑃𝑠 and record the current DG1.

During the scanning, once we visit 𝑝′
𝑖
, the 𝑖𝑡ℎ location on 𝑃𝑠 will be

marked again and anotherDG1 (𝑝𝑖 ) is recorded. After finishing the
scan, the locations of 𝑃𝑠 marked more than twice will be extracted

and we can also get their DG1 (𝑝𝑖 ). For example in Figure 7-(c),

when we scanDG𝑐1 (𝑝𝑖 ) and encounter 𝑝′
1
, we mark 1

𝑠𝑡
location on

𝑃𝑠 and record 𝑐1 at the same time. As we have scanned DG𝑤 (𝑝𝑖 )
already, the 1

𝑠𝑡
location now is marked twice and recorded 𝑤𝑐1.

We can determine 𝐷𝑤𝑐1
as 𝐷

𝑤𝑐1
≺ (𝑝𝑖 ). In this way, we can find all

the 𝐷2

≺ (𝑝𝑖 ) and the remaining 𝐷2
s are 𝐶𝑢𝑏𝑒2 (𝑝𝑖 )s.

The 𝐶𝑢𝑏𝑒s of 𝑝𝑖 on the upper level of 𝐶𝑢𝑏𝑒2 (𝑝𝑖 ) can be directly

obtained by the intersection operation on determined 𝐷2

≺ and the

corresponding subspaces of𝐶𝑢𝑏𝑒2 (𝑝𝑖 ). However, we still have room
to improve the computing efficiency owing to the theorem below:

Theorem 10 (Skyline Path Cube Pruning). Given a 𝑛-D
path 𝑝1, once we determine a dominated subspace 𝐷𝛽

≺ , 𝐷
𝛽 ⊆ 𝐷𝑛 , we

can prune 𝐷𝛽 and all its subspaces for computing 𝐶𝑢𝑏𝑒s of 𝑝1.

Proof. 𝑝1 exists in 𝐶𝑢𝑏𝑒
𝛽
𝑢𝑣 only if 𝛽 (𝑝1) is a subspace skyline

path. Then 𝐷𝛽
can be pruned. For the subspaces, the only case that

𝑝1 is a skyline path in the subspace of 𝐷𝛽
is when 𝛽 (𝑝1) has at

least one indistinct subspace 𝑆 ⊂ 𝛽 and one dominated subspaces.

Therefore, it is a Case III path and must have another path 𝑆 (𝑝′
1
)

including the same path value on 𝑆 with 𝑆 (𝑝1). As 𝑝1 is dominated

in the superspace of 𝑆 , there always exists a path 𝑝′
1
, which is better

than 𝑝1. Therefore, pruning 𝑝1 in all the subspaces of 𝐷𝛽
can not

affect the correctness of the query result. □
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As shown in Figure 7-(b), we can prune a part of the subspaces

by computing 𝐶𝑢𝑏𝑒s of any 𝑛-D 𝑝𝑖 ∈ 𝑃𝑠 based on the results of

𝐷2

≺ (𝑝𝑖 ) and 𝐶𝑢𝑏𝑒2 (𝑝𝑖 ). Firstly, we can prune all superspaces of

each determined 𝐶𝑢𝑏𝑒2 (𝑝𝑖 ) (green shaded area) by referring to

Definition 12. Suppose we compute 𝑇 𝐶𝑢𝑏𝑒2 of 𝑝𝑖 , each 𝐶𝑢𝑏𝑒
2 (𝑝𝑖 )

can prune

∑𝑛−2
𝑖=0

(𝑛−2
𝑖

)
subspaces of 𝑝𝑖 . Therefore, we can totally

prune 𝑇 ·∑𝑛−2
𝑖=0

(𝑛−2
𝑖

)
−∑𝑘

𝑖=1

(𝑘
𝑖

)
subspaces, where

∑𝑘
𝑖=1

(𝑘
𝑖

)
is the

number of the common subspaces, and the value of 𝑘 ∈ [𝑇 + 1, 2𝑇 ].
Note that our algorithm can discover all the 𝐷𝐺𝑚𝑎𝑥 (𝛽 ) (𝑝𝑖 ) after

scanning on L(𝑝𝑖 ), where𝑚𝑎𝑥 (𝛽) refers to the maximum domi-

nated subspace of 𝑝𝑖 . Then we prune all the subspaces of𝑚𝑎𝑥 (𝛽),
as shown in the blue shaded area. For example in Figure 7-(c),

𝑝′
4
is marked the most times, the corresponding criteria form the

𝐷𝐺𝑤𝑐2𝑐4 (𝑝𝑖 ). Thus, all subspaces of𝑤𝑐2𝑐4 can be pruned.

In this step, it will cover one or more pruned 𝐷2

≺ (𝑝𝑖 ). Suppose
the total number of 𝐷2

≺ (𝑝𝑖 ) is 𝑀 <
(𝑛
2

)
− 𝑇 , and the number of

pruned ones is 𝑅, which results in 𝑅 ·∑ |𝑚𝑎𝑥 (𝛽 ) |
𝑖=1

−∑𝑘
𝑖=1

(𝑘
𝑖

)
pruned

subspaces, where 𝑘 ∈ [|𝑚𝑎𝑥 (𝛽) | +𝑅− 1, |𝑚𝑎𝑥 (𝛽) | ·𝑅]. Consider the
Case IV path, 𝑝𝑖 can be a subspace skyline path in a set of subspaces

𝑆 , including all the remaining subspace except for the𝐷2
ones. Note

that all subspaces in 𝑆 are the skyline subspaces of 𝑝𝑖 . However,

we only need to find the lowest dimensional subspaces in 𝑆 as the

𝐶𝑢𝑏𝑒𝑠 of 𝑝𝑖 in terms of Definition 13.

6.2 Multiple Cube Concatenation Pruning

During the label construction and query answering, we need the

skyline concatenation result 𝐶𝑢𝑏𝑒
𝛽

𝑢ℎ𝑖 𝑣
on several hops with ℎ𝑖 ∈

𝐻 = 𝐿(𝑢) ∩ 𝐿(𝑣). The straightforward way is computing the cubes

of these ℎ𝑖 , merging the results, and constructing the new cube

𝐶𝑢𝑏𝑒
𝛽
𝑢𝑣 . However, because the cube concatenation has a high com-

plexity, and a pair of vertices could have hundreds of such hops,

which further creates a large number of paths to check, it is very

slow (several seconds) to finish one concatenation. What is worse,

the current hop-first concatenation paradigm, which finishes all

cube concatenations as a whole, makes it hard to prune useless

concatenations beforehand. In query processing, we change the con-

catenation order from the hop-first perspective to the subspace-first

perspective according to the number of constraints and propose a

rectangle-based subspace pruning technique to reduce the number

of hops and the corresponding cuboids.

Firstly, for each𝐶𝑢𝑏𝑒2, we find the bounds of each hop ℎ𝑖 by con-

catenating their first and last skyline paths. In this way, we obtain

a virtual rectangle 𝑟𝑖 for each hop such that their concatenation

results all falling into it. Then for any two rectangles 𝑟𝑖 and 𝑟 𝑗 , if

𝑟𝑖 ’s lower-left point is dominated by 𝑟 𝑗 ’s upper-right, we can safely

prune all the points in 𝑟𝑖 . In other words, we can avoid concatenat-

ing ℎ𝑖 in this subspace. Therefore, a linear scan of the rectangles

is enough to obtain a candidate hop set for each 𝐷2
. For example

in Figure 8-(a), ℎ5 and ℎ6 are dominated by ℎ1, ℎ2, and ℎ3, so we

can avoid concatenating ℎ5 and ℎ6 safely. As for ℎ4, although the

right part of it is dominated, we still have to keep it as the left part

could still be a skyline result. After that, for the higher dimensional

cuboids, we only need to take the union results of its corresponding

hop candidates, which is proved in the following theorem:
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Figure 8: Rectangle-based Hop Pruning

Theorem 11. A hop ℎ is a candidate in 𝐷𝛽 if it exists in one of
its subspaces.

Proof. Firstly, it is trivial to prove that the union of the sub-

space’s rectangles is equivalent to taking the skyline cube’s bounds.

Then the rectangles that are out of a cube’s bounds are dominated

in this subspace. Therefore, those hops associated with the domi-

nated rectangles can be pruned safely. Because we did not prune

any correct hop, the remaining ones are correct candidates. □

By organizing the candidate hops in different subspaces, we can

obtain the candidate hop cubeH . We first obtain the candidate hops

for each 𝐷2
subspaces. After that, the candidates propagate upward

to the candidate set of their superspaces. After all the superspaces

have obtained their candidates, we organize them into a hop cube

to guide the actual hop concatenations in each subspace, as shown

in Figure 8-(c). Figure 8-(b) illustrates an example of deriving the

𝐷3
candidates from its corresponding 𝐷2

candidates. The hops that

are covered by the new cube are also potential results, so we only

need to take the union of the three 𝐷2
candidate sets (blue, green,

and orange regions). The complexity of the pruning phase is linear

to 𝑂 ( |𝐻 | log |𝐻 |), which is spent on the rectangle sorting. As |𝐻 |
is much smaller than the skyline path number |𝑃 |, its complexity

is dominated by the cube concatenation. Therefore, the pruning

phase reduces the concatenation number at a very small cost.

6.3 Flexible MCSP Query Answering

The following theorem first proves the information we need to

answer a flexible MCSP query correctly:

Theorem 12. Given a MCSP query 𝑄 (𝑠, 𝑡, C𝛽 ), its result could
only exist in the 𝐶𝑢𝑏𝑒𝛽

Proof. Because theMCSP results can only be one of the skyline

paths as proved in Theorem 1, we only need to guarantee that the

paths not in 𝐶𝑢𝑏𝑒𝛽 are dominated in 𝐷𝛽
, which is ensured by the

definition of the skyline cube. □

Therefore, we only need to obtain the𝐶𝑢𝑏𝑒
𝛽
𝑠𝑡 to answer𝑄 (𝑠, 𝑡, C𝛽 ).

To further reduce the computational cost, we can apply the con-

straints such that only the paths satisfying the constraints are

needed. In this way, only a smaller cube 𝐶𝑢𝑏𝑒
𝛽
𝑠𝑡 (C) is needed. In

the following, we describe how to obtain the 𝐶𝑢𝑏𝑒
𝛽
𝑠𝑡 (C) when 𝑠

and 𝑡 are in the same or different partitions.

Inner Partition Query. When 𝑠 and 𝑡 are in the same parti-

tion, we only need to use one inner skyline cube tree. Firstly, we

find the LCA 𝑋𝑢 of 𝑋𝑠 and 𝑋𝑡 , then all the vertices {ℎ𝑖 } in 𝑋𝑢 are
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the hops from 𝑠 to 𝑡 . Secondly, we apply multiple cube concatena-

tions based on these hops {𝐶𝑢𝑏𝑒𝛽
𝑠ℎ𝑖
⊕ 𝐶𝑢𝑏𝑒𝛽

ℎ𝑖𝑡
}. To further reduce

the concatenated hop number, we replace the upper-bounds of

dimension with the constraints in C. In this way, smaller rectan-

gles are obtained while more hops are pruned. Besides, during the

hop concatenation, we also apply the constraints on the cubes to

be concatenated. In other words, 𝐶𝑢𝑏𝑒
𝛽

𝑠ℎ𝑖
⊕ 𝐶𝑢𝑏𝑒

𝛽

ℎ𝑖𝑡
is replaced

with 𝐶𝑢𝑏𝑒
𝛽

𝑠ℎ𝑖
(C) ⊕ 𝐶𝑢𝑏𝑒𝛽

ℎ𝑖𝑡
(C). Finally, as MCSP only needs one

constraint-satisfying path with the smallest weight, early termina-

tion can be applied to further improve the efficiency. Specifically,

we only concatenate the paths that satisfying the constraints in the

weight-increasing order. Hence, when the first concatenated path

satisfies the constraints appears, we can stop concatenating and

return it as the final result.

External Partition Query. Suppose 𝑠 and 𝑡 are in different

partitions, and their corresponding boundary sets are denoted as

𝐵𝑠 and 𝐵𝑡 . The inter partition query can be decomposed into three

sub-queries: i) from 𝑠 to 𝐵𝑠 , from ii) 𝐵𝑠 to 𝐵𝑡 , and iii) from 𝐵𝑡 to

𝑡 . The results of the i) and iii) can be obtained directly without

concatenation because the boundaries must be the ancestors of the

inner vertices. The results of ii) can be obtained as a query on the

boundary tree. As for the concatenation results of i) and ii), we can

view 𝐵1 as the hops from 𝑠 to each 𝑏2 ∈ 𝐵2. Therefore, multi-hop

pruning can also be applied here. After that, we get the cubes from

𝑠 to 𝐵2, and can also view each 𝑏2 ∈ 𝐵2 as hops from 𝑠 to 𝑡 . Besides,

the aforementioned cube pruning using the constraints can also be

applied here to further reduce the concatenation computation.

6.4 Extension For Directed Graph

We denote the directed version as FHL-Cube+.
Indexing. For both Inner Tree and Boundary Tree, FHL-Cube+

is similar to FHL-Cube with two differences: 1) The neighbours

of any vertex 𝑣 are classified into in-neighbours 𝑁𝑖 (𝑣) and out-
neighbours 𝑁𝑜 (𝑣). During contraction, we iteratively concatenate

one 𝑢 ∈ 𝑁𝑖 (𝑣) and one𝑤 ∈ 𝑁𝑜 (𝑣) to form a directed pair (𝑢,𝑤). 2)
Instead of saving skyline cubes between 𝑣 and 𝑣 ’s neighbours as

labels in each node 𝑋 (𝑣), we store 𝐶𝑢𝑏𝑒𝑢,𝑣 as in-label and 𝐶𝑢𝑏𝑒𝑣,𝑤
as out-label separately to distinguish their directions towards 𝑣 .

Hence, when we assign labels between 𝑣 to all its ancestors in 𝑋 (𝑣),
we consider the vertices in 𝑁𝑖 (𝑣) as in-hops and the vertices in

𝑁𝑜 (𝑣) as out-hops to compute the skyline cubes from its ancestors

to 𝑣 as in-labels and 𝑣 to its ancestors as out-labels separately.
Query Processing. Given a query 𝑞(𝑠, 𝑡, C𝛽 ), suppose 𝑠 and 𝑡

are in the same partition, we first compute the 𝐿𝐶𝐴𝑋𝑢 of 𝑋𝑠 and

𝑋𝑡 . In 𝑋𝑢 , we find the vertices, which have the out-label with 𝑠

and in-label with 𝑡 , as the hops. After that, we compute the cubes

from 𝑠 to the selected vertices and from the vertices to 𝑡 under the

constraints C𝛽 . We can use the same way to obtain the results on

cube trees and boundary tree if 𝑠 and 𝑡 are in different partitions.

7 EXPERIMENT

7.1 Experimental Settings

We implement all the algorithms in C++ with full optimization. The

experiments are conducted in a 64-bit Ubuntu 18.04.3 LTS with two

8-cores Intel Xeon CPU E5-2690 2.9GHz and 186GB RAM.

Datasets. We conduct experiments on the following four real-

world networks [1]: 1) NY is a dense grid-like urban area with

264,246 vertices, 733,846 edge, and several partitions connected by

bridges; 2) BAY has a shape of doughnut around the San Francisco
Bay with 321,270 vertices, 800,172 edges; 3) COL has an uneven

vertex distribution (dense around Denver but sparse elsewhere)

with 435,666 vertices and 1,057,066 edges; 4) FLA is a large network

Florida with 1,070,376 vertices and 2,712,798 edges. We use the

road length as the weight𝑤 and travel time 𝑡 as the first cost. And

three more positive correlation costs are generated randomly. We

also obtain three additional real-world criteria for NY-REAL: 1) Toll
Charge from NY City Council, 2) Traffic Light from OpenStreetMap,

and 3) Attractiveness from geo-tagged Flickr photos [41].
Algorithms. We compare the proposed FHL-Cube with the ex-

isting exact MCSP solutions: 1) FHL [37]: index for full space; 2)

FHL-Multi [37]: index for each subspace; 3) Sky-Dij [18]; 4) eKSP
[50]; 5) CSP-CH [52]. We do not compare with COLA [56] here since

its query results are approximate. Among them, Sky-Dij and eKSP
are index-free approaches and the index size of CSP-CH is out of

memory when the dimension is larger than three.

Query Set. For each dataset, we randomly generate three sets

of OD pairs 𝑄1 to 𝑄3 and each has 1000 queries. Specifically, we

first estimate the diameter 𝑑𝑚𝑎𝑥 of each network [42]. Then each

𝑄𝑖 represents a category of OD pairs falling into the distance range

[𝑑𝑚𝑎𝑥/24−𝑖 , 𝑑𝑚𝑎𝑥/23−𝑖 ]. Then we assign the query constraints 𝐶

to these OD pairs. Firstly, we compute the cost range [𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥 ]

for each OD. This is because if 𝐶<𝐶𝑚𝑖𝑛 , the optimal result can not

be found then the query is invalid; and if 𝐶>𝐶𝑚𝑎𝑥 , the optimal

result is the path with the shortest distance. Furthermore, to test

the constraint influence on the query performance, we generate

five constraints for each OD pair: 𝐶 = 𝑟 ×𝐶𝑚𝑎𝑥 + (1 − 𝑟 ) ×𝐶𝑚𝑖𝑛 ,

with 𝑟 = 0.1, 0.3, 0.5, 0.7 and 0.9. When 𝑟 is small, 𝐶 is closer to the

minimum cost; and when 𝑟 is big, 𝐶 is closer to the maximum cost.

7.2 Experiment Results

Index Size and Construction Time. The results are shown in

Figure 9. Since Sky-Dij and eKSP are index-free, they are not com-

pared here. As for the CSP-CH, its construction time soars up to

five orders of magnitude from 2-D to 3-D, which is caused by the

explosion of the skylines on the entire graph as the dimension

increases. Consequently, it fails to construct in the 4-D and 5-D

graphs, so we do not show its results. FHL-Multi takes the longest
time with the largest index since it constructs labels for each sub-

space. FHL constructs the index only for the full space, so it has the

smallest index size. However, its construction time is still very long.

For FHL-based algorithms, the most time-consuming part is on

boundary tree construction, as the boundary graph are extremely

dense and most edges stores skylines. Compared with FHL and

FHL-Multi on indexing, FHL-Cube has the significant reduction on

time cost and performs the best (FHL spends 15631 seconds on 5-

dimensional indexing of 𝑁𝑌 , while FHL-Cube takes 7861 seconds).
Its efficiency mainly embodies in two aspects: first, our principles

of boundary tree construction reduce the tree height obviously, and

then decrease the computation from a tree node to its ancestors

corresponding to the vertices in other partitions; second, in each

contraction of tree construction, Block Maintenance reduces many
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concatenated paths before the cuberization operation. In addition,

its index size is much smaller than the FHL-Multi, but has a larger
index than FHL. It is because our skyline cube is essentially another
layer of path management index, so it may store the address of the

same path multiple times at different cuboids. Nevertheless, it is

still faster to construct even with larger index size.
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Figure 9: Index Size and Construction Time

Constraint Number. As shown in Figure 10, the query time of

eKSP, Sky-Dij and CSP-CH are orders of magnitude higher than

that of the FHLs’. This is because eKSP has to enumerate a huge

amount of paths before one can satisfy the constraints, while the

graph-search methods have accumulated a huge amount of inter-

mediate skyline results and have to traverse the same edge multiple

times. The performance of FHL with different constraint numbers

is almost in the same order of magnitude because they use the same

whole-space index. FHL-Multi is always faster than FHL in lower

dimensions since it has an independent index in each subspace. The

performance of all comparable algorithms deteriorate as the dimen-

sion grows. When we reach 𝐷5
, they present the same performance

because they use exactly the same 5-D skyline index. FHL-Cube has
the similar performance with FHL-Multi because the index size they
use for concatenation is the same. However, it is faster than FHL
in the other dimensions, because FHL answers the queries by the

full-dimensional index, which results in more concatenated paths.

Hence it will spend more time on identifying an optimal skyline

path under the constraints. On the other hand, FHL-Cube can locate

the subspace skyline index according to the constrained criteria.

It also provides more powerful hop pruning on the corresponding

subspace and produces fewer concatenated results.

QueryDistance andConstraintRatio Since the query processing

efficiency of eKSP, Sky-Dij and CSP-CH are far behind the FHLs as
shown in Figure 10, we do not include their performance in this

section. As shown in Figure 11, the query time increases slightly as

the query distance becomes longer. This is because that the longer

path tends to pass through more partitions, which could cause more

path concatenation. Nevertheless, the query performance is stable

regardless of the distance changes. With the increase of constraint

ratio, the query performance of the FHLs also keeps stable while

other methods are very sensitive to the constraint ratio [36, 67].

Moreover, all of them perform the best when the constraint ratio

is set to 0.1. In the case, we can prune more hops, because we can

give a smaller concatenation range ahead of time. In summary, our

method is robust to different query distances and constraint ratios.
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FlexibleMCSP. To test the performance of the flexibleMCSP query,

we generate the criteria combinations randomly. The number of

constraints is set from 1 to 4 in 𝑄3 with 𝑟 = 0.5, and the results are

shown in Figure 12. FHL-Multi and FHL-Cube have the similar per-

formance due to the similar index sizes used on any combinations.

The performance of FHL-Cube is better than FHL, and the advan-

tage is more obvious in larger graph like COL, because FHL always

uses the full-dimensional index and produces more concatenated

results. Conversely, FHL-Cube can find a smaller index size due to

the hierarchical structure of Cube, and provide a smaller bound to

prune calculative hops as much as possible.

Real Road Network. We test both directed and undirected on NY
Real, with directed verions are labeled with “+". Moreover, each pair

of adjacent vertices has two-way edges with the same attributes. As

shown in Figure 13, the directed ones take double the construction

and query time of the undirected ones with double index size. Both

directed and undirected versions of FHL-Cube have the similar per-

formance with FHL-Multi but better than FHL, because the random
criterion Attractiveness produces a large number of skylines with

distance. The number of skyline paths in the 5-D graph is far greater

than the 2 to 4-D graphs’. Therefore, FHL has to consider several

times more skylines than both FHL-Cube and FHL-Multi.
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Remarks. Overall, our FHL-Cube is more efficient and practical

to answer flexible MCSP queries than the baselines. Although the

query performance of FHL-Cube is similar with FHL-Multi, its index
size is much smaller. On the other hand, FHL-Cube achieves better
query performance than FHL on both flexible and fixedMCSP query

processing. As a result, even though its index size is slightly larger

than that of FHL, it takes shorter time to construct thanks to the

efficient cube concatenation and optimized index structure. Given

these points, FHL-Cube is more suited for flexible MCSP querying.

8 RELATED WORK

8.1 Shortest Path and Skyline Path

Sky-Dijkis the first skyline path approach that searches the space in

similar way asDijkstra’s while one vertex could be traversed several
times for multiple skyline results. [27] incorporated with landmark
[26] prunes the search space by estimating the lower bound and

proposing the dominance relations. The skyline operator is utilized

in [15] to find a set of skyline destinations. Keyword-Aware routing
[24, 35, 45, 57] involves skylines based on stop number, satisfied

keywords, and travel time. [60] further applies user preference

function on the skyline paths. As for the path indexes, 2-hop labeling
[4, 7, 34, 43, 63, 65, 66] is the state-of-the-art.

8.2 Constrained Shortest Path

Single Constraint Shortest Path. We discuss CSP algorithms

from the perspective of exact/approximate and index-free/index. 1)
Exact Index-Free CSP: CSP is first studied in [21] with dynamic

programming but it can hardly scale. CSP can also be solve with

Sky-Dijk by pruning over the constraint, and k-Path enumeration

[11, 39, 50, 61] by testing the paths one by one. [40] accelerate the

Sky-Dijk search with GPU. 2) Approximate Index-Free CSP: The

approximation in CSP problem relaxes the length of final path to

be (1 + 𝛼) times of the optimal path at maximum through linear
programming [18, 38] and Lagrange Relaxation[5, 17, 23]. How-
ever, they are even slower than the k-Path-based exact approaches

[28, 39]. CP-CSP distributes the approximation power
𝑛
√
𝛼 to the

edges based on Sky-Dijk, but its performance is only slightly bet-

ter since its approximation ratio would decrease to 1. 3) Exact

CSP Index: CH [13] is the only shortest path index which has

been extended to solve CSP [52] with its shortcuts being skyline
paths. Nevertheless, it suffers from long index construction time

and large index size because both the index construction is based

on Sky-Dijk, and its query performance is low because it is essen-

tially Sky-Dijk-based. 4) Approximate CSP Index: COLA [56] is

the only approximate index-based method. It partitions the graph

into regions and precomputes approximate skyline paths between

regions in Sky-Dijk fashion. It views 𝛼 as a budget and concentrates

the pruning power on the important vertices.

Multi-Constraint Shortest Path. Most existing MCSP algo-

rithms have limited scalability to real-life networks with high com-

plexity. For instance, [20] is of complexity𝑂 ( |𝑉 |5𝑐𝑚𝑎𝑥 log( |𝑉 |𝑐𝑚𝑎𝑥 )).
[25] computes the approximateMCSP heuristically but it only scales

to small graph (200 vertices) and takes several seconds to compute

on graphs with 100 vertices [51]. Pareto-SHARC [9] . [25] extends

SHARC, which was already proven worse than CH and no longer

used nowadays. Since the skyline path is restricted to the pre-

defined “preference function" [27, 59], they does not apply toMCSP
problem. The experiments about skyline-based and 𝑘-Path-based

methods are reported in [67]. FHL [37] is the only label-based index
and it has been analyzed thoroughly.

8.3 High Dimensional Skyline Cube

The existing high dimensional skyline methods (Skyey [48], Stellar
[47], and Orion [49]) all aim to find the skyline results from dif-

ferent subspaces from the high dimensional space (Skyline Cube

Operation). However, our flexibileMCSP requires to derive the high

dimensional results from the lower ones, and our path concate-

nation requires concatenation two sets of skylines, which are not

supported by these methods, so they are unrelated to our problem.

9 CONCLUSION

In this paper, we studied the flexible MCSP problem, which is the

most generalized and practical multi-objective/constraint routing

problem, and proposed FHL-Cube index to handle it efficiently. By

establishing the skyline path relation thoeries between the lower

and higher dimensions, we introduced cube to organzie the skyline

paths in different subspaces, derived higher dimensional skyline

path from lower ones, and improved the single- / multi-hop skyline

cube concatenation for both index construction and query process-

ing. We reduce the FHL-Cube construction time by optimizing the

structure and concatenation strategies. Extensive evaluations on

real-life road networks show the priority of FHL-Cube compared

with the state-of-the-art approaches in terms of the construction

time, index size, query processing efficiency and flexibility. Finally,

to cope with the dynamic criteria like travel time, we could either

resort to the speed profiles [62] and create indexes for each time slot,

or resort to index maintenance techniques [63, 65, 66] to update

the skyline path labels accordingly.

ACKNOWLEDGMENT

This work was partially supported by the Australian Research Coun-

cil under Grant No. DP200103650 and LP180100018, Hong Kong

Research Grants Council (grant# 16202722), and was partially con-

ducted in the JC STEM Lab of Data Science Foundations funded by

The Hong Kong Jockey Club Charities Trust.

3123



REFERENCES

[1] [n.d.]. 9th DIMACS Implementation Challenge - Shortest Paths. http://users.

diag.uniroma1.it/challenge9/download.shtml.

[2] [n.d.]. Complete version of this paper. https://www.dropbox.com/s/

3nr2jnch7ok0l4b/documentFull.pdf?dl=0.

[3] Jonathan D Adler and Pitu BMirchandani. 2014. Online routing and battery reser-

vations for electric vehicles with swappable batteries. Transportation Research
Part B: Methodological 70 (2014), 285–302.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD international conference on Management of data. ACM,

349–360.

[5] W Matthew Carlyle, Johannes O Royset, and R Kevin Wood. 2008. Lagrangian

relaxation and enumeration for solving constrained shortest-path problems.

Networks: An International Journal 52, 4 (2008), 256–270.
[6] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. 2012. The

exact distance to destination in undirected world. VLDB Journal 21, 6 (2012),
869–888.

[7] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[8] Hans De Neve and Piet Van Mieghem. 1998. A multiple quality of service routing

algorithm for PNNI. In 1998 IEEE ATM Workshop Proceedings. 324–328.
[9] Daniel Delling and Dorothea Wagner. 2009. Pareto paths with SHARC. In

International Symposium on Experimental Algorithms. Springer, 125–136.
[10] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[11] Jun Gao, Huida Qiu, Xiao Jiang, Tengjiao Wang, and Dongqing Yang. 2010. Fast

top-k simple shortest paths discovery in graphs. In Proceedings of the 19th ACM
international conference on Information and knowledge management. 509–518.

[12] Michael R Garey andDavid S Johnson. 1979. Computers and intractability. Vol. 174.
freeman San Francisco.

[13] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction hierarchies: Faster and simpler hierarchical routing in road networks.

In International Workshop on Experimental and Efficient Algorithms. Springer,
319–333.

[14] Parke Godfrey, Ryan Shipley, Jarek Gryz, et al. 2005. Maximal vector computation

in large data sets. In Proceedings of the VLDB Endowment, Vol. 5. Citeseer, 229–
240.

[15] Qixu Gong, Huiping Cao, and Parth Nagarkar. 2019. Skyline queries constrained

by multi-cost transportation networks. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 926–937.

[16] Jason Hahn. [n.d.]. New York City to Google: Reduce the number of left turns in

Maps navigation directions. https://www.foxnews.com/auto/new-york-city-to-

google-reduce-the-number-of-left-turns-in-maps-navigation-directions.

[17] Gabriel Y Handler and Israel Zang. 1980. A dual algorithm for the constrained

shortest path problem. Networks 10, 4 (1980), 293–309.
[18] Pierre Hansen. 1980. Bicriterion path problems. In Multiple criteria decision

making theory and application. Springer, 109–127.
[19] Refael Hassin. 1992. Approximation schemes for the restricted shortest path

problem. Mathematics of Operations research 17, 1 (1992), 36–42.

[20] Jeffrey M Jaffe. 1984. Algorithms for finding paths with multiple constraints.

Networks 14, 1 (1984), 95–116.
[21] Hans C Joksch. 1966. The shortest route problem with constraints. Journal of

Mathematical analysis and applications 14, 2 (1966), 191–197.
[22] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. 2008. Multi-objective

vehicle routing problems. European journal of operational research 189, 2 (2008),

293–309.

[23] Alpar Juttner, Balazs Szviatovski, Ildikó Mécs, and Zsolt Rajkó. 2001. Lagrange

relaxation based method for the QoS routing problem. In Proceedings IEEE IN-
FOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society, Vol. 2. IEEE, 859–
868.

[24] Arzoo Katiyar, Arnab Bhattacharya, and Shubhadip Mitra. 2014. Efficient and

effective route planning in road networks with probabilistic data using skyline

paths. In Proceedings of the 1st IKDD Conference on Data Sciences. 1–10.
[25] Turgay Korkmaz and Marwan Krunz. 2001. Multi-constrained optimal path

selection. In INFOCOM, Vol. 2. 834–843.

[26] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, and Tim Schmidt.

2007. Proximity queries in large traffic networks. In ACM GIS. 1–8.
[27] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route sky-

line queries: A multi-preference path planning approach. In IEEE International
Conference on Data Engineering (ICDE). IEEE, 261–272.

[28] Fernando Kuipers, Ariel Orda, Danny Raz, and Piet Van Mieghem. 2006. A

comparison of exact and 𝜀-approximation algorithms for constrained routing. In

NETWORKING. Springer, 197–208.
[29] Lei Li, Wen Hua, Xingzhong Du, and Xiaofang Zhou. 2017. Minimal on-road time

route scheduling on time-dependent graphs. PVLDB 10, 11 (2017), 1274–1285.

[30] Lei Li, Sibo Wang, and Xiaofang Zhou. 2019. Time-Dependent Hop Labeling on

Road Network. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 902–913.

[31] Lei Li, Sibo Wang, and Xiaofang Zhou. 2020. Fastest Path Query Answering

using Time-Dependent Hop-Labeling in Road Network. IEEE Transactions on
Knowledge and Data Engineering (2020).

[32] Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast Query

Decomposition for Batch Shortest Path Processing in Road Networks. In 2020
IEEE 36th International Conference on Data Engineering (ICDE).

[33] Lei Li, Kai Zheng, Sibo Wang, Wen Hua, and Xiaofang Zhou. 2018. Go slow

to go fast: minimal on-road time route scheduling with parking facilities using

historical trajectory. The VLDB Journal 27, 3 (2018), 321–345.
[34] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.

Scaling distance labeling on small-world networks. In Proceedings of the 2019
ACM SIGMOD international conference on Management of data. 1060–1077.

[35] Yujiao Li, Weidong Yang, Wu Dan, and Zhipeng Xie. 2015. Keyword-aware

dominant route search for various user preferences. In International Conference
on Database Systems for Advanced Applications. Springer, 207–222.

[36] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, Pingfu Chao, and Xiaofang Zhou.

2021. Efficient Constrained Shortest Path Query Answering with Forest Hop

Labeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 1763–1774.

[37] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2022. Multi-

Constraint Shortest Path using Forest Hop Labeling. The VLDB Journal (2022).
[38] Dean H Lorenz and Danny Raz. 2001. A simple efficient approximation scheme

for the restricted shortest path problem. Operations Research Letters 28, 5 (2001),
213–219.

[39] Leonardo Lozano and Andrés L. Medaglia. 2013. On an exact method for the

constrained shortest path problem. Computers Operations Research 40, 1 (2013),

378 – 384.

[40] Shengliang Lu, Bingsheng He, Yuchen Li, and Hao Fu. 2020. Accelerating exact

constrained shortest paths on GPUs. (2020).

[41] Ying Lu and Cyrus Shahabi. 2015. An arc orienteering algorithm to find the most

scenic path on a large-scale road network. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 1–10.

[42] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114–152.

[43] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When hierarchy meets 2-hop-labeling: Efficient shortest distance queries on road

networks. In Proceedings of the 2018 ACM SIGMOD international conference on
Management of data. 709–724.

[44] Dian Ouyang, Long Yuan, Fan Zhang, Lu Qin, and Xuemin Lin. 2018. Towards effi-

cient path skyline computation in bicriteria networks. In International Conference
on Database Systems for Advanced Applications. Springer, 239–254.

[45] Shiladitya Pande, Sayan Ranu, and Arnab Bhattacharya. 2017. SkyGraph: Re-

trieving regions of interest using skyline subgraph queries. Proceedings of the
VLDB Endowment 10, 11 (2017), 1382–1393.

[46] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2003. An optimal

and progressive algorithm for skyline queries. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. 467–478.

[47] Jian Pei, Ada Wai-Chee Fu, Xuemin Lin, and Haixun Wang. 2007. Comput-

ing compressed multidimensional skyline cubes efficiently. In 2007 IEEE 23rd
International Conference on Data Engineering. IEEE, 96–105.

[48] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. 2005. Catching the best views of

skyline: A semantic approach based on decisive subspaces. Space (X, Y) 100, 4
(2005), 1.

[49] Chedy Raïssi, Jian Pei, and Thomas Kister. 2010. Computing closed skycubes.

Proceedings of the VLDB Endowment 3, 1-2 (2010), 838–847.
[50] Antonio Sedeño-Noda and Sergio Alonso-Rodríguez. 2015. An enhanced K-SP

algorithm with pruning strategies to solve the constrained shortest path problem.

Appl. Math. Comput. 265 (2015), 602 – 618. https://doi.org/10.1016/j.amc.2015.

05.109

[51] Ning Shi, Shaorui Zhou, Fan Wang, Yi Tao, and Liming Liu. 2017. The multi-

criteria constrained shortest path problem. Transportation Research Part E: Logis-
tics and Transportation Review 101 (2017), 13–29.

[52] Sabine Storandt. 2012. Route planning for bicycles—exact constrained shortest

paths made practical via contraction hierarchy. In ICAPS.
[53] George Tsaggouris and Christos Zaroliagis. 2009. Multiobjective optimization:

Improved FPTAS for shortest paths and non-linear objectives with applications.

Theory of Computing Systems 45, 1 (2009), 162–186.
[54] Piet Van Mieghem and Fernando A Kuipers. 2003. On the complexity of QoS

routing. Computer communications 26, 4 (2003), 376–387.
[55] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 2015.

Efficient route planning on public transportation networks: A labelling approach.

In Proceedings of the 2015 ACM SIGMOD international conference on Management
of data. 967–982.

[56] Sibo Wang, Xiaokui Xiao, Yin Yang, and Wenqing Lin. 2016. Effective index-

ing for approximate constrained shortest path queries on large road networks.

Proceedings of the VLDB Endowment 10, 2 (2016), 61–72.

3124

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
https://www.dropbox.com/s/3nr2jnch7ok0l4b/documentFull.pdf?dl=0
https://www.dropbox.com/s/3nr2jnch7ok0l4b/documentFull.pdf?dl=0
https://www.foxnews.com/auto/new-york-city-to-google-reduce-the-number-of-left-turns-in-maps-navigation-directions
https://www.foxnews.com/auto/new-york-city-to-google-reduce-the-number-of-left-turns-in-maps-navigation-directions
https://doi.org/10.1016/j.amc.2015.05.109
https://doi.org/10.1016/j.amc.2015.05.109


[57] Yu-Ting Wen, Kae-Jer Cho, Wen-Chih Peng, Jinyoung Yeo, and Seung-won

Hwang. 2015. KSTR: Keyword-aware skyline travel route recommendation. In

2015 IEEE international conference on data mining. IEEE, 449–458.
[58] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path problems in temporal graphs. Proceedings of the VLDB Endowment 7, 9
(2014), 721–732.

[59] Yajun Yang, Hang Zhang, Hong Gao, and Xin Wang. 2021. An efficient index

method for the optimal path query over multi-cost networks. World Wide Web
(2021), 1–23.

[60] Pranali Yawalkar and Sayan Ranu. 2019. Route Recommendations on Road

Networks for Arbitrary User Preference Functions. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 602–613.

[61] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. Management
Science 17, 11 (1971), 712–716.

[62] Mengxuan Zhang, Lei Li, Pingfu Chao, Wen Hua, and Xiaofang Zhou. 2020.

Path query processing using typical snapshots in dynamic road networks. In

International Conference on Database Systems for Advanced Applications. Springer,

255–271.

[63] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.

2021. Dynamic Hub Labeling for Road Networks. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 336–347.

[64] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2020. Stream Process-

ing of Shortest Path Query in Dynamic Road Networks. IEEE Transactions on
Knowledge and Data Engineering (2020).

[65] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. Efficient 2-

hop labeling maintenance in dynamic small-world networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 133–144.

[66] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An experimental evaluation

and guideline for path finding in weighted dynamic network. Proceedings of the
VLDB Endowment 14, 11 (2021), 2127–2140.

[67] Xuanyi Zhang, Ziyi Liu, Mengxuan Zhang, and Lei Li. 2021. An Experimental

Study on Exact Multi-constraint Shortest Path Finding. In ADC 2021, Dunedin,
New Zealand. Springer, 166–179.

3125


