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ABSTRACT
Analytical database systems provide great insights into large datasets
and are an excellent tool for data exploration and analysis. A central
pillar of query processing is the e�cient evaluation of equi-joins,
typically with linear-time algorithms (e.g. hash joins). However, for
many use-cases with location and temporal data, non-equi joins,
like range joins, occur in queries. Without optimizations, this typi-
cally results in nested loop evaluation with quadratic complexity.

This leads to unacceptable query execution times. Di�erent miti-
gations have been proposed in the past, like partitioning or sorting
the data. While these allow for handling certain classes of queries,
they tend to be restricted in the kind of queries they can support.
And, perhaps even more importantly, they do not play nice with
additional equality predicates that typically occur within a query
and that have to be considered, too.

In this work, we present a kd-tree-based, multi-dimension range
join that supports a very wide range of queries, and that can exploit
additional equality constraints. This approach allows us to handle
large classes of queries very e�ciently, with negligible memory
overhead, and it is suitable as a general-purpose solution for range
queries in database systems. The join algorithm is fully parallel,
both during the build and the probe phase, and scales to large
problem instances and high core counts.

We demonstrate the feasibility of this approach by integrating
it into our database system Umbra and performing extensive ex-
periments with both large real world data sets and with synthetic
benchmarks used for sensitivity analysis. In our experiments, it
outperforms hand-tuned Spark code and all other database systems
that we have tested.
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1 INTRODUCTION
Over the last years, we observed two major trends in data pro-
cessing: The amount of data collected is vastly growing, and data
analysis techniques are becoming more and more re�ned. Database
systems provide an excellent base for managing these very large
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Why?
select *, 
from flights f1, flights f2 
where f2.takeoff between f1.landing + '45 minutes' and f1.landing + '3 hours'  
and f1.dest = f2.orig 
and f1.orig = ’MUC’ and f2.dest = ’AKL’ 
order by f1.price + f2.price

f1

f2

Figure 1: Flight routing with stop-over

datasets and provide highly tuned implementations to rapidly an-
swer analytical questions. One very typical and well-understood
challenge are joins on large amounts of data based on equivalence
predicates. However, for many datasets (especially with temporal
or sensor data) queries arise that contain joins on range predicates,
so-called range joins.

A straightforward example is a �ight routing search: Given a
large database of �ight connections, we would like to �nd a�ordable
�ights from Munich to Sydney. Since no direct �ights are available,
we want to �nd connections with a stopover, as shown in Figure 1.
A major constraint is that we are only interested in connections
with a transit duration between 45 minutes and three hours. A
query answering this question could look like this:

select *,
from flights f1, flights f2
where
f1.orig = 'MUC' and f2.dest = 'SYD' and
f1.dest = f2.orig and
f2.takeoff between

f1.landing + '45 minutes' and
f1.landing + '3 hours'

order by f1.price + f2.price limit 10

In this case, the join has two join conditions. The equivalence
predicate f1.dest = f2.orig and the range predicate f2.takeo� between
f1.landing + ’45 minutes’ and f1.landing + ’3 hours’. Thus, the join
could be considered an equi-join with a range-residual or a range-
join with an additional equivalence-predicate. Other examples for
range joins are: The matching of vehicle sensor data to vehicle rides
(de�ned by a time frame) or the mapping of IP addresses to subnets
[37]. Moreover, there are applications, which require the evaluation
of multiple range predicates, so-called multi-dimensional range
joins. Examples are: Finding return trips in taxi-ride datasets (Sec-
tion 6.3.3) or combining bird sightings and weather reports [23]
based on location and time data. Additional equivalence predicates,
as in the �ight example, are also very common and should be in-
corporated into a range join algorithm.
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Most database systems, including DuckDB [30], Postgres [35],
Hyper [16], Oracle, and Microsoft SQL Server, execute the �ight
query using an equi-join implementation. This leads to large execu-
tion times since the equivalence predicate is not very selective (e.g.
1 % selectivity for the �ight example), and the residual between
condition has to be evaluated with 𝒪(𝑛2) complexity for all �ights
within an equivalence group. If a dataset is large, the result cannot
be computed in an acceptable time frame.

This observation led to the development of di�erent range joins,
which handle the non-equality condition e�ciently, but which tend
to handle the equality part poorly, and which are restricted in the
types of queries they support:

Sort based approaches, as implemented by Oracle, Vertica and
MonetDB [28, 32, 37, 38], sort the input on the non-equality at-
tribute, and can be used for optimizing range joins on a single
dimension. Oracle only supports band joins (�xed size range) but
cannot handle additional equivalence predicates. MonetDB’s ap-
proach supports variable sized ranges, but no additional equality
predicats. Vertica’s optimization works for variable sized ranges and
supports additional equivalence predicates but is susceptible to over-
lapping ranges. A single range tuple, overlapping all other ranges
leads to quadratic runtime. Additionally, all three optimizations (of
Vertica, Oracle and MonetDB) are limited to one-dimensional range
/ band join conditions.

Partitioning based approaches, as implemented by Databricks and
others [10, 11, 23, 34], partition the input such that join partners
can only occur in (hopefully) few partitions, which improves the
runtime signi�cantly. However, they are not suitable for the general
case with variable range sizes. Since the size of the range condition
can be tuple-dependent, we cannot determine an optimal bin-size
automatically. Databricks requires the user to choose a suitable bin
size [10], which is problematic.

We tackle these de�cits by introducing a kd-tree-based range
join algorithm. It supports a wide range of queries, including non-
constant bound sizes, supports multi-dimensional ranges, and inte-
grates equality predicates into the lookup process. Through careful
engineering, the implementation is fully multi-threaded, during
both the build and the probe phase, and o�ers excellent performance
for a wide range of use cases. It is a very versatile general-purpose
solution, suited for the integration into a database system that is
not special-cased for a particular problem. Nevertheless, we can
show in Section 6 that an implementation of our generic approach
still outperforms other systems with more specialized algorithms,
including some hand-written solutions.

We provide a practical solution for e�cient range joins inside an
RDBMS, including corner cases like null values, duplicates, strings
with collations, outer joins, mark joins for query unnesting [27],
additional equivalence predicates, etc. The join algorithm is fully
integrated into our database system Umbra [26] and is selected
by the query optimizer when appropriate for the query. Our main
contributions are:

• A generic kd-tree-based, multidimensional range join algo-
rithm with optimizations for equivalence predicates.

• A parallelization scheme for all aspects of the join with zero
single-threaded scans.

• A detailed performance evaluation, leveraging a full imple-
mentation of our approach and two related approaches into
the database system Umbra, dealing with the corner cases
of a real system.

Section 2 gives a short overview of range joins in general. Sec-
tion 3 presents the kd-tree-based range join algorithm. Section 4
shows how the algorithm is parallelized. Section 5 highlights imple-
mentation details for integrating the operator into existing systems
and how the query optimizer can choose when to execute a range
join. Section 6 evaluates the algorithm and its implementation by
systematically showing the performance and how it correlates with
di�erences in cardinalities, selectivities, etc. We also compare the
proposed range join to two di�erent algorithms (implemented into
Umbra) for an in-system comparison. Afterwards, the performance
is compared to commercial and scienti�c database systems and
implementations using arti�cial benchmarks and real-world exam-
ples. Section 7 gives an overview of related work, and Section 8
summarizes the results.

2 BACKGROUND
Range joins are conjunctive join expressions of the form 𝑃 ⋈𝑝1∧...∧𝑝𝑛
𝑅, where a predicate 𝑝𝑖 has the form 𝑃 .𝑥𝑖 between 𝑅𝑚𝑖𝑛𝑖 and 𝑅𝑚𝑎𝑥𝑖 .
Note that, at least conceptually, an equi-join predicate is a special
case of a range query where 𝑅𝑚𝑖𝑛𝑖 = 𝑅𝑚𝑎𝑥𝑖 . The goal of this work is
to compute the result of such a range join as e�ciently as possible.

A band join is a more restricted form of a range join where the
range is certain and has a �xed size, for example, 𝑃 .𝑥𝑖 between 𝑅.𝑦𝑖−
10 and 𝑅.𝑦𝑖 + 11. We mention this because some other approaches
only support band joins and not generic range joins. In the general
case of range joins, the range can di�er for each tuple. To clarify
the explanations in this paper, we call the relation P "points" and
the relation R "ranges". A range join outputs a tuple 𝑝 ◦ 𝑟 for all
points 𝑝 ∈ 𝑃 within each range 𝑟 ∈ 𝑅. As in the �ight example, a
range join can also be a self join, where 𝑃 and 𝑅 resemble the same
relation (e.g. �ights f1 and �ights f2).

The approach presented in this paper builds an ad-hoc kd-tree
index structure on the "points" relation (build side) and performs
lookups for all "ranges" (probe side). Both relations (on the build and
probe side) do not necessarily have to be base table relations. Both
could be intermediate results of other relational algebra operations.
Therefore, the size of both relations is not known a priori and can
only be estimated until the algebra trees below are evaluated. The
algebra tree of the build side is evaluated �rst, and all build-side-
tuples have to be materialized. The query optimizer will try to
choose the smaller relation (if they di�er in size) for the build side
due to the better worst-case complexity and the lower memory
footprint.

Kd-trees [3, 5] are an attractive multidimensional index struc-
ture for range joins due to their linear memory consumption and
worst-case lookup complexity of 𝒪(𝑛1−

1
𝑘 + 𝐹) [5] where 𝑛 is the

number of tuples stored in the tree, 𝑘 the number of dimensions and
𝐹 the output size. Other data structures like range trees [4] would
also be possible options, but have prohibitive space requirements if
the number of range predicates is high. Kd-trees o�er good perfor-
mance with linear space. The construction of a balanced kd-tree can
be achieved in 𝒪(𝑛𝑙𝑜𝑔(𝑛)) using a linear-time median selection
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Figure 2: Kd-tree example with two dimension and 7 tuples (points). Dimension 1 is shown in blue, dimension 2 is green. Left:
planar projection of the points. Kd-tree nodes are represented by the separation lines. Right: corresponding kd-tree.

algorithm. Bringing this into practice is more involved, though, as
there are many challenges like the need to parallelize everything,
unknown data distributions, duplicates in the input, and NULL
values.

3 KD-TREE RANGE JOIN
E�cient multidimensional range joins require an index structure
that allows e�cient range queries. Kd-trees, as shown in Figure 2,
are a multidimensional data structure to store points and allow e�-
cient range lookups. Using a kd-tree as a join index provides several
challenges. The representation in memory should have low over-
head, and the tree should be balanced to allow fast range lookups.
Additional equivalence predicates cannot e�ciently be handled
using the kd-tree itself and require special treatment. Therefore,
we handle equality predicates using a hashtable. The following sub-
sections explain how these challenges are addressed. At the end of
this section, we show the single-threaded version of the algorithm
in pseudocode. Details on the parallelization follow in Section 4.

3.1 KD-Tree as an Index for Points
Figure 2 shows how a kd-tree is used as a multidimensional index,
for an example with seven tuples representing two-dimensional
points. The left side depicts a planar projection of the points; the
right side shows the corresponding kd-tree. Each node in the kd-tree
represents one tuple and acts as a one-dimensional separator for
tuples of its subtrees. All tuples smaller than the node are contained
in the left subtree, all tuples larger than the node are contained in
the right subtree. In Figure 2, the center, vertical line through tuple
1 represents the root in the kd-tree and splits 2, 4, 5 from 3, 6, 7. The
horizontal lines represent kd-tree nodes on the second level and
split 5 from 4 and 7 from 6. For 𝑘 dimensions each node on level 𝑙
separates its subtrees in dimension 𝑑 = 𝑙 mod 𝑘 . In the 2d case in
Figure 2 the root node splits all points in the x dimension, nodes on
level 2 split their children in the y dimension, and nodes on level
3 again in the x dimension. To achieve a balanced kd-tree, every
node uses the median as a separator. For an even number of tuples
we choose the tuple at ⌊0.5 ⋅ (𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑 + 1)⌋ as the median.

A range query on the kd-tree returns all points within a range
(rectangle r1 in the example). The kd-tree reduces the number of
intersection checks since subtrees, that do not intersect the range,
can be skipped. In Figure 2, only the nodes/tuples on the red lookup
path have to be checked to �nd the result - tuples 2 and 4.

3.1.1 Memory Layout. To improve cache e�ciency, the kd-tree
is stored compactly in a contiguous array in preorder as shown
in Figure 3. Each node only consists of a single pointer to its cor-
responding tuple. The root node is the �rst element in the array.
Child pointers or separators are not necessary. The storage location
of the subtrees can implicitly be calculated. For a tree in memory
between 𝑏𝑒𝑔𝑖𝑛 and 𝑒𝑛𝑑 , the left subtree starts at position 𝑏𝑒𝑔𝑖𝑛 + 1,
the right subtree starts at ⌊0.5 ⋅ (𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑 + 1)⌋. This implicit
child addressing is only possible if the tree is perfectly balanced.
A tradeo� is whether the tree should only contain pointers to the
tuples, compared to storing the tuples’ values in-place. Regarding
performance, in-place tuple storage would be bene�cial for tuples
of small size, due to improved caching. For large tuples, the pointer
indirection pays o�, since tuples have to be swapped frequently
during the build-phase. We thus preferred the pointer version, it
also simpli�es the code due to the �xed entry size. To some degree,
cache misses caused by the pointer indirection can be reduced by
active prefetch-hinting, as shown in Section 5.2.

tuple 1 tuple 2 tuple 4 tuple 5 tuple 3 tuple 6 tuple 7

contiguous array

implicit child pointers child at 
1
2 ⋅ (le! + right − 1)

Figure 3: Kd-tree as a contiguous array in memory. Subtrees
can be accessed implicitly, pointers are not necessary.

3.1.2 Optimal Balance. There is a tradeo� between building op-
timally balanced kd-trees and almost balanced kd-trees: While an
almost balanced kd-tree would be faster to construct, it has two
signi�cant disadvantages. (1) The lookup time increases since an
unbalanced tree typically has more levels. And (2), the child node
location cannot be calculated implicitly, leading to increased node
sizes since the separator (between left and right subtree) would
have to be stored. Disadvantage (1) is relevant because typically,
the query optimizer tries to choose the larger relation for the probe
side, so an improvement in lookup time can justify a slightly more
expensive build phase. But disadvantage (2) is even more important
to minimize the space consumption. Therefore our approach uses
perfectly balanced kd-trees.

3.1.3 Hash partitions for equivalence predicates. Our approach in-
corporates equality predicates into the algorithm. Considering them
simply as zero-width range conditions would be ine�cient. If the

3020



join condition contains equivalence predicates, tuples are grouped
based on the equivalence attributes using a hashtable and one kd-
tree is built for each equivalence group. The hashtable itself does
not contain the tuples, but it is used as an index to quickly access
the relevant kd-tree, as shown in Figure 4. This approach has two
advantages: Performance-wise, hashtables have been proven to
be the favorable index structure for equi-conditions [21], and the
individual kd-trees are smaller and faster to construct.

MUCAKL SFOJFK DXBLAX BER

kd-tree 
LAX

kd-tree 
JFK

kd-tree 
SFO

kd-tree 
BER

kd-tree 
DXB

kd-tree 
AKL

kd-tree 
MUC

hashtable 0 hashtable 1

……

…

Figure 4: Hashtables for equivalence groups. Example:
Flights are partitioned by destination airport. For each desti-
nation a (one-dimensional) kd-tree is built.

In contrast to a typical hash join, we expect many duplicate
values for the equivalence column(s). If this assumption would not
hold, a regular hash-join would be the better option and should be
introduced by the query optimizer. Therefore, the requirements of
a range join scenario with additional equivalence predicates are
similar to the requirements of a typical group-by operator with
potentially many tuples per group. Our approach to the equivalence
groups is conceptually similar to the preaggregation approach [13]
used for the group-by operator of Umbra. The approach involves
multiple smaller hashtables to improve parallelization. For this
reason, Figure 4 depicts multiple hashtables.

3.2 Lookup
To �nd all join partners for each range tuple, a hashtable lookup is
performed for the equivalence predicate. If a match is found, the
entry for the equivalence group contains the start and end pointers
(see Figure 4) to the kd-tree for all tuples within the equivalence
group. Afterwards, a kd-tree lookup is executed. The kd-tree is
traversed by checking if the root element intersects the range. If
yes, a match is found, and both child subtrees are traversed. If
no, and the range’s upper bound is smaller than the root, the left
subtree is traversed; otherwise, the right subtree is traversed. Using
a manual stack, this is implemented without expensive recursive
function calls.

3.3 The Algorithm
The following pseudocode shows how the range join algorithm
works conceptually (without parallelization), for a database sys-
tem adopting the produce / consume model [25]. Conceptually, the
join is implemented in three di�erent functions: consumeBuild,
buildIndex and consumeProbe, which are typical for join operators
adopting the produce consume model. However, their implementa-
tion is speci�c to the proposed range join. Code nested inside "if
equiPredicatePresent:" is only executed for range joins with equiva-
lence predicates.

3.3.1 ConsumeBuild. Conceptually, the consumeBuild function is
called for every tuple on the build side. The tuple is materialized, and
if equivalence predicates are present, the tuple count for the equiv-
alence group is incremented. The count is stored in the hashtable
ht.

def consumeBuild(tuple):
materialize(this.storage, tuple)
if equiPredicatePresent:
if this.ht.contains(tuple.equiColumn):
this.ht[tuple.equiColumn].count += 1

else:
this.ht[tuple.equiColumn] = {count: 1}

3.3.2 BuildIndex. The buildIndex function is called after all tuples
from the build side have been consumed. The storage array for the
kd-tree(s) is allocated. If equivalence predicates exist, a slice of the
kd-tree array is assigned to every equivalence group. The slices are
then �lled with pointers to the tuples of each equivalence group.
Afterwards, a kd-tree is built for every group. In the case without
equivalence predicates, one single tree is built.

def buildIndex():
this.arrayStart = allocateArray(tupleCount)
this.arrayEnd = arrayStart + tupleCount
if equiPredicatePresent:
ptr = this.arrayStart
for eqGroup in ht:
eqGroup.start = eqGroup.end = ptr
ptr += eqGroup.count

for tuple in storage:
ht[tuple.equiColum].end++ = &tuple

for eqGroup in ht:
buildKdTree(eqGroup.start, eqGroup.end)

else:
ptr = this.arrayStart
for tuple in storage:
*(ptr++) = &tuple

buildKdTree(this.arrayStart, this.arrayEnd)

3.3.3 ConsumeProbe. Conceptually, the consumeProbe function is
called for every tuple on the probe side. If equivalence predicates
exist, and a match can be found in the hashtable, the correspond-
ing kd-tree is selected. Finally, the kd-tree lookup is performed,
and every match is passed to the next operator in the pipeline via
consume(match).

def consumeProbe(tuple):
treeStart = this.arrayStart
treeEnd = this.arrayEnd
if equiPredicatePresent:
if this.ht.contains(tuple.equiColumn):
treeStart = this.ht[tuple.equiColumn].start
treeEnd = this.ht[tuple.equiColumn].end

else:
return

for match in this.kdLookup(treeStart, treeEnd):
this.parent.consume(match)
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4 PARALLELIZATION MODEL
One key aspect of the kd-tree range join is that it can be highly
parallelized. The parallelization of the probe side is trivial since
the read-only lookups can be performed concurrently. However,
the build side provides some challenges, and single-threaded work
has to be limited to an absolute minimum. Our solution does not
require any single-threaded scans on the whole input.

This section explains the parallelization model in multiple steps.
First, we show how we parallelize the build phase of the hashtable
e�ciently. Second, we describe the parallel construction of the
kd-tree(s). Third, if a single or very few root nodes exist, the me-
dian selection is parallelized. Step three is only employed if no
equivalence predicate or very few equivalence groups exist.

4.1 Parallel Hashtable Construction with
Thread-Local Preaggregation:

As mentioned before, we expect the range join to contain only few
equivalence groups and many tuples per equivalence group. There-
fore, separating tuples into groups provides similar particularities as
a group-by operator. In such a group-by-case, a thread-local preag-
gregation [22] can provide signi�cant performance gains compared
to a single global hashtable [13]. Our approach uses this concept,
but implements some aspects di�erently.

First, each tuple on the build side is materialized into chunked
memory blocks. A hash value is calculated for all equivalence-key-
values. To obtain the tuple count per equivalence group locally and
globally, a count aggregate is computed per equivalence group using
a (conceptually single) local hashtable. To allow parallel merging
of the thread-local hashtables, the aggregation is split into multiple
hash tables using the hash pre�x. Tables with di�erent hash pre�xes
can then be merged in parallel, as shown in Figure 5. The number
of hashtables should be a power of two (to simplify the pre�x
calculation) and should exceed the number of CPU cores to improve
the load distribution. For our implementaion, we use the upper 9
bits of the hash pre�x to select one of 512 hashtables which allows
full parallelization for most systems. (Too many hashtables would
cause more memory overhead for small problem instances with
only a few tuples.) Each hashtable is implemented as a dynamically
growing robin hood hashtable for data locality. A local hashtable
entry stores the equivalence key and the current local tuple count
for the corresponding equivalence group. If an equivalence key
occurs for the �rst time, a new hashtable entry is inserted. If a key
reoccurs, the tuple counter of the hashtable entry is incremented.

After all tuples are materialized, the thread-local hashtables are
merged into 512 global, growing robin hood hashtables. As stated
before, this can be executed multi-threaded without locking. Af-
ter merging, the global hashtables contain the global tuple count
for all equivalence groups, while the local hashtables contain the

hashtable 0 hashtable 1

hashtable 0 hashtable 1

th
re

ad
 1

hashtable 0

hashtable 1

thread local states global state

th
re

ad
 2

Figure 5: Parallel merge of thread local hashtables.

thread-local tuple count for each thread state. The main di�erence
compared to the preaggregation [22] for a group-by is the usage
of dynamically growing hashtables instead of �xed-size hashtables
that would evict entries into output streams in the case of hash
collisions. This behavior is essential to retain the local tuple count.

The following steps are speci�c to the proposed range-join with
equality predicates: After the hashtable merge, a contiguous array
is allocated - large enough to store tuple pointers for all tuples,
and each equivalence group is assigned to a slice of that array as
shown in Figure 4. Each thread then reiterates its tuples, reserves a
sub memory slice in the tuple-pointer array for each equivalence
group, and stores pointers to its tuples in the reserved area. Only
the memory slice assignment in the tuple pointer array must be
synchronized, which can be achieved by a single atomic value per
equivalence group. As a result, the beginning of each slice is o�set
by the pre�x-sum of the preceding equivalence groups’ sizes, and
the tuple pointers can be written without further synchronization.

Finally, the 512 global hashtables contain entries to all equiva-
lence groups, and each entry points to a slice of the tuple pointer
array. The next step is to construct a kd-tree for every slice of the
tuple pointer array.

4.2 Parallel KD-Tree Construction:
The parallelization of the kd-tree construction requires special care
to avoid single-threaded scans on the whole input. Therefore, we
employ a three-stage parallelization scheme. It consists of intra-
node, inter-node, and subtree parallelization and di�ers slightly for
the two cases, with and without equality predicates.

If equivalence predicates exist, a kd-tree is built for every equiv-
alence group. If multiple groups are available, individual kd-trees
can be built in parallel. At �rst, single nodes are scheduled to di�er-
ent threads (inter-node parallelization). Eventually, after a certain
number of subtrees are available, each thread continues with the
single-threaded construction of whole subtrees (subtree paralleliza-
tion). For actual implementations, this threshold should be larger
than the core count to improve the work distribution among threads
if, for example, one equivalence group contains fewer tuples than
others. However, the threshold should not be too large to avoid
scheduling overhead. As rough guidance: Our implementation sets
this threshold to 1000 - but the algorithm is not sensitive to that
exact number.

If no equivalence predicates exist, the build phase of one large
kd-tree for the whole build side has to be parallelized (see Figure 6).
Since the kd-tree is constructed top-down, subtrees can be e�-
ciently parallelized on lower levels, but the median selection for
the root node would be single-threaded on the whole input.

Building a node in the kd-tree consists of two steps. (1) Choosing
the median in the dimension of the current tree level and (2) parti-
tioning all tuples below by that median. Single nodes construction
can be parallelized by executing a parallel median selection and
partitioning (intra-node parallelization). After building the �rst few
tree levels using parallel median selection, the algorithm switches
to inter-node parallelization (as described above) as soon as enough
subtrees exist to utilize a signi�cant portion of the CPU. The inter-
node parallelization scales much better with the number of CPU
cores than the parallel median selection and partitioning. We use
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Figure 6: Parallel kd-tree building for a single tree adopting
intra-node, inter-node, and subtree parallelization

an 8 node limit for our experiments - we switch to the inter-node
parallelization as soon as eight nodes can be built simultaneously.
However, this setting can be CPU speci�c and should automatically
be measured during the DBMS installation process.

Parallel kd-tree construction is also essential to ray-tracing in
computer graphics. The idea of changing the parallelization scheme
for lower tree levels is widely spread [8, 33, 41]. For the paralleliza-
tion of individual nodes, the algorithms di�er. As stated, we chose
to implement a parallel median selection and parallel partitioning.

Figure 6 shows all three stages of parallelization: The upper
nodes are built using intra-node parallelism 1 - 3 , then we switch
to inter-node parallelization 4 and �nally, we employ subtree
parallelization 5 . Each colorful bubble in Figure 6 represents a
set of tuples (morsel) that have to be processed. These morsels
are assigned to threads for processing using our morsel-driven
scheduler. The described parallelization model is independent of
morsel-driven parallelism. Other parallelization techniques (e.g.,
spawning threads) are also possible, although they might increase
overhead. The red arrow in Figure 6 shows the order in which
morsels are scheduled to thread 1.

4.3 Median Selection
The median selection is the most expensive operation during the
kd-tree construction. Therefore, it is appealing to implement a fast
selection algorithmwith linear complexity. Although the median se-
lection can be implemented with guaranteed linear-time worst-case
complexity, e.g. using the Median-of-Medians algorithm [9], it is
considerably slower for practical applications than e.g. Quickselect
for random or sorted inputs, as shown in the following example
with 10 million integers using a single thread (g++, -O3, AMD
RYZEN 9-5950X):

Algorithm (Median of 10 M Integers) Random Sorted
Median of Medians 𝒪(𝑛) 465.89 ms 153.197 ms
Quickselect 𝒪(𝑛2) 109.02 ms 13.34 ms

Quickselect has an average-case complexity of 𝒪(𝑛) [9]. But
average depends on the data. Duplicates, for example, frequently
occur in databases and could lead (depending on the partitioning

scheme) to the worst-case complexity of𝒪(𝑛2). To avoid quadratic
runtimes in case of duplicates, we execute a three-way partitioning
scheme that splits the input into three partitions: smaller than the
pivot, equal to the pivot, and larger than the pivot.

This way, the median selection does not lead to 𝒪(𝑛2) com-
plexity in the presence of duplicates. However, to guarantee the
𝒪(𝑛) worst-case performance, we implemented Introselect [24].
Introselect starts with a duplicate aware Quickselect phase and falls
back to the worst-case optimal Median-of-Medians algorithm if the
linear-time constraint cannot be met using Quickselect.

One favorable side e�ect of applying the Introselect algorithm is
that all tuples are partitioned (by the median) after execution. This
is essential for the kd-tree construction.

4.4 Parallel Median Selection
For the parallel creation of single kd-tree nodes, the median selec-
tion and partitioning have to be parallelized. The parallel median
selection itself is a well-known problem [14, 15]. The partitioning
side e�ect, however, is often sacri�ced in parallel implementations.

We implemented the following approach for the parallel median
selection: First, the whole tuple array is split into multiple morsels,
each representing a slice of the tuple array. For three morsels, the
median-of-three is evaluated, and a global pivot is chosen as the
median of these three medians. Then the morsels are partitioned by
the global pivot using a three-way partitioning scheme. Eachmorsel
now has three partitions: Smaller than the pivot (left), equal to the
pivot (middle), and larger than the pivot (right). Afterwards, the
global count of all elements left and right of the pivot is calculated,
and a new global pivot is chosen for the next iteration. If the median
is found, all morsels are locally partitioned. However, globally, the
data is mixed (as shown in Figure 7). In order to achieve global
partitioning, we perform a parallel merge phase that exchanges
local ranges of tuples until all data is partitioned globally.

Figure 7 shows how this parallel merge phase can be imple-
mented for an example with three morsels: First of all, one of the
pivot tuples is swapped to the global median position. For each
morsel, we identify three sub-slices - left of the pivot (L), pivot (P),
and right of the pivot (R). Afterwards, all slices violating the global
partitioning are identi�ed and appended to a slice-swap-list. Spe-
cial care is required if one of the slices contains the global median
element. Afterwards, the violating sub-slices can be exchanged in
parallel by scheduling sub-slices with a similar number of tuples
to worker threads. Now the tuples can be swapped concurrently
without further synchronization. The overhead for these operations
is amortized by choosing reasonably large morsels.

L P R L P R L P R

target median positionStep 1: swap with any pivot from last iteration

L R L P R P R L P R

L R L P R P R L P R

Step 2: find violation ranges
Step 3: parallel swap of violation ranges

Figure 7: Parallel merge of partitions
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5 IMPLEMENTATION IN A COMPILING
DATABASE SYSTEM

We integrated the proposed range join algorithm into our compiling
database system Umbra [26]. Such an implementation has to deal
with corner cases, which (in our opinion) can be very insightful
since many theoretically interesting algorithms can lose their ben-
e�ts once implemented in a real system. This section focuses on
the integration into the query optimizer, the code generation and
active prefetching to reduce cache misses.

5.1 Query Optimizer
When does it make sense for the query optimizer to introduce
a range join operator? Whenever Umbra receives a SQL query,
the query is translated to relational algebra. Our query optimizer
applies optimizations on the relational algebra level in multiple
passes. During the last "physical" pass, the query optimizer chooses
how each join is implemented. The optimizer introduces the kd-tree
range join if range conditions are present. Finally, Umbra compiles
the optimized query plan to machine code and executes it.

Since the compile time of a range join is considerably higher
than a hash or blockwise-nested-loop join, the query optimizer
only introduces range joins if the upfront compilation cost can be
amortized later by a faster execution. We use cost estimations: The
build side P is estimated with 𝑐0 ⋅ ∣𝑃∣ ⋅ (1 + 𝑙𝑜𝑔2(∣𝑃∣ ⋅ 𝑠𝑒𝑙𝑒𝑞)) + 𝑐1
and the probe side R with (𝑐2 ⋅ ∣𝑅∣ ⋅ (1+ 𝑙𝑜𝑔2(∣𝑃∣ ⋅𝑠𝑒𝑙𝑒𝑞))+𝑐3). The
constants 𝑐𝑖 are system dependent and should be masured during
the installation process. 𝑠𝑒𝑙𝑒𝑞 denotes the selectivity estimate for
equality predicates. If the cost estimation remains below the cost
estimation for the hash join, umbra will introduce the kd-range-join
operator. Figure 8 depicts the optimizer behaviour for an example
with an equality predicate selectivity of 0.1 and 0.01.

The canonical approach to a join with a predicate "P.x between
R.min and R.max" uses P as the relation for the build side and R
on the probe side. If pure band join conditions (constant range
size) occur, the between expression can be inverted. This is very
appealing since we prefer to build the index structure for the smaller
relation. Imagine a join of P1 and P2 on "P1.x between P2.x - 3 and
P2.x + 5". If the cardinality of P1 is larger than the cardinality of P2,
it would be suboptimal to canonically build the kd-tree for relation
P1. In such cases the optimizer inverts the between condition to P2.x
between P1.x - 5 and P1.x + 3.We currently support the addition and
subtraction of constants since the inversion of such expressions can
be achieved in linear time without recursion. A more sophisticated

Figure 8: Query optimizer, hash join vs. kd-tree range join.

approach could be considered for large datasets since the total query
runtime is dominated by the execution time.

In the case of multiple between conditions, we analyze all be-
tween conditions and check if they could be inverted. Since range
conditions cannot be inverted on a syntactic level, their build side
is �xed. For both variants - P1 as build side or P2 as build side, we
count the number of applicable between conditions and choose the
variant with more between conditions. We use the smaller relation
if both sides are equally suited as the build side. Finally, we invert
all between conditions, to match the chosen build side (if possible).

5.2 Code Generation
Whenever the user runs a query, Umbra translates the query into
executable machine code and runs the code to evaluate the query
result. Umbra adopts the produce-consume model and the pipelin-
ing concept for data-centric code generation [25]. To reduce query
compile time, we only generate query-speci�c code and use precom-
piled (C++) runtime functions for common, generic tasks. Runtime
functions can be called from generated code and vice versa.

Therefore, most of the logic for the tree construction is imple-
mented in C++ and called from generated code. However, since the
tree building is data-dependent and the data types are unknown
at system compile time, at least the compare function has to be
generated for a given query. This leads to a problem: The compare
function is called many times per tuple and introduces a signi�cant
overhead for the function call. To avoid the frequent function calls,
we decided to generate the whole partition function for the median
selection at query compile time. Our implementation uses a branch-
free, three-way version of the Lomuto [9] partitioning scheme. The
same argument holds for the kd-tree lookup. The tree traversal for
a single range involves multiple comparisons. Therefore the whole
tree lookup code is generated for every query.

5.3 Prefetching
As described in Section 3, the kd-tree stores tuple pointers. This
indirection causes cache misses during execution. This is especially
unsatisfactory during the Lomuto partitioning phase, where many
accesses occur in a known order. In the partitioning loop, the tu-
ples are accessed sequentially. Iterating over the tuple pointers
introduces a double indirection, and the CPU cannot automati-
cally prefetch the tuples into the cache. This short program in C++
(iterating over all tuples) illustrates the issue:

Tuple pivot;
for(Tuple** iter = begin; iter < end; ++iter) {

Tuple* tuplePtr = *iter;
// Load tuple pointer (hurtful cache miss here)
int comparisonResult = compare(pivot, *tuple);

}

Since the tuples are spread in memory, this can be an issue, espe-
cially on machines with multiple NUMA nodes [20]. These cache
misses dominate the execution performance of our range join im-
plementation. The e�ect can be reduced by manually introducing
prefetch-hint instructions. Using this small optimization can re-
duce cache misses on the build side, leading up to 13 % speedups
compared to the non-prefetch implementation, as shown in the
evaluation.
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6 EVALUATION
The evaluation section is split into three subsections. Subsection 6.1
presents arti�cial benchmarks to demonstrate the broad spectrum
where the kd-tree join can be applied bene�cially. We discuss in-
ternal tradeo�s, advantages, and limitations of the kd-range-join.
Subsection 6.2 compares di�erent algorithms within Umbra. Sub-
section 6.3 compares the performance to other systems using the
same benchmarks and two real-world examples.

All experiments are conducted on an AMD RYZEN 9-5950X 16
core CPU (32 execution contexts) with 64 GB DDR4-3200 memory
and an M.2 Samsung 980 1TB SSD, using Ubuntu 21.10.

6.1 Arti�cial Benchmarks and Tradeo�s
As a running example, we choose an arti�cial benchmark with a
single range join on two tables - named points and ranges. The base
example has 𝑘 dimensions and an additional equivalence predicate.
We use the following schema with non-nullable integers:

points(x0...x𝑘−1, x𝑒𝑞)
ranges(r0min...r𝑘−1min, r0max...r𝑘−1max, r𝑒𝑞)

Tuples for the points table are generated randomly using a uni-
form distribution. The value range for each dimension is [0, 𝑘

√
𝑛[. So

the points are randomly distributed on a k-dimensional grid. Dupli-
cates occur - as they could in a real-world application. Tuples of the
range table have a lower (min) and upper (max) bound for each di-
mension. The range width is used to adjust the join selectivity. The
lower bound of each range is generated randomly using a uniform
distribution. All generated ranges have the same length; however,
our implementation does not use this fact for optimizations.
We use the following query to test multidimensional range joins:

select count(*) from points, ranges
where x_eq = r_eq and
x0 between r0_min and r0_max and ...
x<k-1> between r<k-1>_min and r<k-1>_max;

The base case for all measurements (unless stated otherwise)
uses the following parameters: 1 million points; 1 million ranges;
range size (max - min) = 1 (two points per range); 10 % selectivity
for the equality predicate; k = 2 dimensions.

In the following experiments, we change these settings indi-
vidually to demonstrate their impact on the runtime performance.
For each con�guration, the query is repeatedly executed 10 times
with 3 warmup runs. We report the median of the total runtime
(compilation + execution).

Figure 9: Impact of cardinality

6.1.1 Impact of cardinality. To observe the impact of cardinality,
we adjusted the cardinalities for the points and ranges relation sep-
arately. Figure 9 shows the runtime in milliseconds for the bench-
mark query on the y axis. The yellow line depicts the runtime,
depending on the size of the ranges relation. The number of points
remains �xed at 100,000 while the number of ranges varies between
100,000 and 4 million. The execution time grows linearly with the
number of range tuples. This is expected as the number of lookups
(on static index structures) is simply increased.

Increasing the cardinality of the points relation leads to larger
kd-trees that have to be constructed, increasing the runtime spent
during both build and probe phase. The blue graph shows super-
linear growth due to the superlinear complexity of the kd-tree
construction and lookup. This is expected and emphasizes that it is
bene�cial to invert band-join conditions in the optimization phase
(Section 5.1) to build the kd-tree for the smaller relation. However,
before the superlinear complexity dominates, adding tuples to the
build side is faster due to the active prefetching optimization. The
orange plot shows the same test, while prefetching is turned o�.

6.1.2 Impact of selectivity. To measure how the join behaves de-
pending on the selectivity of the range condition, we measured the
query execution times for di�erent range sizes. For the running
example with two dimensions, we vary the range size between 0
and 20 in both dimensions. A range size of 0 in both dimensions
will statistically intersect 1 point (simulated equi join), a range
size of 1 intersects 4 tuples, etc., up to a range size of 19 intersect-
ing 400 points. Figure 10 shows the result for our measurements.
The x-axis represents the average number of points intersected
by each two-dimensional range. Expectedly, the runtime increases
as the output size of the join grows quadratically with the range
size. The extreme case, with all ranges intersecting all points, is
the cross-product after all. However, the performance degradation
adapts gradually. This means, that the range join is also suitable
for a coarser range join condition, with additional (more selective)
residual join predicates. A real-world example for this scenario is
presented in Section 6.3.3.

6.1.3 Impact of equivalence predicates. One major goal was to
incorporate equality predicates into the range join, since they typi-
cally occur in addition to range predicates. Therefore, we measured
the query execution times with varying selectivities of the equiv-
alence predicate, as shown in Figure 11. For a selectivity of 1 (all
tuples have the same value for the equivalence column), the equiv-
alence condition is always true and only a single kd-tree is built.

Figure 10: Impact of selectivity
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Figure 11: Impact of equivalence predicates

A selectivity of 0.5 means that each tuple belongs to one of 2 equiv-
alence groups. A selectivity of 2−20 represents approximately a
1:1 relation. Figure 11 shows that, for the range join, the runtime
decreases with decreasing selectivity values. Without the equality
predicate optimization of Section 3.1.3, the runtime would remain
almost identical to the selectivity = 1 case.

For very low selectivities (e.g. 2−20), most join candidates are
eliminated by the equality condition. At this point, the regular hash
join (treating the range condition as a �lter) becomes the faster
option, and will be chosen by the query optimizer. In Figure 11
the optimizer chooses the hash join for all selectivities ≤ 10−14.
The outlier with selectivity ≤ 10−14 is caused by an imperfect cost
estimation by the optimizer - a hash join is used, although a range
join would still be the faster option. However, this also depends on
the selectivity of the range conditions, which are hard to estimate
and thus not incorporated into the cost estimation (Section 5.1).

6.1.4 Impact of parallelization. As Section 4 shows, the range join
algorithm is fully parallelizable for both the build side and the probe
side of the range join. Figure 12 shows the performance gain for
the example benchmark depending on the number of threads. In
this case, we change the running example to a single equivalence
group (eq-selectivity = 1), which is harder to parallelize. This way,
the parallel hash-table construction and all three stages of kd-tree
parallelism are employed. This is the most di�cult case.

The blue line in Figure 12 shows the parallel speedup using the
running example with 1M tuples. The performance drop for > 6
threads is caused by Umbra’s adaptive query compiler. For long-
running queries, the adaptive query compiler compiles the query
initially using our �ying-start backend [17] and switches to an
optimized LLVM version during execution. The compilation of an
optimized version is only triggered if the runtime bene�t is large

Figure 12: Impact of parallelization

Figure 13: Impact of dimensions

enough to justify the additional compilation overhead. For more
than six threads, the execution using the �ying start backend is so
fast that the optimized recompilation is not triggered in the example.
However, the resulting runtime is still faster in all cases compared
to only using the LLVM compiler due to LLVM’s increased compile
time. The yellow plot shows the speedup for a more extensive
example with 10 million tuples for both relations. In this case, the
adaptive compiler always switches to the LLVM version during
execution, and the speedup rises to 15x.

The whole kd join execution time is dominated by cache misses.
For the 10 M tuple example, 54 % of the execution time is caused by
two instructions. Both are load instructions for tuples in the kd-tree.
These cache misses occurs due to the pointer indirection. Hyper-
threading typically reduces the impact of cache misses. This is also
the case in our example. Figure 12 shows another 21 % speedup by
using hyper-threading (32 threads).

6.1.5 Impact of dimensions. As we support the general case of
k-dimensional range joins, we also tested the performance impact
related to the number of dimensions. Due to the curse of dimen-
sionality, we expect a signi�cant reduction in performance for
high-dimensional range predicates. Figure 13 depicts the impact of
an increase in dimensionality for our running example. The number
of points remains constant for the experiment - they are uniformly
distributed on an n-dimensional grid. The range size is set to zero.
Therefore, every tuple of the range relation statistically has one join
partner. This change keeps the output size of the join constant. The
lookup speeds decrease due to the 𝒪(𝑛1−

1
𝑘 ) lookup complexity.

Currently, the optimizer uses as many between predicates as possi-
ble for the kd-join. Despite the increasing lookup complexity, this is
still favorable if the between predicates are statistically independent
and reduce the result size. If between predicates are statistically de-
pendent or very unselective, utilizing more range conditions can be
harmful. Nevertheless, queries with 6 or more-dimensional range
conditions are probably quite rare.

6.1.6 Impact of prefetching. Section 4 highlights the advantage of
explicit prefetching to reduce the number of cachemisses during the
Lomuto partitioning phase of our quickselect implementation. To
measure its impact, we compared the speedup for varying prefetch
distances to a version without prefetching:

Distance 1 2 3 7 5 6 7 8
Speedup 1% 8% 12% 12% 13% 13% 13% 13%
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The prefetch distance is measured in tuples. For example, a
prefetch distance of 5 means that the �fth next tuple is prefetched
in the Lomuto partitioning loop. We measure a speedup of ca. 13 %
compared to the non-prefetch version. In the example, the exact
prefetch distance is not extremely relevant. A default prefetch dis-
tance of 7 tuples has improved the performance in all datasets
we tested. Any prefetching distance greater than three seems to
produce good results.

Bo�om line. The previous sensitivity analysis shows that the pro-
posed range join works for a large variety of applications. The join
o�ers very good performance for multiple dimensions, a wide range
of selectivities, and scales very well on a multi-core system. For
almost all cases, the execution time is well in the sub-second range
for two relations with a million tuples and robust to a broad range
of parameters.

6.2 Comparison to Related Approaches Within
Umbra

This section compares the proposed kd-tree range join to two other
(parallel) implementations of range joins within Umbra. The �rst
implementation is a sort-probe-based range join which sorts the
points relation during the build phase and performs a binary search
for each range to �nd matching tuples (similar to MonetDB). Sec-
ondly, we implemented the approach of Vertica, which builds an
index on the ranges relation [37]. Thus, it is an optimization for
a "few ranges, many points" case. The ranges are sorted based on
their lower bounds and a running maximum is calculated for the
upper bounds to speed up the lookup process [37]. In the case of
multiple between conditions, both algorithms select one range con-
dition for the range join evaluation and treat other conditions as
�lters. Figure 14 compares the runtime of the three implementa-
tions for �ve di�erent scenarios: 1 1 dimension, no overlap; 2 2
dimensions, no overlap; 3 1 dimension, overlap; 4 2 dimensions,
overlap; 5 4 dimensions, overlap. Each experiment was repeated
for three di�erent cardinality con�gurations: a 1 M points, 10 k
ranges; b 10 k points, 1 M ranges; c 1 M points, 1 M ranges.

The experiments only focus on the range predicate evaluation
and do not include equality predicates (as the equality predicate op-
timization could be applied to all three algorithms). For the overlap

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

a b c 1b

3b

Figure 14: In-system comparison. Di�erent range joins al-
gorithms in Umbra. Only the kd-tree join can handle all
testcases e�ciently.

experiments, we added a single range to the dataset, that contains
all points. The plot in Figure 14 depicts the total query runtime for
all experiments and cardinality con�gurations from left to right.
We can observe multiple properties of the di�erent algorithms:

• In general, the performance of the kd-tree-based range join only
varies within one order of magnitude for all experiments. So
the DBMS user can generally expect (even for 4d queries with
overlapping data) a result in a reasonable time frame.

• In the simplest of all cases 1 (1d, no overlap), the kd-tree range
join performs similarly to both approaches with a slight advan-
tage for the sort-probe algorithm. Thus, the performance bene�t
of more specialized implementations is rather low.

• Only for the "1d, no-overlap, many points, few ranges" case
1b , Vertica’s approach has a distinct advantage compared to
the other two approaches. However, as soon as a single overlap
range occurs e.g., in 3b , the runtime increases by two orders of
magnitude.

• Overlap cases cannot e�ciently be handled by Vertica’s approach.
If overlaps occurs 3 - 5 , the Vertica algorithm performs worse
by multiple orders of magnitude.

• For multiple dimensions 2 , 4 , 5 , both Vertica-style and sort-
probe perform signi�cantly worse because both algorithms only
optimize for a single between predicate.

We conclude that it is bene�cial for a database system to adopt
a kd-tree-based range join algorithm that allows fast execution
of a wide variety of queries. Narrower approaches do not o�er
signi�cant gains while they su�er from problematic performance
de�cits for certain queries.

6.3 Comparison to Other Systems
This subsection compares the kd-tree range join implementation in
Umbra to other systems. First, we compare Umbra to other available
databases with and without range join optimizations using our
arti�cial benchmark and a �ight routing example. Afterwards, we
use a taxi-ride example to compare Umbra’s execution time to a
partition-based implementation using Spark.

All tests were conducted on the same machine, and all database
systems are con�gured using their default settings. The thread
count for parallel execution was set to 32 (if possible).

6.3.1 Artificial Benchmark. To evaluate how Umbra, leveraging
our range join implementation, compares to other database systems,
we executed the benchmark from the previous subsection on com-
mercial and research systems. We tested Tableau HyPer v.0.0.14751
(python package, default settings), DuckDB v.0.3.4 (python pack-
age, con�guration: "threads": 32), MonetDB v.11.31.7 (docker, con-
�guration: "nthreads": 32), DBMS-X and Postgres v.14.2 (docker,
"max_parallel_workers_per_gather": 32). No table-indexes were
used. Except Umbra, DBMS-X and MonetDB have built-in range
join optimizations. The other systems do not. In the case of Mon-
etDB, the range join optimization is not triggered due to the addi-
tional equality predicates - an evaluation that compares a sort-probe
algorithm (as implemented by MonetDB) can be found in Section
6.2. Since systems without active range join optimizations will
perform asymptotically worse, arbitrary large speedups could be
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Figure 15: System comparison - arti�cial benchmark

demonstrated by increasing the cardinalities. However, the perfor-
mance di�erences are very signi�cant even for a smaller dataset
with 100,000 tuples per relation. Figure 15 reports the throughput
in queries per second for all database systems. All results have been
checked for correctness.

Umbra’s throughput exceeds all other database systems by a
factor of 30. The positive e�ect of the one-dimensional range join
optimization implemented by DBMS-X can be clearly seen in this
comparison. Since DBMS-X only uses a single thread for the range
join evaluation, we also included the single-threaded runtime mea-
surement for Umbra for a fair comparison. Nevertheless, Umbra is
still faster than the other systems using a single thread.

6.3.2 Flight Routing. In this experiment, we compare the perfor-
mance of the di�erent systems for a �ight routing search similar
to the introduction. Given such a task, we evaluate how the dif-
ferent systems compare. We collected a �ight dataset, containing
127426 scheduled �ights for four months of an European airline.
As an example, we would like to count all stopover �ights using
the following query:

select count(*)
from flights f1, flights f2
where f1.orig != f2.orig and f1.dest = f2.orig

and f2.takeoff between
f1.landing + interval '45 minutes' and
f1.landing + interval '3 hours';

Figure 16 shows the throughput for the �ight example on a loga-
rithmic scale. The �ight routing search involves a one-dimensional

Figure 16: System comparison - �ights

band join with an additional equivalence condition. In this scenario,
DBMS-X’s range join optimization for hash joins fully applies and
pays o� considering its single-threaded execution. But still, the
largest throughput - by a factor of more than 10 - is achieved using
the kd-tree range join implementation in Umbra.

6.3.3 New York Taxi Rides. Now we compare the proposed range
join implementation to a hand-written program using Apache Spark
(version 3.2.0, scala version 2.12.15) [40]. This benchmark uses the
well-known New York taxi rides dataset [36]. The main idea is to
�nd return trips of taxi rides. A return trip consists of two rides
with close pickup and dropo� coordinates, e.g., less than 90 m
radius (r) and a time di�erence between 0 and 8 hours. A location is
considered close if it intersects the circle around another location.
Since the great-circle distance between two locations is expensive to
compute, we can easily calculate a bounding rectangle and use it as
a range join predicate. The bounding rectangle acts as a coarse join
condition and the result is re�ned using additional �lter predicates.
The SQL query to �nd return trips for 𝑟 = 90𝑚 looks like this:

select count(*) from rides r0, rides r1
where
-- 5d range join
r0.plat between

r1.dlat - latOffset(90) and
r1.dlat + latOffset(90) and

r0.plon between
r1.dlon - lonOffset(90, r1.dlat) and
r1.dlon + lonOffset(90, r1.dlat) and

r0.dlat between
r1.plat - latOffset(90) and
r1.plat + latOffset(90) and

r0.dlon between
r1.plon - lonOffset(90, r1.plat) and
r1.plon + lonOffset(90, r1.plat) and

r1.pt between r0.dt and r0.dt + '8 hours' and

-- Filter result for matches in circle
r0.dt < r1.pt and r0.dt + '8 hours' > r1.pt and
dist(r0.plat, r0.plon, r1.dlat, r1.dlon) < 90 and
dist(r1.plat, r1.plon, r0.dlat, r0.dlon) < 90;

The query can be evaluated using a �ve-dimensional range join.
plat is an abbreviation for pickup latitude, dlat for dropo� latitude,
pt for pickup time, etc.. latO�set, lonO�set and distance are scalar
user-de�ned functions using pure SQL. Both o�set functions are
used to compute the bounding box. Strictly speaking, the query can
only be translated to a range join and not to a band join, since the
longitude o�set depends on the latitude.

We compare the Umbra execution of the SQL query to a Spark
implementation for this return-trip problem. The Spark program
implements a partition-based band join. The reduction to a band
join is possible by assuming all locations to have a latitude below
41.16°. Therefore, the bounding rectangle size is �xed and not data-
dependent. Every coordinate value is assigned to a bucket (id) with
a size of 2⋅band width. For latitudes, the band with is latO�set(90 m).
For longitudes, we assume a band width of lonO�set(90 m, 41.16°).
Afterwards, an equi-join is performed on the bucket ids. For every
dimension, two buckets have to be checked since tuples from the
build and the probe side could be close, but still end up in di�erent
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buckets. We measured the following runtimes for "Yellow Taxi Trip
Records, January 2016":

Radius Number of Return Trips Umbra Spark
90 m 4470311 3.64 s 8.63 s
150 m 19297047 6.74 s 10.48 s

The Spark code is available in our reproducibility package. It is
optimized to this speci�c example and di�cult to write, compared
to the SQL query. Nevertheless, Umbra’s execution is faster and
does not require manual tuning to optimize the join algorithm.

7 RELATEDWORK
Since band- and range joins do occur in real-life analytical work-
loads, several optimizations and algorithms have been proposed
and implemented to avoid quadratic evaluation in such cases. We
split the related work into three groups: Partition-based approaches,
sort-based approaches, and other related approaches.

7.1 Partition Based Approaches
DeWitt et al. published a partitioned band join algorithm in 1991
[11] and compared it to optimizations for sort-merge band joins as
they could be found in systems back then. The proposed partitioning
band join algorithm assumes low main memory sizes. Partitioning
remains the core concept of several solutions for implementing
band joins as in [23, 34] and can be very bene�cial in the case
of band-joins where the range size is �xed. For range joins with
variable range sizes, it can be impossible to determine a suitable
bin size. A commercial system implementing partition-based range
joins is Databricks [10]. Choosing a suitable bin size is delegated to
the user by requiring query hints. Our approach does not require
manual tuning and supports multiple range conditions.

Work by Li et. al. [23] proposes recursive partitioning of data in
the case of multidimensional, distributed band joins. The concept
presented there is orthogonal to the local range join implementation
on the distributed nodes and could therefore be combined with our
approach in a distributed scenario.

7.2 Sort Based Approaches
On the other hand, Oracle and Vertica adopt sort-based approaches.
Oracle o�ers a band-join optimization for their built-in sort-merge
join [28] which was patented in 2018 [32]. Oracle’s optimization is
limited to one-dimensional band joins. Additional equivalence pred-
icates seem to force a hash join, even if the equivalence predicate is
very unselective. Our approach covers many more circumstances,
like multiple dimensions, true range joins, and additional equiva-
lence predicates.

MonetDB implements a sort-probe based approach [38] which
is very similar to the sort-probe join evaluated in Section 6.2. As
with Oracle, additional equality conditions force a hash join, even
if they are unselective. Moreover, there is no support for multiple
dimensions.

Vertica takes a di�erent approach to range joins by using the
"ranges" relation as an index. According to their blog post, Vertica
sorts the ranges [37] based on their lower bound and calculates

a running maximum for the upper bound. However, Vertica’s ap-
proach relies on the assumption of only having ranges with little to
no overlap. A single tuple with an unselective range (overlapping
other ranges) dominates the running maximum calculation and
prevents an e�cient query execution. Our algorithm is tolerant to
such overlaps since the index structure is built on the points relation
as shown in Section 6.2. For multidimensional range joins Vertica
chooses the �rst between condition in the SQL query for the opti-
mization, other range conditions are treated as �lters on the result.
We use a multidimensional index structure that can still improve
runtime when adding more dimensions if they are selective.

7.3 Other Approaches and Overlap Joins
In the past kd-trees or variations of it were used in database systems
as multidimensional base table index structures [18, 19, 29, 31]. In
contrast, we use them as an ad-hoc index structure for joins on
relations without a table index.

Band joins can also be evaluated for continuous data leveraging
dynamic interval trees [1]. Since our approach only uses an index
structure on the build side of the join, the probe side can be used
for a data stream if the build side remains �xed. Umbra supports
continuous views as shown in [39], and the implementation also
employs the new kd-tree range join operator if bene�cial.

A more general case of range joins are interval joins, where
both relations contain intervals, and the join condition correlates to
the intersection, gap distance, etc., of the two intervals. Examples
for this are band-joins on interval data [6] or in-memory interval
joins [7]. However, as Dignös et. al. [12] show, overlap conditions
can be rewritten into a disjunction of two range conditions. Al-
though, they [12] mainly focus on sort-merge joins and range joins
leveraging table index structures like B-trees [2], the ideas are also
applicable to our range join algorithm, which is very well suited
for data exploration and data analysis. Adopting this technique,
our range join implementation can also be used to support overlap
joins e�ciently.

8 CONCLUSION
Whenever databases are used for real-life data analytics, dealing
with sensor, location, or temporal data, queries that contain joins
with range predicates are quite common. Range joins are a case of
non-equi joins that can still be very selective. In order to achieve
acceptable performance, a database system should not resort to
quadratic algorithms in such cases. Band joins are a subproblem
with �xed size ranges. Di�erent range and band join algorithms
have been proposed in the literature to allow e�cient evaluation
of such join results. However, most approaches focus on particular
cases rather than a generic solution. We present a generic multi
dimensional range join algorithm using kd-trees, that outperforms
all systems we tested and even beats hand-tuned implementations
using the Spark data-processing engine. We show that an e�cient
implementation in a database system (in our case Umbra) is pos-
sible and can deal with corner cases like duplicates, null values,
and di�erent join methods. We show that a query optimizer can
bene�cially introduce range joins during physical optimization.
However, we can also show that a re�ned selectivity estimation for
range join predicates would be bene�cial and could be future work.
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