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ABSTRACT
Recently, numerous promising results have shown that updatable

learned indexes can perform better than traditional indexes with

much lower memory space consumption. But it is unknown how

these learned indexes compare against each other and against the

traditional ones under realistic workloads with changing data distri-

butions and concurrency levels. This makes practitioners still wary

about how these new indexes would actually behave in practice. To

fill this gap, this paper conducts the first comprehensive evaluation

on updatable learned indexes. Our evaluation uses ten real datasets

and various workloads to challenge learned indexes in three aspects:

performance, memory space efficiency and robustness. Based on

the results, we give a series of takeaways that can guide the future

development and deployment of learned indexes.
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1 INTRODUCTION
Recent advances in machine learning (ML) have sparked a flurry

of research on using ML to improve various database components.

However, it remains unclear (1) what the relative merits are of the

various techniques and (2) how those impressive results will hold

up under various workloads. Practitioners are often wary about

using these new techniques in their systems without knowing how

they would perform in practice. In this paper, we hope to fill the

gap by studying learned indexes [11, 13–17, 19–21, 24, 31, 34, 44,
47, 53, 55, 56, 60, 63, 65], the arguably most well-studied learned

database engine component.

Although preliminary evaluations on learned indexes exist, they

largely focused on read-only workloads [37, 39]. A system built

for practical adoption, however, must also consider dynamic work-

loads. Hence, we focus on updatable learned indexes. Moreover, to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551848

provide a holistic evaluation, we focus not only on (1) performance

(throughput and latency), but also (2) space efficiency and (3) ro-

bustness under dynamic workloads. Next, we briefly introduce our

evaluation methodology and highlight our findings.

1.1 Performance
Since learned indexes can easily overfit to a particular synthetic

distribution [2], the SOSD benchmark [22] has taken the initiative

with four real datasets for evaluating learned indexes. Recent eval-

uations have started using SOSD’s real datasets [37, 39], but they

only focused on read-only workloads. Among the four real datasets

in SOSD, osm and facebook are known to be more challenging for

learned indexes [37, 39]. In contrast, learned indexes are able to out-

perform traditional indexes on the wiki and books datasets [37, 39].
However, it is unclear how these results (i.e., which type of index

performs better under which scenarios) may extend beyond the four

concrete datasets, leading to the question: can a learned index still
outperform all traditional indexes on a variety of data? We observe

the fundamental reason is the lack of a common, quantitativemetric

to evaluate how “hard” (or “easy”) a dataset is for a learned index to

handle. Furthermore, without a quantitative measure, it is hard for

practitioners to know whether their target workload/production

data is “easy” or “hard”, which may eventually impact which index

should be chosen to achieve the best performance.

In this paper, we propose to use piecewise linear approximation
(PLA) [46] as an approximate metric to quantify the hardness of a

dataset. PLA has a clear theoretical foundation from computational

geometry, which captures the minimal number of linear models

required to fit a data distribution. It has been used to build a space-

optimal learned index [17].We use PLA to approximate the hardness

of a dataset in two dimensions: global hardness and local hardness.
The former challenges the index’s structure design choices and the

cost models that govern structural modification operations (SMOs);

the latter challenges the accuracy of various ML models.

The global and local hardness metrics based on PLA enable us

to conduct a comprehensive study that pragmatically examines up-

datable learned indexes along three aspects: (1) data (from easy to

hard), (2) workload (from read-only to write-only), and (3) concur-
rency (from single-threaded/single-socket tomulti-threaded/NUMA).
Our results revealed a number of interesting insights. For example,

although our results show that recent updatable learned indexes

(ALEX [14], LIPP [60]) perform better than traditional indexes (ART

[26], Masstree [38], HOT [4] and Wormhole [61]) in over 80% of

the data-workload space under a single thread, some learned index
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design choices are actually at odd with concurrency control and

show regression under multiple threads.

1.2 Space Efficiency
Memory consumption is an important factor in production envi-

ronments. Learned indexes have been reported to use 4×-2000×
less memory compared to traditional indexes because they store

succinct models instead of keys in nodes [14, 24]. While their space

advantage has been proven in read-only environments, we found

that it might not hold up in a realistic environment with data modi-

fications. In read-only workloads, the data array to be indexed can

be fully ordered and packed, so even the leaf nodes can store no

keys: they can store and use a model to point straight to the under-

lying data array. In contrast, a real system often needs to handle

dynamic workloads and builds indexes on non-primary keys. In

both cases, the underlying data array could be unsorted or the nodes

have to leave spaces to accommodate insertions. Consequently, the

index often needs a leaf layer that explicitly stores the key-position

information, bloating memory usage.

In this paper, we examine the end-to-end memory space efficiency

of learned indexes including their leaf layer with key-position pairs.

We found that learned indexes are only 3.2× smaller than traditional

indexes at best andmight even usemore space than some traditional

indexes. Note that traditional indexes can consume around 55%

of the total memory in transactional in-memory databases [64].

Therefore, our results suggest that memory saving is not a definitive

advantage of the current generation of updatable learned indexes

and highlight the need for further improvements in this area.

1.3 Robustness
Modern data systems often require predictable performance. Low

tail latency is particularly important for user-facing

applications [29]. In this paper, we examine whether the high

performance of learned indexes comes with a price on poor tail

latency. Furthermore, many workloads require efficient and robust

support for range queries. In addition to point queries, we

therefore also test learned indexes’ behavior under varying range

scan sizes and compare them with state-of-the-art traditional

indexes. Finally, the power of learned indexes is that they allow

specialization to a given data distribution, hence becoming

instance-optimized [2]. However, in a realistic environment, the

data can continuously evolve. It then becomes important to study

how well and how fast a learned index can adapt to changes. Yet

existing performance studies [22, 37, 39] have not looked into this

issue. Some recent updatable learned indexes, such as ALEX [14]

and XIndex [53], have briefly touched upon this issue but did so

without comparing with a wide range of traditional/learned

indexes as well as on different data hardness. In this paper, we

study the impact of data distribution changes on learned indexes

and compare their robustness with that of the traditional indexes.

Our results show that although a few learned indexes generally

showed good resilience to changes in data distribution, most

traditional indexes exhibit even better, extremely robust

performance across different workloads and data distributions.

1.4 Contributions, Limitations, and Roadmap
We have created and open-sourced a benchmarking suite, GRE

1

which makes it easy to compare against learned and traditional

indexes under the evaluation spectrum proposed in this paper. To

facilitate future studies, GRE includes scripts to run the benchmark

and visualize all experiments presented in this paper. While earlier

effort [39] has presented a leaderboard for learned indexes, GRE

further expands the dimension of the comparisons by presenting

heatmaps to visualize which “area” in the data-workload spectrum

has already been “conquered” by learned indexes and which area

the traditional indexes are still in possession.

To the best of our knowledge, this is the first comprehensive

study of updatable learned indexes’ performance, space efficiency

and robustness. However, since learned indexes are still fast evolv-

ing with new proposals on handling multi-dimensional data [13,

15, 31, 44, 47, 55, 63], persistence [34] and string keys [51, 56], we

focus on one-dimensional updatable indexes on numeric data and

anticipate future work to cover the other aspects.

In the rest of this paper, Section 2 provides the background on

updatable learned indexes. Section 3 presents our experimental

setup, including how we approximate the hardness of a dataset.

Sections 4–7 then present the detailed empirical results. Section 8

summarizes our lessons learned and then we answer the theme

question Are updatable learned indexes ready? in Section 9. Due to

space limit, more discussions and results could be found in [58].

2 LEARNED INDEXES
The main intuition behind learned indexes is that if the data is a set

of continuous integer keys (e.g., the keys 0 to 100M) in an array a,
the key itself can be directly used as an offset into the array (e.g.,

the value of key 77 can be accessed at a[77]). This can potentially

allow O(1) rather than O(log n) lookup complexity and significantly

reduce index storage overhead. However, implementing a practi-

cally useful learned index is challenging in terms of supporting

non-contiguous data, dynamic workloads, and concurrency.

2.1 Structure and Last-Mile Search
The ideal case with O(1) complexity is based on a crucial assumption

that keys are continuous, which is not necessarily true in reality.

Therefore, learned indexes usually train multiple ML models to

approximate the cumulative distribution function (CDF) of the data,

forming a hierarchy of models akin to the structure of B+-trees

with inner and leaf nodes. However, instead of laying out keys

physically, inner nodes in learned indexes store models. The model

guides traversals to reach leaf nodes which store the actual data.

If simple linear models are used, the node only needs to store the

slope and intercept, reducing storage footprint. There are two inner

node designs for updatable learned indexes:

ML for Child Search. In this design, an inner node 𝐼 uses a

model to predict which child node of 𝐼 contains the key. Hence,

the model of 𝐼 is trained using the information from its children

(e.g., maximum and minimum keys of each child). Since a model

might be imperfect and give wrong predictions, it is necessary

1
Akin to the GRE test for a learned index to “pass and graduate” for practical use.

Available at https://github.com/gre4index/GRE.
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to search around the predicted position to reach the exact child.

PGM-Index [17], XIndex [53] and FINEdex [30] adopt this design.

ML for Subspace Lookup. Indexes using this design (ALEX [14],

APEX [34] and LIPP [60]) recursively partition the key space, and

a partition is represented by a slot in an inner node. A model in

each inner node is used to decide which partition a key belongs

to. Thus, a traversal simply uses the model to compute which child

(partition) shall be visited next, instead of predicting.

When reaching a leaf node, there is always a “last-mile” search

around the model predicated position because models may not be

perfect. Last-mile search often is a performance bottleneck. Differ-

ent learned indexes use different designs to mitigate it:

Error-Driven Designs. This type of updatable learned indexes

requires as input an error threshold to bound the distance of the last-

mile search; it is adopted by PGM-Index [17], XIndex [53], FITing-

Tree [19] and FINEdex [30]. In case a model’s error margin goes

beyond the given threshold, the index will carry out adjustment

such as increasing the granularity of the models [21] or increasing

the number of nodes (and hence increasing the number of models

since each node hosts one model) [17, 19, 53].

Performance-Driven Designs. ALEX [14] and APEX [34]

maintain runtime statistics (e.g., the number of keys searched in

the last-mile and tree height) to detect suboptimal behaviors due

to model inaccuracies. These indexes maximize the accuracy by

triggering the best action (e.g., SMOs) based on an empirical-based

cost model.

Collision-Driven Designs. The key idea is to model inaccura-

cies as “collisions.” Specifically, a model-based CDF can be seen as

an order-preserving functionwhere different keys could be “hashed”

(predicted) to the same “bucket” (array position), causing collisions.

Hence, a last-mile search could be handled by an open-addressing

collision resolution scheme that gets or puts a collided key else-

where in the index. Based on this idea, LIPP [60] attempts to elimi-

nate last-mile search by finding a model that minimizes collisions.

When a collision is inevitable, it uses a chaining scheme that creates

new nodes (or recursively a sub-tree of new nodes) to transform

the last-mile search problem to be a sub-tree traversal problem.

2.2 Dynamic Workloads
Beyond lookups, updatable learned indexes also need to support in-

serts/deletes/updates which can change data distributions. Existing

solutions usually use tree-merge, delta-merge or sparse nodes.

Tree-Merge. As represented by PGM-Index [17], tree-merged

based approaches are inspired by LSM-trees [45] which build mul-

tiple sub-indexes, each of which covers a subset of keys. Inserts

are then handled by creating new sub-indexes by merging smaller

sub-indexes with the new key to ensure the keys stay sorted. Up-

dates are done in-place and deletes are implemented as inserts of

tombstones. Consequently, tree-merge based designs inherit the

performance characteristics of LSM-trees, for example, searching

for a key may visit multiple sub-indexes of different sizes.

Delta-Merge. Unlike tree-merge designs, in XIndex [53], FITing-

Tree [19] and FINEdex [30], new keys are collected in delta nodes

and are merged periodically with the main data array with potential

model retraining. Updates and deletes are done in-place. The main

difference among the various indexes under this design is their delta

Table 1: Configurations of learned indexes. Indexes named
with a “+” sign are our concurrent implementations.

Index Parameters
ALEX Max inner/data node size: 16MB

Min/avg/max node density: 0.6/0.7/0.8

ALEX+ Max inner/data node size: 16MB/512KB

Min/avg/max node density: 0.6/0.7/0.8

LIPP(+) Node density: 0.5; max node size: 16MB

Subtree inserted/conflict ratio: 2/0.1

PGM-Index
2

Error bound: 16

XIndex Error bound: 32; delta size: 256

Error tolerance: 1/4; max number of models per group: 4

FINEdex Error bound: 32

granularity. For XIndex, new inserts are absorbed by a per-node

delta. FINEdex [30] maintains a delta per record to reduce conflicts

within a node and facilitate parallel retraining.

Sparse-Nodes. To absorb future inserts, ALEX [14], APEX [34]

and LIPP [60] leave space in tree nodes, making them sparse. Up-

dates and deletes are also done in-place. The index then needs to

conduct SMOs such as node merges and splits, similar to traditional

indexes. Moreover, to balance between the tree’s fill factor and

model accuracy, the index should consider learned-index specific

operations, such as node resizing and model retraining when the

workload and data distribution change.

2.3 Concurrency
Since most learned indexes employ a hierarchy of models, classic

concurrency control approaches for trees can be adapted to work on

learned indexes. Among the surveyed in-memory learned indexes,

only FINEdex [30] and XIndex [53] support concurrency. To cope

with the in-memory environment, both of them use optimistic

locking, which associates a versioned lock per node. The lock word

carries a version number, such that readers only need to verify

the version did not change before and after their accesses; writers

would acquire locks as usual but also increment the version number.

This extracts more concurrency by allowing readers to proceed

(especially, to traverse inner nodes) without holding locks.

The use of optimistic concurrency has impact on memory recla-

mation and delta merging procedures. For example, in XIndex, be-

foremerging a node’s delta with its main data array, it uses RCU [18]

to ensure the existing readers of the delta have all finished. During

the merge, writers follow the normal write path but inserts would

work on yet another temporary per-node delta (so readers also need

to read this temporary delta in additional to the index before merge;

XIndex’s current implementation uses Masstree [38] to construct

the delta). Finally, the temporary delta would be promoted as the

official delta after the merge is done. Using this approach, both

readers and writers are non-blocking.

3 BENCHMARKING SETUP
We conduct experiments using various datasets and workloads, and

compare them against state-of-the-art traditional indexes. To set

the stage, we describe the necessary changes done to each index,

datasets and workloads, and our environment.

2
PGM-index cannot support key in value 2

64 − 1. fb contains that key. Following

https://github.com/gvinciguerra/PGM-index/issues/29, we shifted all fb keys by -1
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3.1 Index Implementations
Since the implementation of a learned index can highly influence ex-

perimental results [22], we follow previous work [28, 37, 39, 62] to

use the original authors’ or widely-used open-source implementa-

tions. Unless otherwise stated, we use the recommended parameters

that can be found in each index’s original implementation. All the

evaluated learned indexes along with their configurations are listed

in Table 1. Among the included learned indexes, LIPP and ALEX do

not support concurrency out-of-the-box, but our evaluation shows

that they are the most competitive under a single thread. So we

implemented concurrent versions of them (LIPP+ and ALEX+) to

make comprehensive comparisons and reason about their design

decisions in realistic multi-core environments.

LIPP recommended lock coupling [1] for concurrency

control [60]. However, coupling using traditional locks may

severely limit concurrency [27]. Although using optimistic lock

coupling [27] can mitigate the impact, we observe that LIPP

actually requires no coupling because when following a pointer

from a parent node to a child node, the pointer would not be

invalidated by another concurrent thread. Yet, LIPP does not

differentiate inner node and leaf node but uses a unified node

layout: a node can store both data and pointers to child nodes.

Unfortunately, this design choice limits scalability because (i) inner

nodes now contain keys and must also maintain statistics for SMO

decision making (where ALEX only needs to maintain statistics for

leaf nodes) and (ii) even a simple key insert that triggers no SMOs

could lock a node at any level (e.g., the root). We mitigate the latter

by using item-level optimistic locks (without coupling) for LIPP

(denoted as LIPP+), where reads proceed without taking the lock

but only need to verify that the read item (i.e. data or child pointer)

did not change; only writers are required to take the lock in

exclusive mode. Furthermore, we uncovered two bugs in LIPP’s

original implementation, fixing which led to slightly lower

performance compared to what was originally reported [60].
3

The original implementation of ALEX did not support concur-

rency. We implemented a concurrent version (ALEX+) by adapting

the concurrency protocol of ALEX’s persistent memory variant,

APEX [34]. APEX employs optimistic locks at leaf node level for

every 256 records. By employing out-of-place-based SMOs (i.e.,

always allocating new nodes), APEX traverses tree without hold-

ing locks. Inner nodes are synchronized using per-node shared-

exclusive locks. ALEX+ adopts all the concurrency design from

APEX except it uses a single optimistic lock per data node, which

exhibits better performance in DRAM environments. We excluded

FITing-tree [19] in our experiments since it is not open-source.

For traditional indexes, we include STX B+-tree [3], ART [26] and

HOT [4] for single-threaded experiments. For multi-threaded ex-

periments, we include B+-TreeOLC [57], ART-OLC (ART with opti-

mistic lock coupling) [27], HOT-ROWEX (HOT with ROWEX [27]),

Masstree [38] and Wormhole [61]. Due to space limitation, we omit

their details and only cover the necessary changes made by us.

We added side-links in leaf nodes for B+-TreeOLC for better range

when using PGM-Index. Furthermore, the codebase of PGM-Index has continuously

evolved since its publication. The latest version exposes 3 extra knobs. We tuned

PGM-Index based on the authors’ recommendation.

3
Our fixes have been accepted by the original authors (details at https://github.com/
Jiacheng-WU/lipp/pull/11 and https://github.com/Jiacheng-WU/lipp/pull/12).

Table 2: Datasets used in experiments.

Dataset Description Source
books Amazon book sales popularity [22]

fb Upsampled Facebook user ID [22]

osm Uniformly sampled OpenStreetMap locations [22]

wiki Wikipedia article edit timestamps [22]

covid Uniformly sampled Tweet ID with tag COVID-19 [33]

genome Loci pairs in human chromosomes [48]

stack Vote ID from Stackoverflow [52]

wise Partition key from the WISE data [59]

libio Repository ID from libraries.io [32]

history History node ID in OpenStreetMap [8]

planet Planet ID in OpenStreetMap [8]

scan performance. Two ART implementations support concurrency;

we use the best performing one based on OLC. We ported HOT’s

epoch-based memory reclamation (EBMR) to ART for better scala-

bility. Although HIST-tree [10] shows that as a traditional index,

it can achieve promising speedups by leveraging certain implicit

assumptions made by learned indexes (e.g., sortedness), its open-

source implementation does not support dynamic workloads and

we exclude it from our study.

3.2 Datasets
Table 2 shows the real datasets used in our benchmarks. The first

four datasets are from SOSD [22]. osm from SOSD is known to

be a one-dimensional projection of multi-dimensional spatial data.

We include it for stress testing under the worst case scenarios.

Except wiki, each dataset consists of 200M unique 8-byte unsigned

integer keys, and we pair each key with an 8-byte payload. wiki
has duplicated keys.

Some of these datasets have been used by prior studies but it re-

mains hard to quantify their potential impact on index performance.

For example, some studies have shown that learned indexes cannot

outperform traditional indexes on the osm dataset [39]. Other re-

sults have shown that learned indexes can outperform traditional

indexes under wiki and books in read-only workloads [37, 39].

This leads to questions such as how “hard” is osm actually? and is it
much harder or just a bit harder than books? We thus observe the

need to quantify the “hardness” of a dataset. As we detail next, we

find that piecewise linear approximation (PLA) [17] is a good start.

All 1D learned indexes regard indexing as mappings from keys to

positions. If the data distribution is more non-linear, learned indexes

will use more linear models to approximate the distribution. Hence,

we could use the minimum number of linear models required to fit

the distribution to approximate the data hardness:

DEFINITION (𝜖-approximate [17]). Given an array𝐷 = [𝑘1, 𝑘2,
. . . , 𝑘𝑛], where 𝑘𝑖 is a key with rank 𝑟𝑖 in the array, if a model 𝐹 for
array 𝐷 is 𝜖-approximate, then |𝐹 (𝑘𝑖 ) − 𝑟𝑖 | ≤ 𝜖 , ∀𝑖 ∈ [1, 𝑛].

A given array 𝐷 may not be perfectly fitted by a single

𝜖-approximate linear model. But one could split 𝐷 into multiple

small segments 𝐷1, 𝐷2, . . . , 𝐷𝑚 such that for each 𝐷𝑖 there exists

an 𝜖-approximate linear model 𝐹𝑖 , 𝑖 ∈ [1,𝑚]. The minimal

collection of those models is then the PLA of 𝐷 . Computing the

optimal PLA model of 𝐷 can be done in linear time using the

algorithm in [17]. For a given array 𝐷 and an error bound 𝜖 , we

define the data hardness 𝐻 as the number of segments in 𝐷’s

3007
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Figure 1: CDFs of planet and genome

optimal PLA model, which includes the least number of segments.

For the same dataset, 𝐻 should increase as 𝜖 decreases. In the rest

of this paper, we use 𝜖 = 4096 and 𝜖 = 32 to quantify the hardness

of a dataset in two dimensions.

When 𝜖 is large (4096), the PLA is more coarse-grained and can

capture the dataset’s global non-linearity, which mainly challenges

the structural aspect of a learned index. Specifically, since learned

indexes conceptually break down a CDF as a tree of models, its

structure (e.g., fanout and height) is strongly influenced by the

global non-linearity of the CDF. For example, our experimental

results (Section 3) indicate that many learned indexes cannot out-

perform the traditional ones on the planet dataset. By looking at

its CDF (Figure 1a), we see that its hardness comes from its sharp

deflection of distribution at key value around 1M, giving it high

global non-linearity. On datasets like this, learned indexes that

insist on a balanced tree structure (e.g., PGM-Index) would give

the dense key region (keys <1M) and the sparse key region (keys

>1M) the same height, requiring more layers to be traversed in the

sparse key region than needed. ALEX and LIPP combat the issue by

adopting unbalanced trees (hence the dense region, if hard-to-fit,

can be approximated with more models). Nonetheless, a CDF like

the one in Figure 1a is still challenging since it can increase their

path length variance (affecting latency) and stress their decision

components (e.g., the cost model in ALEX).

Global non-linearity alone is insufficient to fully characterize

the hardness of a dataset to learned indexes. For example, we found

that the genome dataset also gives a hard time to many learned

indexes. However, if looking at its CDF (Figure 1b), its CDF looks

smooth. But if we zoom into its CDF, it is found that genome has
a very bumpy distribution locally. Non-linearities in local regions

challenge the individual machine learningmodels of a learned index.

Hence, we use PLA with a small 𝜖 (32) to capture local non-linearity.

Global non-linearity (PLA 𝜖-4096) and local non-linearity (PLA

𝜖-32) together form our data space that quantifies the hardness of
a dataset. The 𝜖 values 4096 and 32 are empirically decided. We

have also tried other metrics to approximate a dataset’s hardness,

e.g., by measuring the mean square error of fitting only one linear

regression line. But we found that PLA 𝜖-4096 and PLA 𝜖-32 aligned

the best with the actual index performance when there are no other

factors (e.g., NUMA, concurrency control) in play.

3.3 Workloads
We devise synthetic workloads that issue requests using the afore-

mentioned datasets. For each dataset, we first randomly shuffle all

the 200 million keys, and then issue lookup/insert requests accord-

ing the specified ratios below.
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Figure 2: Throughput heatmap (single-threaded) that shows
the throughput ratio between the best performing learned
index and the best performing traditional index. A positive
ratio (in red) means a traditional index is the winner under
that particular workload and dataset; a negative ratio (in
blue) indicates that a learned index is the winner.

• Read-Only (0% Write): Bulk load all the 200M keys and ran-

domly lookup for 800M keys.

• Read-Intensive (20% Write): Bulk load 100M random keys,

then issue requests where 80% are lookup operations and 20%

are insert operations that insert all the remaining keys.

• Balanced (50% Write): Same as Read-Intensive but 50% are

lookup operations and 50% are insert operations.

• Write-Heavy (80% Write): Same as Balanced but the

lookup/insert ratio is 20%:80%.

• Write-Only (100% Write): Issue 100 million insertion after

bulk loading 100 million keys.

For each workload and index, we repeat the experiment three

times and report the average throughput (operations per second)

and the average latency after bulk loading.

3.4 Hardware and Platform
All the experiments are conducted on a quad-socket machine with

four 24-core Intel Xeon Platinum 8268 CPUs clocked at 2.9 GHz.

The machine in total has 96 cores and 768GB of main memory. By

default, hyper-threading is disabled. All the code is compiled using

gcc 8.3.0 under the O3 optimization level.

4 PERFORMANCE
In this section, we study on the performance of updatable learned

indexes in single-core and multi-core settings.

4.1 Single-Threaded Experiments
We start with single-threaded settings to compare state-of-the-

art updatable learned indexes with the traditional ones. Figure 2
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shows a heatmap of throughput ratios between learned indexes

and traditional indexes. The color of each point in the heatmap

indicates the throughput ratio between the best learned index and

the best traditional index under that specific data-workload. A blue

point indicates a positive ratio, i.e., there exists a learned index that

outperforms all the state-of-the-art traditional indexes. A red point

(negative ratio) indicates otherwise, i.e., there exists a traditional

index that outperforms all the state-of-the-art learned indexes. The

darkness of a point represents the “winning” ratio with a darker

color indicating the winner outperforms the other indexes by a

higher margin. Figure 2 shows that 80% of the data points are in

blue color, leading to our first message:

Message 1. In a single-core environment, updatable learned
indexes outperform traditional indexes over 80% of our data-
workload combinations.

In fact, we have another four datasets but they are also easy. To

avoid cluttering the easy region, we include only 10 out of the 14

real datasets.

Message 2. Most real datasets are easy.
In Figure 2, ALEX, LIPP and ART are the overall winners. Strictly

speaking, PGM-Index could be the winner on 100% write workloads

as it exhibits the highest insert throughput when there is no lookup.

Nonetheless, its lookup performance is dominated by ALEX and

LIPP; and its good insert performance is not attributed to its core

design but its LSM-styled approach to handling inserts. We there-

fore do not show PGM-Index in the heatmap. The main factors

that lead ALEX and LIPP perform better than the other learned

indexes are (1) the use of ML for subspace lookup in their inner

nodes that eliminate search in inner nodes and (2) the sparse-node

design avoids visiting multiple trees or delta trees as in PGM-Index,

XIndex, and FINEdex. ART as a traditional index outperforms the

other traditional indexes because of its cache friendliness [26] and

performs especially well on integer keys (whereas the more recent

ones like Wormhole and HOT are specialized for long string keys).

Yet, ALEX and LIPP as learned indexes can outperform ART except

on very hard data because they are instance-optimized. Focusing

on the write-intensive workloads leads to the third message:

Message 3. In a single-core environment, updatable learned
indexes only cannot outperform traditional indexes on hard
datasets with ≥50% writes.

While it is known that hard datasets could give a hard time to

learned indexes, Figure 2 shows that recent learned indexes like

ALEX and LIPP have already overcome that on lookup operations:

Message 4. In a single-core environment, updatable learned
indexes outperform traditional indexes from read-only to
read-intensive workloads, regardless of the data hardness.

Hence, with the fact that lookup is the first step of insert (an insert

of key 𝑘 would first lookup 𝑘 to locate the slot to be inserted), what

else inside a learned index’s insert operation can out-bleed the

speed gain from its first step?

To answer this question, we break down the average latency

of the insertions of ALEX and LIPP in the write-only workload.

Figure 3 shows the result. We include ART and B+-tree as references.

We show the results for two easy datasets (covid) and (libio), the
locally hardest dataset (genome), and the globally hardest dataset
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Figure 3: Time breakdown of insert operations.

Table 3: Statistics of an insert operation in ALEX and LIPP.

Dataset ALEX LIPP

Node traversed Keys shifted Node traversed Node created

covid 1.02 8.07 1.23 0.4

libio 1.04 19.92 1.09 0.4

genome 1.01 42.62 2.12 0.32

osm 1.62 35.84 2.33 0.28

(osm). Figure 3(top) confirms that learned indexes generally get a

more efficient first-step (lookup) in an insertion (except osm), but
the remaining steps of an insert perform much worse than the best

traditional index (ART) and are no better than B+-trees.

Figure 3(bottom) details the remaining insert steps, where a large

part of the latency in learned indexes is due to collision resolution.

For ALEX, that is the time spent on shifting the elements in data

nodes and carrying out SMOs (e.g., node resizing); for LIPP, that is

the time spent on creating and chaining new nodes and its SMO-

like adjustment procedure to bound the tree height. Although the

shifting and SMO costs in ALEX are not specific to learned indexes

(also seen in B-tree variants), they are more expensive than in B-

trees and worsen in harder datasets. In contrast, although LIPP also

exhibits higher collision resolution costs on harder datasets, it is

still smaller than that of ALEX.

Table 3 further shows the detailed statistics per insert in ALEX

and LIPP. As the table lists, a harder dataset does not particularly

increase the number of chaining operations (node creation) in LIPP

but only slightly increase tree traversal time to reach the desig-

nated node. That is because LIPP creates at most one new node on

collision, which successfully bounds the write amplification to be

one node allocation per collision. In contrast, ALEX has a number

of key shifts and the number of shifts increases with the data hard-

ness, because a harder dataset challenges ALEX in multiple aspects

including its cost models, fill factor, and model accuracy. ALEX’s

write amplification (the number of key shifts due to a collision)

is large because it is only bound by its huge node size (maximum

16MB). Figure 3 also reveals a unique component in learned indexes
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Figure 4: Throughput heatmap under 24 threads (one socket).

insertion: the update of the various statistics on insertions. The cost

is non-negligible and is particularly pronounced in LIPP because it

updates the statistics in every node on the insertion path.

Message 5. In a single-core environment, LIPP’s node chain-
ing collision resolution has a lower write amplification than
ALEX’s key shifting collision resolution.

With the understanding of where the time goes in insertions, it

seems that LIPP as a learned index is “ready” by having competi-

tive insert performance and excellent lookup on a majority of real

datasets. However, we observe its design is mainly optimized for

single-threaded execution and is often at odds with other important

aspects, including multi-core scalability as we discuss next.

4.2 Multi-Threaded Experiments
We now move on to the multi-threading environment and begin

with the heatmap that shows the best indexes in our data-workload

space under 24 threads without hyperthreading in Figure 4. LIPP+,

ALEX+ and ART-OLC are the only winners. However, two notable

changes are that LIPP+ has lost its leading position to ALEX+ except

on read-only workloads; and ART-OLC also has taken over some

easy datasets on write-intensive workloads. The latter is because

ART has been very competitive — sometimes its performance is

close to LIPP and is better than ALEX in the single-threaded setting.

When LIPP+ loses its edge in the multi-threading setting, ART-OLC

takes over as the best performing index, followed by ALEX+.

Figure 5 (white area) shows the scalability from 2 to 24 cores of

the read-only, balanced, and write-only workloads. All the learned

indexes scale well on read-only workloads. However, once the

workloads include writes, LIPP+ can no longer sustain its scalability

despite its use of optimistic concurrency because every insert thread

has to update the per-node statistic on its insertion path. That

induces high contention and cacheline ping-pong, especially at the

root node. This is a drawback of using a unified node layout where

statistics have to be maintain in every node rather than in only the

leaf nodes like ALEX+. In contrast, ALEX+ scales well by taking the

advantage of lock-free lookup and optimistic locking in leaf nodes,

until its write amplification becomes severe under hard data.

Message 6. After parallelization, some single-threaded up-
datable learned indexes (e.g., ALEX) can scale and perform
better than native concurrent learned indexes (e.g., XIndex),
but some (e.g., LIPP) cannot and perform worse.

4.3 Impact of Hyper-threading/NUMA
The grey area of Figure 5 shows the scalability with 36 and 48

threads with hyper-threading (48 hardware threads per socket).

When writes are involved, LIPP+ cannot scale and Wormhole’s

single lock for the inner layer severely limits concurrency. Except

them, all indexes benefit from hyper-threading but show different

degree of performance saturation. For example, ALEX+ exhibit

slow down from memory bandwidth exhaustion due to its high

write amplification and long last-mile search, especially on harder

data. In fact, our profiling results indicate that ALEX+ has already

saturated the memory bandwidth with 24 threads in one socket.

Moving on to NUMA, Figure 6 shows the scalability of each

index when scaling from 1 to 4 sockets. We use the Interleave
NUMAmemory allocation policy that allocates memory pages from

different sockets in a round-robin fashion. This is also the setting

which yields the best performance for all indexes.

All indexes show diminishing return once we use more than one

socket due to cross-socket bandwidth is lower than the intra-socket

(24 cores) bandwidth. ART-OLC has difficulty scaling on easier

datasets (libio and covid). That is because those datasets have
dense keys that result in dense nodes and hence, greatly increase

contention on high thread counts. Masstree crumbles when there

are writes because its write amplifications and concurrency control

together have exhausted the cross-socket bandwidth [43]. ALEX+,

performs worse either with insertion or harder data on two sockets

because distributing the memory accesses over two sockets would

experience the tighter cross-socket bandwidth bottleneck despite

the increased bandwidth in aggregation. ALEX+ however can scale

again with more sockets as by then there are more bandwidth

channels. Overall, this experiment shows that:

Message 7. Hyper-threading and NUMA have influence on
the scalability of learned indexes to various degree, and their
core designs play a role in their scalability under hyper-
threading/NUMA.

4.4 Deletion Performance
Before we move on to the next section, we complement this section

using deletion workloads. LIPP, Masstree, Wormhole, B+TreeOLC,

and HOT-ROWEX do not cover deletions. We exclude them from

our study except for LIPP (and LIPP+), which we implemented

deletion for it. We also extended ALEX’s deletion for ALEX+.

In this experiment, for each dataset, we bulk load all the 200M

keys, and randomly issue lookup/delete requests until 100M keys

are deleted. Figure 7 shows the single-threaded throughput heatmap

under five different deletion workloads, from read-only to delete-

only (100% delete). The results of multi-threading are similar and

are omitted for space. From the results, we see that ALEX, LIPP, and
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Figure 6: Throughput under varying socket counts.

ART (as well as their concurrent versions) are still the most compet-

itive ones. Note that when compared with the insertion workloads

(Figure 2), the learned indexes take over more territory from ART

even on hard data. Although the deletion path of a learned index is

analogous to its insertion path, where deleting a key may also incur

write amplification (filling up the gaps) and trigger SMOs (node

resizing), one crucial difference is that deleting a key from a data

node would not “pollute” a node’s ML model. Consequently, dele-

tion and lookup could continue to enjoy high quality model-based

search without model pollution or retraining overhead. This makes

learned indexes perform even better and outperforms traditional

indexes on more datasets and workloads.

Message 8. Deletions in learned indexes are lightweight be-
cause there is no model pollution.

5 MEMORY SPACE EFFICIENCY
Most previous work on learned indexes excluded the size of the

leaf layer when evaluating memory space efficiency. We aim to

study the end-to-end space consumption (i.e., the size of the whole

index including both non-leaf and leaf layers) of the indexes. We
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Figure 8: Memory space efficiency of the best indexes.

report the size of the indexes after running the write-only workload

where the first 100M keys are bulk loaded and the rest of them are

individually inserted into the index.

Figure 8 shows the end-to-end space consumption of the indexes.

For clarity, we present only indexes that are the best either in terms

of throughput or space. From the figure, we observe that:

Message 9. When considering the index size end-to-end, up-
datable learned indexes only have at most 3.2× space saving
over state-of-the-art traditional indexes, and all of them use
even more space than HOT.

The factor 3.2× comes from measuring the difference between

the sizes of the most space-efficient learned index (PGM-Index) and

the least space-efficient traditional index (ART). Although learned

indexes do have small non-leaf layers, memory-optimized tradi-

tional index like HOT can also be very space-efficient.

Although PGM-Index and HOT are space-efficient, they did not

show outstanding performance. Concerning the three winners in

the performance heatmaps, ALEX is the most space-efficient be-

cause its inner layers store no keys. Yet it is slightly larger than

PGM-Index because it leaves gaps for insertions. ART as a trie,

has low space utilization in its nodes (many null child pointers)

when the key space is not dense enough [4]. Despite its excellent

single-threaded performance, LIPP’s memory consumption is 4–5×
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Figure 9: ALEX-M vs. LIPP (when ALEX is tuned to use
roughly the same amount of memory as LIPP).

larger than ALEX’s, and is the highest in this experiment. Having

this observation, one might wonder (1) what would the performance
of LIPP and ALEX be if they were given the same memory space? and
(2) is LIPP’s single-thread advantage a fundamental achievement or
more a space-performance tradeoff?

To answer these questions, we carried out another experiment

which tuned the fill factor of ALEX data nodes such that the re-

sulting index (ALEX-M) uses roughly the same amount of memory

space as LIPP.
4
The resulting fill factor of ALEX-M is 0.2–0.25,

whereas ALEX has an original fill factor of 0.7. Figure 9 shows the

throughput of ALEX-M and LIPP under this new setting. ALEX’s

lookup performance has improved significantly and dominated

LIPP on both easy and hard datasets. The reason is that with lower

density data nodes, an insert in ALEX can often find a gap, maintain-

ing high model accuracy and incurring fewer key shifting. These

results indicate that LIPP’s collision-driven design is trading space

for speed.

6 ROBUSTNESS
A robust index shall have low tail latency despite any concurrency

degree or heavy-lifting part (e.g., SMO). A reliable index shall also

have a robust performance as the underlying data distribution

changes. Furthermore, it is important for the indexes to perform

robustly under a variety of range scan sizes.

6.1 Tail Latency
In this experiment, we report the tail latencies (variance and 99.9

percentile) of the indexes under both single-threaded and multi-

threaded (24 cores) settings. The lookup and insert latencies are sam-

pled from 1% of the operations from the read-only and write-only

workloads, respectively. As Figure 10a shows, the updatable lear-

ned indexes (except XIndex) exhibit comparable tail latency with

the traditional indexes under single-threaded lookup operations.

XIndex’s latency variance is especially high due to the expensive

context switching between its foreground and background threads.

Specifically, unlike other indexes, XIndex requires an extra back-

ground thread to merge deltas. For fair comparison, we pinned its

operational and background threads to the same core so that all the

4
We cannot do the other way round because of LIPP’s implementation sets its fill

factor as an integer; hence we could not set any fill factor smaller than 2, and a fill

factor of 1 means no gap is allowed.
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Figure 10: Tail latency of lookup operations.
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Figure 12: Throughput changes as data distributions change.

indexes are evaluated using the same CPU budget. This experiment

reveals that using background threads to handle dynamic work-

loads would hurt latency variance. We have confirmed this reason

by pinning the background thread to an extra physical core, after

which its tail latency is back to normal. The results using multiple

threads (Figure 10b) are similar. It is also worth-noting that LIPP+’s

tail latencies remain low even under multi-threading, although it

did not scale well on throughput. The reason is that LIPP+ uses

atomic instructions to update statistics, affecting average latency

rather than tail latency.

Figure 11 shows the tail latency for inserts. With a single thread

(Figure 11a), updatable learned indexes except XIndex generally

have similar tail latencies as the traditional ones. ALEX and LIPP

are sensitive to data hardness. They have high 99.9% tail insert

latency on the hard osm and genome datasets due to the increased

number of SMOs. Similar to its lookup operations, XIndex’s insert

operations exhibit very high variance in tail latencies regardless

of the data hardness because of the context switching overhead

between its 24 foreground threads and 3 background threads using

24 physical cores.
5
Overall, the multi-threaded results are similar

to the single-threaded ones, except that Wormhole has a higher tail

latency for inserts due to its use of a single exclusive lock for the

whole inner layer.

Message 10. Except XIndex, updatable learned indexes ex-
hibit low tail latency on both single- and multi-threaded
settings. Yet, some traditional indexes (ART, HOT and B-tree)
exhibit impeccable robustness in this aspect.

5
The foreground and background thread ratio follows the recommendation from

XIndex’s original paper [53].
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6.2 Shifting Data Distributions
The goal of our next experiment is to study how learned indexes

behave and adapt to changes of data distribution after the index

has been deployed. We follow earlier work [14] to (1) bulk load

an index using 100 million keys in one dataset 𝑋 , and (2) start a

read-write balanced workload using 100 million keys of another

dataset 𝑌 for insertions and lookups for the keys in 𝑋 . The keys

of both datasets are scaled to the same domain. With the ability

to quantify data hardness, we shift from easy data (covid) to two

different kinds of hard data (genome and osm) and vice versa.

Figure 12 shows the change of the throughput on the balanced

workload with respect to the original workload with no change

of the dataset. The result shows that learned indexes are sensitive

to data distribution changes while traditional indexes are not. The

changes, however, can be both positive and negative. For example,

ALEX’s throughput can drop by up to 52% when it is bulk-loaded

with easy data covid, followed by inserts of hard data (osm). How-
ever, its performance can improve by up to 15% when the hard data

osm is first bulk-loaded, followed by the easier covid. The result
aligns with the observations made by prior work [14], where the

index starts with easy data can incur significant overhead to adapt

to the new, harder distribution. Yet, an index started with harder

data requires less/no overhead to adapt to easy data. LIPP behaves

similarly to ALEX. PGM-Index and XIndex are more resilient to

distribution changes. In PGM-Index, the different distributions are

likely to be stored in different trees in its LSM structure. XIndex’s

throughput is less sensitive to the increased SMOs as they are

handled by background threads, which impact tail latency.

Message 11. Learned indexes are sensitive to data distribution
changes, while traditional indexes are not. Corroborating
with prior work, it is harder (easier) for a learned index that
is pre-filled with easy (hard) data to adapt to a harder (easier)
dataset.

6.3 Range Queries
This experiment evaluates range query performance. We bulk load

each index using the whole dataset of 200M keys and start a read-

only scan workload. Each query picks a random start key 𝐾 and

fetches a fixed number of keys starting from 𝐾 . Each workload

issues 10 million range queries in total and we measure the through-

put in number of keys accessed per second. Figure 13 shows the

results (for indexes that implemented range scan only) under a

varying range query size from 10 to 10,000 under a single thread.

As shown by the figure, all indexes exhibit higher throughput as

the query size increases because a larger scan size involves less tree

traversal and more efficient in-node scan. However, this experiment

also reveals yet another drawback of LIPP’s unified node design:

with a node layout that interleaves child pointers and data in the

node array, a range scan on the array would inevitably encounter

a lot of branches. Specifically, to continue to the next entry in the

data array, LIPP needs a branching instruction to decide whether

the entry is a child entry (hence recursively visiting the subtree) or

a data entry. This largely cancels out the potential improvement

brought by using fewer traversals under larger scan sizes.

Message 12. Learned indexes are good on range queries. Yet,
the unified node design is not range-scan friendly.
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7 COMPLEMENTING REAL DATAWITH
SYNTHETIC DATA

The global and local hardness defined based on PLA are mildly

correlated because they are extracted from the same CDF after

all, just in different granularity. This also explains why we seldom

find real datasets that are positioned near the “hard” corners (e.g.,

globally-hard-locally-easy) in our heatmaps. Although we find no

real dataset that exhibits those extreme hardness, we have built a

synthetic data generator that generates data using local and global

hardness as inputs. Figure 14 is the corresponding single-thread

throughput heatmap based on the generated data. We selected lo-

cal/global hardness values𝐻 from the “hard” corners of the heatmap.

Figure 15 illustrates their CDFs.
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Our synthetic data generator samples data from a set of random

linear models. Specifically, we first randomly generate a positive

slope𝑚 and an intercept𝑏 for a segment’s linear model. Given that a

linear model maps keys to positions, we have𝑦 =𝑚𝑘 +𝑏, where 𝑘 is
a key and𝑦 is its rank. For a given rank and 𝜖 , a key is then uniformly

sampled from [𝑚𝑎𝑥 ( 𝑦−𝜖−𝑏𝑚 , 𝑝𝑟𝑒𝑣 + 1), 𝑦+𝜖−𝑏𝑚 ], where 𝑝𝑟𝑒𝑣 is the
key from rank 𝑦 − 1. Keys are incrementally generated from rank

1 to rank 200M. A segment size is controllable but currently we

simply give each segment an equal number of keys. Following the

algorithm we described in [58] for computing data hardness, we

create a convex hull for all keys of a generated segment. Then, we

generate the first key 𝑘𝑖 of the next segment by incrementing the

value of 𝑘𝑖 until (𝑘𝑖 , 𝑟𝑖 ) goes beyond the bounding box of the convex
hull of the previous segment. The process is iterative and recursive.

We first generate a global segment and then its local segments, and

repeat the process until all segments are generated.

Although primitive, we can see that the resulting heatmap from

the synthetic data is similar to the one using real data. From the

heatmap of synthetic data, learned indexes can also do well when

only one dimension is hard while the other one remains easy. In

other words, learned indexes lose their edge only when both dimen-

sions are hard and with intensive-writes, corroborating Message 3.

8 LESSONS LEARNED
In this section, we summarize six lessons learned from the study:

1. Using ML for subspace lookup in internal layers and using
sparse-node as node design generally well balance perfor-
mance, space, and robustness. This observation inspires future

work to continue in this direction to refine cost models and address

limitations (e.g., write amplification).

2. Use hard datasets judiciously. During the experimentation,

we found that most real datasets are easy. In contrast, fb has been

upsampled and osm is not one-dimensional in nature [8]. Therefore,

while we can use those hard datasets to stress test the corner cases,

index designers may not need to put too much weights on those.

3. Concurrency control and robustness should be first-class
citizens when designing a learned index, i.e., designs should
be holistic. Otherwise, different design choices may inherently

contradict each other later. For example, LIPP’s unified node lay-

out which mainly considered single-threaded scenarios can signifi-

cantly hurt scalability and add many branches to range scans.

4. Future learned indexes can benefit from cache-friendly
and NUMA-aware designs. Since we found that good learned

indexes like ALEX+ can saturate memory bandwidth, reducing

cache misses and NUMA-aware data placement are two promising

optimization directions.

5. Memory efficiency is not a clear advantage of updatable
learned indexes. Simply replacing traditional indexes with learned

indexes may not help much in space saving. We recommend future

learned indexes must report the end-to-end memory consumption

and explore alternatives (e.g., compression [5], persistent memory

[34]) to reduce DRAM pressure.

6. Traditional indexes are not good-for-nothing. Traditional
indexes should not be completely abandoned because of their effi-

ciency in write-intensive workload and hard datasets, rich function-

ality (e.g., support for variable-length keys) and extreme robustness.
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on 24 cores with all workloads. The datasets can’t be ordered.

9 SO, ARE UPDATABLE LEARNED INDEXES
READY?

In this section, we try to answer this question from three different

angles: yesterday, today, and tomorrow.
Yesterday. If the question were asked before this benchmark

study, the answer would have been no. Specifically, a modern index

must support concurrency, making XIndex [53] and FINEdex [30]

the only choices. Figure 16 shows what the 24-core performance

heatmap would have been without our study — ART-OLC domi-

nates the heatmap. Furthermore, without a quantitative metric on

data hardness, practitioners would have no way to make informed

decisions on when to use a learned index or not. In addition to

issues with concurrency, we observed that the supposedly fastest

(single-threaded) learned index LIPP actually trades space for speed.

Today. Despite being a performance study, we have made con-

tributions to parallelizing two state-of-the-art updatable learned

indexes (ALEX+ and LIPP+). We show that LIPP by design is not

concurrency-friendly nor space-efficient, yet ALEX+ is promising in

terms of performance, scalability, space, and robustness. Although

ALEX+ has a harder time on hard datasets when the workloads are

write-intensive, most real datasets are easy and most real-world

OLTP workloads are actually read-intensive [9, 25, 35, 49]. Hence,

we conclude that ALEX+ as an updatable learned index that is al-
most ready. For write-intensive workloads, we recommend LSM-

style indexing. Some early efforts have already started to explore

this direction [11].

Tomorrow. Despite the promising results, ALEX+ has limita-

tions and we recommend using it in a hardness-conscious manner.

For example, the hardness of a dataset can be added as a new

feature/dimension in index selection tools [6, 7, 23, 36, 54] and

query optimizers [12, 40–42, 50].When those components are ready,

ALEX+ would also be ready.
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