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ABSTRACT
Data is often stored in a database management system (DBMS) but
dataframe libraries are widely used among data scientists. An im-
portant but challenging problem is how to bridge the gap between
databases and dataframes. To solve this problem, we present Con-
nectorX, a client library that enables fast and memory-e�cient data
loading from various databases to di�erent dataframes . We �rst
investigate why the loading process is slow and consumes large
memory. We surprisingly �nd that the main overhead comes from
the client-side rather than query execution or data transfer. We in-
tegrate several existing and new techniques to reduce the overhead
and carefully design the system architecture and interface to make
ConnectorX easy to extend to various databases and dataframes.
Moreover, we propose server-side result partitioning that can be
adopted by DBMSs in order to better support exporting data to
data science tools. We conduct extensive experiments to evaluate
ConnectorX and compare it with popular libraries. The results show
that ConnectorX signi�cantly outperforms existing solutions. Con-
nectorX is open sourced at: https://github.com/sfu-db/connector-x.
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1 INTRODUCTION
Dataframe libraries such as Pandas [59], Dask [65], andModin [61]
are widely used among data scientists for data manipulation and
analysis. In contrast, enterprise environments often store their data
in database management systems. Thus, the �rst step in most data
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Dataframe
Database

Total Time Peak Memory
Pandas 12.46 mins 95.6 GB
ConnectorX 0.97 min 31.4 GB

Bridging the gap between Databases and Dataframes

Figure 1: Speed up loading the lineitem table (7.2 GB in CSV)
from database to dataframe with less memory usage.
science applications is to load data from the DBMS. Unfortunately,
this data loading process is not only notoriously slow but also con-
sumes inordinate amounts of client memory [4, 5, 7, 8, 53], which
easily leads to out-of-memory errors or performance degradation.
This issue is urgent since read_sql is on the critical path of many
data science tasks such as ELT/ETL processes and exploratory data
analysis, and it can take more than 50% of the time in a real-world
ML pipeline [69]. Therefore, bridging the gap between databases
and dataframes is of great interest to both academia and indus-
try [45, 49, 53, 70].

Example 1.1. Pandas is the most widely used dataframe library in
Python, with a total 1.2B downloads on PyPI as of Jan 2022. Suppose
that a data scientist loads the TPC-H ‘lineitem’ table (7.2 GB) from
PostgreSQL into a Pandas.DataFrame using the Pandas.read_sql
call in Figure 1. The function speci�es a query string and database
connection (e.g., conn), retrieves the query results, and loads them
into a DataFrame object. We conducted an experiment using two
AWS instances, where PostgreSQL was deployed on one instance and
the code was run on another instance (see Section 3 for details). The
whole data loading process is highly ine�cient—it takes 12.5 mins
and consumes over 95.6 GB of memory. In fact, the actual time spent
on query execution is less than 1 min (13⇥ time overhead) and the
�nal Pandas.DataFrame is only 24.4 GB (4⇥ memory overhead) .

This paper describes ConnectorX, a fast and memory-e�cient
data loading library that supports many DBMSs (e.g., PostgreSQL,
SQLite, MySQL, SQLServer, Oracle) to client dataframes (e.g., Pan-
das, PyArrow,Modin,Dask, and Polars). Wemade our contributions
while sought to address four major questions.
First, where are the actual data loading bottlenecks? We pro-
�le the Pandas.read_sql implementation in Section 3 (due to its
popularity). We �nd that the runtime can be split into two parts:
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the server side runtime includes query execution, serialization, and
network transfer, and the client side includes deserialization and
conversion into a dataframe. We were surprised to �nd that >85%
of time is spent in the client, and that the conversion materializes
all intermediate transformation results in memory. These �ndings
suggest that client-side optimizations are su�cient to dramatically
reduce data loading costs.
Second, how do we both reduce the runtime and memory,
while also making the system extensible to new DBMSs? In
Section 4, we design a succinct domain-speci�c language (DSL)
for mapping DBMS result representations into dataframes—this
reduces the lines of code by 1-2 orders of magnitude as compared
to not using our DSL. Under the covers, ConnectorX compiles the
DSL to execute over a streaming work�ow system that e�ciently
translates bytes received from the network into objects in memory.
The work�ow executes in a pipelined fashion, and seamlessly com-
bines optimization techniques including parallel execution, string
allocation optimizations, and an e�cient data representation.
Third, arewidely used client query partitioning schemegood
enough? Parallelization via query partitioning is the dominant way
to reduce execution and loading time. Existing libraries [56, 61, 65]
including ConnectorX partition the query on the client, which is
popular since it does not require modi�cation to the server. Unfortu-
nately, we �nd that it introduces extra user burden, load imbalances,
wasted server resources, and data inconsistencies. Thus, we study
server-side result partitioning in Section 5, where the DBMS di-
rectly partitions the query result and sends back in parallel without
changing the protocol and access method.We prototype and demon-
strate the e�cacy using PostgreSQL, and advocate DBMS vendors
to add this support to bene�t data science applications.
Fourth, does a new data loading library matter? Since its �rst
release in April 2021, ConnectorX has been widely adopted by real
users, with a total of 300K+ downloads and 640+ Github stars in a
year. It has been applied to extracting data in ETL [11] and loading
ML data from DBMS [12]. It is also integrated into popular open
source projects such as Polars [17], Modin [61] and DataPrep [14].
For example, Polars is the most popular dataframe library in Rust,
and it uses ConnectorX as the default way to read data from various
databases [13]. Our experiments in Section 6 show that ConnectorX
signi�cantly outperforms existing libraries (Pandas, Dask,Modin,
Turbodbc) when loading large query results. Compared to Pandas,
it reduces runtime by 13⇥ and memory utilization by 3⇥.

2 RELATEDWORK
Bridging the gap between DBMS and ML has become a hot topic in
the database community. ConnectorX �ts into the big picture by
supporting e�cient data loading from DBMSs to dataframes.
Accelerating Data Access From DBMS.

(1) Server-Side Enhancement. Accessing data from database sys-
tems through tuple-level protocol is notoriously slow [53, 63]. Previ-
ous work [63] shows that existing wire protocols su�er from redun-
dant information and expensive (de)serialization, and propose a new
protocol to tackle these issues. More approaches tend to leverage
existing open data formats (e.g. Parquet [24], ORC [23], Avro [22],

Table 1: Memory analysis of Pandas.read_sql.

Raw Bytes Python Objects Dataframe Peak

PostgreSQL 12.4GB 52.6GB 24.4GB 95.6GB
MySQL 8.18GB 51.5GB 23.3GB1 99.1GB

Arrow [6], Dermel [55], Pickle [1]) to speed up the process by avoid-
ing tuple-level accessing. Li et. al [53] adopts Flight [42] to enable
zero-copy on data export in Arrow IPC format. Data warehouses
such as Redshift [19], BigQuery [16] and Snow�ake [39] support
unloading data into cloud stores (e.g. Amazon S3 [21], Azure Blob
Storage [25], Google Cloud Storage [29]) in the format like CSV
and Parquet directly [20, 28, 33]. Data lake and Lakehouse solu-
tions [26, 67, 70] also advocate direct accessibility of open formats.

Parallelism is another e�ective way to speed up data transfer,
supported by many tools [2, 10, 27] to move data between two
�le systems (e.g. HDFS, S3) or between �le system and DBMSs.
Databricks points out the single SQL endpoint bottleneck and pro-
poses to tackle it with cloud fetch architecture [36], in which a
query’s result is exported to a cloud storage in multiple partitions,
enabling parallel downloading from the client. Similar support is
also provided by other cloud-native data warehouses [20, 28, 33].

However, all these server-side attempts require users to modify
the source code of a database server or switch to a new one, which
is often not feasible in real-world scenarios. Even if the solutions
are supported, many of them require extra con�guration e�orts
such as accessing to speci�c �le systems (e.g. S3), which also di�ers
among di�erent vendors. Lastly, these works only provide part
of the solution. To get the �nal dataframe for downstream tasks,
there needs to be one extra conversion from the exported result.
Unlike these approaches, ConnectorX provides a single-step solu-
tion leveraging existing DBMSs and client drivers, and achieves
the maximum speed up by optimizing client executions within the
current environmental setups. In addition, ConnectorX can also
leverage and bene�t from these server-side optimizations internally
since it has no restriction in how to fetch data from DBMSs.

(2) Client-Side Optimization.ML and data analysis tools [38, 47,
56, 57, 60] tend to adopt dataframes [6, 17, 30, 32, 46, 59, 61, 62, 65]
as the abstraction for data manipulation, many of which provide
native DBMS I/O support with various optimization e�orts. Pan-
das supports chunking [68] to reduce the memory pressure by
loading data one chunk at a time. Modin, Dask, Spark leverage
multiple cores through client-side query partitioning. Third-party
library Turbodbc [9] provides state-of-the-art performance through
batched data transfer on ODBC drivers. ConnectorX is superior
than existing client libraries from three aspects. First, existing ap-
proaches are limited to client drivers with certain interfaces (e.g.
Pandas, Turbodbc and Spark requires Python DB-API, ODBC and
JDBC respectively), while ConnectorX has no such requirement
and thus is able to leverage the fastest one. Second, they only target
on one speci�c or a few dataframes. In contrast, ConnectorX is a
general framework that can easily extend to any dataframe with
high performance by implementing the corresponding interfaces.
Third, comparing to these libraries, ConnectorX integrates more
comprehensive optimization techniques, and thus could achieve
the best performance.

1CHAR values are stripped in MySQL but not in PostgreSQL, which results in
dataframes with di�erent sizes.
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Figure 2: Time break down of Pandas.read_sql. (Orange
parts happen on the client side.)

Integrating DBMS with Data Science. Data scientists are in
general more familiar with dataframe operations, so they usually
choose to move the complete data from databases to the client ma-
chine and process it using data science tools. To avoid this costly
data moving, some systems try to integrate with Python [37, 48,
49, 51, 54, 66] and R [40, 44, 52] environments in order to run ML
operations inside database engines. Embedded analytical system
DuckDB [64] is developed to avoid the bottlenecks of result set
serialization and value-based APIs by making DBMS and analytic
tools in the same address space. However, these approaches are
still in an early stage and can only support a limited number of
scenarios. Therefore, when there is no feasible integration system,
it is still desirable to allow data scientists to move data out of the
DBMS to conduct sophisticated analysis and build ML models on
dataframe abstraction, requiring better design and implementation
of read_sql like ConnectorX.

Other works are less aggressive in integrating DBMS with data
science environments. Ibis [3] aims to convert dataframe operations
to SQL queries and run them on a connected database. Declara-
tive dataframe API [34, 56] is proposed to combine relational and
procedural processing, which also allows cross-optimization be-
tween ML and database operators and has been studied by recent
works [41, 45, 50]. These approaches still need to transfer data from
DBMSs to the targeting environment, in which ConnectorX can be
leveraged to speed up the movement.

3 AN ANATOMY OF PANDAS.READ_SQL
In this section, we take an in-depth look at Pandas.read_sql [59].
There are other libraries that also provide the read_sql function-
ality and we will discuss and compare with them in Section 6. We
conduct an experiment between two AWS EC2 instances (r5.4xlarge,
network bandwidth: 10 Gbit/s). ADBMS is deployed on one instance
and Pandas.read_sql is executed on another instance to load the
TPC-H lineitem table (SF=10) from the DBMS.

3.1 Where Does the Time Go?
Under the hood, Pandas.read_sql relies on driver libraries follow-
ing the Python DB-API [43] to access databases. From the client’s
perspective, the overall process has three major steps:
(1) Execution + Transfer : Server executes the query and sends the

result back to the client through network in bytes following a
speci�c wire protocol.

(2) Deserialization: Client parses the received bytes and returns the
query result in the form of Python objects.

(3) Conversion to dataframe: Client converts the Python objects
into NumPy [46] arrays and constructs the �nal dataframe.

Figure 2 shows the time break down on PostgreSQL andMySQL,
respectively. Note that orange parts all happen on the client side.

A surprising �nding is that the majority of the time is actually
spent on the client side rather than on the query execution or the

Figure 3: Time and memory change by varying chunk size.

data transfer. In this case, accelerating query execution or com-
pressing the data for wire transfer [63] is less e�ective in speeding
up read_sql. This result suggests that we should focus on optimiz-
ing the client side, which is dominated by two data conversions:
deserialization and conversion to dataframe with each accounting
for approximately 40% of the running time.

Another �nding is that read_sql executes each step sequentially
for PostgreSQL and MySQL by default [35]2. That is, when the
server side sends part of bytes to the client side, the client side does
not process them right away but waits until all returned bytes are
ready in a local bu�er; when the client side derives part of Python
objects, it does not convert them to a dataframe right away but waits
until all Python objects are available. This will lead to two issues.
First, all intermediate results will be temporarily kept in memory,
which wastes too much memory as we will show in Section 3.2.
Second, single thread execution cannot make full use of network
and computational resources.

3.2 Where Does the Memory Go?
Next, we inspect the memory footprint of running read_sql and
show the results in Table 1. RawBytes, PythonObjects, andDataframe
represent the size of the bytes the client received, the intermediate
Python objects, and the �nal dataframe, respectively.

We observe that the peak memory is approximately 4⇥ larger
than the size of the �nal dataframe. It is mainly caused by two
reasons. First, the intermediate result is stored in Python objects.
In Python, every object contains a header structure that maintains
information like reference count and object’s type in addition to the
data itself. This will add some overhead on the size of the data. This
overhead varies by di�erent types. Take integer as an example: the
actual data for an integer value only takes 8 bytes, but the header
for this value has 20 bytes. Second, all the intermediate results are
kept in memory until the �nal dataframe is generated. Speci�cally,
Pandas.read_sql keeps three copies of the entire data in memory,
which are stored in three di�erent formats: Raw Bytes, Python
Objects, and Dataframe. This unnecessary duplication of the same
data is another cause of the high memory consumption.
How Much Can Chunking Help?. Chunking [58, 68] loads data
chunk by chunk. For example, by specifying a chunk size of 1000,
read_sql will fetch and process a chuck of 1000 rows of the query
result at a time. We vary the chunk size and measure the running
time and the peak memory of loading the lineitem table. Figure 3
shows the results. For fair comparison, we concatenate all the inter-
mediate dataframes in the end to represent the entire query result.
“No Chunk” represents that chunking is not used.

We see that chunking is indeed very e�ective in reducing mem-
ory usage because it does not hold all the intermediate results in
memory. The peak memory usage can become almost equal to the

2For some other databases like Oracle, while the �rst two steps are conducted in
parallel, the third step cannot start until the �rst two steps have �nished.
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Figure 4: Work�ow of ConnectorX.

�nal dataframe size when we set the chunk size within a certain
range (e.g. 1K to 1M). However, it has little help in improving the
running time of read_sql. In fact, it will introduce signi�cant over-
head when the chunk size is too small (e.g. 100). Moreover, the user
needs to write extra code in order to enable chunking and handle a
stream of dataframes.
Opportunities. Through an in-depth analysis of read_sql, we
identify the opportunity to improve its performance in optimiz-
ing the client side execution through reducing Python overhead,
minimizing data copies, pipelining and parallelization.

4 CONNECTORX
In this section, we �rst present how we leverage the above opportu-
nities to improve the performance of read_sql from PostgreSQL
to Pandas. Then we show how ConnectorX can be easily extended
to support a large number of databases and dataframes.

4.1 How to Speed Up?
Overall Work�ow. Learning from chunking, ConnectorX adopts
a streaming work�ow, where the client loads and processes a small
batch of data at a time. In order to avoid the extra data copy and
concatenation at the end, ConnectorX adds a Preparation Phase
to its work�ow. The goal of this phase is to pre-allocate the result
dataframe so that the parsed values can be directly written to the
corresponding �nal slots during execution. Figure 4 illustrates the
overall work�ow, which consists of two two phases: Preparation
Phase ( 1 - 3 ) and Execution Phase ( 4 - 6 ).

In the Preparation Phase, ConnectorX 1 queries the metadata
of the query result, including the number of rows and the data type
for each column. With this information, it 2 constructs the �nal
Pandas.DataFrame by allocating the NumPy arrays accordingly. In
order to leverage multiple cores on the client machine, ConnectorX
supports 3 partitioning the query for parallel execution.

The Execution Phase is conducted iteratively in a streaming
fashion. ConnectorX assigns each partitioned query to a dedicated
worker thread, which streams the partial query result from the
DBMS into dataframe independently in parallel. Speci�cally, in
each iteration of a worker thread, it 4 fetches a small batch of the
query result from the DBMS, 5 converts each cell into the proper
data format, and 6 writes the value directly to the dataframe. This
process repeats until the worker exhausts the query result.
Parallel Execution.As shown above,ConnectorX leverages query
partitioning for parallel execution. Suppose that the given query
is denoted by & . The user speci�es a range partitioning scheme
over the query result, which consists of a partition key, a partition

Type Mapper
X → Y

Src Partition Dst Partition

Src Partition

Src Partition

Dst Partition

Dst Partition

Source X Destination Y

Get Metadata Construct

Read Produce Consume Write

Database
X

Dataframe
Y

ConnectorX

Figure 5: Overall architecture of ConnectorX.

number, and a partition range. Based on the scheme,& can be parti-
tioned into a set of subqueries, @1,@2, · · · ,@= . The partition scheme
guarantees that the union of the subquery results of @1,@2, · · · ,@=
is equal to the query result of & . Thus, by fetching the results of
@1,@2, · · · ,@= , ConnectorX obtains the result of & .

In Figure 4, the partitioning scheme is shown in step 0 : the
partition column ID, the partition number 3, and a partition range
(1, 3,000,000). If the range is not speci�ed, ConnectorX automati-
cally sets the range by issuing query SELECT MIN(ID), MAX(ID)
FROM Students. Then, ConnectorX equally partitions the range
into 3 splits and generate three subqueries3:
q1: SELECT ... FROM Students WHERE ID < 1,000,000
q2: SELECT ... FROM Students WHERE ID 2 [1,000,000, 2,000,000)
q3: SELECT ... FROM Students WHERE ID � 2,000,000

This partitioning strategy is also adopted by other client li-
braries [56, 61, 65]. We will further discuss it in Section 5.
String Allocation Optimization. ConnectorX pre-allocates the
NumPy arrays in advance to avoid extra data copy. However, the
bu�ers that the string objects point to have to be allocated on-
the-�y after knowing the actual length of each value. Moreover,
constructing a string object is not thread-safe in Python. It needs to
acquire the Python Global Interpreter Lock (GIL), which could slow
down the whole process when the degree of parallelism is large
(Section 6.1). To alleviate this overhead, ConnectorX constructs a
batch of strings at a time while acquiring the GIL instead of allo-
cating each string object separately. To shorten the time of holding
the GIL, we do not copy the real data during the construction, but
write the bytes into the allocated bu�er after releasing the GIL.

Suppose the query result contains 100 strings of 10 bytes each.
A simple approach would be creating Python string objects on de-
mand. That is, for each received string from the database driver, we
(1) acquire the GIL, (2) allocate a Python string object of 10 bytes, (3)
copy the content to the allocated bu�er, (4) release the GIL. Unlike
this, ConnectorX keeps the string bytes temporarily in memory
and creates Python strings in batches. Therefore, ConnectorX only
needs to acquire the GIL once instead of 100 times. Furthermore,
it early releases the lock by exchanging the order of step (3) and
step (4) because only string allocation requires holding the GIL.
Consequently, the contention on the GIL is largely reduced.
E�cient Data Representation. The limitation of Python shown
in Section 3.2 indicates that a more e�cient data representation
is needed. Therefore, we decide to use a native programming lan-
guage to implement ConnectorX. We choose Rust since it provides
e�cient performance and guarantees memory safety. In addition,
there is a variety of high-performance client drivers for di�erent
databases in Rust that ConnectorX can directly build on. In order to
3For complex queries, we use nested queries to partition their query results: @1 =
SELECT * FROM (SELECT * FROM Students) AS T WHERE ID < 1,000,000.
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Automatically Generated At Compile Time

Figure 6: Example of using type mapping DSL in Connec-
torX, with illustration of simpli�ed generated code.

�t into the data science ecosystem in Python,ConnectorX provides a
Python binding with an easy-to-use API. This allows data scientists
to download ConnectorX using “pip install connectorx” and
directly replace Pandas.read_sql with ConnectorX.read_sql.

4.2 How to Extend?
Overall Architecture. ConnectorX consists of three main mod-
ules: Source (e.g. PostgreSQL,MySQL), Destination (e.g. Pandas,
PyArrow) and a bridge module Type Mapper in the middle to de�ne
how to convert the physical representation for the data from Source
to Destination. Figure 5 illustrates the high-level architecture.

Each supportedDBMS inConnectorX has a corresponding Source
module, which reads and parses data from the DBMS . The Source
module is able to generate a group of Source Partition instances,
each of which is assigned a subquery. The Destination module
generates the �nal dataframe, including constructing the dataframe
object and letting a dedicated Destination Partition to consume
and write the data produced from a Source Partition to the correct
position in the dataframe. A Type Mapper module consists of a set
of rules that specify how to convert data from a speci�c Source type
to a speci�c Destination type. During runtime, each subquery will
be handled by a single thread, which forwards data from a Source
Partition to a Destination Partition by looking up the conversion
rules in the corresponding Type Mapper.
Interface Design. Adding a new Source involves two tasks (new
Destination is similar): (1) Connecting to the new Source and sup-
porting the functionalities required by ConnectorX (e.g. querying
metadata, fetching query results); (2) De�ning the type mapping
from the new Source to existing Destinations.

(1) Connection. The same with other libraries, ConnectorX lever-
ages existing client drivers to implement the functionality. However,
other libraries require drivers provide a speci�c API (e.g. Pandas
and Turbodbc requires Python DB-API and ODBC respectively).
While ConnectorX has no such requirement, which gives it the �ex-
ibility to choose the fastest client driver for each DBMS. Adding a
new Source only requires implementing a set of succinct interfaces
with an existing driver. We leave details out to report [69].

(2) Type Mapping. Di�erent database systems de�ne their own
type systems and physical type representations. Thus, a type map-
ping for each (database, dataframe) pair is needed (e.g. CHAR, and
DATE in PostgreSQL can be converted to object, and datetime64 in
Pandas, and large_utf8, and date64 in PyArrow, respectively).

A naive way to support this is to de�ne how to convert each
type from each Source to each Destination manually. However,
this will lead to two pain points. First, there will be a lot of trivial
code for types with the same physical representation. Because
in many cases, Source and Destination choose the same physical
representation (e.g. both PostgreSQL.INT8 and Pandas.int64 use

Figure 7: Network utilization by varying # partitions.

64-bit signed integer type i64 as physical type) or types that the
conversion is trivial (e.g. casting from i32 to i64 for PostgreSQL.INT4
to Pandas.int64). Second, the code will become hard to maintain due
to the large amount of conversion functions. Suppose each DBMS
has 15 data types on average, there will be 150 (15 ⇥ 5 ⇥ 2) type
conversion functions to support �ve DBMSs and two dataframes.

To mitigate the aforementioned issues, ConnectorX de�nes a do-
main speci�c language (DSL) to help the developers de�ne the type
mappings, leveraging the modern macro support in Rust [31]. Each
line consists of three parts: logical type and corresponding physical
type of Source, the matched logical type and physical type of Desti-
nation, and the conversion implementation choice including auto,
none, and option. The physical types are speci�ed in square brack-
ets following the logical counterparts, which makes the mapping
relation of both logical-physical and Source-Destination type pair
clear. For trivial conversions that are automatically supported, like
i32 to i64, a developer could set the conversion as auto and Con-
nectorX will automatically generate the corresponding conversion
functions like the example shown in Figure 6. option is used for
non-trivial conversions, for which the developer is required to im-
plement the corresponding conversion function. To avoid repeated
de�nitions, none indicates that the physical type pair is already
handled. This simple DSL makes the relation of type mapping in-
tuitive and easy to maintain. We found it has helped shorten code
related to type mapping by 97% (from 37k to 1k lines of code).

5 QUERY PARTITIONING
5.1 Client-Side Query Partitioning
The client-side query partitioning scheme leveraged by ConnectorX
and other libraries [56, 61, 65] can accelerate read_sql through
utilizing the high network bandwidth and CPU resource more ef-
�ciently. Figure 7 shows the network utilization of ConnectorX
by varying the number of partitions. It is clear that No Partition
cannot saturate the network bandwidth at all. With more connec-
tions fetching data in parallel, bandwidth could be leveraged more
su�ciently and thus leading to better end-to-end performance
(read_sql �nishes when bandwidth usage drops to 0).

The reason that this method is widely adopted by client libraries
is because it does not require any modi�cation to the database
server. However, it has several downsides: (1) User Burden. To en-
able query partitioning, user has to take extra e�ort to specify a
partitioning scheme over the query result. (2) Load Imbalance. If
the result is not evenly partitioned, stragglers may arise, hurting
overall performance. (3) Data Inconsistency. Since subqueries are
sent to the server from independent sessions, their results may be
derived from di�erent snapshots. (4) Wasted Resource. Di�erent
subqueries may share the same costly subplan (e.g., full-table scan).
Since the DBMS processes each query independently, the sub-plan
may be repeatedly executed for many times.
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Table 2: Comparison of di�erent partitioning approaches. C
(S) represents client (server)-side partition. Bold font indi-
cates server-side outperforms client-side partition.

# Scan # Disk Block Miss Total Time (s)

No Partition 1 1.1M 156.1

# Partitions C S C S C S
2 3 1 3.2M 1.1M 86.4 86.7
4 5 1 3.8M 1.1M 49.1 45.7
8 9 1 3.8M 1.1M 30.4 23.9
16 17 1 17.1M 1.1M 26.7 19.6

5.2 Server-Side Result Partitioning
On the other hand, partitioning the query on the database server
side would address the aforementioned issues. Speci�cally, DBMS
partitions the query result into = equally-sized partitions and al-
lows the client to fetch them through = connections in parallel with
existing protocol. Unlike client-side query partitioning, server-side
result partitioning does not need the user to input any extra infor-
mation. With the help of internal statistics and a cost estimator, the
DBMS has a better chance to partition the result more evenly. It can
also easily guarantee data consistency and avoid wasted resource
since the DBMS has all the necessary information to partition and
conduct executions on the same database snapshot. In the following,
we discuss the potential design for this proposal.
SQL Syntax&Work�ow.Akey requirement of supporting server-
side result partitioning is the mechanism of indicating the relation-
ship between di�erent independent connections. To achieve this,
we can extend the existing concept of database cursor and de�ne
the SQL syntax for server-side result partitioning as follow:
DECLARE name CURSOR FOR query INTO n;

FETCH ALL FROM partition_id OF name;

In order to support accessing the same query result through
di�erent connections, the client �rst establishes a connection and
declares a cursor for the original query with an associated name.
By specifying the partition number partition_num, this cursor now
becomes globally visible to the same user in other sessions as long as
it is still valid. And its result can be then fetched through concurrent
connections with di�erent partition_id (0, 1, ..., = � 1). The cursor
will be released eventually when all query results are consumed.
Prototype Evaluation. Naturally, there are many approaches to
support server-side result partitioning. Brie�y, our prototype mod-
i�es the PostgreSQL engine for SP queries by splitting the query
plan into = subplans that could be executed in di�erent connections
in parallel. Unlike client-side query partitioning, where each par-
titioned query scans the entire table independently. Each subplan
scans 1

= of the total disk pages on the same snapshot of the data,
which avoids resource waste and inconsistency. Other approaches,
such as executing the whole query and distributing the results to
di�erent connections are also feasible. The technical report [69]
describes our prototype and alternative designs in more details.

We execute server-side partitioning prototype and client-side
partitioning to fetch lineitem table from PostgreSQL (the same setup
with Section 3). Table 2 shows the results of using ConnectorX in
di�erent scenarios. # Scan and # Disk Block Miss represent the
number of times the table has been scanned, and the number of
disk blocks read (subtracting the number of cache hit), respectively.
We also show the time usage (Total Time) from initiating the query

Figure 8: Ablation study.

to getting the �nal dataframe in order to illustrate the impact of
each partitioning approach to the end-to-end read_sql procedure.

Without partitioning, PostgreSQL scans the entire table once
and it takes 156.1 seconds to get the result dataframe. Although
client-side partitioning improves the e�ciency of read_sql, it also
puts heavier burden on the DBMS. The number of scans increases
along with the number of partitions (plus one extra scan to query
the range of a given column for query partitioning). The number of
blocks that need to be loaded from disk is approximately 3.8

1.1 = 3.5⇥
larger when the number of partitions is small. With 16 partitions,
it becomes 15.5⇥ larger due to higher contention on the bu�er
pool. On the contrary, server-side partitioning shows the same sta-
tistics with no partition. Furthermore, with more partitions, the
resource saving on the server side can further reduce end-to-end
time ( 26.1�19.626.1 = 25% on 16 partitions). To conclude, server-side
partitioning allows the client to fully leverage the network and com-
putation resources, without extra overhead on the database server.
We hope that DBMS vendors can consider adding the support of
server-side result partitioning in the future.

6 EVALUATION
Datasets &Workloads. (1) TPC-H [18].We use the TPC-H bench-
mark dataset with scale factor set to 10. We select lineitem table
(60M rows, 16 columns, approximately 7.2GB in CSV format). We
use column l_orderkey as the partitioning column, which is evenly
distributed and thus the cardinality of each subquery is similar. We
also test on 22 SPJ queries, with the fetched result size ranging
from 100K to 59M. (2) DDoS [15]. This dataset contains 12.8M tra�c
�ows (6.3GB in CSV). This is an ML dataset with 84 feature columns
and a label column. The majority of the columns are numerical (51
DECIMAL and 29 INTEGER), and the rest �ve are VARCHAR. The
tested query is to load the entire table. The ID column is adopted as
the partitioning column when needed. Notice that ID is not evenly
distributed. When using four partitions, the size of each partition
is approximately 1

2 ,
1
4 ,

1
8 , and

1
8 of the entire table.

Baselines. We compare ConnectorX with four popular libraries:
Pandas [59], Dask [65], Modin [61] and Turbodbc [9]. Since Tur-
bodbc does not support Pandas destination directly, we convert its
NumPy array result to Pandas to ensure a fair comparison. The
detailed approach is available in our technical report [69].
Hardware & Platform. Our experiments are conducted on two
AWS EC2 r5.4xlarge instances (16 vCPUs, 128GBmain memory, and
10Gbit/s network bandwidth) by default. We deploy the database on
one machine and run read_sql from another. We also show the per-
formance comparison under other network conditions, including
when the server and client reside on the same r5.4xlarge instance
(Local) and on two locally hosted machines with four Intel Xeon
E7-4870 v4 CPUs (16 cores in total), 128GB memory and 200Mbit/s
network.We use three open-source databases (PostgreSQL,MySQL,
SQLite) and one commercial database (DBMS-A).
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Figure 9:Memory comparison on four database systems. ("⇥"
is placed if a method does not support the DBMS or cannot
handle the large query result.)

Implementation. We have made the scripts, datasets and work-
loads publicly available at https://github.com/sfu-db/connectorx-
bench. We run each experiment �ve times and report the averaged
result. We conduct experiments under both without partitioning
(No Partition) and with four partitions (With Partition) settings. We
also evaluate the performance by varying the number of partitions
and compare with a parallel �le export baseline in [69].

6.1 Ablation Study
We conduct an ablation study to gain a deep understanding of
ConnectorX’s performance and verify the e�cacy of the three opti-
mization techniques: i) Query partitioning; ii) Streaming work�ow;
iii) String allocation optimization. Since Figure 7 has already shown
the e�cacy of query partitioning, here we evaluate the other two.
We vary the implementation of ConnectorX and observe the per-
formance change by loading the lineitem table from PostgreSQL
to Pandas. The results are shown in Figure 8. No-Streaming-Opt
represents that the streaming work�ow is disabled; No-String-Opt
represents that the string allocation optimization is disabled.

In terms of running time, ConnectorX (with all optimizations) is
the fastest both with and without partitioning. Without the stream-
ing work�ow, the performance drops approximately by 20% in both
cases. The impact of string allocation optimization varies in dif-
ferent numbers of partitions. It slows down the process by only
6% when no partition, but becomes 4.6⇥ slower with partition-
ing. This is because more partitions lead to more contention on
the GIL, thus slowing down the process. For peak memory usage,
applying partitioning has little impact on memory consumption.
No-Streaming-Opt needs 2.3⇥ more memory due to the large inter-
mediate results. However, it (70.4GB) still saves more than 20GB of
memory comparing to the 95.6GB peak memory usage of Pandas’s
batch solution shown in Table 1. This validates the e�ciency of
using Rust in terms of data representation.

6.2 Performance Comparison
We compare ConnectorX with four baselines to fetch query result
into a Pandas.DataFrame. Due to space limitation, we leave the
discussion on more dataframes to our technical report [69].
Memory Comparison. Figure 9 evaluates the peak memory usage
of loading the entire TPC-H lineitem andDDoS tables. We show the
result of with partitioning Modin, Dask, and ConnectorX, which is
usually no less than without partitioning. Pandas-Chunk enables
chunking for Pandas (chunk size: 10K according to Figure 3).

On TPC-H, thememory consumption of ConnectorX and Pandas-
Chunk are almost the same on all DBMS. Their peak memory values
are consistently 3⇥ less than Pandas on the client-server databases
and 2⇥ less on SQLite. Dask and Modin show similar results with
Pandas. Turbodbc is more memory e�cient, but it still needs around
10GB more memory than ConnectorX. As for DDoS, ConnectorX

Table 3: Speed compared to ConnectorX (With Partition) on
PostgreSQL under di�erent network bandwidth.

Bandwidth Local 10 Gbit/s 200 Mbit/s

Pandas 14.26⇥ 12.80⇥ 3.05⇥
Dask 6.09⇥ 4.80⇥ 5.31⇥
Modin 3.88⇥ 3.45⇥ 1.58⇥
Turbodbc 6.64⇥ 6.21⇥ 1.90⇥
ConnectorX-NoPart 3.16⇥ 3.03⇥ 1.08⇥

outperforms other baselines to a much larger extent because of its
e�cient handling of the DECIMAL type, which is the majority type
in DDoS and Python in�ates it 13⇥. Another interesting �nding is
that unlike TPC-H,ConnectorX uses approximately 2⇥ less memory
than Pandas-Chunk on DDoS. When concatenating the chunked
dataframes at the end of Pandas-Chunk, the memory of NumPy
arrays will be doubled since they need to be copied to a larger
continuous bu�er. But string objects that NumPy arrays point to
only need to increase the reference count by one without copying.
Since string values only take a small proportion of the memory
usage in DDoS dataframe, the concatenation overhead of Pandas-
Chunk is much higher than on TPC-H.
Speed Comparison.We show the speed comparison under high
bandwidth network setting (10Gbit/s, except for SQLite, which
reside on the same client instance) in Figure 10. To fairly compare
with baselines that do not support query partitioning, we show
the result of Modin, Dask and ConnectorX when no partitioning
is applied (the left two �gures). We also test them when using
partitions to observe the potential speedup under multiple cores
on the client instance (the right two �gures).

(1) No Partitioning. ConnectorX performs the best in almost all
cases. It outperforms Pandas by 4.2⇥, 5.2⇥, 3.0⇥ and 2.3⇥ on Post-
greSQL, MySQL, DBMS-A and SQLite respectively on TPC-H, and
7.1⇥, 6.0⇥ and 5.2⇥ on PostgreSQL, DBMS-A and SQLite on DDoS.
Modin andDask have extra overhead in transferring the result from
worker processes. In addition, they could not �nish in many cases
when no partition is applied due to out-of-memory issue. Compared
with ConnectorX, Turbodbc can achieve similar or even better per-
formance on DBMS-A, but is 2.0⇥ (1.8⇥) and 2.3⇥ (1.3⇥) slower for
PostgreSQL andMySQL on TPC-H (DDoS). This variance comes
from how e�cient the DBMS’s ODBC driver is implemented, which
highly determines Turbodbc’s performance.

(2) With Partitioning. ConnectorX is the fastest one in all experi-
ments. Only Dask and Modin support query partitioning among
baselines. To make the comparison more clear, we copy the results
of Pandas and Turbodbc without partitioning to the same �gure.
With partitioning, ConnectorX further accelerates and becomes up
to 12.8⇥ (14.5⇥) and 6.2⇥ (3.8⇥) faster compared to Pandas and
Turbodbc respectively on TPC-H (DDoS). Modin’s speed also gets
improved. But it is still 2.5⇥ to 6.7⇥ slower than ConnectorX. Dask
bene�ts from partitioning as well but is less stable. Sometimes it
needs to restart the workers when reaching to the memory limit,
which makes it slower than ConnectorX and Modin, and may even
slower than Pandas.

(3) Di�erent Network Conditions. We test all methods on Post-
greSQL under di�erent network conditions. To see the gap clearly,
we use ConnectorX with partitioning as baseline and show its
speedup w.r.t. each method in Table 3. ConnectorX-NoPart repre-
sents the result of ConnectorX when no partition is applied, and
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Figure 10: Speed comparison ("⇥" is placed if a method does not support the DBMS or cannot handle the large query result.)

Table 4: Speed up of ConnectorX to Pandas on SPJ queries. (Di�erent color means ConnectorX is faster / slower than Pandas.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Result Row# (M) 59.1 4.6 17.3 10.4 1.5 20.9 4.0 2.4 3.3 37.2 7.7 1.2 15.3 27.3 27.3 1.2 1.8 5.6 0.6 0.1 0.9 0.1

No Partition 3.8⇥ 2.2⇥ 2.5⇥ 1.7⇥ 1.2⇥ 3.8⇥ 1.6⇥ 1.6⇥ 2.3⇥ 2.5⇥ 3.3⇥ 1.2⇥ 2.5⇥ 2.7⇥ 2.8⇥ 2.5⇥ 1.0⇥ 1.6⇥ 1.2⇥ 1.1⇥ 1.0⇥ 1.0⇥
With Partition 8.4⇥ 3.0⇥ 3.2⇥ 1.2⇥ 0.4⇥ 3.4⇥ 0.5⇥ 0.4⇥ 1.0⇥ 3.3⇥ 5.8⇥ 0.5⇥ 2.2⇥ 3.1⇥ 4.3⇥ 1.1⇥ 0.7⇥ 0.7⇥ 0.3⇥ 0.6⇥ 0.5⇥ 0.5⇥

bothModin and Dask leverage partitioning. It is clear that Connec-
torX remains the fastest in all cases since all values > 1. Also, the
gap between ConnectorX and other baselines becomes larger when
the bandwidth is higher, which shows the e�ciency of ConnectorX
in leveraging the bandwidth resource.

(4) SPJ Queries. We evaluate ConnectorX using more complex
queries. We consider the queries with joins and predicates because
it will a�ect the server’s query execution and data transfer time.
Speci�cally, we generate 22 queries4 (one from each TPC-H query
template). For each query, we keep SELECT, PROJECT and JOIN
operators. We also alter the predicates manually to make sure the
result size is in a large range (100K to 59M) and �atten some of the
nested queries to have more variety in terms of query complexity.
We choose the �rst numerical column as the partition column for
query partitioning on ConnectorX. For complex queries, getting
metadata like the number of result rows becomes slower. In order
to avoid the potentially costly COUNT query, in this situation we
choose and also suggest our users to use Arrow as an intermediate
destination from ConnectorX and convert it into Pandas using
Arrow’s to_pandas5 API.

We run all 22 queries on PostgreSQL and compare the perfor-
mance of ConnectorX with Pandas. The result in Table 4 shows
the speedup of ConnectorX to Pandas. It is clear that without parti-
tioning, ConnectorX is faster than Pandas by up to 3.8⇥ or at least
shows similar performance. Partitioning could sometimes further
speed up the process by up to 8.4⇥. Surprisingly, it could also fur-
ther complicate the query, which may result in generating slower
query plans and also may have the overhead in partition column
range querying. In our experiment, some queries show performance
degradation with partitioning by up to 3.3⇥ (Q19) especially when
the result set is small. This �nding further motivates the support of
server-side result partitioning discussed in Section 5.2.

Note that ConnectorX targets the scenarios that require fetching
large query result sets. It speeds up the process by optimizing client-
side execution and saturating both network and computational
resources through parallelism. When network or query execution
on the DBMS is the bottleneck (e.g. complex queries with small
result sets), however, ConnectorX brings less bene�t and sometimes
it can be even slower due to the overhead in fetching metadata.

(5) Scalability. Finally, we evaluate the scalability of each ap-
proach by varying the scale factor of TPC-H lineitem table from 1
to 100. We run the client side on an AWS EC2 r5.16xlarge instance

4https://github.com/sfu-db/connectorx-bench/tree/main/tpch-spj-workload/spj
5https://arrow.apache.org/docs/python/generated/pyarrow.Table.html?pyarrow.Table.to_pandas

Figure 11: Speed comparison on PostgreSQL under di�erent
scale of TPC-H.

(64 vCPUs, 512GBmainmemory) in this experiment in order to hold
large query result dataframes in memory. The result is shown in Fig-
ure 11, in which we report the speed when partitioning is enabled
for Modin, Dask and ConnectorX. We can clearly see that Connec-
torX scales linearly and consistently outperforms other baselines
to a large extent.

7 CONCLUSION
In this paper, we proposed ConnectorX, an open-source library
for loading query results from DBMSs to dataframes in a fast and
memory-saving way. We conducted a thorough analysis on the
popular Pandas.read_sql function, and identi�ed optimization
opportunities on client-side execution. We developed ConnectorX
targeting at optimizing client-side execution of read_sql without
modifying the existing implementation of database servers as well
as client drivers. ConnectorX also provides modular interfaces for
contributors to add support for more DBMSs and dataframes easily.
We further identi�ed the drawbacks of current client-side query
partitioning approaches that ConnectorX and other libraries are
using, and proposed that database systems should support server-
side result partitioning in order to tackle the issues. We performed
experiments showing that ConnectorX signi�cantly outperforms
Pandas, Dask, Modin and Turbodbc in terms of both speed and
memory usage under di�erent scenarios.
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