
BABOONS: Black-Box Optimization of Data Summaries in
Natural Language

Immanuel Trummer
Cornell University

Ithaca, NY
itrummer@cornell.edu

ABSTRACT
BABOONS (BlAck BOx Optimization of Natural language data
Summaries) optimizes text data summaries for an arbitrary, user-
defined utility function. Primarily, it targets scenarios in which
utility is evaluated via large language models. Users describe their
utility function in natural language or provide a model, trained to
score text summaries in a specific domain.

BABOONS uses reinforcement learning to explore the space
of possible descriptions. In each iteration, BABOONS generates
summaries and evaluates their utility. To reduce data processing
overheads during summary generation, BABOONS uses a proactive
processing strategy that dynamically merges current with likely
future queries for efficient processing. Also, BABOONS supports
scenario-specific sampling and batch processing strategies. These
mechanisms allow to scale processing to large data and item sets.
The experiments show that BABOONS scales significantly better
than baselines. Also, they show that summaries generated by BA-
BOONS receive higher average grades from users in a large survey.

PVLDB Reference Format:
Immanuel Trummer. BABOONS: Black-Box Optimization of Data
Summaries in Natural Language. PVLDB, 15(11): 2980 - 2993, 2022.
doi:10.14778/3551793.3551846

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/itrummer/BABOONS.

1 INTRODUCTION
Data are often summarized as text. The best way to summarize data
depends entirely on the context. Who is the target audience? What
is the purpose of the summary? The answers to those questions
determine which facts to include into a summary, and which ones
to neglect. The BABOONS (BlAck BOx Optimization of Natural
language data Summaries) system gives users maximal flexibility
in specifying a utility function, used to score data summaries. Its
primary use case are scenarios where users evaluate (not gener-
ate) data summaries via large language models, i.e. complex neural
networks used for text analysis. Users can specify a model, trained
to score data summaries in a particular domain, to use as utility

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551846

function. Alternatively, users specify requirements on a data sum-
mary in natural language. Then, a language model can be used to
compare candidate summaries against user instructions.

BABOONS generates comparative data summaries. A compara-
tive summary describes differences between a data subset and the
full data. For instance, a data subset may be associated with a spe-
cific product to advertise. A summary consists of facts. Each fact out-
lines a deviation in average values between the data subset and the
full data. This comparison may only consider a subset of rows with
certain properties, described via equality predicates. The following
example illustrates those concepts, a corresponding demonstration
video is available online: https://youtu.be/ssGwZcUkMKA.

Example 1.1. A shop owner writes short advertisement texts for
laptops described in Table 1. It is recommended to integrate con-
crete and accurate statistics into such texts [1, 5]. To use BABOONS,
the owner first specifies the search space for data summaries. This
entails specifying the number of facts per summary and the num-
ber of properties (i.e., equality predicates and aggregates) per fact.
Furthermore, the owner specifies dimension columns (on which
equality predicates are placed) and aggregation columns. Next, the
owner specifies one text template for each dimension and aggrega-
tion column. A dimension template expresses an equality predicate
in natural language and contains a placeholder for the constant.
For aggregation columns, templates express a comparison with a
placeholder for the relative average. Finally, users specify a pream-
ble that prefixes each fact text. Table 2 shows text templates and
search space specification for the laptops data (it links to symbols
introduced in Section 2). In addition, the shop owner specifies a
model used to evaluate candidate summaries (e.g., a model for sen-
timent analysis to favor summaries with positive sentiment). Now,
the shop owner can use the system to generate summaries with
positive sentiment for specific laptops or specific laptop brands.
The comparison focus is defined by specifying an SQL predicate,
identifying the data subset to describe. For instance, specifying the
predicate ID=4 may result in the summary shown in Table 3.

BABOONS requires users to specify one text template for each
column in the data set. As shown in the example, those templates
are relatively simple. They can be reused for different summaries
within the same scenario (e.g., for describing different laptops in
Example 1.1). Hence, the overheads for users are moderate. The
advantage of using template-based text generation (as opposed to
a neural approach [21, 35, 72]) is robustness: assuming accurate
templates, each generated summary is correct and understandable.
Post-processing may be required to identify cases where the model
does not accurately evaluate utility. This can be done by the user

2980

https://doi.org/10.14778/3551793.3551846
https://github.com/itrummer/BABOONS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551846
https://youtu.be/ssGwZcUkMKA
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Example data describing laptop models.

ID Brand CPU Disk Rating Price Battery

1 IBM 2.4 GHz 500 GB 2 1,999 6
2 Mac 2.6 GHz 1 TB 4 2,499 12
3 Mac 2.2 GHz 128 GB 5 1,999 16
4 Dell 3.2 GHz 1 TB 4 1,999 3

Table 2: Description of data source and summary template
for example data (Table 1). [P] represents placeholders that
are replaced by dimension values or aggregates.

Symbol Semantics Value

D .𝑑𝑖𝑚𝑠 Dimensions {𝐵𝑟𝑎𝑛𝑑,𝐶𝑃𝑈 , 𝐷𝑖𝑠𝑘, 𝑅𝑎𝑡𝑖𝑛𝑔}
D .𝑎𝑔𝑔𝑠 Aggregation {𝑃𝑟𝑖𝑐𝑒,𝑊𝑒𝑖𝑔ℎ𝑡}
T .𝑛𝐹 Nr. facts 1
T .𝑛𝑃 Nr. properties 3

T .𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 Preamble Among all laptops

T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝐵𝑟𝑎𝑛𝑑 Brand text of [P] brand
T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝐶𝑃𝑈 CPU text with [P] CPU
T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝐷𝑖𝑠𝑘 Disk text with [P] disk space
T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝑅𝑎𝑡𝑖𝑛𝑔 Rating text with [P] / 5 stars

T .𝑎𝑔𝑔𝑡𝑥𝑡𝑃𝑟𝑖𝑐𝑒 Price text its discounted price
is [P] than average

T .𝑎𝑔𝑔𝑡𝑥𝑡𝐵𝑎𝑡𝑡𝑒𝑟𝑦 Battery text its battery life is [P]
than average

Table 3: Example fact about laptop with ID 4 (substitutions
for placeholders in text templates are marked in bold font).

Part Text

Preamble Among all laptops ...
Predicate 1 with 1 TB disk space ...
Predicate 2 with 4 / 5 stars ...
Aggregate its discounted price is 11% lower than average.

for small item sets or via crowd sourcing for larger ones (typically
for a fee of few cents per verification).

BABOONS uses a deep reinforcement learning approach. Rein-
forcement learning is a popular method for black box optimization
as it does not place constraints on the nature of the utility function.
Guided by reinforcement learning, BABOONS iteratively selects
data subsets and aggregates, generates corresponding text sum-
maries, and evaluates them via the user-defined utility function.
The summary with highest utility is ultimately returned to the user.

Generating summaries requires data processing to calculate as-
sociated aggregates. This becomes expensive for large data sets,
in particular as BABOONS queries the data iteratively. To scale to
large data sets, BABOONS uses several problem-specific mecha-
nisms that increase efficiency. First, BABOONS uses a proactive
cache manager. This cache manager predicts likely future queries,

based on the state of the reinforcement learning algorithm, that can
be easily merged with queries scheduled for execution. The results
of likely queries are cached and can be retrieved in future iterations.
Second, BABOONS supports sampling strategies that evaluate data
summaries on data samples. This becomes challenging as the utility
function may be non-linear (i.e., small deviations between sample
estimates and accurate aggregates may cause significant differences
in utility). BABOONS deals with this challenge by calculating er-
ror margins for aggregates within which the text description does
not change. Finally, BABOONS supports multiple batch processing
mechanisms to scale to large numbers of items.

The experiments simulate an advertisement scenario where
items of different categories (ranging from laptops to airlines) need
to be advertised, based on data sets. The experiments show that
BABOONS is able to scale to large data sets as well as to large
item batches. Furthermore, the experiments show that BABOONS
performs significantly better than baselines. The experiments also
include the results of a survey, asking hundreds of human users
to evaluate advertisements generated by different approaches. It
turns out that descriptions generated by BABOONS are preferred
over summaries generated by baselines. In summary, the original
scientific contributions in this paper are the following:

• It introduces the problem of optimizing comparative data
summaries according to black-box utility functions.

• It describes the design of BABOONS, a system that solves
the aforementioned problem via reinforcement learning.

• It experimentally compares BABOONS to baselines.
The remainder of this paper is organized as follows. Section 2

introduces the formal problem model and associated terminology.
Section 3 gives an overview of the BABOONS system. Section 4
describes the summary optimizer and its reinforcement learning
model in more detail. Section 5 describes the system’s proactive
caching strategy. Section 6 discusses the sampling component while
Section 7 provides details on the batch processor. Section 8 reports
experimental results. Finally, Section 9 discusses prior work.

2 FORMAL MODEL
This section introduces terminology used throughout the paper.

Definition 2.1. We describe data in a Data Source D, character-
ized by a relational Table (D .𝑡𝑎𝑏𝑙𝑒), a set of Dimension Columns
(D .𝑑𝑖𝑚𝑠), and a set of Aggregation Columns (D .𝑎𝑔𝑔𝑠). Aggrega-
tion columns must be of type integer or float (to enable aggregation
via averaging). Dimension columns can be of any type. Aggregation
and dimension columns may overlap. Additionally, the table may
have columns that serve to identify items (discussed later).

Given a data source D, we optimize over summary sketches.

Definition 2.2. A Summary Sketch 𝑆 is a list ⟨𝑡1, . . . , 𝑡𝑛⟩ of Top-
ics. Each topic 𝑡 is characterized by a Data Scope, 𝑡 .𝑠𝑐𝑜𝑝𝑒 , and an
Aggregate, 𝑡 .𝑎𝑔𝑔. The data scope is a set of equality predicates
on dimension columns (i.e., 𝑡 .𝑠𝑐𝑜𝑝𝑒 = {⟨𝑐𝑖 , 𝑣𝑖 ⟩} with 𝑐𝑖 ∈ D .𝑑𝑖𝑚𝑠

and 𝑣𝑖 is a value from the domain of 𝑐𝑖), representing their con-
junction. The aggregate is one of the aggregation columns (i.e.,
𝑡 .𝑎𝑔𝑔 ∈ D .𝑎𝑔𝑔𝑠). The generic term Property refers to both, predi-
cates and aggregates of a topic.

We instantiate summary sketches for concrete items.

2981

<Summary>::=<Fact>+
<Fact>::=<Preamble><Predicate>*<Aggregate>

Figure 1: Comparative summary structure in EBNF.

Definition 2.3. An Item 𝑖 is characterized by an SQL predicate
𝑃𝑖 that defines a data subset (the Item Data). Let 𝑎𝐼 be the average
in 𝑡 .𝑎𝑔𝑔 over rows satisfying all scope predicates in 𝑡 .𝑠𝑐𝑜𝑝𝑒 and
the item predicate 𝑃𝑖 . The item predicate may reference additional
columns, beyond dimensions and aggregates, that serve to identify
items. Let 𝑎𝐺 be the average in 𝑡 .𝑎𝑔𝑔 over rows satisfying all scope
predicates. We call the triple ⟨𝑡, 𝑖, 𝑎𝐼 /𝑎𝐺 ⟩ a Fact, instantiating topic
𝑡 for item 𝑖 by describing the relative average for the item within
the topic scope.

Users restrict the search space for summaries by templates.

Definition 2.4. A Summary Template T specifies the number
of facts (T .𝑛𝐹) as well as the maximal number of properties per
fact (T .𝑛𝑃). It also specifies how abstract facts translate into nat-
ural language text by providing text snippets (with placeholders
for values) for predicates (T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡) and aggregates (T .𝑎𝑔𝑔𝑡𝑥𝑡),
as well as a preamble (T .𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒), prefixing each fact text. For
predicates, T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡 contains one text snippet for each dimension
column (the snippet for dimension 𝑑 is denoted by T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝑑).
For aggregates, T .𝑎𝑔𝑔𝑡𝑥𝑡 contains one snippet for each aggregation
column (T .𝑎𝑔𝑔𝑡𝑥𝑡𝑎 denotes the snippet for column 𝑎).

BABOONS outputs a summary in natural language.

Definition 2.5. A comparative Summary is the text representa-
tion that instantiates a summary sketch for a specific item. Figure 1
shows the corresponding grammar in Extended Backus-Naur Form
(EBNF). A summary is a sequence of facts. Each fact text starts with
the preamble (T .𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒), optionally narrows the comparison
scope via predicates, and finally reports a relative average. Each
predicate restricting the value in column 𝐶 to value 𝑉 is repre-
sented by instantiating the text snippet T .𝑝𝑟𝑒𝑑𝑡𝑥𝑡𝐶 by replacing
a placeholder by 𝑉 . Each aggregate on column 𝐴 is represented
using T .𝑎𝑔𝑔𝑡𝑥𝑡𝐴 , replacing a placeholder by the relative average
description (a rounded percentage, followed either by the keyword
“lower” or “higher”). We evaluate summaries by a black-boxModel.
A model maps a text description to a numerical utility value.

We propose a system that solves the following problem.

Definition 2.6. An instance of Data SummarizationwithBlack-
Box Utility is defined by a triple ⟨D,T ,M, 𝐼 ⟩, where D is a data
source, T a summary template,M a black-box utility model, and 𝐼
a set of items. The goal is to find summaries for 𝐼 , based on D and
T , that maximize mean utility over 𝐼 according toM.

3 SYSTEM OVERVIEW
Figure 2 shows an overview of the BABOONS system. Following
Definition 2.6, the input consists of a set of items to compare, a text
template for summary texts, a black-box utility function evaluating
summaries, and a relational data source used to generate statistics.
The output is a comparative summary that maximizes the score
assigned by the utility model.

BABOONS

Batch Processor

Summary Optimizer

Summary Evaluator

Text Generator

Proactive Cache

Query Processor

Sampling

Focus Items

BB Utility

Text Template

Data Source

Relational DBMSSummary

Figure 2: Overview of BABOONS system.

BABOONS generates facts about items using the Query Pro-
cessor (using SQL queries). Facts compare aggregates for a data
subset, associated with an item, to the entire data set. The Text
Generator uses such facts as input to generate natural language
data summaries (using simple text templates). The generated sum-
maries are evaluated (by the Summary Evaluator component) via a
user-provided utility function. This function is in general complex
and considered a black box (e.g., the current implementation allows
users specifying utility functions that are based on models for text
analysis from Huggingface [65]).

The goal of the Optimizer is to find summaries maximizing the
utility function. Internally, it uses deep reinforcement learning
for optimization. This method is frequently used for black box
optimization [36] (as approaches such as gradient descent are in-
applicable). In the reinforcement learning model, an agent learns
to apply actions to maximize rewards obtained in a (possibly) un-
known environment. Here, the search space (“state space”) is de-
fined by summary sketches (defining data subsets and aggregates
to consider). Actions change the summary sketches and rewards
are proportional to utility values. Section 4 describes the Optimizer
component in more detail.

Reinforcement learning is an iterative process, meaning that
many summaries must be created and evaluated. One of the pri-
mary design goals of BABOONS is to minimize query evaluation
overheads (thereby making summary optimization on large item
and data sets practical). To increase efficiency, BABOONS uses
proactive caching to reduce query processing overheads. It pre-
dicts likely future queries that can be merged cheaply with queries
already scheduled for processing, caching their results. For large
data sets, BABOONS can seamlessly reduce processing overheads
via a customized sampling strategy (implemented in the Sampling
component). In addition, BABOONS features a functionality for
batch processing of large item sets. Sections 5, 6, and 7 describe
those components in more detail.

2982

4 THE SUMMARY OPTIMIZER
We treat the selection of data statistics for a comparative summary
as a combinatorial optimization problem. The search space (i.e., the
space of sketches) is discrete. The function to optimize is complex
and we consider it a black box. Furthermore, if using data samples
for evaluation (see Section 6), the utility function is subject to
random noise (i.e., evaluating the same sketch twice may yield
different results). We therefore use Reinforcement learning [55]
which has been used successfully in similar scenarios [36].

Reinforcement learning applies to scenarios described as Markov
Decision Processes (MDPs). We model summary optimization as an
MDP ⟨S,A,T,W,O⟩ where S is the state space, A the action set, T
the transition function,W the reward function, and O the observa-
tion function. The state space represents summary sketches. It is a
matrix whose dimensions are defined by the summary template T :
S = NT .𝑛𝐹 ·T .𝑛𝑃 . Each integer value represents the ID of a property
(i.e., a possible aggregate or a possible predicate). For predicates,
there is a special ID value that represents the absence of a predicate
(following Definition 2.4, users specify only the maximal number
of properties per fact).

Each action changes the value of one field in the state matrix. We
bound the branching factor of the search space by only allowing
changes that replace a property by a similar property (we show
that this restriction improves performance in Section 8).

Definition 4.1. We define Similarity between two properties
as the cosine similarity of their embedding vectors, generated by
encoding their textual representation via BERT [6].

We identify admissible changes via the Property Graph.

Definition 4.2. Given a data sourceD, thePropertyGraphmaps
properties (i.e., aggregates and predicates) to a limited number of
similar elements. It consists of two disconnected graph components
associated with aggregates and predicates. Each node represents
an aggregate from D .𝑎𝑔𝑔𝑠 or an equality predicate on one of the
dimension columns D .𝑑𝑖𝑚𝑠 . The graph associated with predicates
contains one node representing the absence of a predicate (the
associated embedding vector used to calculate similarity between
properties is the embedding of an empty string). The degree of the
property graph is bounded by a constant 𝑑 , limiting the number of
outgoing edges per node.

The action space is defined by the space of triples from A =

{1, . . . ,T .𝑛𝐹 } × {1, . . . , 𝑛𝑃 } × {1, . . . , 𝑑} where the first component
selects the topic to change, the second component the property to
change, and the last component selects the edge to follow in the
property graph (starting from the node representing the current
property). The definition of the transition function T : S × A→ S
follows naturally as it maps a state and a state change to the state
that results after the change. Finally, we map states to observations
by concatenating the BERT [7] embedding vectors of all properties
that appear in the current state.

Algorithm 1 is the algorithm executed by the optimizer. Given an
instance of data summarization with black-box utility, it first creates
the property graph (which requires processing data to determine
all possible predicates). Next, it initializes a summary sketch and
iteratively changes it until a timeout. In each iteration, it selects
the next action to execute (i.e., a change to the current sketch) via

Algorithm 1 Algorithm executed by the summary optimizer.
1: // Generate summaries for items 𝐼 , using data D and text
2: // template T , maximizing utility according to modelM.
3: function Optimize(D,T ,M, 𝐼)
4: // Generate property graph
5: G ←PropertyGraph(D)
6: // Initialize summary sketch
7: 𝑆 ←InitSketch(T)
8: // Iteratively improve summary
9: while no timeout do
10: // Select change to summary sketch
11: ⟨𝑡, 𝑝, 𝑛⟩ ←ChooseAction(𝑆)
12: // Execute change and evaluate result
13: ⟨𝑆, 𝑟 ⟩ ←Step(D,T ,M,G, 𝑆, 𝑡, 𝑝, 𝑛, 𝐼)
14: // Update reinforcement learning model
15: UpdateStats(𝑆, 𝑟)
16: end while
17: return 𝑆

18: end function

Algorithm 2 Step function for reinforcement learning.

1: // Given data D, template T , modelM, and property
2: // graph G, update sketch 𝑆 by replacing 𝑝-th property
3: // of 𝑡-th topic by 𝑛-th neighbor. Evaluate for items 𝐼 .
4: function Step(D,T ,M,G, 𝑆, 𝑡, 𝑝, 𝑛, 𝐼)
5: // Change property 𝑝 of topic 𝑡
6: 𝑆 [𝑡, 𝑝] ← G(𝑆 [𝑡, 𝑝], 𝑛)
7: // Iterate over items
8: for 𝑖 ∈ 𝐼 do
9: // Generate facts
10: 𝑖 .𝑓 𝑎𝑐𝑡𝑠 ←GetFacts(D, 𝑆, 𝑖)
11: // Generate text
12: 𝑖 .𝑡𝑒𝑥𝑡 ←GetText(T , 𝑆, 𝑖 .𝑓 𝑎𝑐𝑡𝑠)
13: // Evaluate text using NLP model
14: 𝑖 .𝑒𝑣𝑎𝑙 ←Evaluate(M, 𝑖 .𝑡𝑒𝑥𝑡)
15: end for
16: // Return new sketch and reward
17: return ⟨𝑆,𝑀𝑒𝑎𝑛({𝑖 .𝑒𝑣𝑎𝑙 |𝑖 ∈ 𝐼 })⟩
18: end function

reinforcement learning, More precisely, it uses a variant of the A3C
(Asynchronous Advantage Actor-Critic) algorithm [40]. The change
is executed and evaluated using the Step function, discussed in
more detail in the following. The internal statistics of the learning
algorithm are updated (Line 15) and influence choices in the next
iterations. The result is the best sketch found until the timeout.

Algorithm 2 shows the implementation of the step function. First,
we execute the change described by the input action. We represent
the current state as a two-dimensional matrix and use the bracket
notation to access specific fields in it. We denote the 𝑛-th neighbor
of property 𝑝 in the property graph G as G(𝑝, 𝑛). Next, we evaluate
the changed sketch for all input items. For each item, we first obtain
concrete facts for the current item and the sketch topics. Second,
we translate those facts into a summary sketch (using the text
templates in T). Finally, the resulting text can be evaluated via the

2983

Summary sketch

Data Processing

Sketch+Facts

Text Generation

Summary text

Evaluation via NLP

Evaluation result

Figure 3: Steps when evaluating summary sketches.

Algorithm 3 Generate item-specific facts for sketch topics.
1: // Using data D, generate facts for topics in sketch 𝑆 on item 𝑖 .
2: function GetFacts(D, 𝑆, 𝑖)
3: // Generate queries for each topic
4: 𝑄 ← ∅
5: for 𝑡 ∈ 𝑆.𝑡𝑜𝑝𝑖𝑐𝑠 do
6: // Add query generating fact (simplified!)
7: 𝑄 ← 𝑄 ∪ {select (select t.agg from D .𝑡𝑎𝑏𝑙𝑒

8: where SQL(t.scope) and SQL(i))/(select t.agg
9: from D .𝑡𝑎𝑏𝑙𝑒 where SQL(t.scope))
10: end for
11: // Add results of uncached queries
12: for 𝑞 ∈ 𝑄 : ¬𝑖𝑠𝐶𝑎𝑐ℎ𝑒𝑑 (𝑞) do
13: AddToCache(𝑞)
14: end for
15: // Retrieve all relevant facts from cache
16: return {GetFromCache(𝑞) |𝑞 ∈ 𝑄}
17: end function

user-provided utility model. Figure 3 illustrates the steps taken to
evaluate the current sketch.

Algorithms 3 describes the generation of facts from a relational
data source in more detail. First, we generate one SQL query for
each topic. We currently consider facts about relative averages,
comparing item-related data to all data within the topic scope.
We use the shortcut SQL(t.scope) for the conjunction of scope-
related equality predicates. Note that the SQL query represented in
Algorithm 3 is simplified, compared to the queries generated by the
actual implementation. In particular, handling of special cases (e.g.,
null values and empty results) is omitted. The system caches query
evaluation results to avoid re-evaluating the same query during the
same optimization session. Function 𝑖𝑠𝐶𝑎𝑐ℎ𝑒𝑑 (𝑞) verifies whether
a result for query 𝑞 is available. A query 𝑞 is executed and its results
added to the cache via the call AddToCache(𝑞) and retrieved by
GetFromCache(𝑞).

5 CACHE MANAGER
BABOONS executes SQL queries to generate facts for the current
summary. It caches query results to avoid re-executing the same

Algorithm 4 Query execution with proactive caching.
1: // Process current queries 𝑄 and proactively cache likely
2: // future queries under cost threshold 𝛼 , given current
3: // sketch 𝑆 and property graph G.
4: procedure ProCache(𝑄, 𝑆,G, 𝛼)
5: // Calculate likelihood for future queries
6: ⟨𝐹, 𝑃⟩ ←FutureQueries(𝑆)
7: // Iterate over current queries
8: for 𝑞 ∈ 𝑄 do
9: // Remove queries with cached result
10: 𝐹 ← {𝑓 ∈ 𝐹 |¬𝑖𝑠𝐶𝑎𝑐ℎ𝑒𝑑 (𝑓)}
11: // Is query result in cache?
12: if ¬𝑖𝑠𝐶𝑎𝑐ℎ𝑒𝑑 (𝑞) then
13: // Expand by integrating future queries
14: 𝑒 ←Expand(𝐹, 𝑃, 𝑞, 𝛼)
15: // Process expanded query
16: AddToCache(𝑒)
17: end if
18: end for
19: end procedure

queries. Proactive caching expands the scope for caching. Instead of
caching results of queries that must be executed, the system proac-
tively executes queries that may be needed in the future and caches
their results. This is beneficial if generating additional query results
increases execution cost only marginally. If anticipated queries
occur indeed, their cached result can be used.

BABOONS merges multiple queries of the type used in Algo-
rithm 3 into single queries implementing the following template
(the template is simplified by omitting handling of special cases
such as NULL values or empty results):
select (itemSum/itemCnt)/generalAvg, dim1, dim2, ...
from (
select avg(agg) as generalAvg,
case when SQL(i) then 1 else 0 end as itemCnt,
case when SQL(i) then t.agg else 0 end as itemSum,
dim1, dim2, ...

from T
where SQL(scope1) or SQL(scope2) or ...
group by dim1, dim2, ...

) as T

The query above calculates relative averages for one item and one
aggregate but for multiple scopes that refer to the same dimension
columns. Here, agg is the aggregation column, dim1, dim2 etc. are di-
mension columns restricted by scope predicates, SQL(i) is the pred-
icate identifying rows associated with an item, and SQL(scope1),
SQL(scope2) etc. are conjunctions of equality predicates represent-
ing the corresponding scope. The query uses the group-by clause
to generate results for different scopes. It is more efficient than
executing aggregation queries for each scope separately (e.g., as the
input data is only read once). The extension to calculating multiple
aggregates instead of one is natural.

Algorithm 4 replaces Lines 12 to 14 in Algorithm 3. Instead of
executing only the queries that are currently needed, it expands
the query scope to include likely future queries as well. The input

2984

Algorithm 5 Query expansion for proactive caching.
1: // Expand query 𝑞 by covering possible future queries 𝐹 with
2: // probabilities 𝑃 while increasing cost at most by factor 𝛼 .
3: function Expand(𝐹, 𝑃, 𝑞, 𝛼)
4: // Collect similar queries
5: 𝑆 ← {𝑓 ∈ 𝐹 |𝑓 .𝑑𝑖𝑚𝑠 = 𝑞.𝑑𝑖𝑚𝑠}
6: // Collect and sort aggregates
7: 𝐴← {𝑠 .𝑎𝑔𝑔|𝑠 ∈ 𝑆} sort by 𝑟𝑎𝑛𝑘 (𝑎) = ∑

𝑠∈𝑆 |𝑠.𝑎𝑔𝑔=𝑎 𝑃 (𝑠)
8: // Collect and sort conditions
9: 𝐶 ← {𝑠 .𝑠𝑐𝑜𝑝𝑒 |𝑠 ∈ 𝑆} sort by 𝑟𝑎𝑛𝑘 (𝑐) = ∑

𝑠∈𝑆 |𝑠.𝑠𝑐𝑜𝑝𝑒=𝑐 𝑃 (𝑠)
10: // Generate expanded query candidates
11: 𝐸 ← ∅
12: for 𝑖 ← 1, . . . , |𝐴| do
13: // How many conditions can be considered?
14: 𝑗 ← argmax𝑗 ∈1.. |𝐶 | C(𝐴1 ..𝐴𝑖 ,𝐶1 ..𝐶 𝑗) ≤ 𝑞.𝑐𝑜𝑠𝑡 · 𝛼
15: // Add expanded query to candidates
16: 𝐸 ← 𝐸 ∪ {CmpQuery(𝐴1 ..𝐴𝑖 ,𝐶1 ..𝐶 𝑗 , 𝑞.𝑖𝑡𝑒𝑚)}
17: end for
18: // Select expansion with highest probability
19: return argmax𝑒∈𝐸

∑
𝑠∈𝑒 𝑃 (𝑠)

20: end function

is the set of currently requested queries 𝑄 , the current sketch 𝑆 ,
the property graph G, and a cost threshold 𝛼 . The algorithm ex-
pands the scope of queries until estimated processing costs reach a
multiple of 𝛼 , compared to the original query processing costs.

First, Algorithm 4 calculates a probability distribution over fu-
ture queries via function FutureQueries (pseudo-code omitted).
This calculation is based on the structure of the MDP, discussed in
detail in Section 4, which is explored by the reinforcement learn-
ing algorithm. Each MDP state describes a summary sketch. Each
sketch is associated with queries to evaluate (to calculate relative
averages for each topic in the sketch). For a query 𝑓 , denote by S𝑓
the set of states that require evaluating that query. In that case, the
probability 𝑃 (𝑓) of having to answer query 𝑓 in the next 𝑘 steps of
the reinforcement learning algorithm equals

∑
𝑖=1..𝑘

∑
𝑠∈S𝑓 𝑃 (𝑠, 𝑖),

where 𝑃 (𝑠, 𝑖) designates the probability of reaching state 𝑠 in 𝑖

steps. To calculate 𝑃 (𝑠, 𝑖), the system assumes that transitions are
selected with uniform random probability (i.e., each transition from
any given state is equally likely). It calculates probabilities for all
states (and associated queries) that can be reached with up to 𝑘 = 2
transformations from the current state. Unlike the probability distri-
bution over transitions, the probability distribution over states and
queries is not uniform. E.g., some queries are required by multiple
states while others are not. While based on simplifying assump-
tions, the experiments in Section 8 reveal a relatively high cache
hit rate. This indicates limited potential for improvement by more
sophisticated (and, likely, more expensive) probabilistic models.

Next, Algorithm 4 iterates over queries that must be processed to
evaluate the current sketch. For each of those queries, the algorithm
tries to expand the query scope to cover likely future queries. The
resulting, expanded query is processed and its result is cached (call
to AddToCache in Line 16).

Algorithm 5 expands the scope of a query 𝑞, given anticipated
future queries 𝐹 with probabilities 𝑃 and a cost threshold 𝛼 for
expansions. First, it collects future queries that are similar to query

Table 4: Comparison of expansions for example query (cells
contain probability in percent that associated topic becomes
relevant). Optimal expansion is marked up in green.

Predicates Price Weight Battery

Brand=IBM 100 8 12
Brand=Apple 6 9 7
Display=13" 3 4
CPU=Intel 2 16
Display=15" 5

𝑞. Similar queries restrict the same dimension columns as 𝑞 (𝑞.𝑑𝑖𝑚𝑠).
Second, it collects aggregates and scope predicates from similar
queries. It ranks aggregates and predicates by the accumulated
probability of all queries using them. In principle, all combinations
of aggregates and predicates could be considered for expansions.
This may however lead to significant computational overheads.
Instead, Algorithm 5 uses a simple heuristic: it considers aggregates
in decreasing order of probability and, for each aggregate, uses the
maximal number of predicates (while prioritizing likely predicates)
under the cost constraint. This heuristic is simplifying as it is based
on marginal probabilities of aggregates and predicates in separation
(as opposed to probabilities for specific combinations of aggregates
and predicates). Nevertheless, the experimental results indicate
that opportunities for improvements in cache hit rate by more
sophisticated expansion strategies are limited.

Example 5.1. Table 4 illustrates query expansions by an exam-
ple. Aggregates are ordered from left to right in decreasing order
of probability (probability to occur in future queries). Predicates
are ordered from top to bottom in decreasing order of occurrence
probability. Cells contain probabilities expressed as percentages
(note that the probability for the current query, in the left upper
corner of the table, is at 100%). As the number of considered ag-
gregates increases, the number of predicates that can be processed
under the cost budget shrinks (represented by the gray table area).
We maximize the expected number of future queries covered by
selecting two aggregates (which allows us selecting all but the last
predicate). The associated table area is colored in green.

6 SAMPLING
BABOONS supports approximate processing to handle large data
sets. If activated, the system selects summaries generated from data
samples (as opposed to the full data set). The utility of those sum-
maries is therefore an estimate. After optimization, a few summaries
with high utility estimates are regenerated on the full data set. This
avoids incorrect claims in the final summary (while sampling may
lead to sub-optimal summaries being selected).

In a first step, the system uses a variant of the learning-based
algorithm from Section 4 to optimize sketches. The main difference
is that Function GetFacts operates on a data sample, instead of
the full data set. By default, the current implementation selects a
sample containing at most 5% of the rows in the full data set. Dur-
ing optimization, several metrics are stored about each evaluated
sketch. Based on those metrics, the system ranks all encountered
sketches. For the top-k sketches (the current implementation selects

2985

0

0.2

0.4

0.6

0.8

L RA EA U

Relative Average

Pr
ob
ab
ili
ty

Figure 4: Based on the estimated average (EA), the summary
text uses the rounded average (RA). The range of average
values for which the text is accurate is colored and bounded
by a lower (L) and upper bound (U).

the five highest ranking sketches), BABOONS processes the associ-
ated queries on the full data set. Finally, it evaluates the resulting
advertisement texts and returns the optimum. Note that consider-
ing the single, highest ranking sketch alone is often sub-optimal.
As utility results are based on data samples, they may change when
re-generating statistics on the full data set. Next, we will see how
to rank sketches and how to efficiently re-generate statistics for a
batch of sketches.

When ranking sketches, the goal is to maximize expected qual-
ity according to the utility model. As facts are generated on data
samples, the system does not obtain precise summaries and, as a
consequence, no precise utility values. By bounding the probability
for significant deviations between averages on samples and full
data, it can however obtain estimates. Consider the summary text
𝑇𝑆 for the current sketch 𝑆 and its evaluation result 𝐸𝑆 as random
variables. They depend on random variables 𝐴𝑖 and 𝐴𝑔 , represent-
ing the item-specific and general average for the relevant aggregate
on the data sample (we first assume a single item and aggregate
before generalizing). Denote by 𝑎𝑖 and 𝑎𝑔 the values obtained for
𝐴𝑖 and 𝐴𝑔 on the current data sample. Further, let 𝑡𝑆 and 𝑒𝑆 be the
text and utility value obtained with averages 𝑎𝑖 and 𝑎𝑔 .

Utility is calculated by a black-box function. It is unclear how
even a small change of numbers in the input affects the final utility
value. Therefore, the proposed model pessimistically assumes a
utility value of zero if the final summary text does not match the
current one. This means, it assumes E(𝐸𝑆) = 𝑒𝑆 · Pr(𝑇 = 𝑡) (where
E denotes expected value). The summary text uses rounded values.
Hence, if averages do not deviate toomuch from their sample values,
neither the final advertisement text nor its utility will change.

Denote by𝑈 and 𝐿 upper and lower bounds on the relative aver-
age within which the current text 𝑡 is valid. If the relative average
falls outside of that range, the summary text changes. Figure 4
illustrates the situation: the estimated average (EA), based on the
data sample, is rounded to the one that appears in text (RA). As
long as the real average falls between the bounds (L and U, marked
up in blue), the rounded average does not change. Hence, expected
quality becomes E(𝐸𝑆) = 𝑒𝑆 · Pr(𝐿 ≤ 𝐴𝑖/𝐴𝑔 ≤ 𝑈).

The relative, item-specific average is given as 𝐴𝑖/𝐴𝑔 . The first
average, 𝐴𝑖 , is based on rows within a topic scope that satisfy the
item-related predicates. The second average,𝐴𝑔 , is based on all rows
within the scope. Hence, confidence bounds calculated according to

Algorithm 6 Merge queries for highly ranked sketches.
1: // Greedily merge group-by queries 𝑄 .
2: function Merge(𝑄)
3: // Collect query templates
4: 𝑇 ← {⟨𝑞.𝑎𝑔𝑔, 𝑞.𝑑𝑖𝑚𝑠⟩|𝑞 ∈ 𝑄}
5: // Partition queries by template
6: 𝑃 ← {{𝑞 ∈ 𝑄 |𝑞.𝑎𝑔𝑔 = 𝑎 ∧ 𝑞.𝑑𝑖𝑚𝑠 = 𝑑}|⟨𝑎, 𝑑⟩ ∈ 𝑇 }
7: // Merge query partitions
8: while |𝑃 | > 1 do
9: // Find cost-optimal merge operation
10: ⟨𝑝1, 𝑝2⟩ ← argmin𝑝1,𝑝2∈𝑃 C(𝑝1 ∪ 𝑝2) − C(𝑝1) − C(𝑝2)
11: // Does the merge improve cost?
12: if C(𝑝1 ∪ 𝑝2) − C(𝑝1) − C(𝑝2) > 0 then
13: // Replace partitions by merged partition
14: 𝑃 ← (𝑃 \ {𝑝1, 𝑝2}) ∪ {𝑝1 ∪ 𝑝2}
15: else
16: // No improvement, return partitions
17: return 𝑃

18: end if
19: end while
20: return 𝑃

21: end function

formulas such as Hoeffding’s inequality [16] will tend to be tighter
for 𝐴𝑔 (which is based on a larger sample of rows satisfying a
weaker condition) than for 𝐴𝑖 . Therefore, we simplify by assuming
that 𝑎𝑔 = E(𝐴𝑔) is accurate while E(𝐴𝑖) is uncertain. Hence, we
obtain E(𝐸𝑆) ≈ 𝑒𝑆 · Pr(𝐿 ≤ 𝐴𝑖/𝑎𝑔 ≤ 𝑈). We can upper-bound
this probability using Hoeffding’s inequality, assuming that 𝐴𝑖/𝑎𝑔
takes values from a bounded interval. The current implementation
uses the interval [0, 10], assuming that a deviation of more than
one order of magnitude between item-specific and general average
within a scope is unlikely. If a sketch contains multiple facts, the
utility estimate is multiplied by the probability of each individual
fact (thereby assuming independence).

The top sketches, according to the aforementioned formulas,
are evaluated using the full data set. Knowing multiple sketches
to evaluate a-priori creates opportunities to merge related queries.
This scenario differs from the one of pro-active caching as there are
no choices in terms of which queries are processed (and queries are
not associated with probabilities). Algorithm 6 shows how queries
are merged. It avoids complex approaches for cost-based query
merging [51]. Such strategies can deal with diverse types of queries
which is not required in this scenario. Instead, the algorithm uses a
simple heuristic that is specialized to the types of queries required
by BABOONS. We will see in the experiments that this heuristic
leads to significant cost savings.

Algorithm 6 first partitions queries by their aggregates (𝑞.𝑎𝑔𝑔)
and by the dimension columns (𝑞.𝑑𝑖𝑚𝑠) on which they place pred-
icates. All queries in the same partition can be easily merged as
demonstrated in Section 5. As the merged queries do not produce
any unnecessary results, we always merge queries in the same
partition. Merging queries from different partitions may lead to
queries producing unnecessary result values. This creates a trade-
off between the number of queries executed and their result sizes.
Hence, we only merge partitions if it decreases estimated execution

2986

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9 𝑖10

Optimize

Sketch

Data Processing

Sketch+Item-Specific Facts

Text Generation

Item-Specific Summary

Figure 5: Generating summaries for item batches: BABOONS
first selects a summary sketch for a small set of representa-
tive items, then instantiates that sketch for all items.

Algorithm 7 Use same sketch for entire item batch.

1: // Given data D, template T , modelM, and
2: // property graph G, summarize data for items 𝐼 ,
3: // using 𝛾 representatives when selecting sketch.
4: function BatchProcess(D,T ,M,G, 𝐼 , 𝛾)
5: // Select representative items
6: 𝑅 ←RandomChoice(𝐼 , 𝛾)
7: // Select summary sketch for representatives
8: 𝑆 ←Optimize(D,T ,M,G, 𝑅)
9: // Generate facts for each item
10: 𝐼 . ®𝑓 𝑎𝑐𝑡𝑠 ←GetFactsBatch(D, 𝑆, 𝐼)
11: // Generate summaries for each item
12: 𝐼 . ®𝑡𝑒𝑥𝑡 ←GetTextBatch(T , 𝑆, 𝐼 . ®𝑓 𝑎𝑐𝑡𝑠)
13: // Evaluate each summary using utility model
14: 𝐼 . ®𝑒𝑣𝑎𝑙 ←EvaluateBatch(M, 𝐼 . ®𝑡𝑒𝑥𝑡)
15: return 𝐼

16: end function

costs (we use the cost model of the query optimizer of the underly-
ing database system, represented by function C in pseudo-code).
We merge partitions greedily, repeatedly selecting partition pairs
whose merge leads to the largest cost savings. Iterations end once
a single partition is left or once no immediate cost improvements
can be achieved by any merge operation.

7 BATCH PROCESSOR
Figure 5 illustrates the first of two batch processing strategies. It
simplifies optimization by selecting one common summary sketch
to summarize all items in a batch. Selecting one sketch for the entire
batch, based on utility results for a single item, is however risky. It
may lead to topics that are highly item-specific and do not yield
high utility for most of the items in the batch. As a compromise,
the simple batch processing strategy randomly selects a small set
of representative items. Then, it selects the sketch that maximizes
the average utility among the representatives. Finally, it uses the
best performing sketch to generate summaries for all items in the
batch. In doing so, the approach balances overheads for iterative

Algorithm 8 Iteratively select summaries with maximal marginal
improvement of average summary quality.

1: // Given data D, template T , modelM, and
2: // property graph G, summarize data for items 𝐼 ,
3: // using 𝛽 iterations and 𝛾 representatives per iteration.
4: function BatchIterative(D,T ,M,G, 𝐼 , 𝛽,𝛾)
5: // Select and evaluate one summary sketch for all items
6: 𝐼 ←BatchProcess(D,T ,M,G, 𝐼 , 𝛾)
7: // Iteratively improve item-specific summaries
8: for 𝑖 ∈ 1, . . . , 𝛽 do
9: // Select sketch with maximal marginal improvement
10: 𝐽 ←BatchProcessMarginal(D,T ,M,G, 𝑠, 𝛾, 𝐼)
11: // Retain best summary for each item
12: 𝐼 ←PruneSummaries(𝐼 , 𝐽)
13: end for
14: // Return best summary for each item
15: return 𝐼

16: end function

optimization against the quality of evaluations. Algorithm 7 shows
the associated pseudo-code. It replaces Function GetFacts with
Function GetFactsBatch, compared to Algorithm 1. This function
merges queries for generating facts for all items, thereby increasing
efficiency. Similarly, Function EvaluateBatch uses batch inference
for increased efficiency (on GPU).

Algorithm 8 uses Algorithm 7 to generate an initial summary
for each item (all following the same sketch). Next, it selects an
additional summary sketch in each iteration, using Function Batch-
ProcessMarginal (pseudo-code omitted). This function works as
BatchProcess with one difference: it aims at selecting the sketch
with maximal marginal improvement over the summaries seen so
far. The pseudo-code of Function BatchProcessMarginal equals
the one of Function BatchProcesswith two exceptions. First, Func-
tionBatchProcessMarginal has one additional parameter, storing
the best previously generated summary for each item. Second, it
uses the optimizer (invocation in Line 8 of Algorithm 7) with a
modified reward function. For each representative item considered
during optimization, reward is proportional to the utility improve-
ment over the best previously known summary (and zero if the new
summary is inferior). The overall reward is the arithmetic average
over the reward for each of the 𝛾 representative items. After gener-
ating new summaries according to the selected sketch, summaries
are pruned via Function PruneSummaries (pseudo-code omitted).
Given two vectors of item summaries (parameters 𝐼 and 𝐽), this
function iterates over items and returns a vector containing the best
summary for each item. While seemingly simple, Algorithm 8 guar-
antees near-optimal summaries, assuming that the reinforcement
learning optimizer identifies the locally optimal summary in each
iteration. A formal proof of this statement is given in Appendix A.

8 EXPERIMENTAL EVALUATION
Section 8.1 describes the experimental setup. Section 8.2 reports
performance results for BABOONS in different configurations and
compares to baselines. Finally, Section 8.3 evaluates the quality of
summaries generated by different approaches by surveys.

2987

Table 5: Overview of benchmark data sets.

Data Set Size #Rows #Columns Items

Laptops [22] 30 KB 200 8 134
Developers [23] 10 MB 90 K 14 28
Flights [24] 900 MB 7 M 26 18
Sales [25] 5 GB 20 M 8 8706

8.1 Experimental Setup
The following experiments simulate use cases in advertisement.
The goal is to advertise items in different categories. The utility
function is implemented by a Roberta model [34], fine-tuned for
sentiment analysis on the MNLI benchmark 1. This model predicts
either positive or negative sentiment, together with a confidence
score. The confidence score, multiplied by +1 for positive and -1 for
negative predicted sentiment, is used as utility value.

This model has not been specialized for evaluating advertise-
ment text. However, the main contribution in this paper is a frame-
work that optimizes data summaries according to generic black box
functions. Improving quality of utility measures is an orthogonal
research goal. Also, in Section 8.3, we will see that scores assigned
by the generic model correlate well with opinions of actual users.

The experiments use four data sets, obtained fromKaggle. Table 5
shows an overview of those data sets. The first data set contains
information on laptop models (e.g., price, disk space, and screen
size). Here, the goal is to advertise specific models by pointing out
advantages to the others. The second data set contains results of
a large developer survey. Here, the goal is to advertise courses for
specific programming languages, based on arguments comparing
developers who know the language versus others (e.g., in terms of
average salary). The third data set contains information on flight de-
lays and cancellations. Here, the goal is to advertise specific airlines
by comparing statistics (e.g., on average delay in specific regions or
seasons) to those of competitors. The final data set contains infor-
mation on product sales. The goal is to advertise specific products
to shop owners by comparing sales numbers or revenue, possibly
in specific regions, to other products. Each column was associated
with a short text template, used for text generation (e.g., “from [X]”
for a column containing flight start airports where [X] is replaced
by the column value).

BABOONS is implemented in Python 3. It uses Postgres (ver-
sion 12) as relational processing engine and the Huggingface Trans-
formers library [66] for NLP. The property graph has degree five
(𝑑 = 5). Proactive caching is tuned for a maximal cost increase of up
to 50% for query expansions (𝛼 = 1.5). When using sampling, the
five highest ranked sketches are selected for evaluation on the full
data set. In batch processing,𝛾 = 3 items are used as representatives
per partition and partitions are split five times (𝛽 = 5). The A2C
implementation of the stable-baselines library [44] (Version 3) is
used as reinforcement learning algorithm. Unless noted otherwise,
200 learning steps are executed per test case.

Prior work on optimizing data summaries often places con-
straints on the type of utility function (see Section 9). Here, the

1https://huggingface.co/siebert/sentiment-roberta-large-english

B P SB SP

101

T
im

e
(s
)

Laptops (30 KB)

B P SB SP

101

T
im

e
(s
)

Tools (10 MB)

B P SB SP

102

T
im

e
(s
)

Flights (900 MB)

B P SB SP

102

T
im

e
(s
)

Sales (5 GB)

Figure 6: Performance of BABOONS with different configu-
rations.

utility function is represented by a large neural network, rendering
most prior work inapplicable. The approach by Ziegler et al. [74]
is one of the few prior methods that are applicable. It uses rein-
forcement learning as well and has been used for tasks similar to
the ones evaluated here (e.g., generating text summaries that maxi-
mizes evaluation by another neural network). It is used as baseline
in the following (denoted as “G” in the plots). The “prompt” (i.e., a
text preamble that influences subsequent text generation) consists
of 10 randomly selected facts (generated by the query processor
of BABOONS). This enables the baseline to exploit facts about the
current item. The reward function is the same as for BABOONS.
Also, “r” and “R” denote two randomized baselines in the following
figures. Baseline R iteratively generates and evaluates random fact
combinations, using the same amount of time per test case as BA-
BOONS. Baseline r only draws one single random sample. Finally,
“V” designates a baseline that uses the Google Vizier platform [12]
with default parameter settings. This platform offers blackbox opti-
mization as a service. The baseline models summaries via integer
parameters (one parameter per fact and per aggregate or predicate
slot, representing no predicate by a value of zero), trying out value
combinations suggested by Vizier and reporting back to Vizier on
the quality of resulting summaries.

All experiments were executed on a p3.2xlarge instance on the
Amazon EC2 Cloud platform. This instance features a Tesla V100
GPU, 61 GB of main memory, and 8 vCPUs. Ubuntu 18 was used as
operating system.

8.2 Performance Evaluation
First, we compare different configurations of BABOONS. The base
configuration (“B”) deactivates proactive caching (as well as sam-
pling and batch processing). The configuration “P” uses proactive
caching but no sampling, “SB” uses sampling but no proactive
caching, and “SP” activates proactive caching and sampling at the
same time. Note that all configurations use “reactive” caching (i.e.,

2988

https://huggingface.co/siebert/sentiment-roberta-large-english

B P SB SP

−1

0

1

Q
u
a
li
ty

Laptops (30 KB)

B P SB SP

−1

0

1

Q
u
a
li
ty

Tools (10 MB)

B P SB SP

−1

0

1

Q
u
a
li
ty

Flights (900 MB)

B P SB SP

−1

0

1

Q
u
a
li
ty

Sales (5 GB)

Figure 7: Output quality (utility) of BABOONS with different
configurations.

each possible query is processed at most once). Figure 6 shows box-
plots for average times for different approaches and scenarios (note
the logarithmic y-axis). In this and the following figures, each data
point corresponds to runs for five randomly selected items. Green
triangles mark the arithmetic average while horizontal, orange lines
mark the median.

Clearly, both, sampling and proactive caching improve perfor-
mance for large data sets. Proactive caching is able to predict future
queries in most cases, thereby increasing efficiency. It achieves an
average cache hit rate of 86% among new queries (i.e., queries that
were not encountered before). Hence, the query expansion heuristic
presented in Algorithm 5 is already close to the optimum.

Sampling improves performance further but comes with trade-
offs. Figure 7 compares output quality, measured by the language
model as a value between -1 and +1, of different configurations. Un-
like proactive caching, sampling decreases average output quality
(less so for the median). While sampling does not always find opti-
mal summaries, the generated summaries are always accurate. This
becomes possible since the highest ranking sketches are processed
on the entire data set. Merging queries according to Algorithm 6
decreases processing costs by factor seven in average. Using proac-
tive caching, in combination with sampling, improves performance
further. When omitting search space clustering by embedding vec-
tors (see Section 4), average quality decreases by over one percent
over all scenarios.

The following experiments scale up the number of items. The
goal is to generate summaries for all of the 8,706 items in the largest
data set. Nine summaries are generated for each item, considering
between one and three facts per summary and between one and
three predicates per fact. Averaging over all items and over test
cases with different number of predicates, Algorithm 8 achieves
utility values of 0.23, 0.17, and 0.03 for summaries with one fact, two
facts, and three facts after five iterations. Given the same amount
of time, the sampling baseline only generates summaries for 2.2%
of items. Also, average utility is worse (-0.96, -0.95, and -0.99 for
summaries with one to three facts). Compared to Algorithm 8,

r R G V P

−1

0

1

Q
u
a
li
ty

Laptops (30 KB)

r R G V P

−1

0

1

Q
u
a
li
ty

Tools (10 MB)

r R G V P

−1

0

1

Q
u
a
li
ty

Flights (900 MB)

r R G V P

−1

0

1

Q
u
a
li
ty

Sales (5 GB)

Figure 8: Comparison of output quality for different summa-
rization methods.

Table 6: Analysis of results by generative baseline.

Scenario 1F, 1P 2F, 2P 3F, 3P

Laptops No Statistic No Statistic No Statistic
Tools No Statistic No Statistic No Statistic
Flights Wrong Statistic No Statistic No Statistic
Sales No Statistic Wrong Statistic No Statistic

Algorithm 7 is about five times faster (it performs only a single
iteration) but achieves utility values of only -0.15, -0.31, and -0.28
for summaries with one to three facts respectively.

Figure 8 compares BABOONS (with proactive caching) to base-
lines in terms of output quality (see Section 8.1 for a description of
the baselines). All baselines, except for single random selection (r),
are iterative. To ensure a fair comparison, each iterative baseline is
allocated the same time as taken by BABOONS for each test case.
For all but the smallest data set, iterative random selection has a
high quality variance and a low average quality (the same is true for
single random selection). BABOONS achieves the highest average
quality over all scenarios.

Vizier (V) achieves the second highest average quality in two
of the four scenarios, the generative baseline (G) in the two other
ones. Compared to Vizier, BABOONS finds summaries with higher
quality for 83% of test cases (considering all scenarios). For 10% of
test cases, Vizier generates summaries with negative quality values
(this does not happen for BABOONS). At the time of writing, Vizier
charges 1 USD per test case2. This corresponds to a cost increase of
approximately factor 20, compared to the cost of running the EC2
instance used by BABOONS (given an average time of 61 seconds
per test case, the associated cost is 5 cents).

The generative approach is the only baseline not guaranteed to
generate truthful summaries. Table 6 reports results of a manual
verification. The goal of verification is to determine whether facts

2https://cloud.google.com/vertex-ai/pricing#vizier

2989

https://cloud.google.com/vertex-ai/pricing##vizier

Table 7: Average rank of summaries generated by baselines.

r R P

Survey Rank 3.5 2.25 2

Model Rank 3.5 1.5 1.25

in the first summary in each scenario are accurate (by running cor-
responding SQL queries). The baseline succeeds at generating text
that maximizes utility according to the language model. However,
most of the generated text does not contain verifiable statistics.
Also, whenever concrete statistics are specified, they typically do
not match the data (this effect is referred to as “hallucination” [74]).

8.3 Survey
Table 7 shows aggregate results of a survey, comparing summaries
generated by different baselines (single random selection, iterative
random selection, and BABOONS with proactive caching). The sur-
vey is based on the Google Surveys [20] platform. All summaries
use one fact and up to two predicates per fact. For each of the four
scenarios (laptops, tools, flights, and sales), participants rate sum-
maries for the same item on a scale from one to five, according to
scenario-specific criteria. For instance, in case of laptops, partici-
pants rate whether a summarymotivates them to buy the advertised
laptop. Table 7 reports the arithmetic average rank of summaries
generated by each baseline, averaging over all scenarios. The table
reports rank based on the model-based utility estimates as well as
ranks based on actual user ratings. The results use answers from
participants who evaluated each summary in a specific scenario: 79
participants in the laptops scenario, 68 participants for both flights
and tools, and 62 participants for sales. The inter-rater agreement
according to the Kappa metric [46] is 0.36 for laptops, 0.73 for tools,
0.48 for flights, and 0.58 for sales (i.e., ranging from “fair” to “sub-
stantial” according to recommended terminology [30]). BABOONS
ranks best according to estimates and actual user replies.

Table 8 compares summaries generated for the same item by
BABOONS and by the Vizier baseline, reporting the model-based
quality estimate. The latter baseline performs best among all base-
lines generating accurate results (the generative baseline generates
incorrect summaries and is not considered in the surveys). Figure 9
reports results of a corresponding survey. This survey uses the Ama-
zon Mechanical Turk (AMT) platform to enable direct comparisons
between summaries generated by both approaches (Google Sur-
veys imposes a limit of 175 characters per question, disabling this
option). Crowd workers select the preferred summary, comparing
summaries by both approaches for the same item. The survey covers
five randomly selected items for each of the four scenarios. Crowd
workers receive five cents per task. Only crowd workers with the
“Master” certificate (indicating highly reliable performance) are eli-
gible. Figure 9 reports votes (on which summary is best) for each
test case (crowdworkers can only vote once per test case). The inter-
rater agreement, using the same metric as before, is 0.23 (indicating
“fair” agreement [30]). BABOONS generates preferred summaries
for 75% of test cases (and the majority in each scenario).

0

5

10

15

V
o
te

s

Laptops

0

5

10

15
Developers

0

5

10

15
Flights

0

5

10

15
Sales

Figure 9: Votes by crowd workers, comparing summaries
generated by Vizier (blue) and BABOONS (orange, hashed).

A final experiment demonstrates that BABOONS can indeed
use diverse utility functions. For instance, BABOONS can evaluate
data summaries in terms of their similarity to a user-defined com-
munication goal. The following experiment focuses on summaries
for five randomly selected items from the sales data set. Summary
quality is measured as the entailment score between the summary
and a natural language communication goal. The score is calcu-
lated by a large BART language model [32], trained on the MNLI
benchmark [64] (which includes comparisons between sentence
pairs). Four communication goals are used, namely “advertisement
for customers with small budget”, “advertisement for shop keepers
who want to maximize sales”, “advertise low cost”, “advertise high
sales”. Using proactive caching and the same settings as before,
BABOONS generates for instance the summary “Among all liquors
, the dollar value per sale is 49% lower than average.” with the first
communication goal and the summary “Among all liquors sold in
Waukee, the number of bottles per sale is 5% higher than average.”
with the second communication goal for the same item. A small
AMT study asked crowd workers with Master certificate whether
or not the generated summary satisfies the given communication
goal (paying five cents per question). Out of 20 test cases (five items
per communication goal), the majority of crowd workers voted
“yes” for 18 test cases. Between 16 and 19 answers were received
per test case with an average inter-rater agreement of 0.34 (fair).

9 RELATEDWORK
The work presented here falls into the broad domain of data-to-
text generation [48]. Corresponding approaches derive a textual
representation from structured data such as time series [10, 11, 52],
tabular data [31, 37], or graphs [26, 57]. BABOONS differs from
most work in this domain by addressing efficiency issues when
summarizing large data sets (by mechanisms such as caching and
sampling). Unlike many recent publications on the topic [3, 35,
38, 41, 45, 72], BABOONS does not require a training corpus that
contains data with associated summaries.

BABOONS composes summaries of carefully selected fact sets. In
that, it connects to prior work focused on selecting interesting data
subsets and aggregates for visualization [50, 56, 61, 67] or for voice
output [58–60]. It connects to prior work on finding exceptional
facts about entities [4, 14, 18, 54, 69–71, 73]. Prior work typically
places restrictions on the utility function (e.g., entropy-based [50],
distance-based [58], or monotone [69] utility functions) and exploits

2990

Table 8: Comparison of summaries (slightly shortened) describing the same item with close quality estimates.

Method Quality Text

V 0.9983 Among all laptops with Intel UHD Graphics 620 graphics card its discounted price is 8% lower than average.
P 0.9987 Among all laptops its discounted price is 13% lower than average.

V 0.9500 Among all developers who used Bash/Shell/... as programming languages, the salary is about average.
P 0.9982 Among all developers who answered “Yes” when asked if they care for dependents who answered “No” when

asked if they feel optimistic, the salary is 17% higher than average.

V 0.9983 Among all flights scheduled to arrive at 847 scheduled to arrive at 847 , the air time is 25% lower than average.
P 0.9984 Among all flights to RAP on 2018-05-19, the taxi time at departure is 62% lower than average.

V 0.9979 Among all liquors sold in Afton, the dollar value per sale is 4% higher than average.
P 0.9984 Among all liquors sold at Shade Tree Liquors, the dollar value per sale is 14% higher than average.

them for pruning. BABOONS does not place any restrictions on the
type of utility function and treats it as a black box. It focuses on
relational data as opposed to knowledge graphs [71, 73]. BABOONS
also connects to prior work on generating text according to complex
preference functions [53, 74]. Section 8 compares BABOONS against
a corresponding baseline.

BABOONS connects to prior work by the techniques it uses for
efficient processing. For instance, the idea of proactive caching
appears in various variants [17, 47]. The realization in BABOONS
differs by the mechanism used for proactive caching (query expan-
sions) as well as by the selection method (predicting future queries
based on the search space structure). Sampling is a popular method
to reduce computational overheads [15, 19, 33]. However, the use
of sampling in BABOONS differs from prior work by the ranking
function (sensitivity of generated text to changes in the relative
average) as well as by the processing context (use of sampling to
select sketches, followed by query processing on the full data set).

BABOONS selects data subsets for comparisons. In that, it relates
to prior work on other problems that involve careful selection of
data subsets. Prior work on query result explanation often repre-
sents explanations as composite predicates [2, 49, 68], identifying
rows with significant impact on results. Instead, the space searched
by BABOONS consists of fact combinations where each single fact
is defined by a combination of a predicate and an aggregate. Data
summarization often refers to the problem of selecting data items
to maximize a utility function [13, 39, 62, 63]. Often, work in this
domain assumes a sub-modular utility function, motivating the use
of greedy algorithms for sub-modular optimization [42]. BABOONS,
however, does not assume a sub-modular utility function. It selects
aggregate facts, rather than data items. Broadly, BABOONS relates
to prior work that analyses or transforms data with the goal of
maximizing black-box utility functions. This includes, in particular,
recent work on data cleaning with complex or black-box utility
functions [9, 28, 29, 43, 62]. Typically, the goal is to select data
or cleaning operations to maximize performance of downstream
applications such as model training. BABOONS differs from all
the aforementioned work by its problem model and the design
decisions that derive from it.

10 CONCLUSION
BABOONS automatically generates and selects statistics that opti-
mize an arbitrary utility function. The experiments demonstrate
that the approach is efficient and effective.

A FORMAL ANALYSIS OF BATCH PROCESSOR
Algorithm 8 selects one summary sketch in each iteration. Denote
by U : S→ R the function mapping the set S of selected summary
sketches to the average utility over all items (considering for each
item the best generated summary which Algorithm 8 retains), i.e.
U(S) = 𝑀𝑒𝑎𝑛({max({𝑢𝑖𝑠 |𝑠 ∈ S}) |𝑖 ∈ 𝐼 }) where 𝐼 is the set of items
and 𝑢𝑖𝑠 the utility of the summary sketch 𝑠 for item 𝑖 .

Theorem A.1. Function U is submodular.

Proof. For a single item 𝑖 , Function U(S) is max({𝑢𝑖𝑠 |𝑠 ∈ S})
and the set maximum is submodular (see Page 6 of Ref. [8]). For
multiple items, U is a linear combination of submodular functions
with positive weights, therefore submodular [27]. □

The next theorem assumes that Algorithm 8 finds the sketch
that maximizes the improvement in average utility in each iteration.
We assume that the worst utility value, realized e.g. by an empty
summary, is zero (this can be achieved by adding a constant if a
lower bound on negative utility values is known).

Theorem A.2. Algorithm 8 achieves utility of at least𝑢∗ · (𝑒−1)/𝑒
where 𝑢∗ is the optimal utility for the selected number of sketches.

Proof. According to Theorem A.1, average utility over all items
is submodular in the set of sketches selected by Algorithm 8. Fur-
thermore, average utility is non-decreasing (since Algorithm 8
prunes sub-optimal summaries for each item) and assumed non-
negative. Hence, as Algorithm 8 selects the sketch with maxi-
mal marginal improvement of average utility in each iteration,
it achieves the postulated guarantees [42]. □

2991

REFERENCES
[1] 2021. https://www.upcounsel.com/what-is-a-product-description.
[2] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,

Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, Jeff Naughton, Peter
Bailis, and Matei Zaharia. 2021. DIFF: a relational interface for large-scale data
explanation. VLDB Journal 30, 1 (2021), 45–70. https://doi.org/10.1007/s00778-
020-00633-6

[3] Mohiuddin Ahmed. 2019. Data summarization: a survey. Knowledge and Infor-
mation Systems 58, 2 (2019), 249–273. https://doi.org/10.1007/s10115-018-1183-0

[4] Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. 2009. Detecting outlying
properties of exceptional objects. ACM Transactions on Database Systems 34, 1
(2009). https://doi.org/10.1145/1508857.1508864

[5] B. Buchanan and D. Goldman. 1989. Us vs. them: the minefield of comparative
ads. Harvard Business Review 67, 3 (1989), 38–40, 42, 44 passim.

[6] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL, Vol. 1. 4171–4186. arXiv:1810.04805

[7] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL, Vol. 1. 4171–4186. arXiv:1810.04805

[8] Charanpal Dhanjal and Stéphan Clémencon. 2011. Maximising the quality of
influence. Proceedings of the 11th SIAM International Conference on Data Mining,
SDM 2011 (2011), 956–967. https://doi.org/10.1137/1.9781611972818.82

[9] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine
Learning Matthias. In NEURIPS. 1–9.

[10] Dimitra Gkatzia, Helen Hastie, Srinivasan Janarthanam, and Oliver Lemon. 2013.
Generating student feedback from time-series data using reinforcement learning.
ENLG 2013 - 14th EuropeanWorkshop onNatural Language Generation, Proceedings
(2013), 115–124.

[11] Eli Goldberg, Norbert Driedger, and Richard Kittredge. 1994. Using natural-
language processing to produceweather forecasts. IEEE Expert-Intelligent Systems
and their Applications 9, 2 (1994), 45–53. https://doi.org/10.1109/64.294135

[12] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In SIGKDD, Vol. Part F1296. 1487–1496. https://doi.org/10.1145/3097983.3098043

[13] Kai Han, Shuang Cui, Tianshuai Zhu, Enpei Zhang, Benwei Wu, Zhizhuo Yin,
Tong Xu, Shaojie Tang, and He Huang. 2021. Approximation Algorithms for
Submodular Data Summarization with a Knapsack Constraint. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 5, 1 (2021), 1–31.
https://doi.org/10.1145/3447383

[14] Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li, Jun
Yang, and Cong Yu. 2014. Data in, fact out: Automated monitoring of facts
by FactWatcher. Proceedings of the VLDB Endowment 7, 13 (2014), 1557–1560.
https://doi.org/10.14778/2733004.2733029

[15] Joseph M. JM Hellerstein, PJ Peter J. Haas, and HJ Helen J. Wang. 1997. Online
aggregation. SIGMOD Record 26, 2 (1997), 171–182. https://doi.org/10.1145/
253262.253291

[16] W Hoeffding. 1963. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association 58, 301 (1963), 13–
30. http://onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a17080/fullhttp:
//amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830

[17] Haibo Hu, Jianliang Xu, Wing Sing Wong, Baihua Zheng, Dik Lun Lee, and
Wang Chien Lee. 2005. Proactive caching for spatial queries in mobile environ-
ments. Proceedings - International Conference on Data Engineering Icde (2005),
403–414. https://doi.org/10.1109/ICDE.2005.113

[18] Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, and Yong Yu. 2011. Prominent
streak discovery in sequence data. In SIGKDD. 1280–1288. https://doi.org/10.
1145/2020408.2020601

[19] Shantanu Joshi and Christopher Jermaine. 2008. Materialized sample views for
database approximation. ICDE 20, 3 (2008), 337–351. https://doi.org/10.1109/
TKDE.2007.190664

[20] Surveys June and White Paper. 2018. White Paper: How Google Surveys Works.
June (2018).

[21] Juraj Juraska and Marilyn Walker. 2021. Attention Is Indeed All You Need:
Semantically Attention-Guided Decoding for Data-to-Text NLG. INLG 2021
- 14th International Conference on Natural Language Generation, Proceedings
September (2021), 416–431. arXiv:2109.07043

[22] Kaggle. 2019. https://www.kaggle.com/ghadahalshehrei/laptops-info.
[23] Kaggle. 2019. https://www.kaggle.com/itrummer/stack-overflow-developer-

survey-voice-interface.
[24] Kaggle. 2019. https://www.kaggle.com/yuanyuwendymu/airline-delay-and-

cancellation-data-2009-2018.
[25] Kaggle. 2020. https://www.kaggle.com/sibmike/iowaliquorsales2020.
[26] Zdeněk Kasner and Ondřej Dušek. 2020. Data-to-Text Generation with Iterative

Text Editing. In INLG. 60–67. arXiv:2011.01694
[27] Andreas Krause and D Golovin. 2012. Submodular function maximization. Tech-

nical Report. http://las.ethz.ch/files/krause12survey.pdf

[28] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.
BoostClean: Automated Error Detection and Repair for Machine Learning. (2017).
arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[29] Sanjay Krishnan and Eugene Wu. 2019. AlphaClean: Automatic Generation of
Data Cleaning Pipelines. July 2017 (2019). arXiv:1904.11827 http://arxiv.org/
abs/1904.11827

[30] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (1977), 159. https://doi.org/10.2307/
2529310

[31] Rémi Lebret, David Grangier, andMichael Auli. 2016. Neural text generation from
structured data with application to the biography domain. In EMNLP. 1203–1213.
https://doi.org/10.18653/v1/d16-1128 arXiv:1603.07771

[32] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. (2020), 7871–7880. https://doi.org/10.18653/
v1/2020.acl-main.703 arXiv:1910.13461

[33] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggrega-
tion via Random Walks. SIGMOD 46, 1 (2016), 615–629. https://doi.org/10.1145/
2882903.2915235

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
robustly optimized BERT pretraining approach. arXiv 1 (2019). arXiv:1907.11692

[35] Joy Mahapatra and Utpal Garain. 2021. Exploring Structural Encoding for Data-
to-Text Generation. In INLG. 404–415.

[36] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. 2021.
Reinforcement learning for combinatorial optimization: A survey. Computers
and Operations Research 134 (2021). https://doi.org/10.1016/j.cor.2021.105400
arXiv:2003.03600

[37] Kathleen McKeown, Jacques Robin, and Karen Kukich. 1995. Generating concise
natural language summaries. Information Processing and Management 31, 5
(1995), 703–733. https://doi.org/10.1016/0306-4573(95)00026-D

[38] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. 2016. What to talk about
and how? Selective generation using LSTMs with coarse-to-fine alignment. In
NAACL. 720–730. https://doi.org/10.18653/v1/n16-1086 arXiv:1509.00838

[39] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016.
FAst coNsTrained submodular maximization: Personalized data summarization.
33rd International Conference on Machine Learning, ICML 2016 3 (2016), 2042–
2054.

[40] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. 33rd International Conference
on Machine Learning, ICML 2016 4 (2016), 2850–2869. arXiv:1602.01783

[41] Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019. Step-by-step: Separating
planning from realization in neural data-to-text generation. NAACL HLT 2019 -
2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies - Proceedings of the Conference
1 (2019), 2267–2277. https://doi.org/10.18653/v1/N19-1236 arXiv:1904.03396

[42] GL Nemhauser and LA Wolsey. 1978. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of Operations Research 3, 3
(1978), 177–188. http://mor.journal.informs.org/content/3/3/177.short

[43] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From
Cleaning before ML to Cleaning for ML. Data Engineering March (2021), 24.

[44] OpenAI. 2021. https://stable-baselines3.readthedocs.io/en/master/.
[45] Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation

with content selection and planning. In AAAI. 6908–6915. https://doi.org/10.
1609/aaai.v33i01.33016908 arXiv:1809.00582

[46] Justus J. Randolph. 2005. Free-Marginal Multirater Kappa (multirater K[free]):
An Alternative to Fleiss’ Fixed-Marginal Multirater Kappa. Joensuu Learning
and Instruction Symposium (2005). http://eric.ed.gov/?id=ED490661

[47] Weixiong Rao, Lei Chen, Ada Wai Chee Fu, and Yingyi Bu. 2007. Optimal proac-
tive caching in peer-to-peer network: Analysis and application. In International
Conference on Information and Knowledge Management, Proceedings. 663–672.
https://doi.org/10.1145/1321440.1321533

[48] Ehud Reiter and Robert Dale. 1997. Building Applied Natural Language Gen-
eration Systems. Natural Language Engineering 3, 1 (1997), 57–87. https:
//doi.org/10.1017/S1351324997001502

[49] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for
database queries. Proceedings of the ACM SIGMOD International Conference on
Management of Data (2014), 1579–1590. https://doi.org/10.1145/2588555.2588578

[50] S. Sarawagi. 2000. User-adaptive exploration of multidimensional data. In VLDB.
307–316. http://citeseer.ist.psu.edu/sarawagi00useradaptive.html

[51] Timos Sellis and Subrata Ghosh. 1990. On the multiple-query optimization
problem. KDE 2, 2 (1990), 262–266. https://doi.org/10.1109/69.54724

[52] Pranay Kumar Venkata Sowdaboina, Sutanu Chakraborti, and Somayajulu Sri-
pada. 2014. Learning to summarize time series data. In LNCS, Vol. 8403 LNCS.
515–528. https://doi.org/10.1007/978-3-642-54906-9_42

2992

https://doi.org/10.1007/s00778-020-00633-6
https://doi.org/10.1007/s00778-020-00633-6
https://doi.org/10.1007/s10115-018-1183-0
https://doi.org/10.1145/1508857.1508864
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1137/1.9781611972818.82
https://doi.org/10.1109/64.294135
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3447383
https://doi.org/10.14778/2733004.2733029
https://doi.org/10.1145/253262.253291
https://doi.org/10.1145/253262.253291
http://onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a17080/full http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
http://onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a17080/full http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://doi.org/10.1109/ICDE.2005.113
https://doi.org/10.1145/2020408.2020601
https://doi.org/10.1145/2020408.2020601
https://doi.org/10.1109/TKDE.2007.190664
https://doi.org/10.1109/TKDE.2007.190664
https://arxiv.org/abs/2109.07043
https://arxiv.org/abs/2011.01694
http://las.ethz.ch/files/krause12survey.pdf
https://arxiv.org/abs/1711.01299
http://arxiv.org/abs/1711.01299
https://arxiv.org/abs/1904.11827
http://arxiv.org/abs/1904.11827
http://arxiv.org/abs/1904.11827
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.18653/v1/d16-1128
https://arxiv.org/abs/1603.07771
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/1910.13461
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/2882903.2915235
https://arxiv.org/abs/1907.11692
https://doi.org/10.1016/j.cor.2021.105400
https://arxiv.org/abs/2003.03600
https://doi.org/10.1016/0306-4573(95)00026-D
https://doi.org/10.18653/v1/n16-1086
https://arxiv.org/abs/1509.00838
https://arxiv.org/abs/1602.01783
https://doi.org/10.18653/v1/N19-1236
https://arxiv.org/abs/1904.03396
http://mor.journal.informs.org/content/3/3/177.short
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
https://arxiv.org/abs/1809.00582
http://eric.ed.gov/?id=ED490661
https://doi.org/10.1145/1321440.1321533
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1145/2588555.2588578
http://citeseer.ist.psu.edu/sarawagi00useradaptive.html
https://doi.org/10.1109/69.54724
https://doi.org/10.1007/978-3-642-54906-9_42

[53] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul Christiano. 2020. Learning to
summarize from human feedback. Advances in Neural Information Processing
Systems 2020-Decem, NeurIPS (2020), 1–45. arXiv:2009.01325

[54] Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, and Cong Yu. 2014.
Incremental discovery of prominent situational facts. Proceedings - International
Conference on Data Engineering December 1992 (2014), 112–123. https://doi.org/
10.1109/ICDE.2014.6816644 arXiv:1311.4529

[55] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning, second
edition: An introduction. 532 pages. https://doi.org/10.1016/s1364-6613(99)01331-
5 arXiv:1603.02199

[56] Bo Tang, Shi Han, Man Lung, Yiu Rui, and Ding Dongmei. 2017. Extracting
Top-K Insights from Multi-dimensional Data. In SIGMOD. 1509–1524.

[57] Ngan Thi Dong. 2013. Natural language generation from graphs. Ph.D. Disserta-
tion. https://doi.org/10.2307/414915

[58] Immanuel Trummer and Anderson Connor. 2021. Optimally summarizing data
by small fact sets for concise answers to voice queries. In ICDE. 1715–1726.

[59] Immanuel Trummer, Yicheng Wang, and Saketh Mahankali. 2019. A holistic
approach for query evaluation and result vocalization in voice-based OLAP. In
SIGMOD. 936–953.

[60] Immanuel Trummer, Jiancheng Zhu, and Mark Bryan. 2017. Data vocalization:
optimizing voice output of relational data. PVLDB 10, 11 (2017), 1574–1585.

[61] Manasi Vartak, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis.
2014. SeeDB: automatically generating query visualizations. VLDB 7, 13 (2014),
1581–1584. https://doi.org/10.14778/2733004.2733035

[62] Tianhao Wang, Yi Zeng, Ming Jin, and Ruoxi Jia. 2021. A Unified Framework
for Task-Driven Data Quality Management. (2021), 1–20. arXiv:2106.05484
http://arxiv.org/abs/2106.05484

[63] YanhaoWang, Yuchen Li, and Kian Lee Tan. 2019. Efficient Representative Subset
Selection over Sliding Windows. IEEE Transactions on Knowledge and Data
Engineering 31, 7 (2019), 1327–1340. https://doi.org/10.1109/TKDE.2018.2854182
arXiv:1706.04764

[64] Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A broad-coverage
challenge corpus for sentence understanding through inference. NAACL HLT
2018 - 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies - Proceedings of the Conference
1 (2018), 1112–1122. https://doi.org/10.18653/v1/n18-1101 arXiv:1704.05426

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Morgan Funtowicz, Joe Davison,

Sam Shleifer, Patrick Von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M Rush. 2020. Transformers : State-of-the-Art Natural Language Processing.
(2020), 38–45.

[66] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In EMNLP. 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6
arXiv:arXiv:1910.03771v5

[67] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: exploratory analysis via faceted browsing
of visualization recommendations. Transactions on Visual and Computer Graphics
22, 1 (2015), 649–658.

[68] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in
aggregate queries. Proceedings of the VLDB Endowment 6, 8 (2013), 553–564.
https://doi.org/10.14778/2536354.2536356

[69] Tianyi Wu, Dong Xin, Qiaozhu Mei, and Jiawei Han. 2009. Promotion analysis
in multi-dimensional space. Proceedings of the VLDB Endowment 2, 1 (2009),
109–120. https://doi.org/10.14778/1687627.1687641

[70] You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2012. On "one
of the few" objects. In KDD. 1487–1495. https://doi.org/10.1145/2339530.2339762

[71] Yueji Yang, Yuchen Li, Panagiotis Karras, and Anthony K.H. Tung. 2021. Context-
aware Outstanding Fact Mining from Knowledge Graphs. Vol. 1. Association
for Computing Machinery. 2006–2016 pages. https://doi.org/10.1145/3447548.
3467272

[72] Ruslan Yermakov, Bayer Ag, Nicholas Drago, Bayer Ag, Angelo Ziletti, and Bayer
Ag. 2021. Biomedical Data-to-Text Generation via Fine-Tuning Transformers. In
INLG. 364–370.

[73] Gensheng Zhang, Damian Jimenez, and Chengkai Li. 2018. Maverick: discovering
exceptional facts from knowledge graphs. In SIGMOD. 1317–1332. www.snopes.
com/

[74] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. 2020. Fine-Tuning Lan-
guage Models from Human Preferences. https://arxiv.org/abs/1909.08593 (2020).
arXiv:1909.08593 http://arxiv.org/abs/1909.08593

2993

https://arxiv.org/abs/2009.01325
https://doi.org/10.1109/ICDE.2014.6816644
https://doi.org/10.1109/ICDE.2014.6816644
https://arxiv.org/abs/1311.4529
https://doi.org/10.1016/s1364-6613(99)01331-5
https://doi.org/10.1016/s1364-6613(99)01331-5
https://arxiv.org/abs/1603.02199
https://doi.org/10.2307/414915
https://doi.org/10.14778/2733004.2733035
https://arxiv.org/abs/2106.05484
http://arxiv.org/abs/2106.05484
https://doi.org/10.1109/TKDE.2018.2854182
https://arxiv.org/abs/1706.04764
https://doi.org/10.18653/v1/n18-1101
https://arxiv.org/abs/1704.05426
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/arXiv:1910.03771v5
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.14778/1687627.1687641
https://doi.org/10.1145/2339530.2339762
https://doi.org/10.1145/3447548.3467272
https://doi.org/10.1145/3447548.3467272
www.snopes.com/
www.snopes.com/
https://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593

