
On-Demand State Separation for Cloud Data Warehousing
Christian Winter

Technical University of Munich

winterch@in.tum.de

Jana Giceva

Technical University of Munich

giceva@in.tum.de

Thomas Neumann

Technical University of Munich

neumann@in.tum.de

Alfons Kemper

Technical University of Munich

kemper@in.tum.de

ABSTRACT

Moving data analysis and processing to the cloud is no longer re-

served for a few companies with petabytes of data. Instead, the

flexibility of on-demand resources is attracting an increasing num-

ber of customers with small to medium-sized workloads. These

workloads do not occupy entire clusters but can run on single

worker machines. However, picking the right worker for the job is

challenging. Abstracting from worker machines, e.g., using state-

less architectures, introduces overheads impacting performance.

Solutions without stateless architectures resort to query restarts in

the event of an adverse worker matching, wasting already achieved

progress.

In this paper, we propose migrating queries between workers

by introducing on-demand state separation. Using state separa-

tion only when required enables maximum flexibility and perfor-

mance while keeping already achieved progress. To derive the re-

quirements for state separation, we first analyze the query state of

medium-sized workloads on the example of TPC-DS SF100. Using

this, we analyze the cost and describe the constraints necessary

for state separation on such a workload. Furthermore, we describe

the design and implementation of on-demand state separation in a

compiling database system. Finally, using this implementation, we

show the feasibility of our approach on TPC-DS and give a detailed

analysis of the cost of query migration and state separation.

PVLDB Reference Format:

Christian Winter, Jana Giceva, Thomas Neumann, and Alfons Kemper.

On-Demand State Separation for Cloud Data Warehousing. PVLDB, 15(11):

2966 - 2979, 2022.

doi:10.14778/3551793.3551845

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/tum-db/on-demand-state-separation.

1 INTRODUCTION

The high flexibility and cost-efficiency of cloud databases, such

as Snowflake [12] and Amazon Redshift [24], are attracting an

increasing range of customers. While these systems offer solutions

for petabytes of data and optimize for scalability, they also attract

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551845

Flexibility

P
er
fo
rm
an
ce Our

Work

Shared-Nothing
(e.g., Redshi�)

Storage-Separated
(e.g., Snow�ake)

State-Separated
(e.g., POLARIS)

Modular
(e.g., Spark)

Figure 1: Classification of cloud data warehouse architectures

by performance and flexibility. Flexibility here is the abil-

ity to adapt to changes in the execution environment and

provide scalability for processing. Performance is defined by

query throughput and latency.

smaller customers and workloads. These workloads do not require

the full elasticity offered and can often be handled by one or a few

machines. However, finding the optimal instance to provide cost

optimality is still not trivial [35]. To understand the challenges of

cloud data warehousing for smaller workloads, one needs to look

at the dominant warehouse architectures and their characteristics

outlined in Figure 1.

First, there is the classic shared-nothing architecture prominent

in on-premise deployments and used in Amazon Redshift [24]. In

this architecture, both storage and compute are co-located on a

worker. While this offers the best performance, it cannot scale

resources independently. Second, there are storage separated archi-

tectures, such as Snowflake [12]. These allow compute and storage

to be scaled separately. Keeping the working state of a query at the

compute node still achieves excellent performance. However, this

does not permit elasticity and fault tolerance for individual queries.

Third, state-separated architectures, like Microsoft POLARIS [2],

fully decouple state and compute. The high flexibility and elasticity

of state separation come at the cost of network overhead when

syncing the state between tasks. This overhead is acceptable when

data has to be shuffled between workers after each task. Finally,

modular systems, like Apache Spark [65], do not follow a specific

architecture fully but can be configured similarly to one or more

architectures. For Spark, e.g., state separation can be achieved by

strategically placing checkpoints in the query plan [44, 60]. We

argue that, due to network transfer costs, stateless architectures

are not profitable for smaller workloads. Nevertheless, there is a

growing need for higher flexibility for such workloads: Ambati

2966

https://doi.org/10.14778/3551793.3551845
https://github.com/tum-db/on-demand-state-separation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551845
https://www.acm.org/publications/policies/artifact-review-and-badging-current

with customer_revenue as (
select customer.id, sum(orders.price) as revenue
from customer, orders
where customer.id = orders.customer_id
group by customer.id

)

select c.name, c.adress, c.birthday
from customer c, customer_revenue r
where c.id = r.id and
r.revenue >= 0.9 * (
select max(revenue) from customer_revenue

)
CustomerCustomer

Result

TempScanTempScan Orders

Γid, sum(price)

materialized result

Γmax(revenue) ⨝id = customer_id

⨝0.9 * max <= revenue

⨝id = id

15

4

3 26

Figure 2: Exemplary SQL OLAP query (left) and corresponding query plan (right) with pipelines. Pipelines continuing through

an n-ary operator are marked bold and color-coded. Circled pipeline IDs also denote execution order.

et al. [5] propose speculatively executing queries to find the best

query-to-worker matching, losing all progress achieved when the

worker has to be changed. In addition, Garefalakis et al. [21] have

described the need for suspendable tasks to provide low latency for

time-sensitive tasks when resources are limited.

In this paper, we propose on-demand state separation to provide

the desired flexibility of stateless architectures without incurring

the performance cost. This way, we can utilize the full performance

of storage-separated architectures for local queries, while still al-

lowing for query migration and elasticity with minimal overhead

when necessary. To achieve this, we run the query as if it were only

storage-separated. When the need for state separation arises, we

cache all relevant intermediate results over the network and con-

tinue the query on these on the target worker. This query migration

can be beneficial in a number of settings. It allows the utilization

of more powerful or cheaper servers that become available in a

cluster for already running queries. Furthermore, it enables load

balancing between servers in multi-tenancy settings, as well as the

utilization of spot instances for query processing. Queries can be

started on such instances and migrated when the spot instance

expires, which has been proposed for VM instances [45, 48, 61] and

using predefined checkpoints [44, 60] in Apache Spark. Contrary

to those solutions, we only need to migrate the current working

state of a query and do not require a priori knowledge about the

workload. Our key contributions are:

• We provide an analysis of the query states occurring in

mid-sized cloud workloads on the exemplary workload of

all queries of the TPC-DS benchmark [52] at a scale factor

of 100. This dataset of roughly 100GB represents a medium-

sized workload, which can be reasonably executed on a

single server. To the best of our knowledge, we are the first

to describe query states in a state-separated architecture.

• We describe the constraints for the deployment environ-

ment necessary for (on-demand) state-separated architec-

tures on such workloads.

• We show the design and implementation of on-demand

state separation in an OLAP database system using the

code-generating DBMS Umbra [40].

• We evaluate the performance and overhead of on-demand

state separation for various use cases.

The remainder of the paper is structured as follows: Section 2

defines the goal of on-demand state separation and the relevant con-

cepts. Then, we analyze the state of OLAP workloads based on TPC-

DS in Section 3. Section 4 describes the design and implementation

of on-demand state separation, which we evaluate in Section 5. We

discuss related work in Section 6 before concluding in Section 7.

2 PROBLEM DEFINITION

Before describing our novel approach to on-demand state separa-

tion, we first need to formalize the problem statement, as well as

the requirements that queries and systems have to fulfill to support

our approach. The goal of on-demand state separation is to provide

flexibility for traditional relational databases in cloud settings. To

achieve this flexibility, we utilize state separation [2].

Definition 1. State Separation: State separation is the process
of decoupling the working state and progress of a query from the
machine executing it.

A state-separated query can, thus, be resumed on any machine,

even if the new machine’s configuration differs from the old one.

Changing the executing server at runtime has been employed in

the past, e.g., in multi-engine environments [1, 46]. These systems

focus on migration between different engines at pre-planned points

in the query plan for performance. In contrast, we aim for flexibility

by migrating on demand without prior planning.

Goal. On-demand state separation achieves state separation re-
troactively with minimized progress loss and minimized query state
without hampering the performance of local execution.

2.1 Background

Having defined the goal of on-demand state separation, we need to

discuss the requirements a database system has to fulfill to support

it, as well as the properties of relational queries we use for our

approach. For this, we will use the exemplifying query in Figure 2

and its query plan, which serves as a running example throughout

this paper. First, we find high-grossing customers using the com-

mon table expression customer_revenue. Then, we reconnect these
customers to the customer table to extract all information required

to send them birthday cards.

2.1.1 Query Properties. Our approach is based on relational queries
following a query plan such as the one displayed in Figure 2. Plans

2967

consist of operators, such as joins, aggregations, and filters. These

operators can be grouped into two categories, blocking and filter-

ing operators. Blocking operators, such as the id, sum aggregation,

materialize all tuples before reporting the result. Filtering opera-

tors, on the other hand, do not materialize tuples. Operators can

exist as a filtering and a blocking operator simultaneously. The id =
customer_id join, e.g., will materialize all tuples from the customer

relation but only filter tuples from the orders relation without mate-

rializing them. We call all paths in the query plan in which a tuple

is not materialized, i.e., between two blocking operators, pipelines.

Each pipeline is executed exactly once for all tuples of its input.

Nevertheless, the result of a pipeline may be used multiple times.

The result of pipeline 2 in Figure 2, for example, is scanned twice,

namely in pipelines 3 and 6 . Furthermore, a pipeline fully de-

pends on all of its inputs. Before pipeline 6 can start, pipelines 2 ,

4 , and 5 must finish their execution. These dependencies result

in the execution order denoted by the pipeline IDs in Figure 2.

2.1.2 System Requirements. A system has to fulfill three main re-

quirements to support on-demand state separation, which we will

discuss below. As we have implemented our approach within the

Umbra database system [29, 40, 57, 58], we give a brief overview of

how Umbra adheres to these requirements.

Plan-Based Execution. In our approach, we process queries using

relational operators and pipelines. Therefore, we also require the

system to process queries based on relational operators. Query plans

are the default execution model for relational databases. Therefore,

most existing database systems adhere to this requirement. Further-

more, the system must support the serialization and deserialization

of plans for execution, either through dedicated formats or by emit-

ting SQL. Umbra, e.g., uses a pipeline-based execution model. In

it, the query is split into pipelines, which in turn are translated

into code and compiled for execution. Umbra further supports the

export and import of query plans to and from JSON format, which

we use to share queries between instances.

Query Progress Information. As one goal is to preserve al-

ready achieved query progress, systems have to offer insights into

the progress of running queries. This progress information is al-

ready part of query execution in interpreting systems, such as

MonetDB [10]. Compiling systems, such as Umbra, which convert

queries to machine code, require active progress-keeping. In Um-

bra, it is not the entire query but its individual pipelines that are

converted to machine code. This pipeline-based conversion allows

us to keep track of the query progress at pipeline granularity.

Accessible Intermediate Results. Finally, our approach requires

access to the intermediate results held for a query as they material-

ize the progress achieved. While interpreting engines access these

results directly for query processing, compiling engines typically

only access them through generated code. For state separation,

however, compiling systems need to maintain information on these

intermediate results outside of generated code as well. Umbra, for

example, manages the state for queries in two different regions,

thread-local and global state. The former is used for intra-pipeline

processing and is thus not relevant to our approach. The global

state, on the other hand, holds all data shared between pipelines,

such as materialized results, and allows us to access them from the

database. We will discuss the access in detail in Section 4.4.

2.2 State Model

After describing the goal and system model for state separation, we

can define what state is relevant for extraction. As we discussed
in Section 2.1.2, the intermediate results of a query materialize

its progress. Thus, we only have to focus on these results. This

allows us to remove all database-wide information, like indices,

from our consideration, as this information is available to all nodes

in a cluster in a uniform fashion.

Intermediate results are commonly materialized in blocking op-

erators, i.e., at the end of pipelines. Vectorized systems such as

MonetDB [10] materialize results in every operator. In our example

in Figure 2, the results are, e.g., materialized in the join hash table

after pipeline 1 and the aggregates after pipeline 3 . Further, we

abstract from the physical representation of the result, such as hash

tables. This physical representation can vary greatly between sys-

tems and even between different instances of the same system. For

example, even switching from a hash join to a blockwise-nested-

loop-based join implementation for the same query and system will

change the materialization of the results, even though the results

will be identical. Therefore, we only consider tuples in the material-

ized results, not their surrounding index structures. Finally, we only

consider results that are still required for query processing. After

pipeline 2 has finished, the join hash table produced by pipeline

1 is no longer required and thus not considered part of the state.

The results of pipeline 2 , in turn, will be used by both pipelines

3 and 6 . It is, therefore, part of the query state until both have

finished. To summarize, we define query state as follows:

Definition 2. Query State: The query state comprises all tu-
ples materialized within the blocking operators of finished pipelines
connecting to not yet finished pipelines.

We will assume this definition when speaking of state in the

remainder of this paper. After pipelines 1 to 4 are finished in

Figure 2, for example, the query state would contain all tuples in

the id, sum(price) aggregation, as well as all tuples in the max ≤
revenue join hash table.

3 STATE ANALYSIS

Having defined what constitutes the state of a query, we can now

analyze the state of typical OLAP workloads. We base this analysis

on the well-known TPC-DS OLAP benchmark [52], which models

a warehouse for a decision support system. To represent medium-

sized workloads, we choose scale factor 100 (SF100), which roughly

equals 100GB of data. We analyze the state of each of the 103 TPC-

DS queries after every pipeline in query plans generated by the

Umbra database system [40]. TPC-DS distributes queries uniformly.

Therefore, we include all queries and variants once in our analysis.

As the state is comprised of only required tuples and columns in

SQL-defined data types, the state size only depends on the query

plan and join order, and not on the system used.

3.1 State Size Distribution

As the first analysis, we look at the distribution of state sizes occur-

ring throughout all queries. For this, we measure the size of tuples

stored after each pipeline and the number of blocking operators

materializing these tuples. Figure 3 displays the results. One can

2968

308

139

79

34

17

20

7

5

4

3

2

2

2

2

2

44

33

32

17

9

5

1

34

22

18

6

2

4

17

7

3

3

1

1

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

5

5

308

139

79

34

17

20

7

44

33

32

17

9

5

1

34

22

18

6

2

4

17

7

3

3

1

1

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

5

5

308

139

79

34

17

20

44

33

32

17

9

5

34

22

18

6

2

4

17

7

3

3

1

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

5

5

308

139

79

34

20

7

44

33

32

17

5

1

34

22

18

6

4

17

7

3

3

1

1

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

5

308

139

79

34

44

33

32

17

34

22

18

6

17

7

3

3

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

308

139

79

34

44

33

32

17

34

22

18

6

17

7

3

3

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

308

139

79

34

44

33

32

17

34

22

18

6

17

7

3

3

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

308

139

79

34

17

20

44

33

32

17

9

5

34

22

18

6

2

4

17

7

3

3

1

24

27

9

3

10

18

3

1

5

7

12

2

2

2

3

3

5

5

4

8

12

16

<
1M

B

1M
B
- 1
0M

B

10
M
B
- 5
0M

B

50
M
B
- 1
00
M
B

10
0M

B
- 5
00
M
B

50
0M

B
- 1
G
B

1G
B
- 5
G
B

5G
B
- 1
0G

B

State Size

N
u
m
b
e
r
o
f
B
l
o
c
k
i
n
g
O
p
e
r
a
t
o
r
s

1 4 16 64 256

Occurences

Figure 3: Distribution of state sizes occurring within TPC-DS

SF100 by the number of blocking operators involved.

0

10

20

30

40

<
1M

B

1M
B
- 1
0M

B

10
M
B
- 5
0M

B

50
M
B
- 1
00
M
B

10
0M

B
- 5
00
M
B

50
0M

B
- 1
G
B

1G
B
- 5
G
B

5G
B
- 1
0G

B

>=
10
G
B

State Size

N
u
m
b
e
r
o
f
Q
u
e
r
i
e
s

Average

Sum

Figure 4: Comparison of the distribution of average and total

state sizes per query for TPC-DS SF100.

see that the vast majority of states comprise few operators with less

than ten megabytes of data. While most states are small, several

states are larger than five gigabytes. Forty-six states exceed one

gigabyte in size, while 626 are smaller than 1MB. Overall, 30% of

states contain a single blocking operator with less than 1MB of data,

and 86% of states do not exceed 100MB. Even though the median

state size is only 133KB, the mean state size is 265MB. While 90%

of states comprise fewer than five operators, up to 15 operators are

involved for some queries.

All intermediate results of a query are relevant for state-separa-

ting architectures as the state has to be synchronized after every

task. Therefore, we also look at the sum of intermediate result sizes

occurring for each query. Figure 4 depicts the distribution of average

and total state size per query. One can see that the total state size

far outweighs the average. Compared to the mean size of a single

state, the mean of all states is 2.6GB, and thus, 10× larger. This sum

of state sizes is an upper bound for the state of a query, as it can

contain the same pipeline result multiple times. For our example in

Figure 2, the result of pipeline 2 is part of all states starting from

pipeline 3 . However, entirely excluding these duplicates would

be inaccurate as well, as they have to be transferred to workers

multiple times. E.g., the result of pipeline 2 is required by workers

for pipelines 3 and 6 .

41 81 74 55 54 62 58 48 97 56

7 15 16 20 15 23 22 10 10 3

2 8 7 9 7 15 14 16 6 2

1 2 5 6 5 6 4 3

4 4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3 1

1 2 5 4 5 3 2 3 1

1 3 5 4 4 3

41 81 74 55 54 62 58 48 97 56

7 15 16 20 15 23 22 10 10 3

2 8 7 9 7 15 14 16 6 2

1 2 5 6 5 6 4 3

4 4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3 1

1 2 5 4 5 3 2 3 1

1 3 5 4 4 3

41 81 74 55 54 62 58 48 97 56

7 15 16 20 15 23 22 10 10 3

2 8 7 9 7 15 14 16 6 2

1 2 5 6 5 6 4 3

4 4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3 1

1 2 5 4 5 3 2 3 1

1 3 5 4 4 3

81 74 55 54 62 58 48 97

15 16 20 15 23 22 10 10

8 7 9 7 15 14 16 6

1 2 5 6 5 6 4 3

4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3

1 2 5 4 5 3 2 3

1 3 5 4 4 3

41 81 74 55 54 62 58 48 97

7 15 16 20 15 23 22 10 10

2 8 7 9 7 15 14 16 6

1 2 5 6 5 6 4 3

4 4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3

1 2 5 4 5 3 2 3

1 3 5 4 4 3

81 74 55 54 62 58 48 97 56

15 16 20 15 23 22 10 10 3

8 7 9 7 15 14 16 6 2

1 2 5 6 5 6 4 3

4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3 1

1 2 5 4 5 3 2 3 1

1 3 5 4 4 3

81 74 55 54 62 58 48 97 56

15 16 20 15 23 22 10 10 3

8 7 9 7 15 14 16 6 2

1 2 5 6 5 6 4 3

4 7 7 11 9 9 5 7

5 3 3 3 3 6 5 3 1

1 2 5 4 5 3 2 3 1

1 3 5 4 4 3

55 54 62 58 48 97

20 15 23 22 10 10

9 7 15 14 16 6

5 6 5 6 4 3

7 11 9 9 5 7

3 3 3 6 5 3

5 4 5 3 2 3

1 3 5 4 4 3

< 1MB

1MB - 10MB

10MB - 50MB

50MB - 100MB

100MB - 500MB

500MB - 1GB

1GB - 5GB

5GB - 10GB

0% 25% 50% 75% 100%

Query Progress

S
t
a
t
e
S
i
z
e

1 4 16 64

Occurences

Figure 5: Distribution of state sizes occurring within TPC-DS

SF100 by query progress.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Query Progress
R
e
l
a
t
i
v
e
S
t
a
t
e
S
i
z
e

Figure 6: Development of relative state size during queries.

State size is relative to the maximum state size reached for a

query.

3.2 Influence of Query Progress

Given the overall state distribution, we want to analyze further if

and how the state distribution relates to query progress. Therefore,

we must first define query progress for our model. As we are only

interested in the states occurring after pipelines, we define the

progress metric based on pipelines only:

Definition 3. Query progress =
of finished pipelines
of total pipelines

While this does not account for the runtime of individual pipe-

lines, it considers the task-based scheduling of cloud jobs. The

distribution of state sizes along this query progress for all TPC-

DS queries is shown in Figure 5. While large states seem to occur

less frequently close to the start and end of queries, the overall

distribution shows no significant trends. Both large and small states

can occur during every phase of query execution. However, this

distribution could be skewed by a few queries with a large state.

Figure 6 displays the distribution of state size normalized to the

maximum state size for each query to account for this skew. One can

see that the trend partly revealed in Figure 5 is more apparent here.

On average, the state size grows until around 40% of pipelines are

completed and plateaus until around 70%. From there on, the state

continuously shrinks. The structure of query plans can explain this.

In the beginning, queries collect a lot of data, e.g., in join build sides.

In Figure 2, e.g., the first two states include only a single pipeline

result. From there on, at least two results are part of the state: at

least one join build side and the state of the probe pipeline. After

pipeline 5 , the state is maximal with three materialized pipelines

results (2 , 4 , and 5).

2969

3.3 Discussion

In this section, we have shown the overall distribution and trends

in the query state of all TPC-DS queries. However, we have not

discussed the implications of state separation arising from this data.

Overall, the state sizes in Figure 3 are promising for state separation.

Assuming a 10Gbit/s network connection between servers, a round

trip for the mean state size takes only 424ms. Still, a complete

round trip after every state can add up quickly. In the worst case,

up to 9.1GB must be transmitted for a single state, resulting in a

14.6 second round trip. For these large states, transfer time alone

can already exceed the execution time of local queries, making

re-execution in case of failure more profitable than state separation.

When considering all states occurring for queries (cf. Figure 4),

the potential network overhead increases further. Examining the

sum of state sizes, the mean of 2.6GB and a maximum of 162.8GB

lead to a 4.2 and 261 second round trip, respectively. Nevertheless,

given that 86% of single states can be transferred to other workers

in less than 160ms, state separation of single states can be profitable

for the vast majority of queries.

Evaluating the distribution of state sizes during individual queries

in Figure 6 shows that state separation is best early on or close

to the end of a query. However, as the relative cost of a restart

increases with query runtime, migrating the larger states occurring

between 25% and 75% progress might still pay off.

4 ON-DEMAND STATE SEPARATION

The advantages of state separation are well known for cloud envi-

ronments. Being able to add and remove workers and handle worker

crashes offers the flexibility desired by customers. However, syn-

chronizing the state over the network can be expensive, especially

for single-worker queries. It is not necessary for those to shuffle

state to workers between tasks, and thus, every network transfer

is overhead in query execution. As shown in Section 3, sending

every state over the network instead of only one can make a 10×
difference on average. Furthermore, our approach can optimize

for local execution, generating no execution overhead when no

state separation is required. While on-demand state separation and

migration solutions exist based on virtual machines (VMs), these

treat the VM as a blackbox. Therefore, they either have to restart

tasks [61] or migrate the entire VMs memory state [45, 48], which is

bound to be much larger than just the query state. Approaches that

use extensive knowledge about the inner state of queries [44, 60]

rely on pre-defined checkpoints. These must be defined before a

task starts and cannot be created retroactively on demand.

To achieve a minimal migration state without the need for less

flexible checkpoints, we propose scanning and extracting the cur-

rently materialized query state, as defined by Definition 2. As this

state is part of the execution process, it is accessible at any time

without prior preparation. In the remainder of this section, we will

describe the high-level design of our approach and the prototypical

implementation within the Umbra system using the exemplary use

case of query migration:

Definition 4. Query Migration. Query migration is the process
of moving the processing of a query q from an executing server A to a
server B without losing the progress achieved for q on A.

Cache

2

1

3

4

Server A

Server B

�uery PlanState

External
Trigger

Figure 7: Server cluster for on-demand state separation and

query migration. State is only shared via a network cache,

query plans can be migrated peer to peer. Exemplary data

flow for a migration from server A to server B is highlighted

in blue.

4.1 Deployment Environment

The deployment environment is of great importance to enable on-

demand state separation, especially in the presence of transient

compute resources. We show a possible server configuration in

Figure 7. In order to keep the state held in finished pipelines when a

worker fails or is taken away, it has to be kept in a durable, external

location. Therefore, when state separation is required, all tuples

that are part of the state must be cached externally. As state sizes

can reach gigabytes (cf. Section 3), all workers (e.g., servers A and

B) must access the cache through high-bandwidth connections.

Furthermore, the workers have to communicate to transfer the

accompanying query plan. In our current setup, this is realized by

peer-to-peer connections between workers. A peer-to-peer setup

is the most lightweight option for coordination, requiring few mes-

sages and no additional servers. It is, thus, ideal for small and stable

deployments. However, it is also possible to handle these transfers

using a dedicated coordinator in larger deployments. While this

adds communication overhead and requires an additional server, it

offers greater flexibility. For example, a coordinator can monitor the

running instances to detect migration needs and deal with servers

joining and leaving the cluster. While Figure 7 only focuses on those

servers and components relevant for state separation and query

migration, real deployments will also include additional servers for

the cache and storage servers required for storage separation.

There are additional constraints for caches. For one, theworkload

is different from traditional key-value store workloads. In contrast

to those, our data is ephemeral. For query migration, the state

is written and read exactly once, often directly after each other.

Once the data is read, it is no longer required and, thus, discarded.

Furthermore, the state sizes can pose a problem. Many cloud key-

value stores limit the maximum value size. The popular key-value

database Redis, e.g., has a limit of 512MB [42] for individual values.

However, as seen in the state analysis, the state size can reach

gigabytes easily. For our workload, the ideal cache would offer high

throughput and low latency under high write and read load while

offering support for large value sizes. We found the system closest

to our requirements to be Apache Crail [47], as it is optimized for

ephemeral data and has no limit on value size.

2970

Algorithm 1 Selecting blocking operators contained in a state

1: function SelectStateOperators(finishedPipelines, dependencies)

2: dependents← invert(dependencies)
3: stateOperators← ∅
4: for 𝑝 ∈ finishedPipelines do
5: anyUnfinished ← false
6: for dep ∈ dependents[𝑝] do
7: if dep ∉ finishedPipelines then
8: anyUnfinished ← true
9: if anyUnfinished then

10: append(stateOperators, p.blockingOperator)
11: return stateOperators

4.2 Process Overview

Having defined the deployment environment, we can describe the

outline of our on-demand state separation process. We will use the

query migration use case of Definition 4, as it is the most involved.

Other possible use cases for state separation, such as deferring

execution to prioritize other queries or snapshotting, can be realized

with the functionality utilized for query migration. For example,

consider the migration of the query in Figure 2 from server A to

server B in Figure 7.

First, the need for migration is detected and reported to the

server (1). Migration can be triggered by several events, e.g., the

indication by the cloud provider that a transient compute resource is

being taken away soon or the availability of a faster or cheaper spot

instance. Then, the current state of a query according to Definition 2

has to be identified at server A and extracted from structures such

as hash tables. Server A then transfers the extracted state to the

external cache (2). On server A, the query plan is then adapted to

continue from the current state and transferred to the receiving

server B (3). Server B then compiles the received query plan and

continues the execution. Whenever a partial result from the state

has to be scanned for the first time, it is fetched from the cache and

kept locally (4). Snapshots can be realized by periodically sending

the current state and the adapted query plan to the cache. Deferring

queries is a special case of snapshotting, as the worker does not

need to change. Therefore, the state and modified query plan can

also be kept locally, thus saving the cost of network transfer. We

will use the remainder of this section to describe the steps above in

detail.

4.3 State Selection

Once a server has been notified of a desired state separation, the

execution of the current query is halted. Then, we identify all oper-

ators that are part of the state. For this, we track the current query

progress in the form of finished pipelines throughout query exe-

cution. Further, to prune all pipeline results no longer required for

execution, we calculate all direct dependencies between pipelines.

Definition 5. Direct pipeline dependency: A pipeline 𝐴 di-
rectly depends on a pipeline 𝐵 if pipeline 𝐴 directly requires the result
of pipeline 𝐵 for execution.

In Figure 2, e.g., pipeline 3 depends on pipeline 2 , but not on

pipeline 1 . Given these dependencies, we can now select those

finished pipelines still part of the state. The algorithm for this is

shown in Algorithm 1. First, we invert the dependency mapping

to get all dependents for a pipeline (line 2). Then, we iterate over

all finished pipelines, identifying those that are part of the state

(line 4). If all dependents of a pipeline are finished, the pipeline’s

materialized result is no longer required and, therefore, no longer

considered part of the state (lines 6 - 8). Finally, we collect all

blocking operators of finished pipelines with at least one dependent

for state extraction (line 10).

Directly after pipeline 4 finished executing in our running

example, the finished pipelines contain pipelines 1 , 2 , 3 , and

4 . Of those, state selection discards 1 and 3 as all their depen-

dents (2 and 4 , respectively) are already finished. We remember

the blocking operators for state extraction for the two remaining

pipelines, namely, the grouped aggregation id, sum(price) and the

max ≤ revenue join.

4.4 State Extraction

Having found all operators containing state, we have to extract the

individual tuples that comprise this state. While a closer mapping to

the current state would be to migrate tuples within index structures,

such as hash tables, we extract state as defined in Definition 2. State

held in operators is optimized for efficient local processing, e.g.,

by keeping it in pointer-referenced storage and hash tables. This

configuration differs between operators and is hard to serialize for

network transfer. Furthermore, optimal state structures might differ

between servers. Migrating only tuples allows the target system

to re-create this per-operator state in a configuration optimized

for the local deployment as if it resided in a table. We first want to

highlight the high-level process of this tuple-based state extraction

before giving a detailed description of the implementation within

our system. In general, we have to distinguish between two different

kinds of blocking operators.

The first type is operators that only appear as blocking opera-

tors within a query, which we call scan-optimized operators. This

category comprises unary blocking operators, such as aggregations,

sorting, set operations, and potential specialized operators such as

K-Means, window functions, or sampling. These operators are the

easiest to extract tuples from, as they already offer functionality

to scan all tuples. Such operators are always sources of pipelines

using their results. Therefore, they produce all tuples when scanned,

allowing us to re-use this scan functionality. In many systems, op-

erators can be scanned repeatably to optimize queries, like the id,
sum(price) aggregation in Figure 2. Functionality for repeated scans

further enables state extraction for snapshots without interfering

with query execution.

The second type of operator is those with more complex access

patterns, such as joins, which appear as a blocking and as a filtering

operator. Hash joins, e.g., are optimized for point accesses on the

join predicate and often do not offer functionality for full scans.

Fortunately, there are only a few operator types in this category.

This category only contains different join implementations with

non-linear access optimizations in our system. Nevertheless, joins

frequently occur in queries and should be considered for query

migration. While these operators are not optimized for full scans,

their internal structures often still support such scans. Blockwise-

nested-loop joins, e.g., materialize their build-side fully without

2971

Modi�ied Plan

Cached Subtrees

State Extraction �ueries
CacheTransfer

Γid, sum(price)

BuildSideScan

CacheTransfer

⨝id = id

BuildSideScan

CacheTransfer

⨝0.9 * max <= revenue

Customer

⨝id = id

Customer Orders

Γid, sum(price)

⨝id = customer_id

Customer Orders

Γid, sum(price)

Γmax(revenue)

⨝id = customer_id

⨝0.9 * max <= revenue Migrated Table

Migrated Table

Migrated Table

Result

⨝0.9 * max <= revenue

⨝id = id

Figure 8: Query migration artifacts of the query in Figure 2 when migrating after pipeline 5. Top left: State extraction queries

to be run on the migration source. Bottom left: Extracted state represented by the corresponding subtree, held in the cache.

Right: Modified plan to continue execution on the target server.

additional indices, making scans easy. Most index structures, such

as hash tables and trees, can be scanned efficiently, allowing us

to support the migration of all operators currently implemented

within our system.

In the following, we will describe the implementation of query

migration for both scan-optimized and index-optimized operators.

As the implementation of operators varies heavily between systems,

we will limit the implementation to the Umbra [40] system. We

outline the requirements and possibility for state extraction in other

systems in Section 2.1.2.

4.4.1 Implementation. To best utilize existing infrastructure within
the database, we implement the extraction process as a regular

query. All tuples are materialized within operators during execu-

tion, often nested in a complex operator state. Extracting this state

with a query allows us to re-use existing logic and access paths.

Furthermore, this allows us to access all optimizations and features

of in-database query execution, such as specialized code genera-

tion [39] and morsel-driven parallelism [34]. Especially for scan-

optimized operators, the state extraction can be realized almost

entirely with existing code and logic, allowing easy integration into

an existing system. The extraction query plans differ for scan- and

index-optimized operators, which we will describe below. Once we

have generated this plan, the remaining steps are identical: The

query plan is compiled and given access to the state of the query

to be migrated or snapshotted. In contrast to regular queries, our

state extraction queries do not report the result to the user. Instead,

the resulting tuples, i.e., the query state, are collected in a compact

format and sent to the cache. Our approach schedules all extrac-

tion queries for immediate execution and exclusively to prevent

modifications to the state before the extraction is complete.

4.4.2 Scan-Optimized Operators. State from scan-optimized oper-

ators can be extracted using only the extracted operator’s logic.

For this, we duplicate the existing operator into a new query plan

and link the copy to the state of the operator selected for extrac-

tion. An example of such an extraction plan for a scan-optimized

operator can be seen in Figure 8 for the id, sum(price) aggrega-
tion. We can again use the fact that scans of an operator’s state

are non-destructive and reference the state of the existing operator,

avoiding a costly copy of the whole operator state.

4.4.3 Index-Optimized Operators. Index-optimized operators re-

quire a more in-depth analysis of the state to extract tuples. While

it would be possible to generate extraction plans using only ex-

isting query logic, e.g., by modifying joins to run against a single

tuple that joins with all build-side tuples, we opted to implement

dedicated extraction operators instead. Using dedicated operators,

we can often bypass the operator’s access paths and directly access

the data for a scan. This more efficient access strategy comes at

the cost of implementing extraction logic for all index-optimized

operators. However, as stated above, there are only a few operators

in this category that often occur. For space considerations, and

because all these extraction operators follow a similar pattern, we

will not detail the implementation for every operator. Instead, we

will describe the high-level implementation based on a hash join.

Consider, e.g., the id=id join extraction in the top left corner of

Figure 8. In it, we need to extract all tuples stored in the build-side

hash table of the hash join. All operator states are well-defined

within Umbra. Therefore, we can locate the hash table from the

operator state andmake it accessible to our build-side-scan operator.

This scan operator then loops over all buckets, extracting all key-

value pairs stored within to recreate the tuples. All other specialized

extraction operators in our system follow this pattern of accessing

the structure holding tuples in the operator’s state to be extracted.

Again, this scan is non-destructive, and therefore, we do not have

to copy the hash table to extract tuples.

2972

Algorithm 2Modifying the query plan to use the extracted state

1: functionModifyPlan(stateOperators)

2: opsToExtract ← ∅
3: for op ∈ sortPreOrder(stateOperators) do
4: if isIndexOptimized(op) then
5: toReplace← op.buildSide
6: replaceIn← op
7: else

8: toReplace← op
9: replaceIn← op.parents
10: migratedTable← buildTable(toReplace.types)
11: for location ∈ replaceIn do

12: if location.isValid() then
13: location.replace(toReplace,migratedTable)
14: append(opsToExtract, op)
15: return opsToExtract

4.5 Plan Modification

In the final step on the source server, we need to adapt the query

plan to incorporate the cached state instead of the subtrees it repre-

sents. To achieve this, we modify a copy of the existing query plan.

Algorithm 2 displays the pseudo-code for this query plan modifica-

tion. For every operator in the state, we again have to differentiate

whether it is scan- or index-optimized in the current query plan.

Index-optimized operators are not the blocking operator of the final

pipeline passing through them. Therefore, we cannot replace them

entirely with the tuples contained in their state. Instead, we mark

the build-side child for migration in the operator itself (line 5). For

simplicity, we only consider binary operators with one build side

in Algorithm 2. The procedure for n-ary operators is orthogonal,

replacing all finished pipelines ending at the state operator with

the corresponding state. In Figure 8, this can be seen for the id =
id and max ≤ revenue joins. Our approach replaces only the build

side subtrees and not the entire joins in the modified plan.

Scan-optimized operators can only be part of the state operators

if all their inputs are finished. Therefore, we can replace the entire

operator with the state held within (line 8) without losing progress.

However, in contrast to index-optimized operators, it is possible that

we need to replace the operator in multiple places as scan-optimized

operators can be scanned multiple times within the same query. The

id, sum aggregation of Figure 2, e.g., is scanned twice. Therefore,

a migration after pipeline 2 needs to replace it in both parent

pipelines 3 and 6 . One can see that this can lead to conflicting

replacements: For example, in the migration displayed in Figure 8,

the id, sum aggregation is part of the state, and thus, replaced in

both parents. However, one parent is further replaced in the max ≤
revenue join’s build side. For such cases, we always want to ensure

only the topmost replacement takes place, as it preserves the most

progress. To achieve this, we perform replacements top-down by

sorting the state operators (line 3) and always check whether the

replacement location is still valid, i.e., contained in the query plan

(line 12). This way, replacements will always be optimal, as the

topmost operator is considered first. Replacements in the lower

part of the tree will either be performed later on or will not occur

if the location is no longer valid. To prevent needless network

transfers, we only extract state from operators that are part of the

final query plan, i.e., all operators part of a valid replacement (line

14).

4.6 Query Migration and Continuation

Once we extracted all tuples that are part of the state and have

generated a query plan utilizing this state, the query can be sent

to the desired target. In the scenario outlined above, migrating a

query from server A to server B, neither the state nor the query are

initially available at the destination server. In the first step, server

A sends the modified query plan to server B and then aborts the

local execution. In turn, the query plan is compiled and executed

on server B. Whenever the execution reaches the first scan of a

migrated table, the table is fetched in parallel from the network

cache and held locally for potential subsequent scans. In the case

of a migration, the cache can discard each stored value after the

first read.

Pausing a query works orthogonally without the need for net-

work transfers. Instead of caching the query plan and state ex-

ternally, our approach would materialize them in the memory or

persistent storage of the worker. Once both are materialized, we

abort the query locally to free all working memory for the priori-

tized query. When the prioritized query finishes, we load the plan

from disk and continue its execution. Finally, snapshots register

both the state and query plan with the cache. Once all data is cached

externally, execution continues on the local server.

4.7 Applications

So far, we have focused on migrating queries between servers. Mi-

gration alone already offers several benefits. It can save cost by uti-

lizing cheap spot instances without risk and improve performance

by changing to better-suited instances at runtime. However, we

understand on-demand state separation as a toolkit that can also be

applied in other scenarios. First, as already discussed in the previous

subsection, our approach allows users to suspend queries cheaply

to prioritize latency-sensitive tasks when compute resources are

limited. The snapshotting mechanism of Section 4.6 can be used to

deal with worker failures, which we have not discussed so far. In

the after-the-fact query migration use case, we rely on prior notice

to migrate, which is unavailable in the case of crashes. In order to

avoid restarts, this mechanism can be used to create periodic snap-

shots of a query. In case of a failure, we assign the latest snapshot of

the query plan to a newworker, which again fetches migrated tables

on demand and continues execution. Furthermore, applications of

our approach are not restricted to single-worker queries alone. The

extracted state caches independent subtrees of a query, as can be

seen in Figure 8. Thus, these subtrees could be executed in parallel

on different workers and combined using the steps outlined in this

section, effectively enabling scale-out for existing systems.

While they are the focus of our work, possible applications of

on-demand state separation are not limited to distributed settings.

Materializing tuples with information about their corresponding

subtree (cf. Figure 8) can be used to share and re-use intermediate

results with other queries [25, 43]. Further, our approach can be

used to re-plan queries in the event of network delays [6, 53] or

cardinality misestimation in the optimizer [8, 37].

2973

5 EVALUATION

Our evaluation is twofold. In the first part, we provide an in-depth

analysis of the amount and sources of the overhead of on-demand

state separation on query processing in a series ofmicrobenchmarks.

In the second part, we demonstrate the feasibility of our approach

for typical cloud use cases. We conduct all experiments in this

section using our approach within the Umbra database system [40].

5.1 Setup

To emulate a cloud environment, we run all experiments in this

section in a cluster of 4 nodes. Each node is equipped with an

Intel Xeon CPU E5-2660 v2 (2.20GHz) and 256GB of DDR3 RAM.

The nodes connect to the cluster through a Mellanox ConnectX–3

VPI network interface card (up to 56Gbit/s FDR Infiniband) via a

Mellanox SX6005 switch. While an RDMA Infiniband configuration

would be most performant, many cloud providers rely on Ethernet

connections between servers. For this reason, our implementation

uses the TCP network stack as well, and we configure our cluster to

run on IP-over-Infiniband (IPoIB) instead of full-fledged Infiniband

to emulate a more typical cloud setup.

Two nodes act as source and target servers for query migration,

which is the main focus of this evaluation. Each server runs an

Umbra instance on a local copy of the TPC-DS SF100 database

held in an in-memory file system. This way, we guarantee equal

access to the base data, simulating storage separation. The two

remaining nodes form the Apache Crail-based network cache [47],

with one acting as a namenode and one acting as a datanode. While

Crail offers an optimized RDMA-based mode, we again opt for a

TCP-based infrastructure to better simulate a typical cloud setup.

5.2 Microbenchmarks

On-demand state separation comprises many individual steps, as

outlined in Section 4. Before demonstrating the feasibility through

end-to-end benchmarks, we first want to analyze the sources of the

introduced overhead in these steps. The two main categories in our

analysis are network and execution overhead. The first arises from

the topology of the cluster setup and external components, such

as network caches, which we cannot directly influence. Overhead

stemming from our approach is mainly execution-based, that is,

analyzing and extracting the state locally and continuing execution

on the remote server.

Configuration. For all experiments in this section, we report over-

heads based on an average of 5 runs. To provide a detailed analysis,

we measure the individual runtime of all sub-steps of migrating

after every pipeline occurring in the 103 TPC-DS queries. Further,

we perform full migrations and configure both the source and target

server to run an identical configuration of Umbra, thus minimizing

any configuration influence on runtime. However, we still detected

runtime variance in preliminary experiments for local-only and

migrating runs, even with identical configurations. Thus, we report

overheads as a percentage of the runtime of an entire migration.

Execution Overhead. In the first microbenchmark, we want to

highlight the overhead caused by our approach. Multiple factors

comprise this overhead: On the source server, this includes state se-

lection (Section 4.3), plan modification (Section 4.5), and compiling

state extraction queries, as well as running the extraction up to, but

0.0%

5.0%

10.0%

15.0%

<
1M

B

1M
B
- 1
0M

B

10
M
B
- 5
0M

B

50
M
B
- 1
00
M
B

10
0M

B
- 5
00
M
B

50
0M

B
- 1
G
B

1G
B
- 5
G
B

5G
B
- 1
0G

B

State SizeE
x
e
c
u
t
i
o
n
-
B
a
s
e
d
O
v
e
r
h
e
a
d # Threads

4

8

Figure 9: Execution overhead by state size when migrating

TPC-DS queries.

excluding, network transfer (Section 4.4). Further, the execution

overhead includes parsing and compiling the received query plan

on the target server. We compare the overhead generated solely by

our approach for two server configurations. Once Umbra is allowed

to use up to four worker threads, once up to eight. Figure 9 shows

the resulting overheads.

One can see that there is a trend along with the state size for both

configurations. When migrating larger states, the overhead grows

as well. We expect this increase, as all tuples must be scanned at

least once for extractionwhenmaterializing them for network trans-

fer. Furthermore, there is no apparent difference between four and

eight threads in terms of overhead, indicating that our parallel ex-

traction scales as well as Umbra’s query execution framework. This

scaling further shows the benefits of utilizing extraction queries

in our approach, through which we gain access to parallelism and

scheduling optimizations already present in the database.

For both configurations, one can see several outliers for small

state sizes. These are primarily from small and fast queries with

execution times in milliseconds, where execution does not fully

amortize the cost of compiling extraction queries. Nevertheless, on

average less than 11% of overall query runtime is spent processing

state extraction and migration, independent of server configuration

and state size. For states smaller than 50MB, which make up 83% of

all states, the mean overhead does not exceed 1.9% independent of

the server configuration.

Network Overhead. Having analyzed the processing overhead

caused directly by our approach, we want to analyze the overhead

caused by the necessary network transfers. While this overhead

does not stem from our approach directly, and we thus cannot influ-

ence it within our system, it is crucial to understand the overall cost

of on-demand state separation. The network overhead measured

here is the time required to send and receive the extracted state to

and from the cache. Again, we compare the overhead for migrations

between two instances with an equal number of worker threads

and display the resulting overhead for all migrations in Figure 11.

Overall, the network overhead again clearly grows with the state

size migrated. We expect this growth, as network bandwidth is

limited and slower than local processing of tuples within a query.

However, this overhead is less linear than we have seen for local

processing, reaching an average of 45% for states between five and

ten gigabytes when using eight worker threads. Furthermore, in

2974

4 Threads to 4 Threads 8 Threads to 8 Threads 4 Threads to 8 Threads

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

-50%

0%

50%

100%

Query Progress

R
u
n
t
i
m
e
D
i
ff
e
r
e
n
c
e

Total State Size < 50MB 50MB - 100MB 100MB - 500MB 500MB - 1GB 1GB - 5GB 5GB - 10GB

Figure 10: Execution time difference of query migration compared to local execution for 3 server configurations. First thread

count denotes source worker threads, execution times without migration are measured on source server.

0%

20%

40%

60%

<
1M

B

1M
B
- 1
0M

B

10
M
B
- 5
0M

B

50
M
B
- 1
00
M
B

10
0M

B
- 5
00
M
B

50
0M

B
- 1
G
B

1G
B
- 5
G
B

5G
B
- 1
0G

B

State SizeN
e
t
w
o
r
k
-
B
a
s
e
d
O
v
e
r
h
e
a
d

Threads

4

8

Figure 11: Network overhead by state size when migrating

TPC-DS queries.

contrast to the execution-based overhead, one can see that there is

a noticeable difference between the configurations. The network

transfer is not limited by the compute resources available but by the

network bandwidth and latency. Even though network overhead

exceeds processing overhead for most state sizes in both configu-

rations, the mean overhead for states smaller than 50MB does not

exceed 11% of query runtime.

5.3 Query Migration

Given the individual overheads from the microbenchmarks, we

investigate how this translates into the cost of end-to-end query

migrations compared to local execution. In addition to migrating

between identically configured servers, we further investigate the

advantage of fixing an adverse query-to-worker matching by mi-

grating to a more powerful server. Furthermore, we highlight the

advantage of our on-demand separation by comparing it to full-

fledged state separation, where the state separation of Section 4 is

performed after every pipeline.

Configuration. To capture the total cost of migration, we base all

experiments in this section on end-to-end query runtime. Query

runtime includes every step of query processing, from receiving the

SQL query to fully reporting the result, either locally or, in the case

of migration, on the remote server. We again migrate all 103 TPC-

DS queries and report the average of five runs while re-using the

server configurations from Section 5.2. Unless stated otherwise, all

experiments in this subsection report the relative runtime difference

between migrating a query and local-only execution on the source

server. We show all states < 50MB as a single group for better

visibility as they behaved almost identically in all experiments. To

better highlight trends, we round query progress to the nearest 10%

and report averages within this interval throughout this subsection.

Symmetric Migration. In the first two experiments, we focus on

the overall cost of migration. For this, we migrate between identical

instances of Umbra for configurations with four and eight worker

threads. This experiment simulates a transient worker being taken

away and replaced by another at any part of the query. The re-

sults are displayed left and center in Figure 10. We again compare

the results for different state sizes. One can see that states smaller

than 1GB behave similarly, independent of server configurations.

However, there is a significant difference between the two configu-

rations, even for smaller states. We attribute this to the differences

in network overhead, which we already identified in Figure 11. In

addition to the state size, the migration point also influences the

overhead. One can see that migrating between 30% and 80% of

query progress is slightly more expensive than at the beginning

and end of a query, even when state sizes are similar. We found that

states in the middle of a query comprise more operators on average,

leading to an increased overhead for compiling and managing state

extraction even when the resulting state is of a similar size.

Most query migrations cause less than 25% overhead, making

migrating queries more profitable than restarts right from early on.

On average, migrating states smaller than 1GB causes 9.3% over-

head when using four worker threads and 16.4% when using eight.

However, it seems that migrating states larger than 5GB is seldom

profitable, especially for the eight-thread configuration. The explo-

sion in overhead for states between one and five gigabytes is caused

by only two queries that are no longer compensated for by other

states for progress >50%. It is evident that the migration of large

states is rarely profitable and will be outperformed by restarts. How-

ever, this does not mean that on-demand state separation cannot

be profitable for queries with large states. Because state scans are

non-destructive, it is possible to extract older, potentially smaller

states at the cost of some progress loss. This way, restarts are only

required if a query does not have any small states.

2975

0%

50%

100%

150%

0% 25% 50% 75% 100%

Query ProgressE
x
t
r
a
c
t
i
o
n
O
v
e
r
h
e
a
d # Threads 4 8Approach Full On-Demand

Figure 12: Extraction-caused runtime overhead for full and

on-demand state separation for TPC-DS.

Migrating to Better Instance. On-demand state separation can

not only be utilized tomigrate between identical instances. It further

allows using more powerful instances when they become available,

e.g., through spot instances or servers finishing their current query.

Utilizing such instances promises the potential to speed up query

processing. To investigate the benefits of migrating running queries

to faster servers, we migrate from an Umbra instance with four

worker threads to one with eight workers. The results, displayed

on the right in Figure 10, show that utilizing a faster instance can

speed up query processing in many cases, especially for smaller

state sizes. As expected, migrating early will lead to the biggest

speedup in processing because the faster compute can be used the

longest. However, there are instances where migration pays off in

every execution phase. Even when 90% of the query is completed,

some small states’ migrations are still beneficial. Migration is not

the only possibility to leverage faster workers. In addition, one

needs to consider restarting queries on the new worker.

Ideally, restarting on a worker with twice the compute power

will speed up query processing by a factor of two as well. On-

demand state separation can outperform such query restarts for

many queries in our experiments. On average, migration outper-

forms restarts once a query reaches 30% progress. When a query

has progressed more than 50% on the source server, migration is

67.5% faster when compared to a restart on the destination. Again,

larger states are not profitable for on-demand state separation, and

query restarts would outperform them throughout the experiment.

On-Demand vs Full State Separation. Having analyzed the cost

of on-demand state separation for migrations, we want to compare

it to full state separation. Full separation extracts state and synchro-

nizes it with a cache after every pipeline. We compare the average

cost of on-demand state separation with the cumulative cost that

state separation after every pipeline will have incurred so far. For

both approaches, state separation is performed in Umbra as out-

lined in Section 4. While this leads to a larger state than necessary

(cf. Section 3.1), and approaches with full state separation could op-

timize for smaller states, the overall trends will prevail. The results

of each blocking operator still have to be transferred at least once.

In contrast to the previous experiments, the runtime overhead no

longer includes a full migration, which would disproportionately

affect full state separation. Instead, the overhead comprises the

work required to extract the state at the migration source only.

Figure 12 shows the resulting overheads in runtime . The execu-

tion time overhead shows the advantage of on-demand separation.

0

5

10

15

1 2 3 4

Parallel Queries

M
i
g
r
a
t
i
o
n
L
a
t
e
n
c
y
[
s
]

Threads

4

8

Figure 13:Migration latencywhen executingmultiple queries

in parallel.

While the overhead grows for full migration with query progress,

the overhead of a single migration is almost constant throughout.

A full migration causes more than 100% overhead for eight threads,

whereas the overhead of on-demand separation never exceeds 10%.

The influence of the number of worker threads identified in Fig-

ure 10 prevails for both on-demand and full state separation, even

when only considering the overhead at the source. The more pow-

erful the servers, the higher the overhead of state separation.

In environments where sudden worker failures are common, the

increased cost of full state separation may pay off. However, we

argue that the benefits of after-the-fact on-demand separation will

outweigh the risk of losing progress in most deployments.

Migration Latency. Finally, we want to demonstrate the capabili-

ties of our approach in real-world applications. We investigate an

exemplary use case of vacating a spot instance running multiple

queries, e.g., when the cloud provider indicates that they will take

it away soon. It is critical to react quickly to a migration request in

this scenario. Therefore, we will investigate the migration latency,

the time from the notification until the current server is fully va-

cated, and all progress is held externally. While we here migrate all

running queries, it is, of course, also possible to extract only a few

queries for load balancing in multi-tenant scenarios [33]. We inves-

tigate the latency by running randomly-selected queries in parallel

in a loop and triggering migration after a randomly selected dura-

tion between 10 and 30 seconds. The migration latency reported

is the time from triggering the migration until every query’s state

and plan are sent to the cache and target server, respectively. Fur-

thermore, to not lose progress, all in-flight tasks, i.e., pipelines, are

finished before migrating, which is also included in the latency.

Figure 13 shows the migration latency for 4 and 8 worker threads

for 100 runs per thread and query count combination. We removed

19 outliers for better visibility. Of course, one can see that there is

linear growth with an increasing number of parallel queries. How-

ever, the gap between 4 and 8 threads shrinks for more queries. This

shrinkage is again attributable to the network limitation already

identified in Figure 11. Furthermore, as we optimize for keeping all

progress, the latency includes finishing the current task. It could

be further reduced if faster migration is valued over progress kept.

On average, even with this additional delay, it takes less than 2.6

seconds to vacate a server, allowing us to react quickly to changes

in dynamic environments.

2976

6 RELATEDWORK

As more data moves to the cloud, ample research has focused on

optimizing data processing for this distributed and flexible environ-

ment. This section will provide an overview of the research most

essential and relevant to our on-demand state separation approach.

Cloud-Optimized Database Architectures. Cloud-optimized

databases, such as Snowflake [12], Google BigQuery [3, 38], and

Amazon Redshift [24] optimize for massive parallelism for queries

on ever-growing data. Some surveys [49, 67] investigate the chal-

lenges and opportunities for databases in cloud environments. Anal-

ogous to cloud-optimized databases, we strive to increase flexibility

for analytical queries in the cloud. In some systems, this flexibility

is enabled through disaggregated storage [11, 12, 16, 41, 54, 56, 66].

Dremel [38], e.g., employs storage disaggregation, as well as mem-

ory disaggregation through a shuffle layer, for flexiblity and scalabil-

ity. We see storage disaggregation as one pillar of flexibility in our

approach. To further improve the performance of storage-separated

systems, Yang et al. propose a combination of caching and pushing

compute to storage to reduce network cost [62]. We also minimize

network overhead by migrating a minimal query state. In addition,

modern big data systems [31, 51, 65] offer flexibility by directly

accessing tables stored in remote storage [4, 19].

Building on the ideas of storage-separated architectures, Aguilar-

Saborit et al. [2] describe the state-separating POLARIS system. In

addition to storage, they further keep the query state externally,

thereby enabling intra-query worker changes. We build upon this

idea for our approach. However, we keep state externally only

when necessary, thus reducing network overhead. Keeping state in

the form of intermediate results externally for transient compute

resources has also been proposed for Apache Spark [60, 61]. To

materialize intermediate results, Stuedi et al. [30, 47] propose a data

store optimized for temporary data in distributed settings.

Adaptive Query Processing. Ample research has been conducted

on modifying query execution during runtime in the context of

adaptive query processing [7, 14, 23]. While this area focuses on

adapting the query plan at runtime, and we currently do not modify

execution order when migrating, we still share similar ideas. For

example, Xing et al. [59] discuss migrating processing on the fly

for load balancing in streaming engines. Orthogonal to our work in

case of migration, some works have focused on keeping progress

in the case of plan changes in ETL MapReduce [27] and traditional

database systems. Keeping progress has been described using artifi-

cially introduced operators [8] and unary blocking operators [37]

for database systems. These works re-use intermediate results on

the same system and do not consider network transfer. To mitigate

network dealys, Urhan et al. [6, 53] propose query scrambling.

Instance Migration in Cloud Environments. Many cloud pro-

viders offer transient compute resources to customers to increase

resource utilization within their datacenters. Often, such transient

workers, e.g., spot instances in Amazon AWS, are cheaper than

reserved instances. Therefore, utilizing such transient resources

has been the focus of recent research. Kraska et al. [32] analyze

deployment strategies for fault tolerancemechanisms, such as query

restarts and checkpoints. These checkpoints often comprise the

entire VM and application state [28, 45, 55, 63, 64]. In contrast,

we optimize for a small, system-specific query state that can be

extracted at any time. Other systems also optimize for a minimized

state [9, 44, 60] but rely on pre-defined checkpoints. Yan et al. [60]

propose adaptive fine-grained checkpointing for Apache Spark

based on recomputation cost and failure probability. Kaulakiene

et al. [28] propose migrating tasks to cheaper or more powerful

instances using VM snapshots to optimize the cost and runtime

of jobs in a cloud setting. We have identified such migrations as

a primary use case for our on-demand state separation approach

and optimized specifically for the migration of database workloads.

While our work focuses on analytical workloads, migrating between

servers is also interesting for transactional workloads [13, 18].

Migration of Intermediate Results. The presented idea to mi-

grate partial query results is inspired by past work in multi-engine

environments. These so-called polystores span a combination of

stream processing, big data, and database systems [15, 20, 22, 26, 36],

some surveyed by Tan et al. [50]. While we only consider migrating

to other instances of the same engine and optimize for flexibility in

our work, works on multi-engine environments focus on a range

of optimization criteria. For example, Agrawal et al. [1] optimize

performance by selecting a combination of execution engines for a

single task and migrating intermediate results between these en-

gines. Simitsis et al. [46] describe an optimizer for data workflows

comprising multiple engines, taking both the execution and data

shipping cost into account. Focussing specifically on data migration,

Dziedzic et al. [17] discuss challenges and solutions for sharing re-

sults between engines.While we discuss our approach in the context

of flexibility, it can also be used to optimize for different metrics.

7 CONCLUSION

In this paper, we present a novel on-demand state separation ap-

proach for data processing in the cloud. In contrast to existing

state-separating architectures, our approach can establish state sep-

aration after-the-fact, e.g., when migrating between workers. This

way, our approach only incurs the overhead of syncing state ex-

ternally when necessary. To motivate our approach, we provided

an extensive analysis of query state occurring within the TPC-DS

benchmark, showing that on-demand extraction can reduce the

transferred state by an order of magnitude. Our approach exploits

existing access paths to extract state with specialized extraction

queries, allowing state extraction with minimal code and runtime

overhead while utilizing all features of modern query engines.

We demonstrate the feasibility of our approach using an imple-

mentation of on-demand state separation in the Umbra database

system. The experimental analysis shows that our approach can

outperform full state separation and query restarts in many sce-

narios. Our in-depth cost analysis demonstrates that the majority

of overhead stems from network overhead. With the roll-out of

more powerful network infrastructure in the future, we expect our

approach to be beneficial in even more use cases.

ACKNOWLEDGMENTS

The authors wish to thank Ana Klimovic and Jonas Pfefferle for

their help in optimizing the Crail configuration for our experiments.

This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No 725286).

2977

REFERENCES

[1] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed K. Elmagarmid,

Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad

Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, Saravanan Thiru-

muruganathan, and Anis Troudi. 2018. RHEEM: Enabling Cross-Platform Data

Processing - May The Big Data Be With You! -. Proc. VLDB Endow. 11, 11 (2018),
1414–1427.

[2] Josep Aguilar-Saborit and Raghu Ramakrishnan. 2020. POLARIS: The Distributed

SQL Engine in Azure Synapse. Proc. VLDB Endow. 13, 12 (2020), 3204–3216.
[3] H Ahmadi. 2016. In-memory Query Execution in Google BigQuery. Google Cloud

Blog (2016).

[4] Amazon. 2022. Cloud Object Storage - Amazon S3. Retrieved February 22, 2022

from https://aws.amazon.com/s3/

[5] Pradeep Ambati, Noman Bashir, David E. Irwin, and Prashant J. Shenoy. 2021.

Good Things Come to Those Who Wait: Optimizing Job Waiting in the Cloud.

In SoCC. ACM, 229–242.

[6] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan. 1996.

Scrambling Query Plans to Cope With Unexpected Delays. In PDIS. IEEE Com-

puter Society, 208–219.

[7] Shivnath Babu and Pedro Bizarro. 2005. Adaptive Query Processing in the

Looking Glass. In CIDR. www.cidrdb.org, 238–249.

[8] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-

optimization. In SIGMOD Conference. ACM, 107–118.

[9] Carsten Binnig, Abdallah Salama, Erfan Zamanian, Muhammad El-Hindi, Se-

bastian Feil, and Tobias Ziegler. 2015. Spotgres - parallel data analytics on Spot

Instances. In ICDE Workshops. IEEE Computer Society, 14–21.

[10] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rit-

tinger, and Jens Teubner. 2006. MonetDB/XQuery: a fast XQuery processor

powered by a relational engine. In SIGMOD Conference. ACM, 479–490.

[11] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,

Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,

Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,

Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB

Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD
Conference. ACM, 2477–2489.

[12] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.

The Snowflake Elastic Data Warehouse. In SIGMOD Conference. ACM, 215–226.

[13] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.

Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud

using Live Data Migration. Proc. VLDB Endow. 4, 8 (2011), 494–505.
[14] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. 2007. Adaptive

Query Processing. Found. Trends Databases 1, 1 (2007), 1–140.
[15] Katerina Doka, Nikolaos Papailiou, Victor Giannakouris, Dimitrios Tsoumakos,

and Nectarios Koziris. 2016. Mix ’n’ match multi-engine analytics. In IEEE
BigData. IEEE Computer Society, 194–203.

[16] Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: A Unified

Cache Storage System for Analytical Databases. Proc. VLDB Endow. 14, 11 (2021),
2432–2444.

[17] Adam Dziedzic, Aaron J. Elmore, and Michael Stonebraker. 2016. Data transfor-

mation and migration in polystores. In HPEC. IEEE, 1–6.
[18] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.

Zephyr: live migration in shared nothing databases for elastic cloud platforms.

In SIGMOD Conference. ACM, 301–312.

[19] Apache Software Foundation. 2021. Apache Hadoop. Retrieved February 22,

2022 from https://hadoop.apache.org/

[20] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron J. Elmore, Brandon Haynes,

Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. 2016.

The BigDAWG polystore system and architecture. In HPEC. IEEE, 1–6.
[21] Panagiotis Garefalakis, Konstantinos Karanasos, and Peter R. Pietzuch. 2019.

Neptune: Scheduling Suspendable Tasks for Unified Stream/Batch Applications.

In SoCC. ACM, 233–245.

[22] Victor Giannakouris, Nikolaos Papailiou, Dimitrios Tsoumakos, and Nectarios

Koziris. 2016. MuSQLE: Distributed SQL query execution over multiple engine

environments. In IEEE BigData. IEEE Computer Society, 452–461.

[23] Anastasios Gounaris, Efthymia Tsamoura, and Yannis Manolopoulos. 2013. Adap-

tive Query Processing in Distributed Settings. In Advanced Query Processing (1).
Intelligent Systems Reference Library, Vol. 36. Springer, 211–236.

[24] AnuragGupta, DeepakAgarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano

Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler

Data Warehouses. In SIGMOD Conference. ACM, 1917–1923.

[25] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2010. An

architecture for recycling intermediates in a column-store. ACM Trans. Database
Syst. 35, 4 (2010), 24:1–24:43.

[26] Abdulrahman Kaitoua, Tilmann Rabl, Asterios Katsifodimos, and Volker Markl.

2019. Muses: Distributed Data Migration System for Polystores. In ICDE. IEEE,

1602–1605.

[27] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan, Vuk

Ercegovac, Chunyang Xia, and Jesse Jackson. 2014. Dynamically optimizing

queries over large scale data platforms. In SIGMOD Conference. ACM, 943–954.

[28] Dalia Kaulakiene, Christian Thomsen, Torben Bach Pedersen, Ugur Çetintemel,

and Tim Kraska. 2015. SpotADAPT: Spot-Aware (re-)Deployment of Analytical

Processing Tasks on Amazon EC2. In DOLAP. ACM, 59–68.

[29] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying

Start: fast compilation and fast execution of relational queries in Umbra. VLDB
J. 30, 5 (2021), 883–905.

[30] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,

and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless

Analytics. In OSDI. USENIX Association, 427–444.

[31] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey

Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,

Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,

Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis,

Skye Wanderman-Milne, and Michael Yoder. 2015. Impala: A Modern, Open-

Source SQL Engine for Hadoop. In CIDR. www.cidrdb.org.

[32] Tim Kraska, Elkhan Dadashov, and Carsten Binnig. 2017. Spotlytics: How to Use

Cloud Market Places for Analytics?. In BTW (LNI), Vol. P-265. GI, 361–380.
[33] Willis Lang, Srinath Shankar, Jignesh M. Patel, and Ajay Kalhan. 2014. Towards

Multi-Tenant Performance SLOs. IEEE Trans. Knowl. Data Eng. 26, 6 (2014),

1447–1463.

[34] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: a NUMA-aware query evaluation framework for the many-

core age. In SIGMOD Conference. ACM, 743–754.

[35] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query

Processing in the Cloud. Proc. VLDB Endow. 14, 9 (2021), 1606–1612.
[36] Harold Lim, Yuzhang Han, and Shivnath Babu. 2013. How to Fit when No One

Size Fits. In CIDR. www.cidrdb.org.

[37] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and

Hamid Pirahesh. 2004. Robust Query Processing through Progressive Optimiza-

tion. In SIGMOD Conference. ACM, 659–670.

[38] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,

Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL

Analysis at Web Scale. Proc. VLDB Endow. 13, 12 (2020), 3461–3472.
[39] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.
[40] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System

with In-Memory Performance. In CIDR. www.cidrdb.org.

[41] Presto. 2022. Distributed SQL Query Engine for Big Data. Retrieved February

22, 2022 from https://prestodb.io/

[42] Redis. 2022. Redis - Data types. Retrieved February 22, 2022 from https:

//redis.io/topics/data-types

[43] Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst.
13, 1 (1988), 23–52.

[44] Prateek Sharma, Tian Guo, Xin He, David E. Irwin, and Prashant J. Shenoy. 2016.

Flint: batch-interactive data-intensive processing on transient servers. In EuroSys.
ACM, 6:1–6:15.

[45] Supreeth Shastri and David E. Irwin. 2017. HotSpot: automated server hopping

in cloud spot markets. In SoCC. ACM, 493–505.

[46] Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, and Umeshwar Dayal. 2012.

Optimizing analytic data flows for multiple execution engines. In SIGMOD Con-
ference. ACM, 829–840.

[47] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,

Nikolas Ioannou, and Ioannis Koltsidas. 2017. Crail: A High-Performance I/O

Architecture for Distributed Data Processing. IEEE Data Eng. Bull. 40, 1 (2017),
38–49.

[48] Supreeth Subramanya, Tian Guo, Prateek Sharma, David E. Irwin, and Prashant J.

Shenoy. 2015. SpotOn: a batch computing service for the spot market. In SoCC.
ACM, 329–341.

[49] Junjay Tan, Thanaa M. Ghanem, Matthew Perron, Xiangyao Yu, Michael Stone-

braker, David J. DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska.

2019. Choosing A Cloud DBMS: Architectures and Tradeoffs. Proc. VLDB Endow.
12, 12 (2019), 2170–2182.

[50] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G. Mattson. 2017. En-

abling query processing across heterogeneous data models: A survey. In IEEE
BigData. IEEE Computer Society, 3211–3220.

[51] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. 2010. Hive - a

petabyte scale data warehouse using Hadoop. In ICDE. IEEE Computer Society,

996–1005.

[52] Transaction Processing Performance Council (TPC). 2021. TPC benchmark DS:

Standard specification. Retrieved February 15, 2022 from http://www.tpc.org/

[53] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. 1998. Cost Based Query

Scrambling for Initial Delays. In SIGMOD Conference. ACM Press, 130–141.

2978

https://aws.amazon.com/s3/
https://hadoop.apache.org/
https://prestodb.io/
https://redis.io/topics/data-types
https://redis.io/topics/data-types
http://www.tpc.org/

[54] Ben Vandiver, Shreya Prasad, Pratibha Rana, Eden Zik, Amin Saeidi, Pratyush

Parimal, Styliani Pantela, and Jaimin Dave. 2018. Eon Mode: Bringing the Vertica

Columnar Database to the Cloud. In SIGMOD Conference. ACM, 797–809.

[55] William Voorsluys and Rajkumar Buyya. 2012. Reliable Provisioning of Spot

Instances for Compute-intensive Applications. In AINA. IEEE Computer Society,

542–549.

[56] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,

and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated

Storage. In NSDI. USENIX Association, 449–462.

[57] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query

Scheduling for Analytical Workloads. In SIGMOD Conference. ACM, 1879–1891.

[58] Christian Winter, Tobias Schmidt, Thomas Neumann, and Alfons Kemper. 2020.

Meet Me Halfway: Split Maintenance of Continuous Views. Proc. VLDB Endow.
13, 11 (2020), 2620–2633.

[59] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. 2005. Dynamic Load

Distribution in the Borealis Stream Processor. In ICDE. IEEE Computer Society,

791–802.

[60] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and Thomas Mosci-

broda. 2016. TR-Spark: Transient Computing for Big Data Analytics. In SoCC.
ACM, 484–496.

[61] Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee, Andrew

Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. 2017. Pado: A Data

Processing Engine for Harnessing Transient Resources in Datacenters. In EuroSys.

ACM, 575–588.

[62] Yifei Yang, Matt Youill, Matthew E. Woicik, Yizhou Liu, Xiangyao Yu, Marco

Serafini, Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB:

Hybrid Pushdown and Caching in a Cloud DBMS. Proc. VLDB Endow. 14, 11
(2021), 2101–2113.

[63] Sangho Yi, Artur Andrzejak, and Derrick Kondo. 2012. Monetary Cost-Aware

Checkpointing and Migration on Amazon Cloud Spot Instances. IEEE Trans.
Serv. Comput. 5, 4 (2012), 512–524.

[64] Sangho Yi, Derrick Kondo, and Artur Andrzejak. 2010. Reducing Costs of Spot

Instances via Checkpointing in the Amazon Elastic Compute Cloud. In IEEE
CLOUD. IEEE Computer Society, 236–243.

[65] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das,Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.

Apache Spark: a unified engine for big data processing. Commun. ACM 59,

11 (2016), 56–65.

[66] Qizhen Zhang, Philip A Bernstein, Daniel S Berger, Badrish Chandramouli,

Vincent Liu, and Boon Thau Loo. 2022. Compucache: Remote computable caching

using spot vms. In CIDR. www.cidrdb.org.

[67] Qizhen Zhang, Yifan Cai, Sebastian Angel, Vincent Liu, Ang Chen, and

Boon Thau Loo. 2020. Rethinking Data Management Systems for Disaggre-

gated Data Centers. In CIDR. www.cidrdb.org.

2979

