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ABSTRACT

This paper revisits the H-Store/VoltDB concurrency control scheme
for partitioned main-memory databases, which we term run-to-
completion-single-thread (RCST), with an eye toward improving its
poor performance on multi-partition (MP) workloads. The original
scheme focused on maximizing single partition (SP) performance,
producing results in millions of transactions per second on modest
clusters, but at the expense of dismal MP performance. In this paper,
we show that original RCST algorithms be made to dramatically im-
prove MP performance with very limited impact on SP performance.
That makes RCST superior to popular optimistic and pessimistic
schemes without optimizations for batch execution, including OCC
and 2PL, on a wide range of multi-node workloads with up to 60%
throughput improvement.

Our second contribution is to propose a multiplexed-execution-
single-thread (MEST) algorithm based on RCST to amortize the
network stalls from MP transactions over a batch of MP transactions.
This scheme delivers up to 21X higher throughput for SP transac-
tions and comparable MP throughput compared to state-of-the-art
distributed deterministic concurrency control algorithms that are
optimized for batch execution. Finally, our MEST scheme offers
dramatically superior performance when straggler transactions are
present in the workload. Our conclusion is that the H-Store/VoltDB
concurrency control scheme can be dramatically improved and
dominates state-of-the-art algorithms over a variety of MP work-
loads.
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1 INTRODUCTION

In 2008, some of us wrote a paper [27] about OLTP performance.
In a conventional disk-based system of the time [31] with all data
resident in a main memory buffer pool, we found the following
approximate distribution of CPU activity: 1) Useful Work: 10%. 2)
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Concurrency Control: 18%. 3) Buffer Management: 30%. 4) Logging
and Recovery: 18%. 5) Latching: 18%. 6) Unknown: 6%. Hence, 90%
of the CPU cycles went to services, limiting the possible perfor-
mance of conventional DBMSs on OLTP applications. That paper
motivated the design of a main memory DBMS, H-Store [33], with
the following characteristics: @ Partition the database over multiple
nodes for scalability. @ Main memory only. ® Run transactions
to completion with a single thread to eliminate contention from
multi-threading. @ Command-based replication to remove log pro-
cessing overhead. ® Active-active replication — SQL commands
sent to replicas; deterministic execution order for consistency.

H-Store and its commercial successor VoltDB [61] were unbeat-
able for workloads where every transaction was local to a single
partition and to a single interaction with the database server. In
this case, the CPU assigned to a partition could be kept completely
loaded with minimal overhead. However, performance on multi-
partition transactions was terrible as they were done one by one
with no concurrency. As a result, the available market for H-Store-
like systems was limited to SP transaction workloads.

Although SP transactions are prevalent in many workloads [16,
51], some applications require MP transactions [8]. For example,
DBOS [12, 57] which runs on top of VoltDB is overwhelmingly
SP transactions. However, as noted in [40], better support for MP
transactions would make DBOS life a lot easier. Also, there are
many applications, for example, electronic funds transfer, where
there are exactly two partitions involved in most transactions. In
this case, it should be straightforward to do much better.

The purpose of this paper is to revisit the H-Store/VoltDB con-
currency control scheme, which we call Run-to-Completion-Single-
Thread (RCST), with the goal of dramatically improving MP per-
formance, at the expense of slightly degraded SP performance. We
make three main contributions in this paper.

First, we identify partition-level locking as the main factor lim-
iting concurrency for MP transactions. We introduce lightweight
granules, which are lock units smaller than a partition but much
larger than a record. This enhances concurrency and makes RCST
superior to non-deterministic concurrency control schemes such
as OCC and 2PL with 2PC and synchronous primary-backup repli-
cation over most of the MP landscape.

Second, even with granule locking, significant network stalls still
exist in MP workloads. We recognize that most of the stalls come
from distributed commit processing and synchronous replication.
Therefore we propose a new scheme called Multiplexed-Execution-
Single-Thread (MEST) for a batch of transactions. In this scheme,
multiple MP transactions are executed in an interleaved fashion,
exploiting logical concurrency. They are then committed in a single
batch to amortize the cost of commit processing.
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In addition, we detach the replication of transactions from com-
mit processing. Commands are first partially ordered and then com-
mitted by the sequencer (on primary nodes). Replicas are updated
asynchronously with a deterministic execution order. As a result,
MEST outperforms batch-oriented state-of-the-art distributed de-
terministic concurrency control protocols [41, 63] on a wide variety
of SP and MP workloads.

Finally, batch deterministic systems have poor performance on
imbalanced workloads containing long-running transactions (i.e.,
stragglers) due to required cluster-wide synchronization [41, 42].
Our approach does not need cluster-wide synchronization for batch
execution and is more resilient to workloads with stragglers.

We summarize the contributions of our system, LoTus, as:

o Through extensive experiments, we show that LoTus out-
performs conventional non-deterministic schemes (2PL,
OCC) with 2PC on YCSB [13] and TPC-C [62] over all
SP/MP workloads.

e Compared with state-of-the-art deterministic schemes [41,
63], Lotus consistently achieves higher (up to 21x for SP)
or comparable throughput on the above workloads.

e Other batch-oriented deterministic schemes degrade badly
when long-running transactions are present. LOTUS is up
to 3.3 faster on workloads with stragglers.

As a result, the concurrency control community may want to
rethink the dismissal of RCST-based algorithms, as they appear to
be dominant on a wide range of transaction workloads.

2 BACKGROUND

This section gives an overview of approaches to building serial-
izable transaction processing systems with replication for high
availability. These approaches generally fall into two categories:
non-deterministic schemes and deterministic algorithms. We also
recap the H-Store/VoltDB approach for readers unfamiliar with
these systems.

2.1 Non-Deterministic Concurrency Control

In this paper we only consider serializability guarantees as this is
the gold standard and is implemented by H-Store/VoltDB. Hence,
the DBMS ensures that the final state of the database will be equiv-
alent to one produced by running transactions in some serial order.
Popular approaches to achieving serializability include Two-Phase
Locking [9, 19] and OCC [36, 64].

For high-availability some form of replication is required. Typi-
cal replication schemes include primary-backup replication [10, 11]
and state-machine replication [37, 47, 48]. In primary-backup sys-
tems, a primary database processes all transactions first and then
replicates modifications to backup replicas. Primary-backup replica-
tion schemes can be further classified into two groups: synchronous
and asynchronous. In synchronous primary-backup replication, a
transaction is committed only after the backups have acknowledged
the application of changes. This provides strong consistency among
replicas but incurs an extra network round-trip delay during trans-
action commit. In asynchronous primary-backup replication, the
primary finishes the commit without waiting for an acknowledg-
ment from the backups. This has minimal impact on transaction la-
tency; however, replicas can be inconsistent when failures occur. In
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Table 1: Comparison against Existing Deterministic Approaches

Distri- Read- Program Batching

buted Write-Set  Analysis
LADS [67] X v v v
BOHM [20] X v X v
PWV [21] X v v v
QueCC [53] X v v v
QueStore [52] v v v v
Calvin [63] V v X v
SLOG [54] v v X v
Aria [41] v X X v
LoTus v X X v

this case, a cleanup phase is required during failover processing. As
a result synchronous replication is often favored. In state-machine
replication, transaction writes can go to all replicas, depending on
consensus protocols [37, 47, 48] to ensure that data modifications
are processed in an agreed-upon order.

If the database is partitioned, a distributed transaction needs
some form of atomic commit protocols such as two-phase com-
mit [45, 46] or its variants [7, 24, 56, 58, 59] to handle failures
(e.g., node failures, concurrency control conflicts ) to ensure ACID
properties [25]. These protocols typically require multiple network
round-trips and durable writes. Therefore, 2PC is typically consid-
ered the major bottleneck in distributed transactions.

2.2 Deterministic Concurrency Control

Given the shortcomings of non-deterministic systems, a class of
deterministic databases [20, 21, 41, 52-54, 63, 67] provides another
way of guaranteeing serializable transactions. Instead of guaran-
teeing equivalence to some serial order only after execution, these
systems predetermine a single serial order (input order) prior to
execution, typically through a sequencing layer that also logs the
transaction inputs. For throughput, the sequence layer can be par-
titioned over multiple nodes [63]. For high availability, nodes in
the sequence layer agree on an order through consensus proto-
cols [37, 48] . These systems run transactions in large batches
to amortize the sequencing overhead. Once the serial order of a
batch of transactions is determined by the sequencer, the batch
is sent to multiple replicas to be executed concurrently and inde-
pendently while reaching the same final state as their execution in
serial order. This is much like shipping logs to replicas and each
invoking recovery logic for each transaction. This reduces replica-
tion overhead as replicas do not communicate with each other to
reach the same final state. Perhaps more importantly, the overhead
of a distributed transaction is also reduced by simplifying the com-
mit protocol. In contrast to non-deterministic concurrency control,
non-deterministic failures, such as node failure, will not affect the
commit decision [4]. Instead, during recovery a transaction will
be executed again to reproduce the correct state. Therefore, costly
distributed commit protocol such as 2PC can be avoided.

We summarized the properties of deterministic approaches in Ta-
ble 1. One critique about existing systems [4] is that they typically
rely on the strong assumption that the read-write-set of a transac-
tion is known beforehand to allow concurrent execution (except
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Aria [41]). Some [21, 52, 53, 67] take a step further to require man-
ual program analysis for more concurrency. Lotus does not rely
on these assumptions for achieving high performance.

2.3 H-Store/VoltDB Background

Although H-Store/VoltDB also exploits determinism, they leverage
it differently from the systems mentioned in the previous section.
H-Store [2, 50, 60] partitions the database among the nodes in
a cluster and binds each partition exclusively to a single worker
thread. Transactions are ordered globally through physical times-
tamps. Each partition has a replica set that contains one or more
copies (K-safety). One replica of a partition is designated as the
primary that synchronously replicates all the transaction requests
to the other replicas. Since transactions are ordered by timestamp,
all replicas executing the same sequence of transactions end up in
the same state. For multi-partition transactions, partition locking
is used during execution for exclusive access to affected partitions.
2PC is required during the commit process for such transactions.
Logging is avoided in 2PC. Instead of writing 2PC votes to disk,
persistence is implemented through synchronous replication of
prepare/commit requests to the backups of a partition.

Its commercial successor, VoltDB [3, 61], inherits the architecture
of H-Store but concluded that timestamp-based serialization was
not practical due to its reliance on NTP services. Poorly configured
NTP services allowed unacceptably large clock skew. As a result,
VoltDB opted for a centralized controller (MP Initiator) to serialize
MP transactions and execute them one at a time. SP transactions
bypass MP Initiator as their serialization is achieved using the FIFO
queue of the server hosting their partition data. Because of minimal
sequencing overhead, SP transactions are extremely fast. However,
a single MP Initiator with no concurrency among MP transactions
creates scaling challenges for MP transactions.

In summary, H-Store/VoltDB achieves unparalleled performance
on SP transactions at the cost of high overhead for MP transac-
tions because of limited concurrency due to partition locking, 2PC
with synchronous replication, and global serialization. In contrast,
conventional deterministic systems reduce the overhead of MP
transactions at the cost of strong assumptions and mediocre SP
transaction performance due to scheduling and sequencing over-
head. We now turn to how LoTus achieves low replication/commit
overhead without the limitations and assumptions discussed above.

3 Lotus OVERVIEW

LoTus addresses the inefficiencies of VoltDB/H-Store on MP trans-
actions in the following ways: @ Support more concurrency when
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waiting for the network by refining partition-level locking into
granule-level locking. @ Amortize network stalls coming from
execution and commit processing through batch execution and
commit. ® Decouple replication from the commit protocol by asyn-
chronously and deterministically executing partially-ordered trans-
actions on backups.

LoTus partitions data over a set of physical nodes. We define
such a collection of physical nodes as replica. Different replicas do
not share physical nodes to isolate machine failures. We refer to
the replica accepting user transactions as the primary/sequencer
replica (primary for short). We refer to replicas replaying replicated
transactions from primary as backup replicas (backup for short).
Lotus inherits its transaction model from H-Store/VoltDB. In con-
trast to VoltDB/H-Store, there is no global controller for serializing
MP transactions or reliance on physical timestamps for ordering
transactions. As can be seen in Figure 1, LoTUs contains a sequencer
for every partition. User programs submit SP transactions to the
correct sequencer for the desired partition. MP transactions can
be submitted to any sequencer. Every sequencer assembles a batch
of queued transactions. Then the batch is decomposed into an SP
collection and an MP collection. The SP transactions are done using
RCST, as in VoltDB/H-store. Subsequently, the sequencer acts as the
coordinator for each MP transaction in the collection. As such, it
sends sub-transactions to remote workers, waiting for a reply while
interleaving with execution of MP transactions in the same batch.
Every partition is sub-divided into granules, which are lock units.
Mapping between a partition and its granules can be done via hash-
or range-partitioning. LoTUs uses strict two-phase locking with
a NO_WAIT policy for these granules. Hence, on a lock request
failure, the MP transaction is aborted and rescheduled for the next
batch. A successful transaction queues a log record containing the
various commands in the log buffer.

The successful execution of MP transactions on the various se-
quencers yields a partial ordering among the transactions that have
lock conflicts. This ordering is also recorded in the command log.
When a batch finishes, the composite log records are persisted to
the replicated command log at which point the whole batch is con-
sidered committed. Replicas then asynchronously read from the
replicated command logs produced by the sequencers and determin-
istically execute transactions. Results of transactions are returned
to clients once they are committed on the sequencers. LoTus as-
sumes a fail-stop failure model and runs in a trusted environment.
It does not tolerate Byzantine faults [38]. LoTus assumes a network-
ing technology that provides ordered reliable delivery of messages,
such as TCP, on an asynchronous network.

4 Lotus DESIGN

We now describe the detailed design of LoTus. Section 4.1 presents
the design of granule-based locking. Section 4.2 introduces the de-
sign of batch execution and the commit protocol. Section 4.3 covers
the LoTus asynchronous replication scheme. Finally, Section 4.4
discusses the limitations of LoTus.

4.1 Granule-based Locking

In LoTus, transactions lock granules instead of partitions. Our
scheme strikes a balance between concurrency and lock manage-
ment overhead, i.e., between partition-level locking and tuple-level



1 Function: BatchExecution (wid, LB, BatchNo) # LB: log buffer
2 TG = Queued transactions U aborted transactions
3 SPTG, MPTG = break TG into SP and MP transactions
4 for Tin SPTG: RCST Batch Execution :
5 ExecuteSP(T,LB) ot processing remote requests.
6 Persist LBtolog
7 Reply to clients
8 for T in MPTG:
9 multiplex ExecuteMP(T) with ProcessMPWork(LB)

10 Persist [LB, BatchNo] to log

11 for Tin MPTG where T.abort == false:

12 InstallCommands(T, LB)

13 Install writes and release locks of transactions in MPTG

14 Send BCOMMIT[wid, BatchNo] to all other workers

15 Reply to clients

Figure 2: Algorithm for Batch Execution Control Loop

locking. A partition is decomposed into a fixed set of logical sub-
partitions (granules) through hash- or range-partitioning the keys
of tuples in the partition. Granules are virtual. LoTus does not phys-
ically decompose a partition into sub-partitions. Instead, granules
are derived from partitioning on the keys of tuples. It supports
reasonable concurrency for MP transactions at low cost as shown
in the experiments. Also, every partition is assigned to one proces-
sor (core). Therefore, there is no latching overhead or multi-core
contention. Another important distinction is that the granules also
serve as the unit of replication. LoTus supports both shared and
exclusive lock modes.

One might be tempted to shard the database into more partitions
to get more concurrency. While it seems intuitive and simple, this
has two major problems. On the one hand, the database might need
to be physically fragmented into very small pieces in order to get
high level of concurrency. This imposes non-trivial partition man-
agement overhead and scalability challenges. On the other hand,
it is not flexible. For example, when the workload changes and
the existing partitioning is no longer suitable, such an approach
requires expensive re-partitioning of database to adjust to the new
workloads. The root cause of these problems is that the sharding ap-
proach tightly couples physical data distribution with concurrency
control. Our approach decouples the two. Since granules are logical
partitions used only for concurrency control, it is actually easier
to change the number of granules at run-time. One could simply
use a system-level distributed transaction that exclusively locks
all partitions and changes the number of granules per partition to
adapt to a new workload. This is lightweight as it involves no data
movement. Therefore, our approach is more scalable and serves as
a good basis for adapting to changing workloads.

4.2 Batch Execution and Commit in LoTus

MP transactions submitted to a worker thread in H-Store/VoltDB
are processed one by one. This includes executing the transaction
processing logic, waiting for results from a remote partition, and
performing commit. This results in CPU stalls while waiting for
the network. Moreover, MP transaction commit overhead is still
high because the commit protocol requires multiple network round
trips between partitions and between replicas. We now show how
to reduce the overhead of the commit protocol for MP transactions
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1 Function: InstallCommands(T, LB)
2 for each local granule (p, g) in T: # p stands for partition
3 LB.AddParticipantRecord({T.tid, p.id, g.id, g.last-writer, g.lock-
4 | type})
5 p,g = choose any local (partition, granule) T accessed
6 LB.AddCoordinatorRecord(T.tid, p.id, g.id, T)
7
8 | Function: ExecuteSP (T, LB)
9 Execute T’s logic to completion:
10 for each granule (p, g) T accesses during execution:
11 if (p, g) is X-locked or
12 ((p, g) is S-locked and T intends to modify (p, g)) :
13 T.abort = true # concurrency control abort
14 if T.abort == false:
15 update any granule g’s last-writer field if written by T
16 InstallCommands(T, LB)
17 Install writes
18
19 Function: ExecuteMP(T)
20 Execute T’s logic:
21 for each granule (p, g) T accesses during execution:
22 if (p, g) is remote:
23 send lock/read requests to remote workers
24 else:
25 process lock/read requests locally
26 if T.abort == true: unlock granules locally and remotely
27
28 | Function: ProcessMPWork(LB)
29 for rin MPWork:
30 if ris COMMIT_UNLOCK on granule g:
31 Update g.last-writer if g is X-locked
32 LB.AddParticipantRecord(r.tid, r.pid, r.gid, g.last-writer, g.lock-
33 | type)
34 process lock/read/write/unlock/commit_unlock ... requests

Figure 3: Algorithms for Transaction Execution and Commit

through batch execution and commit. The basic ideas are to overlap
MP transaction execution with network stalls from commit proto-
col/execution as well as to buffering transactions’ log writes until
the end of a batch commit. Network stalls and commit protocol
overhead are therefore amortized over a batch of MP transactions.
In addition, LoTus makes replication of transactions asynchronous
by having sequencer nodes persist the transactions to replicated
command logs and by having backups re-execute the transactions
from the command logs asynchronously and independently.

Each sequencer runs the algorithm listed in Figure 2 for pro-
cessing a batch of transactions. At the start of batch execution, the
sequencer reorders transactions into an SP group and an MP group.
Each group goes through two phases: execution and batch commit.
As noted in Section 3, SP transactions are run RCST, as in VoltDB/H-
Store. For the MP group, sequencer acts as the coordinator for the
entire group of transactions. For either type of transaction, any
user-initiated aborts and integrity violations are detected during
the execution phase and the transaction will be aborted. To handle
such aborts, LoTus keeps all the writes in a local write set and
these writes are only applied to the database when the transaction
is ready to commit.

4.2.1 RCST for SP Group Since there is no network involved for
SP transactions, they are processed to completion in RCST fashion,
maximizing CPU utilization. If execution is successful, writes are
immediately applied to the local database after a transaction fin-
ishes execution (Line 16 of Figure 3). SP transaction will also record
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Figure 4: Workflow of LoTus Batch Execution and Commit: T1, T2 are
transactions targeting granules in the coordinator worker and two granules
from two other workers (participants). Logging of T1 and T2 are buffered
in memory. The transaction results are not released to user until the buffer
has been flushed to the replicated log.

granules accessed in the log buffer (Line 3-6 of Figure 3). Trans-
action inputs are also recorded as a coordinator record in the log
buffer. These records are essential for correct replication. Among
SP transactions in a same batch, there is no possible lock conflicts
since they are executed one by one. Therefore, LoTus does not lock
granules for SP transactions. However, a SP transaction must check
whether a granule is locked by a remote MP transaction before the
RCST phase starts and the intent of the SP transaction is incom-
patible with the lock (Line 11-12 of Figure 3). For example, the SP
transaction intends to modify a granule that is exclusively locked.
In such cases, the SP transaction is aborted. Also, a sequencer needs
to disable processing requests from remote MP transactions during
the RCST period. This is to ensure not to expose modifications from
uncommitted SP transactions to remote MP transactions, avoiding
cascading aborts. Note that LoTus applies the writes before per-
sisting the commands to the log. The persistence could fail due
to network failures. In such a case, we need to roll back the data-
base to the state before the RCST phase. To achieve this, similar to
H-Store/VoltDB [50, 61], LoTUs maintains a transient in-memory
undo buffer that stores undo information for each SP transaction.
The buffer is discarded when the batch is committed.
Differences from H-Store/VoltDB: Our SP execution differs
from that of H-Store/VoltDB in that replication is not involved in the
execution phase, reducing potential network stalls. Data replication
occurs after the log buffer is persisted in the replicated command
log, at which point backups get the commands and asynchronously
execute transactions. Details will be discussed in Section 4.3.

4.2.2 MEST for MP Group We execute MP transactions asyn-
chronously (Line 9-10). Whenever an MP transaction has to wait for
results from remote granules, the coordinator suspends the transac-
tion and switches to a different MP transaction in the batch. In the
meantime, the coordinator also processes requests from remote MP
transactions. If an MP transaction finishes execution without an
abort, the coordinator installs participant and coordinator records
locally. In contrast to SP transactions, locks are not released after
an MP transaction finishes execution. Instead, they are released
after the log buffer is flushed at which point the commit decision is
propagated to participants. This ensures the state of uncommitted
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MP transactions is not exposed to remote MP transactions. An il-
lustration of such a process is shown in Figure 4. Note that no undo
buffer is maintained as LoTus only applies writes after persisting
the commands for MP transaction.

Distinction from H-Store/VoltDB: Our MP execution differs
from H-Store/VoltDB in that multiple MP transactions can multiplex
the CPU. Another difference is that replication is not involved in
the execution phase, similar to SP Group execution.

4.2.3 Supporting Shared Locks 1t is trivial to support shared
locks on granules within the primary replica. The challenge lies in
allowing shared locks during replay on backups that produce the
same state as the primary. Between any two exclusive lock events
on a granule, LoTus allows shared locks among multiple transac-
tions running concurrently on the primary. On backups, LoTus
only needs to ensure these shared lock events are ordered after the
first exclusive lock event and before the second one. Among these
shared lock events, there is no need to maintain any order as reads
do not change the state of the database. To capture this ordering
information, LoTUs maintains for each granule a last writer field
that indicates the globally-unique transaction id of the last commit-
ted transaction that exclusively locked the granule. We highlighted
the pseudo-code related to shared locks in grey in Figure 3. When
a transaction commits, the last writer field is updated during lock
release for an exclusive lock on a granule (Line 15 and 31 of Fig-
ure 3). The lock type as well as the last writer on a granule that a
lock operation observed at the time of locking are included in the
command log records (Line 3 and 32 of Figure 3). Therefore, shared
lock operations in between two exclusive lock events on a granule
will observe the same last writer which will enable shared locks
during replay on backups as we will see in Section 4.3.

4.24 Batch Commit Phase LoTus makes sure that all possible
aborts are processed during the execution phase. For concurrency
control aborts, transactions will be retried during the next batch.
For integrity constraint violations or user-initiated aborts found
during execution, transactions are discarded, releasing any locks
held. Therefore, the remaining transactions are ready to commit.
Committing a batch of transactions occurs by flushing the log buffer
to the replicated command log. Since the log buffer flush contains
multiple coordinator records, the commit overhead is amortized.
Transaction results are released to clients once the log buffer is
persisted in the command log and a quorum of replicas responded.
Once the log buffer is successfully flushed, LoTus sends COM-
MIT_UNLOCK requests to all the workers to unlock granules (Line
13 of Figure 2). This step must happen after persisting the log
buffer. Before unlocking participant granules, participant records
are recorded in their log buffer (Line 30-33 of Figure 3). A partici-
pant record contains information about which granules are locked
by which transactions. This is critical as the participant record cap-
tures the lock ordering of the participants and will be used in our
recovery and replication schemes. Such participant records do not
need to be forced to log, thereby reducing logging overhead.
Protocol Properties: Our commit protocol does not require
forced (expensive) log writes of votes and redo records on partici-
pants as typically seen in the standard 2PC protocol. This resembles
one-phase commit (1PC) protocol. The durability and atomicity
properties of a transaction are guaranteed by the persistence of
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Figure 5: Command Logging Record Format

granule lock sequencer number,
monotonically increasing

coordinator records. Such records contain the transaction inputs
as well as granules locked, as shown in Figure 5. The isolation
property is guaranteed collectively by the S2PL (Strict Two-Phase
Locking) lock orderings recorded in the participant’s records for
each participant. Our protocol also adheres to the principle of the
presumed-abort optimization [45, 46]. That is, if no coordinator
record is found in the log, the transaction is considered aborted.
The commit decision is implicitly represented as the presence of in-
puts of a transaction contained in the coordinator record. The abort
decision is implicitly represented by the absence of the coordinator
record. It should be noted that 1PC protocol using logical logging
has been proposed previously [5]. However, our protocol focuses
on the extreme form of logical logging (i.e., command logging). Also
notice our protocol does not wait for the acknowledgments from
the participants, which is required in [5], before replying to users.

Recovery: We now discuss how LoTus recovers from failures.
Since we buffer commands for a batch of transactions, node failures
could result in buffer contents being lost. Our recovery protocol
needs to repair the lost contents. As shown on the left side of Fig-
ure 6, granules G;/G;/Gy on three different nodes have persisted
records up to (exclusive) sequence numbers 1/2/1, respectively (
Sequence numbers are for illustration only). Upon a crash, the con-
tents after the persisted portion of the sequence numbers are lost.
Since we only buffer participant records on remote workers after
the coordinator has successfully forced its log buffer, there is only
one failure case Log Repair needs to handle: missing participant
records. As shown in the figure, transactions T2 and T5 are com-
mitted since their coordinator records are persisted for granule G;
and Gy.. However, their participant records are actually lost since
they were in the log buffer of the worker hosting granule G; before
the crash. On recovery, the worker hosting granule G; is instructed
by coordinators of transactions T2 and T5 to check the existence of
corresponding participant records using the information (pid for
partition id, gid for granule id in Figure 5) in coordinator records.
Because the coordinator record is the ground truth of the fate of
the transaction, the command log of the worker hosting granule
Gj will be patched with participant records generated from the
coordinator records of T2 and T5 (on the right side of Figure 6).

It should also be noted that repair must reproduce the same lock
ordering information. As shown in Figure 6, T2 is ordered before
T5 by the lock conflict on granule G; before the crash. Fortunately,
the coordinator record contains the granule lock sequence number
(gseq in Figure 5) that reflects this ordering. The lock sequence
number is a per-granule monotonically increasing number that
reflects the order of lock operations on a same granule. The se-
quence number is increased every time a granule is locked. During
log repair, coordinators cooperatively patch the participant records
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Figure 6: Granule-level Log Repair: G;/G /G are granules on three
partitions each on a different node; T2 should be patched before T5.

by comparing granule lock sequence numbers recorded in their
coordinator records.

Accelerating Log Repair: The naive log repair algorithm men-
tioned previously requires checking every coordinator record in
the log for patching any missing participant records. We now show
how to reduce the overhead by persisting a batch commit record.
After a coordinator Wy flushed its log buffer, a batch commit record
containing worker identifier(wid in Figure 5) and batch number(bid
in Figure 5) is sent to all the other workers in the cluster to be
recorded in their own log buffer, denoting the fact that MP trans-
actions of this batch initiated by coordinator Wy are committed
(Line 14 of Figure 2). These commit records will be flushed by batch
execution of other workers in a piggybacked way. Therefore, if
a worker Wy finds a batch commit record with batch number i
in another worker Wy’s command log, any MP transactions prior
to batch (i + 1) initiated by worker Wy must have its participants
records persisted on Wy,’s command log. (Participant records from
an MP transaction in batch i from worker Wy will appear before
batch commit record for batch i). Therefore, we can skip checking
for missing participant records for these MP transactions. After
all the participant records are properly patched, we can patch any
missing batch commit records, hence concluding the log repair. As
shown in Figure 7, a worker goes through the command log back-
wards to find the last batch commit records for all workers (Line
20). Then the algorithm reads the command log again backwards
to patch any missing participant records (Line 23-28). It stops at
the batch B; such that all other workers in the system have a batch
commit record for B; durable in their log. Therefore, we can bound
the repair overhead to just processing a few batches of transactions
at the tail of command logs.

Once all the logs are properly repaired, workers can start cooper-
atively recovering the states of the transactions by re-executing the
transactions recorded in the command logs. We defer the discussion
of scheduling of re-execution of these transactions to Section 4.3.
Notice, that our commit protocol does not maintain site autonomy
property [5]. That is, the recovery of an MP transaction cannot
be done independently. It needs the coordinator to initiate the
re-execution of the transaction using the inputs stored in the coor-
dinator record to recover the effects of the committed transaction.

Distinction from H-Store/VoltDB: Our commit protocol for
MP transactions differs from H-Store/VoltDB [44]. First, LoTus logs
and commits a batch of MP transactions from the same sequencer.



1 | Function: ReplayCommandLog()
2 Event Loop:
3 on receiving commands from log:
4 de-multiplex commands into partition-granule-level queues
5 on trigger events for granule g of partition p:
6 r = p.queue(g].head
7 if r.type == PARTICIPANT and r.lock_type == S-MODE:
8 S-lock g if not X-locked and g.last_writer == r.last_writer,
9 | increase g.reader_count by one upon success
10 else if r.type == PARTICIPANT and r.lock_type == X-MODE:
11 X-lock g if g not X-locked and g.reader_count == 0, set
12 | g.last_writer = r.tid upon success
13 else: # coordinator record
14 if r.xact is SP and all granules locked: execute r. xact
15 else if r. xact is MP: async execute r. xact
16 pop r from queue if locking succeeded or r. xact committed
17 on remote requests: processMPWork()
18
19 | Function: RepairLog(CommandLog)
20 LastBCommits = go through CommandLog backwards to find the last
21 BCOMMIT record of each worker
22 WORKERS = ALL_WORKERS_IN_CLUSTER excluding self
23 for batch in reversed(CommandLog):
24 check and patch any missing participant records on
25 WORKERS for coordinator records in batch
26 remove any worker from WORKERS that has a BCOMMIT
27 record with batch number == batch.no
28 if WORKERS is empty: break
29 sync with all workers

Figure 7: Algorithms for Recovery and Deterministic Replay

Second, H-Store only records transaction inputs on the coordinator
node. On recovery, command logs from different nodes need to
be merged and replayed serially based on timestamps. Significant
coordination is required for scheduling MP transactions during
recovery. In LoTus, in addition to logging the transaction inputs
on each coordinator worker, LoTus also logs (buffers) the lock
orderings on participants after commit which allows transactions
to be replayed in parallel during recovery.

4.3 Asynchronous Active Replication
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Figure 8: Example of Deterministic Replay: Colored shapes denote
records for different granules; Dashed ovals shows the granules a transaction
accesses; Records are also marked with the lock type(s for shared mode; x
for exclusive mode); Records with the same last-writer field indicates their
transactions were ran concurrently in the primary replica; Partial orderings
produced by the sequencers can be rebuilt from these commands: T1 —T3
—T6, T1 -T5 —T6, T1 -T3 —-T7, T1 -T5 —T7.

LoTus is designed to replicate command logs through consensus
algorithms [37, 48] or consensus-based log store [6, 65] for high-
availability and strong consistency. However, LoTus architecture
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does not preclude other replication schemes such as synchronously
shipping commands to all replicas before commit or asynchronously
shipping commands to replicas. These schemes trade consistency
and availability for performance. Notice all of the schemes only
concern the replication of commands. They do not concern when
replicas replay the commands.

As pointed out previously, different from H-Store/VoltDB, execu-
tion of the commands on backups is not in lockstep with the primary.
One problem with such an asynchronous replication scheme is po-
tential replication lag. The replication lag problem occurs when the
rate of backup applying updates cannot keep up with the rate of
updates by the primary database. A backup that is lagging too far
behind cannot be promoted as the new primary in a timely fash-
ion, reducing availability and causing real-world incidents [1, 35].
Common causes for replication lag include insufficient network
bandwidth and non-scalable replay schemes on the backup. Fortu-
nately, the LoTus replication scheme is designed around replicating
commands with small network footprint and granule-level paral-
lelism, greatly mitigating this problem. We now describe how LoTus
replicates transactions and ensures that all replicas will reach the
same state as the sequencers in a scalable and efficient manner.

In Lotus, backups mirror the primary in terms of data parti-
tioning and worker setups. Backup worker W; subscribes to the
command log that is being actively written by W; in the primary.
As illustrated in Figure 8, two workers in the backup running on
different nodes are de-multiplexing the log stream into granule-
level commands in log order. From these commands, LoTus can
precisely rebuild the partial ordering of transactions captured by
the locking protocol on the primary. A backup worker executes
commands concurrently at the granule level. The algorithm for
the replay is shown in Figure 7. The replay process is similar to
a long-running topological sort. Specifically, our backup worker
runs in a event loop in function ReplayCommandLog. Events, e.g.,
the arrival of a new command for a granule or the granule being
unlocked, trigger the execution of the commands against a granule.
For participant records, the worker attempts to lock the granule.
For exclusive locking, it succeeds if the granule is not currently
being locked in exclusive mode and the reader count is zero. Upon
success, the last writer field is updated. For shared locks, it suc-
ceeds when the granule is not currently locked in exclusive mode
and the last writer field of the granule matches what is stored in
the participant record. Reader count is incremented upon success.
Therefore there could be multiple readers on the same granule,
allowing more concurrency. If a locking operation succeeds, the
granule waits for instructions (read/write/unlock, etc.) from the
coordinator. If locking fails, it means the granule is still locked by
previous transaction and lock acquisition will be retried on the
next lock release event. For coordinator records, the transaction
will be initiated. For SP transaction, when it obtains all the neces-
sary granule locks, the transaction is executed synchronously since
there is no need to access remote partition. For MP transactions,
we execute the transaction asynchronously (Line 11). When an MP
transaction requests a shared lock on a remote granule, the last
writer information for the granule observed at the primary is sent to
remote nodes. The worker continues to process commands instead
of waiting for remote results of an MP transaction. It is possible
that MP transactions will fail due to granule lock conflicts. This is



because the remote participant granule has not caught up yet on
the participant record that needs to be executed. Therefore, in such
a case, we simply restart the execution until it eventually succeeds.

Notice, that we do not need to run an atomic commit protocol
for MP transactions. This is because LoTus only replay committed
transactions. It is also easy to see that each backup runs transactions
deterministically. The execution of commands strictly honors the
partial orderings produced by the locking protocol on granules. In
addition, concurrent transactions have no lock conflicts(T4 and T1,
T8 and T7 in Figure 8) can be run in any order without breaking
determinism. Therefore, they all end up in the same state. Two
transactions having conflicts on a granule with the same last-writer
(T3 and T5 in Figure 8) can also be run concurrently with shared
locks. Moreover, the performance of SP transactions is maximized
as they are run to completion without interruption. The parallelism
is the same as that in the primary. Therefore, LoTus replication can
deliver almost the same throughput and scalability as the primary
as we will see in the experiment section.

4.4 Limitations

We now list the limitations of LoTus. First, although LoTus greatly
improves the performance of MP transactions, the number of gran-
ules is still significantly smaller than the number of tuples in a
partition. Therefore for workloads with contention among concur-
rent MP transactions, LoTus will perform worse than tuple-level
schemes. We should also point out that if the contention is among
a batch of SP transactions, conflicts will be rare because SP transac-
tions are run one by one. Second, our replication scheme is asyn-
chronous. Although LoTus guarantees all replicas will execute the
same sequences of committed commands, it carries an inevitable
replication time lag. On failover, a new replica needs a time window
to catch up before servicing new transactions. Therefore, LoTus
trades instantaneous fail-over as in H-Store/VoltDB for lower per-
transaction overhead. Third, the granule-based locking scheme only
enables logical concurrency for MP transactions. LoTus does not
provide physical concurrency within a partition.

5 PRACTICAL CONSIDERATIONS

We discuss some of the practical considerations during implemen-
tation, including fail-over and checkpoint.

5.1 Failover

We describe the failover procedure for Lotus as follows. There
is a fault-tolerant configuration service, like Zookeeper [30], that
monitors the live-ness of nodes and membership of the replicas
in the system. We assume that only the primary is able to write
to replicated command logs which can be achieved through leases
or locks [22, 30] provided by the configuration service. When any
sequencer in the primary replica fails, our system must failover
to one of the backups which will become the new primary. On
fail-over, one candidate is chosen via leader election mechanisms
provided by the configuration service. The new primary will have
each worker run the log repair algorithm (RepairLog in Figure 7)
to patch any missing participant records by looking at the tail of
their command log. After that, workers start replaying from where
they were left off when they were backups until they drain their
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own command log. Then the new replica switches from replay to
accepting new transactions from clients.

5.2 Checkpoint

To bound the log volume and recovery time, some form of check-
pointing is required. LoTUs inherits its checkpoint strategy from
H-Store [50]. During the checkpointing process, a node in a cluster
is elected as the coordinator to issue a special system MP transaction
that locks all the partitions. This ensures that a global transaction-
ally consistent point is established. The transaction instructs all the
partitions to go into copy-on-write mode. A background thread for
each worker will start to write the snapshots of the partitions it
manages as of the consistent point to storage. New transactions
after the checkpoint transaction will copy the tuples it wants to
modify to a new memory location before applying the updates. The
checkpoint transaction then flushes out the log buffers of all the
workers, ensuring the system transaction is durable and committed.
After all the snapshots are written to storage, the locations of these
partition snapshots along with the transaction id of the system
transaction are recorded in a snapshot catalog. Then the coordina-
tor instructs all the workers to go back to normal operating mode.
To recover from a checkpoint, a complete snapshot is chosen from
the catalog. Partition data are first recovered from the snapshots.
Then the same recovery protocol discussed can be used to replay
all commands after the system transaction.

6 IMPLEMENTATION

We implemented LoTus in the Star test-bed [43] in 4.6K lines of C++
code. Lotus provides a relational model of data stored in tables
with schema of typed attributes. Transactions are submitted to the
sequencers in the form of predefined stored procedures in C++.
Each table has a primary key. Indexes are implemented using hash
tables. For secondary indexes, the primary key is stored in the
record of a hash table. Therefore, two look-ups are required to find
the tuple stored in the primary index. LoTUs requires transaction
ids to be unique globally. Transaction id in LoTus consists of a
unique worker id and a monotonically increasing integer.

On every node in the system, each partition is bound to a single-
threaded sequencer that handles all the accesses. Sequencers in
a replica communicate purely through message-passing. Each se-
quencer is associated with two queues: Transaction Queue and MP
Work Queue. A Transaction Queue buffers all the transactions re-
ceived from clients targeting partitions managed by the sequencer.
A MP Work Queue buffers the work (e.g., lock/unlock/read/write
messages) of MP transactions initiated from remote coordinators.
Typically, partitions to be accessed can be inferred from the stored
procedure parameters (e.g., most transactions in TPC-C). For trans-
actions accessing only a single partition (the majority of TPC-C)
are submitted directly to the sequencer hosting the partition. Trans-
actions accessing multiple partitions, clients can submit them to
any sequencer. Sequencer receiving a transaction serves as its co-
ordinator. For transactions without hints on the partitions they
will access, they are sent to any sequencer and will be bound to a
partition and granule on that sequencer.

For granule locking, hash- or range-partitioning can be used to
map the primary key of tuples to a fixed set of lock buckets. We



experimentally find the number of granules that works well for a
given workload. A more automatic approach is left for future work.

7 EXPERIMENTAL EVALUATION

In this section, we conduct experiments aimed to answer the fol-
lowing questions:

How does Lotus perform compared to conventional non-
deterministic databases with primary-backup replication?
How does Lotus perform compared to the state-of-the-art
deterministic systems?

How much overhead does granule-level locking impose?
How robust are the existing deterministic systems when
there are stragglers in the workload?

How does LoTus scale on a large number of nodes ?
What is the performance impact of the checkpoint process?

7.1 Evaluation Setup

We ran our experiments on a cluster of six n1-highcpu-16 nodes on
Google Cloud, each equipped with 16 2.30 GHZ virtual CPUs and
14.8GB RAM. Each node runs Debian 10 with Linux Kernel 4.19.208.
All code is compiled using GCC 8.3 with -O3 option. On each node,
we run 6 worker threads and 2 threads for network I/O. In addition,
one thread is dedicated to logging and one thread is dedicated to
coordinating workers in the node. Any two nodes are connected
through a network with a measured (iperf3) bandwidth of 1.8 GB/s.

Benchmarks. To evaluate LoTus, we perform extensive experi-
ments on two popular benchmarks:

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) is an open-
source performance benchmark suite used to evaluate databases
and key-value systems. The benchmark includes a table with a 64-
bit primary key attribute and ten data attributes. Each data attribute
has ten random bytes. Each transaction performs ten read or write
operations on these attributes. All operations are keyed using a
uniform distribution. In our evaluation, we use a workload with a
50/50 mixture of read and write operations. Each multi-partition
transaction accesses two partitions by default.

TPC-C: The TPC-C benchmark is the industry-standard bench-
mark suite for OLTP databases. In our experiments, we implemented
NewOrder and Payment transactions. The NewOrder benchmark
mimics customers submitting orders to their local district of a ware-
house. The Payment transaction mimics the step of making pay-
ments on the orders customers submitted. The two transactions
comprise 90% of the workload. The remaining three transactions
are omitted because they require range scan which is not supported
in the current implementation. We partition the database by ware-
house. By default, NewOrder and Payment transactions contain
15% and 10% multi-partition transactions that access a remote ware-
house.

Concurrency Control Algorithms. We compare LoTUs to the

following distributed protocols in our framework using the same
data structures for table storage, indexing, and networking:
H-Store: Our simulation of H-Store without global timestamp
ordering using the LoTus framework. We simulate partition-level
exclusive locking in H-Store with NO_WAIT policy by configuring
one granule per partition. Transactions are sent to backups once
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they have obtained all the locks on primary (active-active replica-
tion). Locks are held till the end of the replication. MP transactions
are committed using LoTUs commit protocol without batching.

DS2PL: An implementation of a tuple-level distributed S2PL
algorithm. NO_WAIT locking policy is employed to prevent dead-
locks which has been shown to be the most scalable algorithm [26].
Two-phase commit and synchronous primary-backup replication
are employed for distributed transactions and replication.

Sundial: An implementation of a recent distributed OCC pro-
tocol [69]. The protocol uses logical leases and pessimistic locks
for writes to permit more serializable schedules and reduce aborts.
We did not implement the caching feature of Sundial. Tuples are
write locked with the NO_WAIT policy during the execution phase.
To commit, a transaction needs to validate all its reads. Similarly,
two-phase commit and synchronous primary-backup replication
are employed for distributed transactions and replication.

Calvin: A distributed deterministic database system. Ordered
locks are employed to ensure determinism. The read/write set of a
transaction must be declared before execution.

Aria: Another distributed deterministic database system. Aria
proposes a determinstic reservation technique to ensure determin-
ism and does not need pre-declared read/write set for a transaction.

Replication and Workload Generation. For LoTus, we run a

cluster of three primary nodes and three backup nodes. For DS2PL
and DOCC, we designate half of the nodes as primaries and the
other half as backups. For Calvin and Aria, we use half the of six
nodes to form a replica. Since replica does not communicate with
each other in Calvin and Aria, we only study the performance of
one replica. For Aria and Calvin we use one thread as the sequencer
in every node of a replica. Transactions are generated by the local
worker and then handed to the sequencer thread for determining
order and logging. After the transactions are persisted, sequencer
threads schedule workers for execution. For DS2PL and DOCC,
transactions are generated at primaries directly to avoid network
stalls. Similarly, transactions are generated at the sequencers of
Lotus. Lotus, Calvin, and Aria deliver the strongest consistency
when their logs are replicated using consensus. However, To focus
on concurrency control aspect, our experiments did not implement
logging with consensus algorithms. Instead, logging in all the sys-
tems is implemented by writing to the local disk using a dedicated
thread. For Aria and Calvin, logging is performed by the sequencers.
In Lotus, the sequencer ships commands in the log buffer to back-
ups after it is persisted. Therefore, LoTUus, Aria and Calvin pay the
same logging overhead per batch of transactions.

7.2 Non-Deterministic Systems

We configure the number of partitions to be equal to the total
number of worker threads. We ran YCSB and TPC-C varying the
percentage of multi-partition transactions. Each MP transaction
accessed at most five partitions for YCSB. In addition, for all the pro-
tocols, we implemented the standard group-commit optimization
that combines concurrent durable writes to the log from multiple
workers on a node into one durable write. To ensure fairness for
non-deterministic protocols, we turned off the batch execution for
LoTus as other protocols do not do batching. Each transaction
is immediately committed after execution. Hence, the difference
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between LoTus and H-Store in the experiment is the addition of
granule-based locking.

The results are shown in Figure 9a and Figure 9b. We see that
Lotus and H-Store perform similarly when there are no MP trans-
actions. Both outperform DS2PL and Sundial by 20%. This is largely
due to active-active replication. The primary streams SP transac-
tions to its backup and their executions overlap. This is in contrast
to DS2PL and Sundial which employ synchronous primary-backup-
based log shipping. Writes are applied synchronously to backups
at the end of execution. Therefore, there is little overlap.

As we raise the percentage of MP transactions, the throughput
of H-Store plummets. Transactions almost always abort due to par-
tition lock conflicts. For LoTus, which adds granule-level locking
on top of H-Store, throughput degrades gracefully as granule-level
locking allows more concurrency. Lotus keeps its dominance over
DS2PL and Sundial by 20-60% across all percentages of MP transac-
tions. To drill down on performance gains, we show the breakdown
of MP transaction average latency in Figure 9c. We see that LoTus’s
overall latency is smaller than DS2PL/Sundial by 57%/63%. This is
due to synchronous active replication that overlaps the transaction
execution on two replicas. Therefore, there is no replication after-
ward. Our commit latency is also smaller than DS2PL and Sundial.
The reason is that LoTus commit protocol eliminates the expensive
forced log write on participants. Sundial has a similar breakdown
as D2SPL because its number of phases and synchronous log writes
during commit are the same.

Overall, with granule-level locking, the H-Store architecture can
be made competitive against fine-grained distributed concurrency
control protocols.

7.3 Deterministic Systems

YCSB Results. We start with the YCSB benchmark for determinis-
tic systems. All accesses are uniform. We set the number of parti-
tions to be 180. We configure 1,000 granules per partition, which we
find works well for LoTus. We configure the batch size to be 1,200
transactions which is much larger than the number of partitions
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to fully saturate all the cores. The result is shown in Figure 10a.
At 100% SP transactions, LoTUs outperforms Aria and Calvin by
2.4%/5.9x respectively. As we increase the MP percentage, LoTUs
throughput starts to drop. This is expected as each MP transaction
goes through the commit protocol which incurs network commu-
nication. However, even at 100% MP, LoTUs is comparable to Aria
and outperforms Calvin.

To drill down on the performance difference, we show a time
breakdown during a batch execution within a worker in Figure 11a.
We classify time into two activities: Scheduling and Execution.
Execution is time spent doing useful work such as execution and
commit. Scheduling refers to performing transaction scheduling
such as sequencing and logging in Aria and Calvin. Scheduling
also includes scheduling locks in Calvin. Since LoTus does not
log before transaction execution and transactions start execution
once they are submitted to the sequencer replica, there is nearly
zero scheduling time. At 100% SP, LoTus spends 2.5x/5.7x less time
finishing a batch of transactions. This is because transactions are
local and run to completion without interruption or coordination.

Aria and Calvin both suffer from sequencing overhead and execu-
tion overhead for SP transactions. For Aria, although our benchmark
ensures that SP transactions are generated on the nodes holding
the data, each transaction still needs to check tuple-level conflicts
among workers in the same node at the end of the batch. Besides,
multiple cluster-wide barriers are required at batch boundaries. For
Calvin, it is bottle-necked by the single-threaded lock manager
for scheduling locks. With more MP transactions in the workload,
Lotus execution time increases due to network stalls in execution
and commit protocol. However, its execution time is still on par
with Aria and beats Calvin thanks to the batch execution and com-
mit scheme that overlaps network stalls with execution. Aria and
Calvin are not affected because they do not run a commit protocol.

TPC-C Results: TPC-C results are shown in Figure 10a. The
database is partitioned on warehouse id and runs with a total
batch size of 600 transactions with 414 partitions(warehouses). Each
worker gets 33 transactions per batch. The overall trend is similar
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to YCSB. LoTus dominates Aria and Calvin with low MP percent-
age due to the same reasons described above. LoTtus throughput
degrades more quickly compare to YCSB as we increase the per-
centage of MP transactions. At 100% MP, LoTus throughput is 30%
below that of Aria. This is because TPC-C has more conflicts than
YCSB. Each warehouse tuple and district tuples within a warehouse
are frequently updated. LoTus incurs an abort rate of 56% compared
to 32% in Aria at 100% MP. Therefore, even though LoTus takes
less time in batch execution, as shown in Figure 11b, more work is
wasted. This is one of the limitations of Lotus.

We also included the throughput of LoTus backup replica (Lotus-
Backup in Figure 10a) on YCSB and TPC-C. Our results show that
the LoTus backup can closely follow the throughput of the pri-
mary which ensures fast failover. Typically, the backup is only a
few batches behind the primary. Overall, on the low-to-medium
contention workloads described here, LoTus can significantly out-
perform deterministic systems such Calvin and Aria on SP work-
loads. LoTus also stays competitive with MP workloads through
granule-level locking and batching. The LoTus replica is also able
to keep up with the throughput of its primary replica.

7.4 Granule Locking Overhead

We now explore the overhead of granule-level locking. First, we
studied the locking overhead on the primary. We perform the same
YCSB experiments as in Section 7.3 varying the number of granules
from 1 to 100K (tuple-level locking). With one granule, it is effec-
tively partition-level locking. Once the partition is locked at the
transaction start, no locking is needed during the execution. The
results are shown in Figure 12. At 0% MP, partition-level locking
outperforms the configuration with 1K granules by only 6%. The
overhead of granule-level locking is because of the hash function
computation for identifying the granule and more lock acquisitions
and releases. However, with more MP transactions, the throughput
dramatically increases with more granules.

We also studied the throughput of backups for each configura-
tion. For brevity, we only show configurations with a significant
replication lag that occurs with 10K/100K granules. In this setting,

2949

—o— lotus Aria —— Calvin

—~———

Slowdown

0 T T T T
20 40 60 80
% of multi-partition transactions

100
Figure 13: Slowdown by an 20ms Straggler YCSB Transaction

the throughput of the backup (Backup-10K/Backup-100K in Fig-
ure 12) is up to 2.2Xx lower than their primaries. This is because
tuple-level dependency tracking imposes a significant overhead.
The memory usage of a backup is up to 8x higher than the primary
for tracking dependencies. Therefore, coarser-grained granules are
a better trade-off between concurrency and replay overhead.

7.5 Impact of Stragglers

Next, we experimentally show the impact of straggler transactions
in existing batch-based transaction processing systems. Straggler
transactions are harmful to such systems because they typically
need to wait for all the transactions in a batch to finish before mov-
ing on to the next batch. This means performance is determined
by the slowest transaction. We use the YCSB benchmark in Fig-
ure 10a to explore this topic. For each batch of YCSB transactions,
we randomly insert one straggler transaction into each batch that
sleeps for 20 milliseconds in addition to performing its transaction
logic. We measure the total throughput slowdown caused by this
transaction. The result is shown in Figure 13. We observe that the
straggler impact to LoTus throughput is the smallest: 1.8x slow-
down observed at 100% SP. For Aria and Calvin, the impact could be
4.9% and 4.1X. In Aria and Calvin, a single straggler transaction in
a batch will cause all workers to wait for it to finish before starting
the next batch. The impact of stragglers is lessened in LoTus as
batching happens at the individual worker level.

7.6 Scalability Experiment

To show the scalability of LoTus, we ran the same YCSB experi-
ments varying the number of nodes in a replica. Each node stores
180 partitions and each worker uses 200 transactions per batch. We
studied various percentages of MP transactions. We also studied the
scalability of the backup replaying transactions and whether the
backup can keep up with the primary when scaling out to additional
nodes. Therefore, the throughput of the replica is also studied. The
results are shown in Figure 14. LoTus shows near-linear scalabil-
ity. When running with 12 nodes in a primary, the throughput is
6.0%/5.6%/5.3%/4.8% of the throughput with 2 nodes respectively
for workloads with 0%/5%/10%/25% MP transactions. The backup
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also scales linearly. The throughput of backup in these workloads
closely follows the primary, implying a minimum replication lag.

7.7 Asynchronous Checkpoint Overhead

We next performed an experiment using YCSB to show the overhead
of the checkpoint process described in Section 5.2. The database is
hashed into 180 partitions among 3 nodes each with 6 workers. Each
partition contains 400K tuples and 2000 granules. The transactions
in the workload consist of 50% reads and 50% updates. Checkpoint
is triggered every 15 seconds. We set the batch size to be 1200
transactions. 50% of the transactions are multi-partition transac-
tions. We ran the experiment for 60 seconds. The system writes log
and checkpoint files to two separate storage devices to eliminate
interference. The results are shown in Figure 15. For comparison,
we also run the experiment with checkpoints disabled (labeled as
YCSB-Ideal in Figure 15). We observe that during periods without
checkpoint-ing, throughput is similar to that of YCSB-Ideal. When
there are checkpoint activities, around time ranges 15s—-25s and
35s-45s, we observe a maximum throughput drop of 26%. These
overheads mainly come from copying tuples to the shadow table.
We do not show the performance impact of backups for brevity
as they were similar. Overall, the performance impact is moderate.
Note that the checkpointing overhead needs to be paid for any
DBMS that adopts command logging and is not unique to LoTus.

8 RELATED WORK

Lotus is inspired by previous works on in-memory transaction
processing, distributed commit, and highly available DBMSes.

8.1 Main-Memory Transaction Processing

There has been a vibrant research community around in-memory
transaction processing. This includes multi-core in-memory trans-
action processing [18, 34, 49, 64, 66, 68, 70] as well as distributed
transaction processing [14, 26, 43, 50]. Epoch-based [64, 70] transac-
tion processing exploits the idea of time-window-based transaction
batching to trade latency for throughput. The idea is applicable in
distributed setting [15, 41, 43] as well. Jones et al[32] proposed to
speculatively execute transactions during stalls of 2PC in H-Store.
However, a significant amount of CPU cycles are still wasted in
stalls from MP execution and cascading aborts. LoTus dramatically
reduces network stalls in an H-Store style architecture by execut-
ing a batch of MP transactions concurrently without losing the
competitive edge of SP transaction performance.

8.2 Distributed Commit

There are many works on optimizing atomic commit protocols [5,
7, 23, 24, 42, 58, 59]. Most related to LoTus is the line of work fo-
cuses on one-phase commit protocol by having only coordinator
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performing either physical [7, 39, 58, 59] or logical [5] logging. The
durability and atomicity properties are guaranteed by the coordina-
tor. LOTUS is in the similar spirit of these protocols. However, LoTus
is more focused on the extreme form of logical logging, i.e., com-
mand logging. COCO [42], proposes amortizing the overhead of
2PC by performing commit for transactions in an epoch. However,
it adds latency to individual transactions and suffers from imbal-
anced workloads with stragglers. LoTus also amortize the overhead
of distributed commit. However, batching in LoTus is local to a
sequencer without relying on fixed time window. Therefore, LoTus
does not add much latency and is more robust against straggler.

8.3 Highly-Available Databases

DBMS high-availability is typically achieved through replication.
Existing replication schemes can be classified as active-passive [10,
55] or active-active [2, 41, 50, 52, 63]. Active-passive scheme repli-
cates outputs after the primary has finished execution through log
shipping. Whereas active-active scheme replicates inputs which is
used extensively in deterministic systems. For H-Store and VoltDB,
active-active is implemented by synchronously replicating com-
mands to all replicas. Systems like Calvin and Aria rely on consen-
sus algorithms [37, 48] or consensus-based log store [6] to ensure
data consistency during the replication of input transactions. The
replication scheme of LoTus is similar to that of Calvin and Aria.
The difference is that Lotus only enforces partial orderings of
transactions. Some recent works [17, 28, 29] explore multi-shard
transaction processing in resilient systems (e.g., blockchains). Lo-
TUs does not tolerate the Byzantine faults assumed in these systems.
Therefore, the commit protocol in LoTus is made more lightweight.

9 CONCLUSION

In this paper, we presented the design of LoTus, a distributed and
scalable in-memory database based on the concurrency control
scheme from H-Store. We identified bottlenecks that cause poor MP
performance in the H-Store architecture. LoTus improves the MP
transaction throughput by introducing granule locks for more con-
currency and batch execution/commit for overlapping computation
and communication. We explored decoupling transaction replay on
replica from the commit protocol in the original H-Store/VoltDB
design. We showed that on YCSB and TPC-C, LoTus can outper-
form 2PL and OCC on workloads with MP transactions. Compared
to state-of-the-art deterministic protocols, LoTus is both more per-
formant and robust.
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