
CodexDB: Synthesizing Code forQuery Processing from Natural
Language Instructions using GPT-3 Codex

Immanuel Trummer
Cornell University

Ithaca, NY
itrummer@cornell.edu

ABSTRACT
CodexDB enables users to customize SQL query processing via
natural language instructions. CodexDB is based on OpenAI’s GPT-
3 Codex model which translates text into code. It is a framework
on top of GPT-3 Codex that decomposes complex SQL queries into
a series of simple processing steps, described in natural language.
Processing steps are enriched with user-provided instructions and
descriptions of database properties. Codex translates the resulting
text into query processing code. An early prototype of CodexDB
is able to generate correct code for up to 81% of queries for the
WikiSQL benchmark and for up to 62% on the SPIDER benchmark.

PVLDB Reference Format:
Immanuel Trummer. CodexDB: Synthesizing Code for Query Processing
from Natural Language Instructions using GPT-3 Codex. PVLDB, 15(11):
2921 - 2928, 2022.
doi:10.14778/3551793.3551841

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/itrummer/CodexDB.

1 INTRODUCTION
CodexDB processes SQL queries while allowing far-ranging cus-
tomization without expert developer skills. Users specify natural
language instructions, along with their queries, which influences
code generated for query processing. The enabling technology for
this system is OpenAI’s GPT-3 Codex model. Codex is a large neural
network, currently available via a private beta test, that translates
natural language instructions into code. This paper presents first
experimental results and an outlook on future steps.

The range of applications is vast. To name just a few, consider
the following use cases.

Example 1.1. A developer wants to benchmark different data
processing frameworks (e.g., Pandas and Vaex in Python or Table-
saw and Morpheus in Java) on a specific SQL workload and hard-
ware platform. Traditionally, doing so requires either modifying
an existing database management system or writing query-specific
code from scratch. With CodexDB, that developer specifies queries,
together with natural language instruction such as “Use pandas
library”. While CodexDB may not succeed at generating code for

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551841

each workload query, obtaining performance results for a subset
can guide future development efforts. Also, generated code can be
manually validated and reused in case of recurrent queries.

Example 1.2. A user needs help “debugging” a complex SQL
query. To that purpose, the user wants to print intermediate results
during query processing. CodexDB allows users formulating natural
language instructions that are executed after each processing step.
Instructing CodexDB to “Print intermediate results” has the desired
effect and helps with query debugging.

CodexDB accepts queries, together with natural language in-
structions, as input. These instructions customize the way in which
queries are executed. CodexDB generates code to process queries
while complying with additional instructions. A first option is to
submit queries and instructions directly to GPT-3 for code genera-
tion. We will see in Section 4 that this approach does not work.

Instead, CodexDB adapts techniques from classical query plan-
ning. It decomposes complex SQL queries into sequences of simple
processing steps. In contrast to prior work, those steps are for-
mulated in natural language using corresponding text templates.
Finally, automatically generated plan steps are interleaved with
user-provided instructions. The resulting text is enriched with in-
formation about the database schema and physical layout. The
final text is submitted to GPT-3 Codex (as a so-called “prompt”).
Using this approach as a starting point, CodexDB generates code
for sample queries in a training step. The resulting code samples
can be integrated into prompts generated at run time to increase
the chances of success. An early prototype of CodexDB generates
correct code in many cases for two popular text-to-SQL bench-
marks. Also, it is able to customize generated code using simple
instructions, inspired by the use cases outlined before.

The original scientific contributions are the following:
• The paper presents the vision behind CodexDB, a system

that processes SQL queries while allowing customization
via natural language instructions.

• The paper discusses first experimental results, based on an
early prototype of CodexDB.

• The paper outlines next steps and future research.
The remainder of this paper is organized as follows. Section 2

discusses recent progress in natural language processing and com-
pares CodexDB to prior work. Section 3 describes the architecture
of the first prototype. Section 4 reports first experimental results in
multiple scenarios. Section 5 discusses future research plans.

2 BACKGROUND AND RELATEDWORK
CodexDB is enabled by recent advances in the domain of natural
language processing. Those advances have been fuelled by two key

2921

https://doi.org/10.14778/3551793.3551841
https://github.com/itrummer/CodexDB
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551841
https://www.acm.org/publications/policies/artifact-review-and-badging-current


ideas: a novel neural network architecture, the Transformer [33],
and new training paradigms, implementing the idea of transfer
learning [23]. The Transformer is nowadays the dominant archi-
tecture in the domain of language processing [36]. Among other
advantages, it lends itself better to parallelization than prior meth-
ods. This has, in part, enabled the creation of very large, pre-trained
language models. Such models are pre-trained on tasks for which
large amounts of training data are easily available, e.g. predicting
the next word in text snippets. While pre-training is very expen-
sive, the resulting models can be easily specialized for new tasks
via different methods. Fine-tuning describes a process in which
pre-trained models are used as a starting point for further train-
ing on more specialized tasks (reducing the amount of training
samples and computational overheads by orders of magnitude via
pre-training [8]). Until recently, fine-tuning has been the primary
method of exploiting pre-trained language models. The latest gen-
eration of pre-trained models, most notably OpenAI’s Generative
Pre-Trained Transformer (GPT) version 3, unlocks new possibilities.
It turns out that sufficiently large models can oftentimes solve new
tasks without specialized training (“zero-shot learning”), based on
inputs describing the task in natural language alone [3]. Precision
increases if the input integrates few (i.e., typically less than ten)
examples pairing tasks of the same type with solutions (“few-shot
learning”). This is the method currently used by CodexDB. The
final development that enabled this paper is the emergence of the
Codex variant of GPT-3 [5, 22]. The primary difference between
GPT-3 Codex and the original GPT-3 model lies in the data used for
pre-training. GPT-3 Codex is trained on code and technical docu-
mentation. This results in a model whose primary use case is the
translation of natural language commands into code.

CodexDB relates to interfaces such as GitHub’s Copilot [6] as
both provide layers on top of GPT-3 Codex. CodexDB differs by its
focus on SQL query processing. Copilot uses partial code as input
and suggests code completions. CodexDB shields users fromwriting
code themselves. Instead, it enables users to submit queries with
additional natural language instructions. The current prototype
supports users by automatically handling training, prompt genera-
tion, code generation, and query evaluation. It generates complex
prompts that integrate database schema information as well as a
decomposition of queries into simple plan steps. Future versions
of CodexDB will provide more features to specifically support SQL
query processing, as outlined in Section 5 in detail.

CodexDB connects to prior work on natural language interfaces
in the database community [15, 24, 35]. So far, the focus was on
“democratizing access to data”, i.e. enabling lay users to work with
database systems. CodexDB enables lay users to customize code
for query processing via natural language instructions (as well as
making such changes easier for more advanced users).

CodexDB relates to prior work exploiting machine learning [12,
13, 21] and specifically Transformers [30, 31] in the context of
database systems. It connects broadly to prior work using GPT-3 for
program synthesis [11, 17, 18]. It differs by its focus on customizable
SQL query processing. Prior work on code generation for query
processing [14, 34] cannot integrate natural language instructions.

CodexDB

Text-to-SQL (Optional)

Natural Language Planner

Query

Instructions

Prompt Generator

Code Generator (GPT-3)

Execution Engine

Verification C
od

e
Sa

m
pl
es

D
B
C
at
al
og

Result

Figure 1: Overview of CodexDB prototype.

3 SYSTEM OVERVIEW
Figure 1 shows an overview of CodexDB. Users enter a query as well
as natural language instructions, influencing the code generated
for query processing. The query is formulated either in SQL or in
natural language. In the latter case, the query is first translated into
an SQL query via text-to-SQL methods [16, 27, 39].

The SQL query and natural language instructions form the input
to the query planner. This planner differs from prior query planners
by its output format. As the plan is translated into code by GPT-3 in
the following steps, the plan is formulated as a sequence of natural
language steps. User-provided natural language instructions are
included as steps in such plans.

More precisely, the planner treats the nodes in the query tree in
post-order. Each node is translated into a processing step, formu-
lated in natural language. To do so, the planner uses text templates
that are associated with specific node types. As plan steps are num-
bered, intermediate results are referred to via the number of the
step generating them. The last step in the plan instructs GPT-3 to
write the query result into a file at a specified location.

Currently, CodexDB allows users to specify two types of instruc-
tions: instructions that refer to the plan execution as a whole (e.g.,
instructions on which libraries to use for processing) as well as
instructions that are executed after each step (e.g., instructions
determining customized logging output). Instructions of the former
type are pre-pended to the template-based processing steps (i.e.,
they become the first plan step) while instructions of the latter type
are inserted after each processing step (i.e., the number of plan
steps doubles). Note that, currently, the planner does not perform
any cost-based or heuristic optimization.

Code generation is initiated by submitting a prompt to GPT-3
for completion. This prompt represents the start of a program that
GPT-3 Codex tries to finish. The prompt integrates details about the
data in the database, extracted from the database catalog, including
the names of tables and their columns, as well as a path to the
corresponding files. This description is generated using a simple
text template with placeholders for column and table names. Also,

2922



"""
Table Data with columns 'Player','No_','Nationality','Position',
'Years_in_Toronto','School_Club_Team', stored in 'Data.csv'.
Processing steps:
1. Load data for table Data.
2. Print progress updates.
3. Check if 'Player' equals 'dell curry'.
4. Print progress updates.
5. Filter results of Step 1 using results of Step 3.
6. Print progress updates.
7. Create table with columns 'Years_in_Toronto'

(aka. result ) from results of Step 5.
8. Print progress updates.
9. Write results of Step 7 to file 'result.csv' (with header).
10. Print progress updates.
"""

Figure 2: Example prompt for code generation integrating a
description of the database (blue), processing steps (black),
and natural language instructions (red).

the prompt integrates the aforementioned plan steps. The prompt is
passed on to GPT-3 which answers with a piece of code. CodexDB
tries to execute the code, and to read the generated query result. If
the code does not execute (or if it does not generate a result file),
CodexDB executes up to a configurable number of retries. With
each retry, the “temperature” (a Codex parameter determining the
degree of randomness in code generation) is increased to enable
new solutions. If successful, the result is returned to the user.

CodexDB can be used in a zero-shot setting (i.e., it generates
code with instructions not seen before). Alternatively, it executes a
training phase before run time with fixed instructions. The purpose
of training is to generate a library of code samples, generated us-
ing the target instructions. During training, CodexDB uses sample
queries for which the query result is known. It retries code gen-
eration until the query result matches the known one (or until it
reaches the maximal number of retries). At run time, a specified
number of samples is randomly selected from that library and in-
cluded into the prompt. Having examples in the prompt (“few-shot
learning”) increases the success probability, as shown in Section 4.

Example 3.1. Consider the query Select "Years_in_Toronto"
as Result from Data where "Player" = 'dell curry' from the
WikiSQL benchmark. Assume a user enters this query, togetherwith
the per-step instructions “Print progress updates”. Figure 2 shows
the prompt for this query, interleaving automatically generated
processing steps with user instructions and providing context on
the database schema.

4 EXPERIMENTS
The goal of the experiments is threefold. First, to verify that CodexDB
generates correct code inmany cases. Second, to evaluate the degree
to which code can be customized via natural language instructions.
Third, to compare CodexDB to other baselines. Section 4.1 discusses
the experimental setup while Section 4.2 reports results.

4.1 Setup
All experiments are executed on an AWS EC2 instance of type
t2.xlarge with 16 GB of RAM, four virtual CPUs, and 800 GB of
EBS storage. The instance uses Amazon’s Deep Learning AMI
(Version 53) and runs Ubuntu 18.04. CodexDB is implemented in
Python 3 and accesses OpenAI’s GPT-3 Codex model via OpenAI’s
Python API. The experiments use the “Cushman” and “Davinci”
versions of Codex with an estimated parameter count of 6.7 billion
and 175 billion parameters respectively [3, 28]. The generated code
is in Python, the language both models are most capable in [22].

The following experiments compare CodexDB to baselines that
try translating queries directly to code. This is the most direct
method of using GPT-3, making the comparison interesting. The
experiments use the WikiSQL [39] and SPIDER [38] benchmarks,
two popular benchmarks for text-to-SQL translation. Text-to-SQL
translation relates to the problem solved by CodexDB, as it involves
natural language commands and generation of (SQL) code. The
experiments only consider up to the first hundred queries from
both benchmarks as treating all queries is prohibitively expensive1.
The data on which queries operate is stored in the .csv format.

The experiments evaluating CodexDB focus on the key step of
translating an SQL query into code, possibly with additional natural
language instructions. Translating natural language questions into
SQL queries is a well studied problem. Corresponding results for
the WikiSQL and SPIDER benchmarks are available with recent
methods achieving a precision of over 90 % [37] for WikiSQL and
over 70 % for SPIDER [19]. We consider a test case (characterized
by a natural language query with associated data) as “solved” if
the generated program is executable and generates the correct re-
sult. This proxy for correctness is often used to evaluate natural
language query interfaces [25, 39]. A subset of generated programs
was manually validated as well. Unless noted otherwise, CodexDB
retries generating a program once if the first generated program is
not executable. If the first program executes but generates an incor-
rect result, the corresponding test case is not solved. CodexDB uses
a temperature of zero for the first try and increases the temperature
(determining the degree of randomization during code generation)
by an amount determined by the formula 0.5/𝑁 where 𝑁 is the
maximal number of allowed tries (typically two).

To test customization, we consider six natural language instruc-
tions. Three of them focus on processing methods by instruct-
ing CodexDB to use specific libraries: “Use pandas library”, “Use
vaex library”, and “Use datatable library”. The other three instruct
CodexDB to generate specific logging output after each process-
ing step: “Print ’Done.’ ”, “Print intermediate results”, and “Print
progress updates”. The first three instructions are added once as
first plan step. The last three are added after each step of the initial
plan. Note that the following figures and tables abbreviate those
instructions slightly (e.g., in the figure legends).

4.2 Results
The performance varies across different prompts and models. In
a zero-shot scenario (i.e., the prompt does not contain training
samples) and using prompts generated by CodexDB, GPT-3 Codex

1At the time of writing, OpenAI Codex is only available to beta testers and access is
subject to a rate limit of 20 requests per minute.

2923



1 2 3 4 5 6 7 8 9 10
0

20

40

Number of tries

N
r.
So
lv
ed

-
Use pandas
Use vaex

Use datatable
Print “Done.”
Print results
Print progress

Figure 3: WikiSQL queries out of 50 solved during training
for different instructions as function of the number of tries.

solves 22 out of 100 WikiSQL queries while GPT-3 Cushman only
solves 11. No queries are solved when using prompts that contain
queries alone. Clearly, the prompts of CodexDB, enriched by query
plans, are necessary to generate correct code. The Davinci model
(which features most parameters) solves significantly more test
cases than the Cushman version. On the other side, average gen-
eration times (seven seconds versus two seconds) are higher for
Davinci.

Language models are often fine-tuned to increase performance
for specific tasks. This option is not yet available for the Codex
series of GPT-3. Instead, we consider few-shot scenarios [3] in the
following. Here, examples with solutions are integrated as part of
the prompt.

Figure 3 reports the results of a preparation run, using 50 queries
from the WikiSQL training set and the Davinci model. As training
is executed before run time, up to ten tries are allowed. Further-
more, it is assumed that solutions for training samples are available,
allowing to stop code generation only if the execution result is
correct (as opposed to using the first executable code). Figure 3
reports solved test cases as a function of the (maximal) number of
tries. Different lines are associated with additional natural language
instructions (“-” designates no additional instructions). Training
took between 1510 seconds (when instructed to use the pandas
library) and 8,300 seconds (with instructions “print intermediate
results”). Given enough tries and results to compare to, CodexDB
solves 80% of test cases without additional instructions.

After training, successfully solved queries can be integrated as
examples into the prompt. Using two examples per prompt (rather
than zero or four) and applying the Davinci model (rather than
the Cushman version) maximizes the number of queries solved out
of 100 test queries from WikiSQL without additional instructions.
Unless noted otherwise, this configuration is used next.

We test customization by adding the instructions described in
Section 4.1. Figure 4 reports the number of test cases solved with
different instructions. In most cases, adding more instructions tends
to decrease success ratio for the largest model. Interestingly, the
impact varies across instructions. In particular, asking CodexDB to
use the pandas library slightly increases performance. This seems
reasonable as the pandas library is popular (i.e., the training set of
GPT-3 Codex likely includes various example codes) and supports
operations similar to SQL operators. Manual analysis of the first 20
programs generating the correct result shows that they are indeed
correct. Generated programs have a median length between 437
(with instructions “Use datatable library”) and 875 (with instructions

60
65
70
75

6769
74

60
64

69
72

N
r .
So
lv
ed

Cushman-Codex Model

60

70

80 798176

58

6971
77

Davinci-Codex Model

- Use pandas Use vaex
Use datatable Print “Done.” Print results
Print progress

Figure 4: Number of WikiSQL queries solved out of 100 for
different natural language instructions.

csv pandas vaex datatable

0

50

100

34
66

0 00

100

0 016

61
100

03 15 0

100

N
r .
Pr
og

ra
m
s -

Use pandas
Use vaex

Use datatable

Figure 5: Number ofWikiSQL programs out of 100 importing
specific libraries for library-related instructions.

“Print intermediate results”) characters. The corresponding SQL
queries have a median length of only 77 characters, illustrating the
difficulty of the code generation task.

So far, we discussed correctness. Next, we examine whether
additional instructions are reflected in the generated programs.
Figure 5 reports the number of generated programs (out of 100)
that import certain libraries. Without specific instructions, 34%
of generated programs import the “csv” library while 66% import
pandas. Incorporating instructions to use pandas, vaex, or datatable
into the prompt ensures that each generated programs imports the
associated library. In some cases, in particular for vaex, programs
import multiple libraries (both, csv and pandas). Manual inspection
of the generated code reveals that some of those programs contain
redundancy (e.g., by importing data using vaex, then transforming
into pandas data frames). While this subset of programs formally
satisfies the instructions (they import, i.e. “use”, the corresponding
library), they do not entirely reflect its spirit.

The data sets of the WikiSQL benchmark are too small for mean-
ingful execution performance measurements. For measuring exe-
cution performance, data were scaled by factor 1,000,000 via row
duplication. Considering the first ten WikiSQL queries for which
correct programs were generated with all instructions, CodexDB
has a total execution time between 51 seconds (with instructions
“Use datatable library”) and 240 seconds (with instructions “Use
vaex library”). A widely used traditional database management sys-
tem required 368 seconds for the same queries (counting time for
loading data from disk and writing out the query result to ensure a
fair comparison). This shows that CodexDB is reasonably efficient.

Figure 6 refers to logging-related instructions. The figure shows
how many out of 100 generated programs contain certain types of

2924



any “Done.” stringvariable

50
100

2 0 0 0

10
0

10
0

10
0

0

10
0

0

25

10
0

10
0

0

10
0

13

N
r .
Pr
og

ra
m
s -

Print “Done.”
Print results
Print progress

Figure 6: Number of WikiSQL programs containing specific
types of print statements for output-related instructions.

0

10

20 17

2

11
14

4
1 0N

r.
So
lv
ed

Cushman-Codex Model

0
20
40
60 5862

1312

555553

Davinci-Codex Model

- Use pandas Use vaex
Use datatable Print “Done.” Print results
Print progress

Figure 7: Number of SPIDER queries solved out of 100 for
different natural language instructions.

csv pandas vaex datatable

0

50

100

1

89

0 00

100

0 00 8

100

00 0 0

100

N
r .
Pr
og

ra
m
s -

Use pandas
Use vaex

Use datatable

Figure 8: Number of SPIDER programs out of 100 importing
specific libraries for library-related instructions.

print commands, distinguished by the operand. The figure considers
presence of any print commands, commands printing out “Done.”,
commands printing hard-coded strings, and commands printing
out variables. Without further instructions, only 2% of generated
programs contain any print statements. This ratio increases to 100%
for any of the logging-related instructions. Instructing CodexDB to
print “Done.” after each step is reflected by the presence of corre-
sponding print commands in each program. Instructing CodexDB
to print intermediate results ensures that each generated program
prints out variables. Requiring progress updates leads to programs
printing out hard-coded strings in all (100%) and printing out vari-
ables in some (13%) cases. Note that this instruction leaves room
for interpretation (as the form of progress updates is not specified).
Manual inspection reveals that most generated code includes print
commands after each step, outlining the action performed at a high
level of abstraction.

Figures 7, 8, and 9 show success ratio and impact of additional
instructions on the first 100 queries of the SPIDER benchmark.
Samples were generated during a training phase, using the same

any “Done.” stringvariable

50
100

0 0 0 0

10
0

10
0

10
0

0

10
0

0

80 78

10
0

5

10
0

0

N
r.
Pr
og

ra
m
s -

Print “Done.”
Print results
Print progress

Figure 9: Number of SPIDER programs containing specific
types of print statements for output-related instructions.

0.0625 0.125 0.25 0.5 1.0

20

40

60

Maximal temperature

N
r.
So
lv
ed

-
Use pandas
Use vaex

Use datatable
Print “Done.”
Print results
Print progress

Figure 10: Impact of temperature on success ratio for SPIDER.

training process as for WikiSQL on the training partition of SPI-
DER. Between 20% (with instructions “Use vaex library”) and 68%
(with instructions “Print progress updates”) of training queries were
solved. All figures report few-shot results with two samples per
prompt for Cushman and four samples for Davinci (this maximizes
the number of test queries solved without added instructions). Re-
sults reported in figures refer to the dev partition of the SPIDER
benchmark (which is frequently used for evaluation and publicly
available). The settings for retries and temperature are the same as
before. Text-to-SQL methods typically perform significantly worse
on SPIDER, compared toWikiSQL [19]. SPIDER features multi-table
queries and separates databases used for training and testing. As
shown in Figure 7, CodexDB solves up to 62% of queries (compared
to up to 81% for WikiSQL). The gap between Davinci and Cushman
is larger on SPIDER, showing that complex benchmarks require
larger models. Generated programs for SPIDER queries range from
a median length of 578 characters (with instructions “Use vaex
library”) to a median length of 1395 characters (for instructions
“Print progress updates”). Figure 5 shows that library-related in-
structions always lead to code importing the referenced library.
Figure 9 shows similar results to Figure 6, except for a slight de-
crease in the ratio of programs that print intermediate results, given
the corresponding instructions.

Figure 10 tests if a different temperature threshold can improve
performance on SPIDER (using the Davinci model). The x-axis
shows the maximal temperature (i.e., the temperature used during
the retry, if any). No single setting works best for all scenarios and
performance is relatively stable with regards to temperature.

5 RESEARCH AGENDA
The CodexDB project aims at creating a system that is highly cus-
tomizable via natural language instructions, while achieving com-
parable accuracy and performance to traditional database systems
used via text-to-SQL query interfaces. At the same time, the system

2925



must prevent ethical and legal issue due to the use of large lan-
guage models [1]. The current prototype does not yet achieve those
goals. The following paragraphs discuss steps towards the CodexDB
vision, open research questions, and associated challenges.

Improve Success Ratio. Increasing the ratio of queries for
which CodexDB produces correct results is a primary research goal.
The current version adds randomly selected samples to the prompt
in order to solve more queries. In this context, a first research ques-
tion is whether we can increase success ratio by selecting samples
more carefully. Adding samples that are similar to input problems
can increase the performance of GPT-3 on natural language bench-
marks significantly [20]. When adapting this approach for query
code generation, a first challenge is the definition of a similarity
function on SQL queries that maximizes performance gains.

A second research question is whether performance can be im-
proved further by fine-tuning GPT-3. Given a dynamic input work-
load, a first challenge is to choose when to fine-tune (using previous
queries as training data). Fine-tuning too frequently is undesirable
as the process is very expensive. On the other side, fine-tuning
may increase accuracy and reduce generation cost as it decreases
prompt size (due to the omission of samples) and the number of
retries (after unsuccessful generation attempts). CodexDB should
decide automatically if and when to fine-tune, based e.g. on work-
load properties and user-defined precision or cost constraints.

Reduce Code Generation Cost. Using smaller models for code
generation (e.g., GPT-3 Ada or Babbage or their open-source equiv-
alents such as GPT-Neo) decreases overheads. However, they may
not produce correct code for complex queries. CodexDB should
automatically select the most appropriate model for each incoming
query. Doing so is challenging: simple metrics such as the character
length of the input question do not necessarily correlate with query
complexity. Other options include the use of a (relatively cheap)
classifier to assess the required model size, and a staged approach
that starts with small models, switching to larger ones if necessary.

Reduce Data Processing Cost. Achieving acceptable perfor-
mance for multi-table queries on large data sets requires join order-
ing. Classical query optimization methods use a cost model for join
ordering [26], based on properties of physical operators. CodexDB,
however, generates code implementing relational operators on the
fly. As no physical operators are known at optimization time, it
is challenging to estimate processing cost of a given join order.
Whether classical query optimization methods (e.g., cost-based op-
timizers with a generic cost model [7] or simpler heuristics [4]) can
be adapted to this new scenario is an open question.

Generating code for query processing in lower-level languages
such as C likely decreases execution costs. This leads to new chal-
lenges: code in lower-level languages is often more verbose than its
Python equivalent. Transformer models generally place hard limits
on the size of the code window (including code read and written).
Switching to lower-level languages may therefore require multi-
ple model invocations to generate all query code. This, however,
makes it challenging to ensure that the generated code pieces are
consistent and can be composed.

Improve Options for Customization. During the training
phase, CodexDB verifies correctness of generated code by compar-
ing the execution result to the reference. Currently, CodexDB can-
not verify whether generated code complies with additional user

instructions. Doing so requires integrating feedback from users
(already since instructions may be ambiguous). How to integrate
feedback from users is an open question. A challenge here is to
balance the need for verification with the need to minimize over-
heads for users. CodexDB must decide for how many and for which
samples to collect feedback and how to collect it. E.g., if instructions
refer to desired logging output, users can validate output generated
during execution. Otherwise, users can validate a natural language
description by GPT-3 summarizing the generated code.

Currently, users can influence prompts generated by CodexDB
only by inserting natural language instructions before or after plan
steps. Future versions of CodexDB will offer users the possibility for
prompt-tuning in order to specialize CodexDB for specific scenarios.
In the simplest version, users specify templates for prompt elements
(e.g. determining whether questions or queries are integrated into
the prompt, as well as the precise representation of specific types of
plan steps such as joins). Later version will allow users to specify a
search space over prompt templates (e.g., by specifying alternative
templates for specific plan step types). CodexDB will integrate
approaches for automated prompt tuning [29] to select the best
version within that search space for a given scenario. Doing so is
challenging as the prompt search space grows exponentially in the
number of choice points. Furthermore, evaluating the quality of a
prompt requires generating and evaluating code for a sufficiently
large number of training queries.

Prevent Ethical and Legal Issues. CodexDB leverages large
language models which have been criticized for their environmen-
tal footprint, as well as ethical and legal issues that stem from the
use of large amounts of uncurated training data [1, 2]. Language
models for code generation have been criticized specifically for their
ability to memorize training data, some of which may be subject to
copyright constraints [9, 32, 40]. Using smaller models whenever
possible, one of the ideas for reducing code generation costs dis-
cussed before, limits the environmental footprint. As an additional
measure, CodexDB will consider expected data processing costs
during model selection, ensuring that code generation overheads
are not disproportional to data processing overheads.

GitHub plans to add mechanisms to detect cases where code gen-
erated by GitHub Copilot matches samples in the training data [40].
Via similar methods, CodexDB could regenerate code with a higher
degree of randomization if such matches are found. Using carefully
selected training data has been put forward as a more reliable solu-
tion to this problem [1]. In case of CodexDB, this training data could
include code of open-source database management systems that
is available under permissive licenses (or code generated by such
systems for query processing). Based on such a training corpus, a
Transformer model specialized for query code generation can be
trained from scratch. Training medium-sized Transformer models
from scratch takes hours [10]. The resulting model may however
realize attractive size-accuracy tradeoffs due to specialization.

6 CONCLUSION
CodexDB enables far-ranging customization via natural language
commands. Experiments with a first prototype are promising but
also hint at significant potential for improvements.

2926



REFERENCES
[1] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. 2021. On the dangers of stochastic parrots: Can language models be
too big? Vol. 1. Association for Computing Machinery. 610–623 pages. https:
//doi.org/10.1145/3442188.3445922

[2] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle
Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri,
Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen
Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan,
Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko,
Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva
Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren,
Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan,
Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro
Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the
Opportunities and Risks of Foundation Models. (2021), 1–212. arXiv:2108.07258
http://arxiv.org/abs/2108.07258

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learn-
ers. Advances in Neural Information Processing Systems 2020-Decem (2020).
arXiv:2005.14165

[4] N Bruno. 2010. Polynomial heuristics for query optimization. In ICDE. 589–600.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5447916

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evalu-
ating Large Language Models Trained on Code. http://arxiv.org/abs/2107.03374
(2021). arXiv:2107.03374 http://arxiv.org/abs/2107.03374

[6] Nat Friedman. 2021. Introducing GitHub Copilot: your AI pair pro-
grammer. https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-
programmer/ (2021).

[7] Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015.
How good are query optimizers, really? PVLDB 9, 3 (2015), 204–215.

[8] Neil Houlsby, Andrei Giurgiu, Stanisraw Jastrzçbski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. 36th International Conference on
Machine Learning, ICML 2019 2019-June (2019), 4944–4953. arXiv:1902.00751

[9] Gavin D Howard. 2021. GitHub Copilot: Copyright, Fair Use, Creativity, Trans-
formativity, and Algorithms *. (2021), 1–13.

[10] Huggingface. 2022. Training a causal language model from scratch.
https://huggingface.co/course/chapter7/6?fw=pt (2022).

[11] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2021. Jigsaw: Large Language
Models meet Program Synthesis. Vol. 1. Association for Computing Machinery.
1–12 pages. arXiv:2112.02969 http://arxiv.org/abs/2112.02969

[12] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with
deep learning. In CIDR. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

[13] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2017.
The Case for Learned Index Structures. 1 (2017), 1–30. https://doi.org/10.1145/
2348283.2348367 arXiv:1712.01208

[14] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. 2010. Generating
code for holistic query evaluation. In ICDE. IEEE, 613–624. https://doi.org/10.
1109/ICDE.2010.5447892

[15] Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface
for querying relational databases. SIGMOD (2014), 709–712. https://doi.org/10.
1145/2588555.2594519

[16] Fei Li and HV Jagadish. 2016. Understanding natural language queries over
relational databases. SIGMOD Record 45, 1 (2016), 6–13.

[17] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
and Rémi Leblond. 2022. Competition-Level Code Generation with AlphaCode.
DeepMind Technical Report (2022), 1–73.

[18] Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bo-
jan Cukic, and Samira Shaikh. 2022. Can We Generate Shellcodes via Natural
Language? An Empirical Study. arXiv:2202.03755v1 (2022). arXiv:2202.03755
http://arxiv.org/abs/2202.03755

[19] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging textual and
tabular data for cross-domain Text-to-SQL semantic parsing. Findings of the As-
sociation for Computational Linguistics Findings of ACL: EMNLP 2020 (2020), 4870–
4888. https://doi.org/10.18653/v1/2020.findings-emnlp.438 arXiv:2012.12627

[20] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3?
http://arxiv.org/abs/2101.06804 3 (2021). arXiv:2101.06804 http://arxiv.org/abs/
2101.06804

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2018. Neo: A Learned
query optimizer. PVLDB 12, 11 (2018), 1705–1718. https://doi.org/10.14778/
3342263.3342644 arXiv:1904.03711

[22] OpenAI. 2021. https://openai.com/blog/openai-codex/.
[23] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf.

2019. Transfer Learning in Natural Language Processing. In ACL: Tutorials.
15–18.

[24] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Ozcan. 2016. ATHENA: An ontology-driven
system for natural language querying over relational data stores. VLDB 9, 12
(2016), 1209–1220.

[25] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. (2021), 9895–9901. https://doi.org/10.18653/v1/2021.emnlp-main.779
arXiv:2109.05093

[26] PG G Selinger, MM M Astrahan, D D Chamberlin, R A Lorie, and T G Price. 1979.
Access path selection in a relational database management system. In SIGMOD.
23–34. http://dl.acm.org/citation.cfm?id=582095.582099

[27] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: natural language querying for complex nested
SQL queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747–2759.
https://doi.org/10.14778/3407790.3407858

[28] Richard Shin and Benjamin Van Durme. 2021. Evaluating the Text-to-SQL
Capabilities of Large Language Models. arXiv preprint arXiv:2112.08696 (2021).

[29] Taylor Shin, Yasaman Razeghi, Robert L. Logan, Eric Wallace, and Sameer Singh.
2020. AUTOPROMPT: Eliciting knowledge from language models with automat-
ically generated prompts. EMNLP 2020 - 2020 Conference on Empirical Methods
in Natural Language Processing, Proceedings of the Conference (2020), 4222–4235.
https://doi.org/10.18653/v1/2020.emnlp-main.346 arXiv:2010.15980

[30] Sahaana Suri, Ihab Ilyas, Christopher Re, and Theodoros Rekatsinas. 2021.
Ember : No-Code Context Enrichment via similarity-based keyless joins.
arXiv:2106.01501v1 (2021). arXiv:arXiv:2106.01501v1

[31] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2021. Rpt: Relational pre-trained transformer is
almost all you need towards democratizing data preparation. In Proceedings of the
VLDB Endowment, Vol. 14. 1254–1261. https://doi.org/10.14778/3457390.3457391
arXiv:2012.02469

[32] US Patent and Trademark Office. 2019. Request for Comments on Intellectual
Property Protection for Artificial Intelligence Innovation. Federal Register 84, 210
(2019), 58141–2. https://technologyreview.us11.list-manage.com/track/click?u=
47c1a9cec9749a8f8cbc83e78&id=807d031d0a&e=eb6fe22ad6

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 2017-Decem, Nips
(2017), 5999–6009. arXiv:1706.03762

[34] Skye Wanderman-Milne and Nong Li. 2014. Runtime Code Generation in Cloud-
era Impala. IEEE Data Engineering Bulletin 37, 1 (2014), 31–37. http://dblp.uni-
trier.de/db/journals/debu/debu37.html#Wanderman-MilneL14

[35] Nathaniel Weir, Andrew Crotty, Alex Galakatos, Amir Ilkhechi, Shekar Ra-
maswamy, Rohin Bhushan, Ugur Cetintemel, Prasetya Utama, Nadja Geisler,
Benjamin Hättasch, Steffen Eger, and Carsten Binnig. 2019. DBPal: Weak Su-
pervision for Learning a Natural Language Interface to Databases. (2019), 1–4.
arXiv:1909.06182 http://arxiv.org/abs/1909.06182

2927

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2005.14165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5447916
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2112.02969
http://arxiv.org/abs/2112.02969
https://arxiv.org/abs/1809.00677
http://arxiv.org/abs/1809.00677
https://doi.org/10.1145/2348283.2348367
https://doi.org/10.1145/2348283.2348367
https://arxiv.org/abs/1712.01208
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://arxiv.org/abs/2202.03755
http://arxiv.org/abs/2202.03755
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://arxiv.org/abs/1904.03711
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2109.05093
http://dl.acm.org/citation.cfm?id=582095.582099
https://doi.org/10.14778/3407790.3407858
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/arXiv:2106.01501v1
https://doi.org/10.14778/3457390.3457391
https://arxiv.org/abs/2012.02469
https://technologyreview.us11.list-manage.com/track/click?u=47c1a9cec9749a8f8cbc83e78&id=807d031d0a&e=eb6fe22ad6
https://technologyreview.us11.list-manage.com/track/click?u=47c1a9cec9749a8f8cbc83e78&id=807d031d0a&e=eb6fe22ad6
https://arxiv.org/abs/1706.03762
http://dblp.uni-trier.de/db/journals/debu/debu37.html#Wanderman-MilneL14
http://dblp.uni-trier.de/db/journals/debu/debu37.html#Wanderman-MilneL14
https://arxiv.org/abs/1909.06182
http://arxiv.org/abs/1909.06182


[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In EMNLP. 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6
arXiv:arXiv:1910.03771v5

[37] Kuan Xuan, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. 2021.
SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising. (2021).
arXiv:2105.07911 http://arxiv.org/abs/2105.07911

[38] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev.
2020. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2018. 3911–3921.
https://doi.org/10.18653/v1/d18-1425 arXiv:1809.08887

[39] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries fromNatural Language using Reinforcement Learning. (2017),
1–12. arXiv:1709.00103 http://arxiv.org/abs/1709.00103

[40] Albert Ziegler. 2022. A first look at rote learning in GitHub Copilot suggestions.
https://docs.github.com/en/github/copilot/research-recitation (2022).

2928

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/arXiv:1910.03771v5
https://arxiv.org/abs/2105.07911
http://arxiv.org/abs/2105.07911
https://doi.org/10.18653/v1/d18-1425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

