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ABSTRACT
The cost of DRAM contributes significantly to the operating costs
of in-memory database management systems (IMDBMS). Persistent
memory (PMEM) is an alternative type of byte-addressable memory
that offers — in addition to persistence — higher capacities than
DRAM at a lower price with the disadvantage of increased latencies
and reduced bandwidth. This paper evaluates PMEM as a cheaper
alternative to DRAM for storing table base data, which can make up
a significant fraction of an IMDBMS’ total memory footprint. Using
a prototype implementation in the SAP HANA IMDBMS, we find
that placing all table data in PMEM can reduce query performance
in analytical benchmarks by more than a factor of two, while trans-
actional workloads are less affected. To quantify the performance
impact of placing individual data structures in PMEM, we propose a
cost model based on a lightweight workload characterization. Using
this model, we show how to place data pareto–optimally in the
heterogeneous memory. Our evaluation demonstrates the accuracy
of the model and shows that it is possible to place more than 75 %
of table data in PMEM while keeping performance within 10% of
the DRAM baseline for two analytical benchmarks.
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1 INTRODUCTION
In-memory database management systems (IMDBMS) store table
data in DRAM, achieving superior performance over traditional
disk-based systems. However, data volumes managed by IMDBMS
are continuing to grow while the costs and capacities of DRAM are
stagnating. This makes pure in-memory systems cost-ineffective
and has sparked research into data systems that do not rely on
DRAM exclusively but still approach in-memory performance [24,
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Figure 1: DRAM and PMEM prices (August 2020) [35].

36, 43] or that try to optimize the cost-performance tradeoff by
placing data across a range of heterogeneous storage devices [47].

A promising hardware technology in the in-memory context
is persistent memory (PMEM), a new type of byte-addressable
memory, which has become commercially available in recent years.
PMEM is a cheaper alternative to DRAM at higher capacities per
DIMM, as illustrated by Figure 1, which shows DRAM and PMEM
prices per GB from August 2020 [35]. Higher capacities per DIMM
are desirable for memory-intensive workloads, as the number of
DIMMs that can be attached to a single CPU is limited. Besides
memory used for intermediate results, the main memory footprint
of an IMDBMS is significantly driven by table data. As PMEM is
byte-addressable, IMDBMS table data can be placed into it with-
out significant code changes. By placing table data in PMEM, it
should thus be possible to lower the memory cost of operating
IMDBMS and to enable managing larger data volumes on a single
node. Placing table data in persistent memory can also reduce restart
times as data does not necessarily need to be reloaded from disk
on restart, like it is the case with volatile memory [2, 37]. However,
the downside of PMEM compared to DRAM is lower performance,
namely roughly 3× higher read latencies and 3× lower maximum
read bandwidths, and even lower write bandwidths [22].

In this paper, we investigate the performance impact of placing
IMDBMS table data in PMEM to answer the following questions:

• How much is query execution slowed down if table data is
placed in PMEM instead of DRAM?

• Can the slowdown for a given workload be predicted based
on statistics collected with minimal overhead?

• How should data be distributed in DRAM and PMEM to
trade off runtime performance and memory cost?
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To answer these questions, we conduct an experimental analysis of
table data placement in PMEM and DRAM using SAP HANA [15],
a commercial IMDBMS. To decide which structures to place in
PMEMwithminimal impact on query performance, we have already
proposed a heuristic based on lightweight access counters collected
during workload execution in previous work [23]. However, this
only yields a single point on the cost-performance tradeoff which
is also not guaranteed to be pareto–optimal. We address this here
by proposing a cost model for data placement in PMEM that can
be used for pareto–optimal placement decisions.

After introducing our experimental setup in Section 2, the paper
is split into three main parts, each addressing one of the abovemen-
tioned questions: Section 3 analyzes the slowdown incurred by plac-
ing data in PMEM for both analytical and transactional workloads.
For this, we use the analytical TPC-H and TPC-DS benchmarks, and
OLTP-like point queries, on two hardware systems using two ver-
sions of the currently available PMEM modules. The insights from
this section serve as the basis for Section 4, where we propose a cost
model for table data placed in PMEM. The model uses microbench-
marks of access primitives in combination with access counters
collected during workload execution to predict the performance
impact of placing individual data structures into PMEM. Using the
model, we show how to make pareto–optimal placement decisions
with a configurable cost–performance tradeoff in Section 5. Our
evaluation using TPC-H and TPC-DS shows that 75 % of the refer-
enced table data can be placed in PMEM with little performance
impact. We also compare to PMEM’s hardware-managed Memory
mode. In Sections 6 and 7 we discuss related work and conclude.

2 BACKGROUND
Below, we discuss relevant background information on PMEM and
column stores, as well as our experimental setup.

2.1 Persistent Memory
In the past, several persistent memory (PMEM) technologies have
been proposed. So far, only Intel Optane DC Persistent Memory
Modules (DCPMM) based on 3D-XPoint technology are commer-
cially available [19, 20]. PMEM offers byte-addressability and direct
persistence at (nearly) DRAM speed, as well as a higher density and
better economic characteristics than DRAM as shown in Figure 1.

DCPMM provides two possible operating modes: Memory and
App Direct mode. Memory mode allows applications to use PMEM
as larger volatile memory, where DRAM acts just as a kind of
L4 cache and, therefore, no rewrite of in-memory software is nec-
essary. In order to utilize the persistency property of PMEM and
to control data placement in PMEM or DRAM at the application
level, App Direct mode must be used, where DCPMM appears as a
separate memory device. We thus focus on App Direct mode. The
read latency for DCPMM is 2–3× higher than for DRAM [22]. Also,
the bandwidth of DCPMM is lower than DRAM bandwidth, i.e., for
sequential reads up to 3×, for random reads higher.

2.2 Domain-Encoded Column Stores
SAP HANA splits columnar table data into main and delta storage,
with most of the data residing in the read-only main storage, and
delta storage regularly being merged into main storage [15]. The

delta storage is only used for data modifications, and thus columns
which are not changed store 100 % of data in main storage. As the
delta storage is typically an order of magnitude smaller than main
storage, and subject to latency-critical write operations, it is best
kept in DRAM. In this study, we thus focus on the main storage as
the largest memory consumer in the average SAP HANA system.
The main storage uses order-preserving dictionary compression
(also called domain encoding) to compress data and accelerate cer-
tain operations. There are three major data structures for each
column in main storage: dictionaries, data vectors (also called index
vectors), and inverted indices, of which dictionaries and data vectors
are the core structures. The dictionary is a mapping from value
identifiers to actual values. Dictionaries are always sorted by value.
The data vector stores a value identifier for each row in that column,
i.e., it maps row identifiers to value identifiers (cf. [26, Fig. 1a]). This
method results in a reduction of the data volume for columns with
repeated values. Data vectors can use any of several available com-
pression methods to further reduce the memory footprint [26]. For
dictionaries, specialized implementations exist for fixed-size types
like integers, and variable-size types like strings and large objects
(LOBs). String dictionaries are additionally compressed using prefix
encoding [44]. The inverted index is an optional third structure that
maps each value identifier back to a set of row identifiers, i.e., it
performs the inverse mapping of the data vector. It can be used for
example to speed up column scans. As inverted indices can have a
substantial memory footprint they are typically only maintained for
a subset of all columns, e.g., primary key columns. We refer to [1]
and [39] for further details on domain-encoded column stores.

2.3 Experimental Setup

Table 1: Hardware systems used in this paper.

System 100 Series 200 Series
Microarchitecture Cascade Lake Icelake
CPU Model Xeon Platinum 8260L Xeon Platinum 8368
Cores/Threads 24/48 38/76
L2 Cache (per Core) 1024 KiB 1280 KiB
L3 Cache 36 608 KiB 58 368 KiB
DRAM (per Socket) 6 × 16GiB 8 × 16GiB
DRAM Spec. DDR4-2666 DDR4-3200
PMEM (per Socket) 6 × 256GiB 8 × 512GiB
PMEM Type Optane PM 100 Series Optane PM 200 Series
Operating System SLES 12 SP4 SLES 15 SP2

Hardware Configuration. We use two systems, one with Intel®
Optane™ 100 Series Persistent Memory, and one with the newer
Intel® Optane™ 200 Series Persistent Memory. 200 Series Optane
is advertised to feature slightly higher bandwidths than 100 Series
Optane [19, 20]. System details are listed in Table 1. Both systems
have two sockets, but we limit experiments to a single socket to
avoid NUMA effects, unless noted otherwise. Each PMEM DIMM
shares a CPU memory channel with one DRAM DIMM. Thereby us-
ing only DRAM reaches the same bandwidth that would be reached
with only DRAM in the system [21]. The PMEM in both systems is
configured in App Direct mode. We measured idle latencies of 99 ns
and 322 ns for DRAM and PMEM on the 100 Series system, and

2868



84 ns and 298 ns on the 200 Series system for random 64-byte reads.
The maximum read bandwidths are 9.8GiB/s and 16.6GiB/s on 100
and 200 Series PMEM, respectively. Note that sequential reads can
reach up to four times higher bandwidths, as they can fully utilize
the internal 256 B access granularity of the PMEM DIMMs [48].

Software Configuration. Although SAP HANA already supports
placement of entire columns in PMEM [2], we implement the place-
ment of individual data structures in PMEM by extending SAP
HANA’s buffer cache [43], using the built-in PMEM block manager
(cf. [2]). We do not use the Persistent Memory Development Kit
(PMDK). See [23] for more details. This solution allows us to decide
for each structure (data vector, dictionary, inverted index) per col-
umn whether it is placed in DRAM or PMEM. All experiments are
conducted using this prototype which is otherwise fully equivalent
to the SAP HANA Cloud Edition from Q4 2020. We size the buffer
cache sufficiently large such that no data is evicted and that all
data used by queries is preloaded into the cache before running
queries. Note that this setup implies that never-accessed columns
will not be loaded into memory. All queries are executed using
the HANA Execution Engine (HEX), SAP HANA’s state-of-the-art
code-generating query execution engine.

3 PLACING TABLE DATA IN PMEM
To establish a performance baseline for main storage data placed in
PMEM instead of DRAM, we benchmark analytical queries as well
as small read-only queries that would be typical for transactional
workloads. We compare the case where all data is placed in DRAM
to the case where all main storage structures are placed in PMEM
on both of the hardware systems introduced in Section 2.3.

3.1 OLAP
To gather an understanding of OLAP workloads on PMEM, we
consider the TPC-H and TPC-DS benchmarks. Both benchmarks
are run at scale factor (SF) 100. For the datasets, we use default com-
pression settings and indices on the primary keys of all tables. We
measure each of the queries defined by the benchmark individually,
as well as a consecutive run of the queries. We always include a
warm-up run followed by five consecutive runs of the respective
query or queries to obtain stable results. In these initial experiments,
we compare the case where all table data is placed in PMEM to the
baseline scenario where all data is placed in DRAM. In addition to
comparing the 100 Series and 200 Series systems, we also include
results from the 200 Series system where we use PMEM from the
far NUMA node instead of NUMA-local PMEM. While the direct
comparability between 100 Series and 200 Series is limited due to
the different CPU models, cache sizes, and DRAM specifications,
the far-NUMA experiment allows us to directly compare the slow-
downs incurred by PMEM with different latencies on an otherwise
equal hardware system. We observed additional latencies of 65-
75 ns for a NUMA hop, which is similar to the latency difference
between Optane 100 Series and Optane 200 Series DIMMs. It is also
expected that upcoming disaggregated memory technologies such
as CXL’s .mem protocol will exhibit additional latencies of around
100 ns [40]. The experiment can thereby also serve as a comparison
point for data placed on possible future disaggregated memory.
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Figure 2: TPC-H (SF 100) CPU times when all data is placed
in PMEM relative to all data placed in DRAM.

TPC-H. Figure 2 shows the CPU time needed to execute a full
run of all 22 TPC-H queries combined sequentially or each query
individually relative to the CPU time when data is placed in DRAM.
We show (relative) CPU times here and for the remainder of the
paper, as they carry equivalent information to the actual query
response times. We have observed equivalent slowdowns in query
response times, as the amount of parallelization remains the same
regardless of whether data is placed in DRAM or PMEM.

On the 100 Series system, the TPC-H queries experience sig-
nificant slowdowns of up to 120% when data is placed in PMEM
as opposed to DRAM. A full consecutive run of all queries is 46%
slower on the 100 Series system and 44 % slower on the 200 Series
system, while the median slowdown across all queries is 40 % and
33 %, respectively. On the newer 200 Series system the slowdowns
are generally less severe, due to the lower latency of Optane 200
Series DIMMs in comparison to Optane 100 Series. This is not al-
ways the case however, due to the differences in core count and
CPU cache sizes across the systems, which also significantly speed
up the DRAM baseline on the 200 Series system in comparison
to the 100 Series system. The faster DRAM baseline can cause a
higher slowdown on the 200 Series system. However, when we
compare the difference in CPU time between the two memory types
on both systems, the difference on the 200 Series system is always
lower than on the 100 Series system. Using far-NUMA instead of
local PMEM on the 200 Series system consistently results in higher
slowdowns than using the local PMEM. The only exceptions are
Q15 and Q20, which are short-running queries that experience little
slowdown, making them subject to measurement noise. With far-
NUMA PMEM, the full run of queries slows down by 51 %, while the
median slowdown across all queries is 36%. It is also notable that
the increase in slowdown from NUMA-local to far-NUMA PMEM
is not uniform across all queries. This suggests that the sensitivity
to higher memory latency varies across the queries.

TPC-DS. For TPC-DS we observe smaller slowdowns than for
TPC-H. We omit TPC-DS Q38 as it could not be run on the 100
Series system due to insufficient DRAM capacity. Across the re-
maining 98 TPC-DS queries, the median slowdown is 5.7 % on the
100 Series system and 3.8 % or 4.4 % on the 200 Series system (for
local or far-NUMA PMEM), with worst-case slowdowns of 40 % and
39% or 63%, respectively. The reason for the comparably smaller
effect of PMEM–placement on TPC-DS compared to TPC-H is the
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Figure 3: OLTP SELECT query on INTEGER table with 1M
rows and varying column counts. CPU time is relative to
CPU time with data placed in DRAM.

general higher complexity of the TPC-DS queries. This causes less
time to be spent accessing base data in relation to the time spent
on processing intermediate results. Thus, when we place base data
in PMEM, the slowdown is less noticeable compared to TPC-H.

3.2 OLTP
To gain insights into the performance of OLTP workloads, we
use a point query of the form SELECT(*) FROM table WHERE
key=X, where key is unique. table has a varying number of integer
columns and an inverted index on key. This allows us to measure
the impact of PMEM placement on tuple materialization. Note that
we do not consider a more complete OLTP workload that also
includes writes, as any writes would be handled by the delta store
in SAP HANA, which remains in DRAM in this study. We therefore
only focus on the read-only parts of OLTP here.

Figure 3 shows how much the SELECT query is slowed down
depending on the number of columns in the table. As with the
OLAP benchmarks, the reported value is the CPU time spent on
executing the query when table data is placed in PMEM relative
to the CPU time spent when table data is placed in DRAM. With
only ten columns, there is little slowdown of the query. This is
because the additional latency of tens of PMEM accesses needed
for tuple materialization instead of DRAM accesses is much lower
than other overhead in processing the query such as parsing and
planning. This changes with more materialized columns, where
roughly 20% and 40% slowdown can be observed for 100- and
1000-column tables, respectively. Because of the lower latencies of
the 200 Series Optane, the slowdowns on that system are always
slightly lower in comparison to the 100 Series system. Prior work
investigating OLTP workloads on PMEM has also already shown
that the incurred slowdown only becomes apparent if tuples need
to be materialized from hundreds or thousands of columns [41].

Because we limit the scope of this paper to investigate placement
of main storage in PMEM, we focus further evaluation on OLAP
workloads. Placement of the main storage in PMEM does not ad-
versely affect the DML queries that make up significant fractions of
OLTP workloads, as those would be handled by delta storage, and
we have just shown the minor impact data placement in PMEM
has on the point queries which are common in OLTP workloads.
For the rest of the paper, we also focus on the newer 200 Series
system, as our investigation has shown that reporting results for
both systems would be redundant.
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Figure 4: Cache misses for TPC-H queries.

3.3 PMEM Cache Miss Latency
The reason for the slowed down query execution when data is
placed in PMEM can be traced back to the higher latencies of PMEM
in comparison to DRAM. Specifically, any access to a data structure
placed in PMEM that does not hit the CPU caches experiences the
higher latency of PMEM as opposed to the lower DRAM latency it
would experience if the structure was placed in DRAM.

To illustrate this, we use hardware counters to measure the total
number of CPU cache misses that are serviced by PMEM for the
execution of each TPC-H query: In Figure 4, each point represents
one query, with the number of CPU cache misses that were serviced
by PMEM shown on the x-axis, and the difference in CPU times be-
tween executing the query with all data in DRAM andwith themain
storage in PMEM shown on the y-axis. The figure shows that the
measured slowdown directly correlates with the number of PMEM
accesses. A linear regression reveals the average CPU time cost per
access. The regression line has a slope of 334 ns, which suggests that
the average PMEM access incurs an additional latency of 334 ns in
comparison to a DRAM access. That latency difference is consistent
with the difference in loaded latency between DRAM and PMEM
we have measured in preliminary measurements at a bandwidth
utilization of around 5GiB/s, which is also the average bandwidth
utilization per query during the benchmark. Higher latency dif-
ferences could occur if the PMEM read bandwidth was saturated
further during the benchmarks, but when measuring bandwidth
utilization, we have not observed queries that fully saturate the
PMEM bandwidth for extended periods of time. We believe that this
is a somewhat special property of compressed column stores like
SAP HANA’s main store. Combining dictionary compression and
additional lightweight compression techniques results in signifi-
cantly smaller data volumes that need to be accessed to retrieve the
same data, while increasing the amount of computation necessary
to decode the data, making it much less likely run into bandwidth
limitations even when executing large scans using all available
cores. To illustrate, we ran TPC-H Q06, the most scan-heavy query
in TPC-H [14], in MonetDB, which stores columns as flat arrays
in memory — i.e., uncompressed. While MonetDB and SAP HANA
took nearly the same time to execute the query using all available
cores on the 200 Series system, MonetDB fully utilized the avail-
able DRAM bandwidth for the entire query duration, while HANA’s
peak bandwidth utilization remained below 15 GiB/s.
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4 MODELLING SLOWDOWNS
Next, we construct a model for the slowdowns observed in Section 3.
The goal is to provide estimates of the increase in CPU time needed
to process a set of queries when any given set of column store
data structures is placed in PMEM instead of DRAM. The expected
benefits of such a model are twofold:

First, one should be able to use the model as a means of judging
the impact of placing a known DRAM-resident workload fully
or partially in PMEM. The model can facilitate this by providing
an estimate of the PMEM–induced performance impact for the
workload, which can be used for targeted decision-making based
also on the cost-savings of switching from a DRAM-only to a hybrid
DRAM–PMEM memory system. Second, in such a hybrid memory
system, it should also be possible to make optimal decisions for
data placement based on the model. This can be achieved by using
the model to predict the performance impact of PMEM–placement
for each data structure accessed by the workload individually. In
combination with the structure’s memory footprint and a given
performance or DRAM budget, pareto–optimal placement decisions
can be made. We evaluate model–driven placement in Section 5.

For the model, characterization of the workload and memory
system is necessary, which we discuss in Sections 4.1 and 4.2. We
construct and evaluate the model in Sections 4.3 and 4.4.

4.1 Workload Characterization
We have seen in Section 3.3 that the slowdown incurred by data
placement in PMEM is proportional to the number of memory
accesses that would have been served by DRAM in a DRAM-only
setup, but are instead served by PMEM in the case where the data
is placed in PMEM. Thus, to model the slowdown, we need to be
able to predict the number of memory accesses to PMEM for a
given workload. To do this, we employ lightweight access counters
implemented within the DBMS, with the goal of characterizing the
workload independently of the memory subsystem used at the time
of recording the counters. These counters track the total number of
logical accesses per data structure (data vector, dictionary, inverted
index) of each column in the dataset during workload execution.
Counting accesses per data structure allows us to use the resulting
model to make placement decisions at data structure granularity.
Because the data structures may be accessed in different ways that
can result in varying numbers of physical accesses to memory, we
differentiate between different types of accesses. In combination
with microbenchmarks that measure the cost of individual accesses
on both types of memory (cf. Section 4.2), this later allows us to
model the PMEM–induced slowdown.

The two basic types of accesses we count are lookups and scans.
A lookup accesses a single entry in a data structure based on an
identifier, while a scan accesses multiple or all entries with the goal
of finding particular entries matching a search predicate. In terms
of the memory access pattern, a lookup constitutes, except for the
case discussed below, one or multiple random memory accesses,
while a scan results in sequential accesses to memory. We count
each accessed entry of the structure as one access, i.e., a full scan
over a data vector with 1M entries would be counted as 1M scan
accesses. In practice, scans are only performed on data vectors, for
mapping value identifiers to row identifiers, and on dictionaries
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Figure 5: Aggregated access counters for TPC-H.

for string searches with LIKE predicates. As dictionaries are sorted,
other operations that need to map values back to value identifiers
can use binary searches, where the accesses are lookups [39].

We further differentiate lookups into fully random and dense
lookups. This is based on the observation that, e.g., when materi-
alizing tuples, it is often the case that many nearby entries of the
same data structure are looked up sequentially. Like scans, dense
lookups result in sequential memory access patterns, which can be
predicted by hardware prefetchers and thus induce lower additional
costs than fully random lookups when data is placed on PMEM.
Dense lookups can occur in varying degrees of locality, i.e., with
different strides between the nearby entries that are looked up, with
higher memory costs at higher strides. As the difference in access
latency between DRAM and PMEM for these lookups varies based
on the stride, we split dense lookups into three classes based on the
stride. This is discussed in more detail in Section 4.2.

While more advanced approaches for workload characterization
exist [8] that maintain more accurate statistics at block-level, e.g.,
with the goal of advising physical database design, we are only
interested in quantifying the impact of PMEM–placement per data
structure and thus only count the total number of accesses per struc-
ture. Because of this, the performance and space overhead of the
proposed counters is negligible. In our experiments, we obtain the
access counter values for a given set of queries while running base-
line experiments with all data placed in DRAM. In practice, counter
collection could also be done online as the workload evolves, and
is independent of whether data is placed in DRAM or PMEM. The
updated values obtained in this fashion could be used to periodi-
cally revisit model–driven placement decisions. The same applies
for completely unknown workloads. Here all data could be initially
placed into PMEM. Then, after collecting access counters for a few
minutes to get a representative sample of the workload, model–
driven placement could be used to place parts of the data in DRAM,
e.g., based on the available DRAM capacity.

As an example, Figure 5 shows the collected access counters for
each individual TPC-H query, aggregated across all columns in the
dataset. In the figure, the three classes of dense lookups are grouped
together for data vectors (DV) and dictionaries (Dict.), and accesses
on inverted indices are grouped into a single category due to their
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low overall prevalence. The figure shows how the total accesses as
well as the composition of the access types vary across the queries.
Of special interest is the high prevalence of dense data vector (Q04,
Q20, Q21) and dictionary (Q01, Q04, Q21) lookups in certain queries.
This affirms our decision to count such dense lookups separately.
We also show in Section 4.4 how conflating dense lookups with
random lookups would affect the model’s accuracy.

To fully characterize the workload, additional metadata is needed
for each column: First, the data type needs to be known, as access
costs may differ between data types. Second, the data vector com-
pression method must be known, as some compression methods
introduce indirections for each access [26] and thus also affect ac-
cess costs. Third, the size of each structure in memory needs to
be known to make placement decisions which reduce the mem-
ory footprint as much as possible. All of this data can be obtained
from the DBMS’s monitoring views when running the workload
for characterization or directly from the database schema.

4.2 Memory System Characterization
As a second step towards the cost model, we need a characterization
of the involved memory types that tells us the expected slowdown
for each different type of access tracked by the access counters
when a structure is placed in PMEM instead of DRAM.

To obtain this characterization, we perform microbenchmarks of
the different access types described in Section 4.1, scans, lookups,
and dense lookups. The microbenchmarks measure the access laten-
cies on both DRAM and PMEM. The latency differences between
the memory types represent the slowdown of any particular access
type when a structure is placed in PMEM instead of DRAM and
the access does not hit the CPU caches. An alternative to running
microbenchmarks would be to directly use measurements of the
memory access latencies. However, this would require analyzing
the implementation of each type of access for each structure, poten-
tially also for different compression methods and data types, to be
able to model cache miss behavior. Thus, microbenchmarking the
different accesses on both DRAM and PMEM to obtain a black-box
model of the access costs is more suitable.

We use the Google benchmark library [16] for the microbench-
marks. In addition to the different access types, for dictionaries
we also differentiate between integer and string dictionaries. For
data vectors we perform microbenchmarks for each of the five
compression methods supported by SAP HANA, as well as for un-
compressed data vectors. We generate columns with 128M unique
random values for the benchmarks, which results in a data vector,
dictionary, and inverted index with 128M entries each. For string
dictionary benchmarks we generate random strings with 10 char-
acters. The microbenchmark performs the corresponding access
on the respective structure using a single thread until the bench-
mark library has determined a stable result for the access latency.
For lookup accesses we make sure to chain the accesses in a way
that makes the location of each lookup depend on the result of the
previous one. This prevents the CPU’s out-of-order execution from
running multiple lookups in parallel and skewing the results.

Lookups and scans. A subset of the microbenchmark results is
shown in Table 2. The table shows the latencies for random lookups
and — where applicable — scans on the three data structures and on
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Figure 6: Dense lookup microbenchmark results.

both evaluated hardware systems. Besides the absolute latencies for
data placed in DRAM and PMEM, the difference between PMEM
and DRAM latency (Diff.) is also shown, as this is the metric later
used in our cost model. Dense lookups are discussed separately in
more detail below. Comparing the 100 Series to the 200 Series
results in the table shows that the latter system performs better
both for DRAM and for PMEM accesses. This is not surprising, as
the 200 Series Optane DIMMs are advertised to feature slightly
lower latencies compared to the 100 Series Optane DIMMs, and as
the DRAM latency on the 200 Series system is also slightly lower.
Looking at the latency differences between PMEM and DRAM,
there is a large contrast between random lookups and scans.

For scans, due to their sequential memory access pattern and
because each loaded cacheline can contain multiple structure en-
tries, the difference between DRAM and PMEM is in the range of
a single nanosecond per scanned structure entry. Note that the
difference even becomes negative for string dictionary scans on the
100 Series system. This is because measurement noise resulted in
a slightly higher value for the DRAM latency than for the PMEM
latency here. For use in the model we clamp negative values to zero.

For lookups, there are significant differences in latency up into
the microsecond range, as each lookup can incur several random
memory accesses, which have higher latencies on PMEM than
on DRAM. This highlights the importance of treating lookups and
scans separately in themodel. From the five data vector compression
methods, we show only run-length-encoding (RLE) in the table as
the most extreme example. Lookup latencies on RLE compressed
vectors are several times higher than on uncompressed data vectors.
In SAP HANA, RLE compressed data vectors replace sequences
of the same value identifier with a single instance of the value
identifier and its start position. Thus, to perform lookups, a binary
search on the start positions has to be done, resulting in significantly
more random memory accesses than a lookup on an uncompressed
data vector. Other compression methods similarly show higher
latencies than those on uncompressed data vectors.

Dense lookups. To characterize lookups accessing nearby struc-
ture entries, we microbenchmark dense lookups with strides be-
tween accessed structure entries including powers of two from 1 to
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Table 2: Access microbenchmark results for random lookups and scans.

100 Series 200 Series
Structure Access Type DRAM PMEM Diff. DRAM PMEM Diff.
Data Vector Lookup 691.4 ns 1304.4 ns 613.0 ns 589.4 ns 815.2 ns 225.8 ns
(uncompressed) Scan 0.5 ns 1.2 ns 0.7 ns 0.6 ns 1.0 ns 0.4 ns
Data Vector Lookup 2268.0 ns 4670.0 ns 2401.9 ns 1907.4 ns 3126.1 ns 1218.7 ns
(RLE) Scan 3.0 ns 4.4 ns 1.4 ns 3.2 ns 4.4 ns 1.2 ns

Dictionary
INT Lookup 146.7 ns 413.6 ns 267.0 ns 107.9 ns 372.5 ns 264.5 ns
STRING Lookup 523.2 ns 860.1 ns 336.9 ns 483.8 ns 820.4 ns 336.6 ns
STRING Scan 231.5 ns 231.2 ns −0.3 ns 216.2 ns 216.2 ns 0.0 ns

Inverted Index Lookup 680.6 ns 1035.0 ns 354.4 ns 602.8 ns 868.5 ns 265.7 ns

218. Figure 6 shows the lookup latencies for DRAM– and PMEM–
resident structures on the 100 Series system, as well as the DRAM–
PMEM latency difference. We exemplarily show results for uncom-
pressed data vectors and for integer dictionaries, but we observe
qualitatively similar results leading to the same conclusions for com-
pressed data vectors and string dictionaries. We observe distinctive
regions that are characterized by the magnitude of the difference
in DRAM and PMEM latency, and marked in the figure by vertical
dashed lines. This leads to the classification into three classes of
dense lookups that was already mentioned in Section 4.1. Strides
lower than eight structure entries result in latency differences of
less than a nanosecond. We call accesses in this region near dense
lookups. These lookups often target the same cache line as the prior
lookup and are thus predominantly L1 cache hits, resulting in a
near-complete elision of the latency difference between DRAM and
PMEM. The next region features a latency difference in the order of
magnitude of ten nanoseconds, and we call those accesses medium
dense lookups. Here the sequential nature of the access pattern
is likely still detected by hardware prefetchers and accesses thus
often result in L2 cache hits, partly hiding the latency difference.
Accesses in the third region are called far dense lookups and are
characterized by a latency difference in the order of magnitude of
a hundred nanoseconds. Here each lookup incurs one or multiple
cache misses, resulting in a more noticeable latency difference. Be-
yond this, the absolute latencies and latency differences approach
the values shown for random lookups in Table 2, so we consider
those lookups as random ones. When weighing dense lookups in
the cost model, we use the access latency difference measured at
the upper bound stride of the respective region to obtain a more
conservative prediction of the slowdown.With our goal of using the
model for placement decisions, this is reasonable: Underpredicting
the slowdown incurred by a structure and placing it in PMEM —
resulting in a higher slowdown than expected — would be worse
than keeping the structure in DRAM. Lastly, we have not observed
significant numbers of dense lookups for inverted indices. For those
we thus only count directly adjacent lookups as dense, in favor of
simplifying the access counting implementation.

CPU caches. The microbenchmark results represent the case
where logical accesses result in cache misses and thereby physical
memory accesses. This is of course not the case for all logical ac-
cesses, as memory requests can often be served by the CPU caches
and thereby avoid a full-latency access to DRAM or — in our case
— PMEM. As part of our characterization of the memory system we

thus also consider the size of the L3 and L2 caches as important
model parameters. More specifically, the model considers the sum
of the L3 cache size and each core’s L2 cache size as the “last level
cache” size 𝑆LLC. Starting from the Cascade Lake microarchitecture,
the L3 cache on Intel CPUs is non-inclusive of the L2 cache, effec-
tively making the total last level cache size the sum of both. All
other relevant hardware properties are represented implicitly by
the microbenchmark results.

4.3 Runtime Cost Modelling
The last important model input besides the workload and memory
characterization is the placement configuration 𝑃𝑠,𝑐 . This describes
for each data structure of each column in the dataset, whether it is
placed in DRAM or PMEM:

𝑃𝑠,𝑐 =

{
1, if structure 𝑠 of column 𝑐 is placed in PMEM.

0, if structure 𝑠 of column 𝑐 is placed in DRAM.
(1)

where 𝑐 ∈ 𝐶 is one of the dataset’s columns, 𝐶 is the set of all
columns in the dataset, and 𝑠 ∈ {v, d, i} is one of the three column
store data structures, data vector, dictionary, or index. With this,
the total additional CPU time 𝑡 needed to process a workload given
a placement configuration 𝑃𝑠,𝑐 is modelled as follows:

𝑡 =
∑︁
𝑐∈𝐶

𝑃v,𝑐𝑡v,𝑐 + 𝑃d,𝑐𝑡d,𝑐 + 𝑃i,𝑐𝑡i,𝑐 (2)

where 𝑡v,𝑐 , 𝑡d,𝑐 , and 𝑡i,𝑐 are the additional CPU times incurred if
the respective structure of column 𝑐 is placed in PMEM. 𝑡v,𝑐 , 𝑡d,𝑐 , and
𝑡i,𝑐 are the core equations of the model. They weigh each access
counter value by the respective additional cost of that type of access
obtained from the microbenchmarks from Section 4.2:

𝑡v,𝑐 = 𝐶𝑀𝑅(𝑚v,𝑐 ) ·
∑︁
𝑎∈𝐴

𝑥𝑐,v,𝑎 · 𝑏v,𝑎,𝑐𝑚𝑐
(3)

𝑡d,𝑐 = 𝐶𝑀𝑅(𝑚d,𝑐 ) ·
∑︁
𝑎∈𝐴

𝑥𝑐,d,𝑎 · 𝑏d,𝑎,𝑑𝑡𝑐 (4)

𝑡i,𝑐 = 𝐶𝑀𝑅(𝑚i,𝑐 ) ·
∑︁
𝑎∈𝐴

𝑥𝑐,i,𝑎 · 𝑏i,𝑎 (5)

Here, 𝑚𝑠,𝑐 is the memory footprint of the respective data struc-
ture 𝑠 of column 𝑐 and 𝑎 ∈ 𝐴 is one of the five access types in
𝐴 = {scan, lookup, near dense,medium dense, far dense}. 𝑥𝑐,𝑠,𝑎 is
the access counter value for access type 𝑎 on structure 𝑠 of col-
umn 𝑐 and 𝑏v,𝑎,𝑐𝑚𝑐

, 𝑏d,𝑎,𝑑𝑡𝑐 , and 𝑏i,𝑎 are the additional CPU times
needed for the access type 𝑎 on the respective structure when that
structure is placed in PMEM instead of DRAM, as measured in the
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microbenchmarks. Note that for data vectors and dictionaries, the
microbenchmark result also depends on the compression method
𝑐𝑚𝑐 or the data type 𝑑𝑡𝑐 of the column 𝑐 , respectively.

Finally, the cache miss rate 𝐶𝑀𝑅(𝑚) models the effect of the
CPU caches, using the memory footprint𝑚 of a data structure to
estimate the fraction of accesses to the structure which result in
cache misses and thereby contribute to the additional CPU time if
the structure is placed in PMEM:

𝐶𝑀𝑅(𝑚) = 1

1 + 𝑒
−( 𝑚

𝑆LLC
+𝛼 ) , with 𝛼 = log 1

𝑦0
− 1 (6)

We use a right-shifted sigmoid function to model the CMR, where
𝑆LLC is the size of the last level cache, as discussed in Section 4.2.
The offset 𝛼 controls the y-intercept 𝑦0, which we set to 𝑦0 = 5%.
This choice of function is based on the observation that cache
miss rates grow with the size of the working set until they reach
100% once the working set is significantly larger than the cache
size [13]. The function models this behavior by starting out at
5% for small structures and gradually approaching 100% as the
structure size becomes a fewmultiples of 𝑆LLC. Themodelmakes the
simplifying assumption that the cache miss rate of each structure
is independent of the overall size of the working set. While more
advanced modelling of the CMR with additional inputs would be
possible [30] and probablymore accurate, we find that this approach
matches our real-world observations well enough and thus leave
more advanced modelling as future work. Requiring additional
inputs would likely also increase the complexity of the workload
characterization, which we aim to keep lightweight. The model is
agnostic of the number of used threads or CPU cores, as we model
CPU times and assume that bandwidth saturation does not occur.

Limitations. The presented model is not without limitations and
simplifying assumptions: First, it is assumed that the higher la-
tency of PMEM accesses directly translates to an increase in CPU
time. However, this is not necessarily the case, as the out-of-order
processing of modern CPUs can exploit memory level parallelism
of temporally nearby accesses, partly mitigating higher memory
latency by interleaving multiple accesses. Our model makes the
worst-case assumption that such access interleaving does not hap-
pen and that each access made to PMEM instead of DRAM incurs
the full additional latency. This is sensible, as it results in more pes-
simistic estimates of the incurred slowdown. Prior work [41] has
also shown that such latency hiding for PMEM requires targeted
optimizations, which are not present in our case. Second, the model
does not consider bandwidth limitations. While PMEM provides
lower read bandwidths than DRAM, we did not encounter many
instances of bandwidth saturation in our experiments — as already
discussed in Section 3.3 — and thus omit this factor in favor of
model simplicity. Modelling the effects of bandwidth saturation
would require tracking accesses over time instead of for the entire
workload duration, to be able to estimate bandwidth utilization
over time. This would violate our initial design goal of keeping the
workload characterization lightweight. Omitting this allows us to
assume that the slowdown for any placement configuration is a
linear combination of the slowdown incurred by each individual
structure that is placed in PMEM, which also greatly simplifies the
model–driven placement described in Section 5.

4.4 Model Accuracy
Using the measurements of PMEM-induced slowdowns on the 200
Series system, we evaluate our cost model. We assess prediction
accuracy by comparing measured to predicted slowdowns. An ab-
lation study demonstrates the sensitivity of the model to the CPU
caches and to handling dense lookups differently than random ones.

Prediction accuracy. We consider three placement configurations
for the TPC-H and TPC-DS datasets:
(a) All data is placed in PMEM.
(b) Only data vectors are placed in PMEM, while dictionaries and

inverted indices remain in DRAM.
(c) Only dictionaries are placed in PMEM, while data vectors and

inverted indices remain in DRAM.
This allows us to not only assess the overall prediction accuracy
of the model, but also its accuracy across the data structures used
in the column store. Being able to make accurate predictions not
only for PMEM–only placement but also for placing individual
structures in PMEM is important for model–driven placement. We
omit the case where only inverted indices are placed in PMEM
as we never encountered slowdowns of more than 10% in this
scenario. For each placement configuration, Figure 7 compares the
measured relative CPU time for executing the TPC-H and TPC-
DS queries to the respective model predictions. The CPU times
are relative to the case where data is placed exclusively in DRAM.
Model predictions are obtained following Equation 2, with the
shown relative value calculated as 𝑇DRAM+𝑡

𝑇DRAM
, where 𝑡 is the model

prediction from Equation 2 and 𝑇DRAM is the measured DRAM-
only baseline CPU time for the respective query. Each point in the
figure represents a single query. An ideal model would predict any
measured slowdown perfectly, which would result in all points
lying on the dashed gray line. As the calculation of the relative CPU
time is sensitive to low query execution times due to measurement
noise, we show queries which require less than 100 seconds CPU
time with decreased opacity, marking them as less reliable results.

For PMEM–only placement (a) we generally measure less drastic
slowdowns for TPC-DS queries than for TPC-H queries. No TPC-
DS query experiences a slowdown of more than 50%, while there
are several TPC-H queries with higher slowdowns. Comparing the
placement configurations shows that placing only data vectors in
PMEM (b) has little effect on query performance. In contrast, plac-
ing dictionaries in PMEM (c) results in much larger slowdowns than
the former configuration, which leads us to conclude that dictionar-
ies placed in PMEM are also the main cause of slowdowns in the
PMEM–only (a) configuration. This is due to the fact that accesses
to dictionaries are more likely to be random lookups, whereas data
vectors are mostly scanned, as the access counters for TPC-H in
Figure 5 show. As Table 2 shows, random lookups on data structures
placed in PMEM face a much larger penalty than scans.

Comparing the model predictions to the measured slowdowns,
we find that the slowdowns larger than 50 % in Figure 7a and c are
predicted well by the model. Although there are slight over- and
underpredictions, the magnitude of the slowdown is predominantly
predicted accurately. For the predictions of the smaller slowdowns,
which can be seen more clearly in the versions of the plots that are
zoomed into the 0% to 30% slowdown range, we can see that the
accuracy of the predictions is slightly worse than for the higher
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slowdowns, i.e., there seem to bemore predictions which deviate far-
ther from the ideal line. However, the deviation from the ideal line
still stays below 0.2 in most cases. We call this deviation the abso-
lute prediction error, defined as | (𝑇DRAM + 𝑡)/𝑇DRAM −𝑇𝑃/𝑇DRAM |.
𝑇DRAM is the measured CPU time for DRAM-only placement and
𝑇𝑃 is the measured CPU time for the respective placement con-
figuration (a), (b), or (c), while 𝑡 is the model prediction for the
additional CPU time incurred by the placement. The worst-case
absolute prediction error is 0.89 across the three placement con-
figurations, while the median errors are 0.07, 0.02, and 0.04 for (a),
(b), and (c), respectively. This shows that the model performs well
across the different data structures used in the column store, and
we argue that it is reasonably accurate given our goal of keeping
the overhead of workload characterization as low as possible.

Ablation study. To confirm the importance of modelling the be-
havior of the CPU caches and that of separately counting dense
lookups, we compare the predictions of the full model for PMEM–
only placement to the predictions of two model variants:
(1) No-Cache: Ignore the CPU caches, i.e., Equation 6 is replaced

by 𝐶𝑀𝑅(𝑚) = 1, regardless of structure or cache size. This is
equivalent to assuming that no CPU caches are present and each
access to PMEM instead of DRAM incurs additional CPU time
worth the full latency difference between DRAM and PMEM.

(2) No-Dense: Treat dense lookups as random lookups, i.e., all
types of dense lookups are considered to be random lookups in
Equations 3, 4, and 5.

For No-Cache, Figure 8 shows drastically increased median and
peak prediction errors for both TPC-H and TPC-DS. While the me-
dian error of the full model is 0.11 and 0.06 for TPC-H and TPC-DS,
respectively, it increases to 0.46 and 0.81 for the No-Cache variant.
This demonstrates the importance of including the cache miss ratio
into the model. Without this factor in the model, slowdowns are
often overpredicted. The increased error is particularly prominent
for TPC-DS. One reason for this is that the TPC-DS dataset mostly
features columns with few unique values, which have dictionaries
that fit into the CPU caches and thus experience a low cache miss
rate for lookups. This is predicted adequately by the CMR factor
in the full model. When leaving this factor out, the slowdown in-
curred by dictionaries in PMEM is vastly overpredicted. With the
No-Dense variant the prediction errors also increase, to median
values of 0.16 for TPC-H and 0.17 for TPC-DS. As with No-Cache,
the increased errors are all due to overpredictions, caused here by
using the full random lookup latency to weigh dense lookups. In
contrast to No-Cache this does not negatively affect predictions
for all evaluated queries, but it does severely affect a subset of the
queries, as indicated by the increased maximum error values in com-
parison to the full model. The queries are not all equally affected
by this change as not all queries perform a significant amount of
dense lookups (cf. Figure 5).

5 MODEL–DRIVEN PLACEMENT DECISIONS
The model may also be used to make optimal placement decisions
along the cost-performance trade-off, given sufficient accuracy. In
practice, such placement decisions could be made in an offline
process to make a static placement decision for a given workload,
but it may also be desirable to adjust the placement decisions if the
workload changes over longer periods of time. This is possible with
our model, as workload characterization using access counters is
lightweight and can be done online. In this section, we show how
placement decisions can be made based on the proposed cost model
and evaluate their results.

5.1 Budget– and Target–Based Placement
To use the cost model for optimal placement decisions, we formu-
late a mixed-integer linear program (MIP). If all model inputs are
available this MIP problem can be solved using any MIP solver.
We use the Python package Python-MIP [45] for this purpose. The
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Figure 9: TPC-H placement mode/granularity comparison.

solution of the optimization problem is a placement configuration 𝑃 ,
as defined in Section 4.3. Due to the simplicity of the cost model, the
resulting optimization problem is essentially a 0-1 knapsack prob-
lem where the number of items is proportional to the number of
columns in the dataset. This does not require long solve times — for
single-threaded optimization using Python-MIP’s default CBC back-
end, we measure median optimization times of 19ms and 69ms for
TPC-H and TPC-DS, respectively. We offer two placement modes:

The budget mode allows setting a performance budget 𝑏, while
placing as much data as possible in PMEM. The performance budget
𝑏 is defined as the maximum additional CPU time that may be used
relative to the CPU time 𝑇DRAM taken for the workload when all
data is placed in DRAM. In this mode, the optimization objective is
to maximize the data volume placed in PMEM∑︁

𝑐∈𝐶
𝑃v,𝑐𝑚v,𝑐 + 𝑃d,𝑐𝑚d,𝑐 + 𝑃i,𝑐𝑚i,𝑐 subject to 𝑡 ≤ 𝑏 ·𝑇DRAM

The target mode allows setting a memory target, which defines
the fraction of the total data volume which shall be placed in PMEM.
Here the optimization objective is to minimize 𝑡 , the additional CPU
time predicted by the model, subject to the constraint∑︁

𝑐∈𝐶
𝑃v,𝑐𝑚v,𝑐 + 𝑃d,𝑐𝑚d,𝑐 + 𝑃i,𝑐𝑚i,𝑐 ≥ 𝑚𝑡𝑎𝑟𝑔𝑒𝑡

where𝑚𝑡𝑎𝑟𝑔𝑒𝑡 is the memory target in bytes. In our experiments,
we use 𝑡𝑎𝑟𝑔𝑒𝑡 , the minimum percentage of the total data volume to
be placed in PMEM, to define𝑚𝑡𝑎𝑟𝑔𝑒𝑡 :

𝑚𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑎𝑟𝑔𝑒𝑡 ·
∑︁
𝑐∈𝐶

𝑚v,𝑐 +𝑚d,𝑐 +𝑚i,𝑐

5.2 Placement Evaluation
We evaluate model–based placement on TPC-H and TPC-DS at SF
100. For TPC-H, we define one run as the consecutive execution of
all 22 queries. As we have observed little slowdown for all TPC-DS
queries as a whole in Section 3, we select the 20 queries with the
highest measured slowdown to obtain a challenging workload for
model-based placement. The 20 queries are executed consecutively
for a single run. While running all queries sequentially may not be
a realistic benchmark as the workload may be skewed towards few
specific queries in reality, it is a good benchmark for model–based
placement, as it results in a more diverse workload and a larger
working set, making it harder to optimize the placement.

Placement mode and granularity. First, we compare the two place-
ment modes, as well as heuristic-based placement from our earlier
work [23]. For target–based placement, we set 𝑡𝑎𝑟𝑔𝑒𝑡 to values
between 0% and 100% in steps of 5%. At 𝑡𝑎𝑟𝑔𝑒𝑡 = 0%, all data is
placed in PMEM, and at 𝑡𝑎𝑟𝑔𝑒𝑡 = 100% all possible data, i.e., all
data vectors, dictionaries, and inverted indices are placed in PMEM.
Note that this does not result in 100 % of all column store data being
placed in PMEM: SAP HANA automatically creates block indices for
certain compressed columns [26], which could not be made page-
loadable at the time of writing, and thus cannot be placed in PMEM
in our prototype. Block indices make up 13 % of the column store’s
memory footprint for TPC-H, and 2 % for TPC-DS. Because they are
part of the column store and used in query processing, we include
their memory footprint in the reported totals. For budget-based
placement, we set cost budgets of 0, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40 and
50% additional CPU time. We also show target–based placement
at column and table granularity. The results at column granular-
ity may serve as an indication of model–based data placement’s
usefulness for column stores without domain encoding.

Figure 9 shows the predicted percentage of the total data volume
placed in PMEM and the predicted CPU time relative to DRAM-only
placement for TPC-H. At structure granularity, both modes enable
a controlled trade-off between the space and runtime costs of the
placement configuration. While the heuristic comes reasonably
close to the pareto frontier lined out by the model–based placement
modes, the clear advantage of model–based placement is the ability
to choose any point on the pareto frontier, instead of being locked
into a single configuration without certainty about its optimality.
For the given workload it is also always possible to reasonably
satisfy the requested memory target in target mode. This is due
to the structure-grained nature of the placement, and the figure
shows that this is not always possible if data is placed at column-
or table-granularity. Especially for table-granular placement a clear
stair-like pattern emerges, a result of the access costs and memory
footprint being dominated by the LINEITEM and ORDERS tables.
Placing one of those tables completely in PMEM results in sharp
increases of the slowdown and PMEM–resident data volume.

Prediction quality. Next, we evaluate the prediction accuracy for
the generated placement configurations. We use the memory target
mode for this, because it maps out the pareto frontier more evenly
and the placement decisions in both modes are equally optimal.
𝑡𝑎𝑟𝑔𝑒𝑡 is set to values between 0 % and 100 % in steps of 5 %.

Figure 10 shows model predictions and measured values for
TPC-H and TPC-DS. For both workloads, the model predicts the
real-world slowdown well. The median absolute errors across all
placement configurations are only 1.4% and 0.4% for TPC-H and
TPC-DS, respectively. The maximum absolute errors are 8.1 % and
2.7 %, respectively. The benefit of model–based data placement in
heterogeneous main memory is also clearly visible. In both cases it
would be possible to place 75 % or more of the column store’s total
data volume in PMEM with a performance drop of less than 10%
compared to placing all data inDRAM. In contrast to placementwith
a 90 % target, placing all data in PMEMwould result in performance
degradations of 44% for TPC-H and 30% for TPC-DS. Note that
the totals in Figures 9 and 10 do not include columns that are not
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Figure 10: Predicted and measured performance for target–
based placement of TPC-H and TPC-DS (SF 100).

accessed in the benchmark queries, e.g., L_COMMENT, PS_COMMENT,
etc. for TPC-H, as those are never loaded into memory.

We also conducted the same experiment with far-NUMA PMEM.
For both workloads the maximum slowdown increased by 6 % over
the near-NUMA experiment. The median absolute model prediction
errors were only 0.4 % for TPC-H and 0.9 % for TPC-DS. The maxi-
mum errors were 10.6% and 3.9%, respectively, showing that the
model can adapt well to different memory latency characteristics.

It is also interesting to consider the resulting placement deci-
sions: At the 90 %memory target for TPC-H, mostly dictionaries are
kept in DRAM, especially those of LINEITEM and ORDERS. Inverted
indices are all placed in PMEM, and in comparison to dictionaries
only few data vectors are kept in DRAM. For TPC-DS the results
are similar: Here, the dictionaries that are kept in DRAM mostly
belong to the fact tables, while the data vectors remaining in DRAM
are exclusively from dimension tables. This is likely because values
often need to be materialized from these dimension tables requir-
ing data vector point lookups which have much higher costs in
PMEM. Note that this does not mean that simply placing all dic-
tionaries in DRAM and the remaining structures in PMEM would
be a good heuristic. For both workloads this policy would produce
sub–optimal results, as it would leave dictionaries in DRAM that
can be placed in PMEM with little performance impact, while plac-
ing data vectors in PMEM that do have performance impact. This
underlines the benefits of using a cost model to optimize placement
decisions over trying to find a blanket policy.

Comparison to Memory mode. Lastly, we compare App Direct
mode to Memory mode using TPC-H. If PMEM’s persistence is
not needed, Memory mode could be a simpler option for cheaper
and larger memory than using App Direct mode and managing
data placement in software. For this experiment we replace the 512
GiB PMEM DIMMs in the 200 Series system with 128 GiB PMEM
DIMMs to obtain a configuration that is within the recommendation
of a ratio of DRAM to PMEM between 1:4 and 1:16 for Memory
mode [21]. As Memory mode uses the entire DRAM capacity of
a socket as a hardware-managed L4 cache and the TPC-H SF 100
workload comfortably fits into this capacity on our test system,
we use TPC-H SF 1000 as a second workload that exceeds DRAM
capacity. For SF 1000, we omit Q09 and Q18 as the DRAM capacity

was insufficient to process those queries.We compare CPU times for
a consecutive run of all benchmark queries in Memory mode to two
configurations in App Direct mode: PMEM-only placement, where
all table data is placed in PMEM, and optimal placement, where
we use model–based placement to place as much data as possible
in DRAM while still leaving enough DRAM available for query
processing. This represents the best attainable performance in App
Direct mode using our approach. For SF 100, optimal placement
can place all table data in DRAM, while for SF 1000 only 50GiB can
be placed in DRAM, roughly 20 % of all referenced table data.

Relative to the optimal placement, PMEM-only placement in
App Direct is roughly 50 % slower for SF 100, and 130 % slower for
SF 1000. Running the workload in Memory mode has the same per-
formance as optimal placement for SF 100. This is unsurprising as
optimal placement for SF 100 means that all data is placed in DRAM,
and the workload also fits into the DRAM cache in Memory mode.
For SF 1000, we expected Memory mode to perform worse than
App Direct mode as it would have to fall back to PMEM for many
memory requests with the workload’s memory footprint exceeding
the DRAM cache capacity [18]. Including table data and intermedi-
ate results, the workload’s peak memory utilization was roughly
300GiB, exceeding the 128GiB DRAM capacity. However, running
the SF 1000 workload in Memory mode is 18 % faster than optimal
placement in App Direct mode. The reason for this is the following:
As no query in the benchmark ever references all table data, the
working set at any given time still fits into the DRAM cache, and
Memory mode can thus perform very close to real DRAM.

This suggests that it may be advantageous to use Memory mode
for workloads that have a large overall footprint, but a working
set that can fit into the DRAM cache most of the time. However,
Memory mode also has multiple disadvantages over App Direct
mode: First, the total memory capacity is reduced, as DRAM be-
comes a hardware-managed cache. Second, PMEM’s persistence
feature cannot be utilized. Memory mode also makes it impossible
to pin data in DRAM, which precludes prioritizing important jobs
as all memory accesses in the system put pressure on the DRAM
cache. Lastly, it is only supported for 2-socket systems [20, 27]. So
on 4-socket systems or if one wants to utilize the persistence fea-
ture, e.g., for low-latency logging and faster restart times [2, 17, 37],
Memory mode may not be an option. Effectively using App Direct
mode in such scenarios further beyond what we have shown here
is an interesting topic for future work. One possible direction could
be to combine our cost model with buffer–managed approaches
that move data between DRAM and PMEM [46, 49] to dynamically
adapt the DRAM-resident data to the workload.

Discussion. While we have focused on evaluating the approach
of using logical access counters and microbenchmarks of access
primitives to obtain a cost model for data placed in PMEM in SAP
HANA, we believe that it would be equally applicable to other
IMDBMS such as MonetDB, HyPer, or Hyrise. It may not be possi-
ble to obtain equally optimal results in systems that do not employ
domain encoding (cf. Figure 9), but this does not inherently limit
general applicability. For systems that horizontally partition data
such as Hyrise, it may also be beneficial to count accesses per col-
umn partition and to place data at that granularity. If a system is
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more likely to run into bandwidth limitations, like we have ob-
served for MonetDB (cf. Section 3.3), it may also be necessary to
extend the model with a bandwidth term to keep its predictions
suitably accurate for making placement decisions. We believe that
our modelling approach may also be useful in utilizing upcoming
heterogeneous memory technologies such as disaggregated mem-
ory using CXL. In this context it may also be worthwhile to extend
the approach to consider data placement on more than two types of
memory, e.g., local DRAM, local PMEM, CXL-attached DRAM, and
CXL-attached PMEM, to optimize the cost-performance tradeoff.

Lastly, in this workwe have focused exclusively on the placement
of table data in PMEM. Future work should also consider using
PMEM as cheaper and larger memory for temporary data. As our
comparison to Memory mode showed, it is difficult to use PMEM
effectively for large OLAPworkloads, as the smaller DRAM capacity
easily becomes the bottleneck for workload size if PMEM cannot
be utilized for intermediate results.

6 RELATEDWORK
Cost-efficient data systems. Using PMEM as a cheaper alternative

to DRAM is related to a larger body of recent work on cost-efficient
data systems [24, 25, 31, 36]. For example, LeanStore [24] and Um-
bra [36] show that disk-based systems can approach in-memory
performance at much lower costs. Making effective use of higher-
capacity, lower-cost media than DRAM while keeping in-memory
performance is highly desirable in this context. In this work, we
take a commercial in-memory DBMS as the starting point and show
how a cost model can be used to make optimal data placement de-
cisions that reduce costs while largely keeping performance on par
with the original in-memory setting. Our approach is inspired by
Vogel et al.’s extension to Umbra, Mosaic [47], where a cost model is
used for pareto–optimal data placement in a pool of storage devices
for scan-heavy relational workloads.

PMEM in data management. Many works focus on designing
or optimizing data structures for PMEM [3, 9, 29, 32, 38] or re-
designing DBMS components and architecture with PMEM’s per-
sistence features in mind [4, 28, 37]. We concentrate on efficiently
placing existing, read-optimized storage data structures of a com-
mercial DBMS in PMEM, motivated by its lower cost and higher
capacity compared to DRAM. Other studies also evaluate PMEM
as larger and cheaper volatile memory for IMDBMS data: Early
work by Shanbag et al. [42] reports a 60% mean slowdown of the
Star Schema Benchmark when data is placed in PMEM instead
of DRAM. Avni et al. [5] benchmark in-memory OLTP on PMEM
and observe little performance impact for a read-heavy variant of
TPC-C, similar to our results. For full TPC-C including updates that
performwrites to PMEM, they observe reduced throughput by up to
3.5× depending on which data is placed in PMEM. For integrating
PMEM in the storage layer, buffer-managed approaches have been
proposed [12, 46, 49], where PMEM is used as an additional tier
in the cache hierarchy. These approaches base their eviction and
migration policies on when a page was last accessed, and may dupli-
cate data across DRAM and PMEM. We instead view storing data in
PMEM as a placement problem where data resides either in PMEM
or in DRAM and propose a cost model to guide the placement de-
cision. However, combining a buffer-managed approach with our

cost model is an interesting topic for future work. Work on placing
data across other levels of the memory hierarchy based on counting
random and sequential accesses also exists: Bhattacharjee et al. [6]
consider static data placement in an HDD-SSD storage hierarchy
and find that the SSD should first be used for data that is mostly
randomly accessed. They also express the placement problem as a
knapsack problem, but use a greedy heuristic to find its solution.
Boissier et al. [7] make placement decisions between DRAM and
secondary storage at column-granularity, using a different layout
for data placed in secondary storage. We also distinguish random
point and sequential scan accesses in this paper, but for placing
data in DRAM or PMEM, and without changing the storage layout.

Memory cost modelling. Modelling the cost of memory accesses
for data management tasks is also a topic of prior work: Initial work
by Manegold et al. [33, 34] proposes modelling memory access
costs for database workloads by approximating cache misses and
scoring them by their latency, similar to our approach. However,
approximating cache misses requires extensive modelling of the
access patterns used by query processing algorithms. In contrast,
we rely on counting logical accesses to characterize workloads and
use microbenchmarks to obtain a black-box model for scoring these
accesses, simplifying the resulting cost model. Clapp et al. [10, 11]
show how to predict changes in performance for changing mem-
ory latencies and bandwidths for compute- and memory-intensive
workloads in general. To support this wide range of workloads, they
use hardware counters for workload characterization. In our case,
applying domain knowledge about the column store allows us to
use logical access counters in software instead, with the advantage
of being able to attribute costs to individual structures and to guide
placement of the structures in a hybrid memory system.

7 CONCLUSION
We have evaluated the performance impact of placing in-memory
column store table data in PMEM instead of DRAM, motivated by
PMEM’s lower cost and higher capacities. For analytical workloads
like TPC-H and TPC-DS we observed queries taking up to 2.2×
more CPU time if all data is placed in PMEM due to its higher read
latencies compared to DRAM, while the impact on OLTP-like point
queries is less noticeable. We argued that for analytical workloads
a much better cost-performance tradeoff can be achieved by care-
fully selecting data structures to be placed in DRAM or PMEM. To
this end, we proposed a cost model to predict the workload slow-
down for arbitrary placement configurations and discussed how
this model can be used for targeted data placement. Our evalua-
tion shows that the model accurately predicts slowdowns across
the generated placement configurations and allows placing more
than 75 % of table data in PMEM while keeping the slowdown rela-
tive to the DRAM-only configuration below 10 % for the analytical
workloads. If one does not require PMEM’s persistence, an initial
comparison toMemorymode, which exposes PMEMonly as volatile
memory and uses DRAM as a hardware-managed cache, has shown
that this mode may provide better performance than model-driven
placement in App Direct mode.
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