
Reliable Community Search in Dynamic Networks
Yifu Tang

Deakin University

Geelong, Australia

tangyif@deakin.edu.au

Jianxin Li
∗

Deakin University

Geelong, Australia

jianxin.li@deakin.edu.au

Nur Al Hasan Haldar

The University of Western Australia

Perth, Australia

nur.haldar@uwa.edu.au

Ziyu Guan

Xidian University

Xi’an, China

zyguan@xidian.edu.cn

Jiajie Xu

Soochow University

Suzhou, China

xujj@suda.edu.cn

Chengfei Liu

Swinburne University of Technology

Melbourne, Australia

cliu@swin.edu.au

ABSTRACT
Searching for local communities is an important research problem

that supports advanced data analysis in various complex networks,

such as social networks, collaboration networks, cellular networks,

etc. The evolution of such networks over time has motivated several

recent studies to identify local communities in dynamic networks.

However, these studies only utilize the aggregation of disjoint struc-

tural information to measure the quality and ignore the reliabil-

ity of the communities in a continuous time interval. To fill this

research gap, we propose a novel (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable community

(CRC) model in the weighted dynamic networks, and define the

problem ofmost reliable community search that couples the desirable
properties of connection strength, cohesive structure continuity,

and the maximal member engagement. To solve this problem, we

first develop a novel edge filtering based online CRC search algo-

rithm that can effectively filter out the trivial edge information

from the networks while searching for a reliable community. Fur-

ther, we propose an index structure, Weighted Core Forest-Index

(WCF-index), and devise an index-based dynamic programming

CRC search algorithm, that can prune a large number of insignif-

icant intermediate results and support efficient query processing.

Finally, we conduct extensive experiments systematically to demon-

strate the efficiency and effectiveness of our proposed algorithms

on eight real datasets under various experimental settings.

PVLDB Reference Format:
Yifu Tang, Jianxin Li, Nur Al Hasan Haldar, Ziyu Guan, Jiajie Xu,

and Chengfei Liu. Reliable Community Search in Dynamic Networks.

PVLDB, 15(11): 2826 - 2838, 2022.

doi:10.14778/3551793.3551834

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Cyril-Tang/CRC-query.

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551834

1 INTRODUCTION
Local community search has attracted much attention in recent

years and has shown its great success in different applications,

e.g., personalized recommendation [19, 20], destination marketing

[34]. In general, local community search aims to identify a densely

connected structure with regard to a query vertex. Majority of

the existing works [9, 29, 30] on local community search consider

static network structure. For instance, Clauset et al. [9] and Luo

et al. [30] proposed local modularity to measure the quality of the

community in the static network. A random walk based community

detection model from multiple static networks is proposed in [29].

Some existing works [7, 12] take into consideration that network

structure may change over time and propose local community

search in dynamic networks. For example, Bu et al. [7] provides a

modularity-based criterion to find local communities in a dynamic

network and update them in an incremental manner by monitoring

the changes. In another work, DiTursi et al. [12] discovered the

dynamic communities with optimal time intervals by minimizing

temporal conductance, a well-known metric to measure the quality

of a community.However, the above-mentioned works assess the

community quality using their aggregated structural cohesiveness

at independent timestamps and ignore the evolving structure of a

community over time. In the dynamic network, the continuity of

the community cohesiveness is an important factor in determining

whether a community is reliable. For example, it is desirable to hire

a team that continuously delivers high-quality outputs together

over time in the collaboration network. Finding the user groups

with a longer duration of reacting to the social event can help better

analyze user behavior on social media. Existingworks largely ignore

the continuity of the community cohesiveness. In addition, they did

not consider the edge weight, e.g., connection strength between a

node pair, which incurs the new computational challenge to solve

local community search in dynamic networks.

To fill this research gap, we propose a novel community model

of (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable community in dynamic networks where: (i)

the community is a 𝑘-𝑐𝑜𝑟𝑒 with each edge weight no less than

the weight threshold 𝜃 , and (ii) spans over a period of time. The

most reliable local community search aims to find the community

with the maximum reliability score, which is defined by coupling

temporal continuity and member engagement. In other words, this

work jointly models the three important properties, i.e., connection

strength, cohesiveness continuity, and member engagement, of a

community in a dynamic network.

2826

https://doi.org/10.14778/3551793.3551834
https://github.com/Cyril-Tang/CRC-query
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551834
https://www.acm.org/publications/policies/artifact-review-and-badging-current

()

(, ,)
Reliable

Community
Size

Lasting

Time
Duration

(, 0.5,2)
[,]

[,]

(, 0.4,3) [,]

(, 0.3,2) [,]

()

()

Figure 1: Interactions in a small graph of three timestamps.

Example 1.1. Figure 1 shows an illustrative example of a dy-

namic online social network of three timestamps 𝑡1, 𝑡2, 𝑡3, where

the weight of an edge represents the connection strength. Assume

that a cosmetics company wants to post ads for a new product that

can attract customers from local communities. The effective way

is to search for a community from an existing customer, where

the members might have continuous interaction or communica-

tion with each other with a minimum connection strength. Our

proposed (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable community search model can support

such an application. Suppose, 𝑣0 is the target user and 𝑘=3, 𝜃=0.4 are

the query inputs. We can identify the community𝐶3={𝑣0, 𝑣2, 𝑣3, 𝑣4}
as the optimal result, which has four members and spans for two

continuous timestamps 𝑡1 and 𝑡2. Similarly, it returns two communi-

ties𝐶1 and𝐶2 when 𝑘=2 and 𝜃=0.5. Among these two communities,

𝐶2 can be more acceptable than 𝐶1 for the cosmetic company. This

is because the members of 𝐶2 kept their close interaction for 3

continuous timestamps and the size of 𝐶2 is considerably similar

to 𝐶1. This enables the company to identify ads placeholder easily

and cost-effectively that can maximize the impact of their ads.

Although there exist some similar works [22, 24, 25, 35] that

identify meaningful communities over time, our proposed problem

is more acceptable due to more sophisticated research challenges.

In [22], Li et al. defined the persistent community search as the

maximal 𝑘-𝑐𝑜𝑟𝑒 where each vertex’s accumulated degree meets the

𝑘-𝑐𝑜𝑟𝑒 requirement within a time interval. They designed a novel

temporal graph reduction algorithm and searched the maximum

persistent community utilizing pruning and bounding techniques,

which takes exponential complexity. Expanding from [22], Li et

al. [24] studied a single query vertex based persistent community

search by developing an enumeration-based subgraph search algo-

rithm. In [35], Qin et al. proposed the stable communities by first

selecting the centroid vertices where each centroid vertex has a

certain number of neighbors with the desired similarity, and the

star-shape of the centroid vertex and its neighbors exists frequently

in a period of time; and then clustering the network vertices into

stable groups based on the selected centroids. Similar to [35], Lin

et al. [25] defined frequency-based dense subgraphs that satisfy the

quasi-clique structure with at least 𝜃 vertices and the degree of each

vertex exceeds a given threshold. The proposed searching algorithm

takes exponential complexity. However, the persistent community

in [22, 24] did not consider the weight of the edge and its time

complexity is too high for dealing with large-scale networks. The

frequency-based subgraph in [25, 35] ignored the continuity of the

cohesive structure and failed to maximize member engagement.

To solve the proposed problem of the most reliable local commu-

nity search, a naive idea is to enumerate all the possible community

candidates and select the satisfied results by checking their edge

weight and duration. However, this may incur an exponential time

cost. To address the computational challenge, in this paper, we

firstly propose an efficient eligible edge filtering online search al-

gorithm that utilizes the minimum edge requirement of 𝑘-𝑐𝑜𝑟𝑒 to

compute the reliability upper bound to prune a large number of

edge sets without probing their corresponding (𝜃 ,𝑘)-𝑐𝑜𝑟𝑒 commu-

nity candidates. To further accelerate the query processing, we

develop a weighted core forest index by maintaining the standard

𝜃 -threshold values and the (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 structural information of

vertices, which supports efficient retrieval of 𝑘-𝑐𝑜𝑟𝑒 with regard to

different thresholds and timestamps. Following this, we design an

index-based dynamic programming algorithm, and derive the relia-

bility upper bound of communities w.r.t. the time interval during

the dynamic programming procedure to avoid probing the unsat-

isfactory community candidates. Besides, the index construction,

maintenance, and compression are well presented in this paper.

The main contributions of this work are as below:

• We propose a novel problem of themost reliable community

search that jointly considers community continuity, com-

munity size, and connection strength for online network

analysis services.

• We develop an efficient online search algorithm by deriving

and applying the properties of pruning the ineligible edges

w.r.t. the given query conditions.

• We further present a weighted core forest index and develop

an index-based dynamic programming algorithm to solve

the most reliable community search problem in a more

efficient way.

• We conduct extensive experiments to show the efficiency

and effectiveness of the proposed algorithms and commu-

nity model by using eight real-world datasets and compar-

ing with three existing studies.

The remainder of this paper is organized as follows. First, we

formalize the most reliable local community search problem in

Section 2 and develop the online search algorithm in Section 3.

Then, we introduce our index structure and the detailed index-based

search algorithm in Section 4. The procedures of index construction,

maintenance and compression are shown in Section 5. Experimental

evaluation and results are discussed in Section 6. Finally, we discuss

the related work in Section 7 and conclude the work in Section 8.

2 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we first present the preliminaries and then formalize

the problem of the most reliable local community search.

Definition 2.1 (Dynamic Networks). A dynamic network G =

{𝐺𝑡1 , ...,𝐺𝑇 } is a sequence of time-variant weighted graph instances

2827

{𝐺𝑡1 , ...,𝐺𝑇 } s.t., 𝑡1 < 𝑡2 < ... < 𝑇 , where each timestamped in-

stance 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ,𝑊𝑡) contains a set of vertices 𝑉𝑡 , a set of edges
𝐸𝑡 with the weights𝑊𝑡 (𝑒) ∈ (0, 1] for ∀𝑒 ∈ 𝐸𝑡 .

In this work, we ignore the isolated vertices, so that vertex up-

dates can be supported by edge insertions and deletions. The edge

insertion with a new endpoint can represent the vertex addition

and edge deletion isolated an endpoint reflects the vertex deletion.

For simplicity, we assume all graph instances share a fixed set of

vertex 𝑉 , i.e. 𝐺𝑡 = (𝑉 , 𝐸𝑡 ,𝑊𝑡). The edge weight is a widely-used
network feature to represent the interaction frequency, similarity,

or connection strength between vertices. In this work, we normalize

the edge weight to be in (0, 1].
For a graph instance 𝐺𝑡 = (𝑉 , 𝐸𝑡 ,𝑊𝑡), 𝑑𝑒𝑔(𝑢,𝐺𝑡) denotes the

degree of a vertex 𝑢 in 𝐺𝑡 , which is the number of neighbors of 𝑢

in 𝐺𝑡 . Like [37], we consider 𝑘-𝑐𝑜𝑟𝑒 in 𝐺𝑡 as a connected subgraph

𝐺𝑘
𝑡 = (𝑉𝑘 , 𝐸𝑘𝑡) where each vertex has the degree no less than 𝑘 , i.e.

∀𝑢 ∈ 𝑉𝑘
𝑡 , 𝑑𝑒𝑔(𝑢,𝐺𝑘

𝑡) ≥ 𝑘 .
Definition 2.2 ((𝜃 ,𝑘)-𝑐𝑜𝑟𝑒). Given a graph instance𝐺𝑡 = (𝑉 , 𝐸𝑡 ,𝑊𝑡),
an integer 𝑘 , and a threshold 𝜃 , a connected subgraph 𝐺

𝜃,𝑘
𝑡 =

(𝑉 𝜃,𝑘 , 𝐸
𝜃,𝑘
𝑡 ,𝑊

𝜃,𝑘
𝑡) is called a (𝜃 ,𝑘)-𝑐𝑜𝑟𝑒 of𝐺𝑡 if𝐺

𝜃,𝑘
𝑡 is a 𝑘-𝑐𝑜𝑟𝑒 and

each edge has theweight no less than𝜃 , i.e.∀𝑢 ∈ 𝑉 𝜃,𝑘 , 𝑑𝑒𝑔(𝑣,𝐺𝜃,𝑘) ≥
𝑘 and ∀𝑒 ∈ 𝐸𝜃,𝑘𝑡 ,𝑊

𝜃,𝑘
𝑡 (𝑒) ≥ 𝜃 .

Definition 2.3 (Time Interval based (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 Reliable Community

(CRC)). Given a dynamic network G = {𝐺𝑡1 , ...,𝐺𝑇 }, an integer 𝑘 ,

a threshold 𝜃 , and a time interval 𝑇𝐶 = [𝑡𝑠 , 𝑡𝑒], a (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable
community is a subgraph 𝐶 = (𝑉𝐶 , 𝐸𝐶) that spans continuously
from 𝑡𝑠 to 𝑡𝑒 and for each timestamp 𝑡𝑛 ∈ 𝑇𝐶 , the subgraph induced

by 𝐸𝐶 from the graph instance 𝐺𝑡𝑛 is a (𝜃 ,𝑘)-𝑐𝑜𝑟𝑒 , i.e. ∀𝑡𝑛 ∈ 𝑇𝐶 ,
𝐺𝑡𝑛 [𝐸𝐶] is a (𝜃 ,𝑘)-𝑐𝑜𝑟𝑒 of𝐺𝑡𝑛 . In the remainder of this work, (𝜃, 𝑘)-

𝑐𝑜𝑟𝑒 reliable community is called CRC for brevity.

Based on Definition 2.3, a CRC maintains a cohesive structure

with the required connection strength of a time interval in the

dynamic network. Its reliability score can be measured by coupling

the continuity and size of the community as below:

Definition 2.4. (Reliability Score of CRC) Given a dynamic net-

work G = {𝐺𝑡1 ,𝐺𝑡2 , ...,𝐺𝑇 }, a query time interval 𝑇𝑄 = [𝑡𝑖 , 𝑡 𝑗], and
a CRC 𝐶 = (𝑉𝐶 , 𝐸𝐶) with regard to the time interval 𝑇𝐶 = [𝑡𝑠 , 𝑡𝑒],
where 𝑇𝐶 ⊆ 𝑇𝑄 , the reliability score 𝑆𝑟𝑒𝑙 (𝐶) is defined as the har-

monic average of its normalized duration and size:

𝑆𝑟𝑒𝑙 (𝐶) = (1 + 𝛼2) ·
N (𝑉) · N (𝑇)

(𝛼2 · N (𝑉)) + N (𝑇)
(1)

where N(𝑉) = |𝑉𝐶 |/|𝑉𝑘
𝑚𝑎𝑥 | and N(𝑇) = |𝑇𝐶 |/|𝑇𝑄 | represent the

normalized size and duration length respectively.𝑉𝑘
𝑚𝑎𝑥 denotes the

𝑘-𝑐𝑜𝑟𝑒 with the maximum size in 𝐺𝑡 (𝑡 ∈ 𝑇𝑄).
From Equation 1, we can infer that reliability score is monotoni-

cally related to size and duration of the community. Parameter 𝛼

means that community duration is 𝛼 times as much important as

community size, so that higher 𝛼 tends to find the community with

longer duration and smaller size. The default 𝛼 = 1 means both

community size and duration are important equivalently.

Based on the above definitions and reliability measurement, we

formalize the most reliable local community search problem as

below.

Problem 1 (Most Reliable Local Community Search). Given
a dynamic network G = {𝐺𝑡1 ,𝐺𝑡2 , ...,𝐺𝑇 }, a query vertex 𝑞, a thresh-
old 𝜃 , a structural constraint integer 𝑘 , and a query time interval
𝑇𝑄 = [𝑡𝑖 , 𝑡 𝑗], the problem of the Most Reliable Local Community
Search is to find the CRC 𝐶 = (𝑉𝐶 , 𝐸𝐶) and its continuous time inter-
val 𝑇𝐶 = [𝑡𝑠 , 𝑡𝑒], satisfying

argmax

𝐶⊆𝑉
𝑆𝑟𝑒𝑙 (𝐶) (2)

subject to 𝑞 ∈ 𝑉𝐶 ; ∀𝑣 ∈ 𝑉𝐶 , 𝑑𝑒𝑔(𝑣,𝐶) ≥ 𝑘 ; ∀𝑒 ∈ 𝐸𝐶 ∧ ∀𝑡 ∈ 𝑇𝐶 ,
𝑊𝑡 (𝑒) ≥ 𝜃 ; and 𝑇𝐶 ⊆ 𝑇𝑄 .

As shown in Figure 1, when the query time interval is [𝑡1, 𝑡3],
we can obtain two reliable communities 𝐶1 and 𝐶2 w.r.t. the query

input (𝑣0, 0.5, 2). The maximal 2-𝑐𝑜𝑟𝑒 is composed of 10 vertices.

When 𝛼 = 1, we have 𝑆𝑟𝑒𝑙 (𝐶1) = 𝑆𝑟𝑒𝑙 (𝐶2) = 0.57. When 𝛼 increases

to 2, we have 𝑆𝑟𝑒𝑙 (𝐶1) = 0.63 < 𝑆𝑟𝑒𝑙 (𝐶2) = 0.77, and𝐶2 with longer

duration becomes the optimal result.

To solve the most reliable community search problem, a naive

solution is to compute all the (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 at each timestamp, and

then verify their longest duration in the dynamic network. After

that, their reliability scores can be obtained by multiplying their

size and the number of continuous timestamps. Finally, the most

reliable community can be returned by selecting the ones with the

maximum reliability scores. However, the operation of finding all

the (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 needs to probe all the combinations of edges that

form a connected subgraph with no less than 𝑘 (𝑘 + 1)/2 edges

and 𝑘 + 1 vertices, i.e., satisfying the conditions of minimal 𝑘-𝑐𝑜𝑟𝑒

component. Thus, we can remark that the computational cost of

finding the most reliable community is in exponential complexity.

3 ONLINE RELIABLE COMMUNITY SEARCH
To efficiently solve the problem of reliable local community search,

in this section, we will present a novel Eligible Edge Filtering (EEF)
based Online CRC Search algorithm. Different from the naive idea

discussed in Section 2, EEF does not need to generate all the (𝜃, 𝑘)-
𝑐𝑜𝑟𝑒 candidates, which can greatly reduce the query time cost.

Given a graph instance 𝐺𝑡𝑛 = (𝑉 , 𝐸𝑡𝑛) and a weight threshold

𝜃 , we can filter out “ineligible” edges whose weights are less than

𝜃 and maintain only the “eligible” edges. We identify the set of

eligible edges, denoted by 𝐸𝑡𝑛,𝜃 , i.e. 𝐸𝑡𝑛,𝜃 = {𝑒 ∈ 𝐸𝑡𝑛 |𝑊𝑡𝑛 (𝑒) ≥ 𝜃 }
for the CRC construction.

Definition 3.1 (Eligible Lasting Time of Edge). Given a graph

instance 𝐺𝑡𝑛 = (𝑉 , 𝐸𝑡𝑛) at timestamp 𝑡𝑛 ∈ [𝑡𝑖 , 𝑡 𝑗], and a threshold

𝜃 , for an edge 𝑒 ∈ 𝐸𝑡𝑛𝜃 , its eligible lasting time 𝜆𝑡𝑛,𝜃 (𝑒) is measured

by the length of the longest time interval [𝑡𝑚, 𝑡𝑛] (𝑡𝑖 ≤ 𝑡𝑚 ≤ 𝑡𝑛])
if𝑊𝑡𝑥 (𝑒) ≥ 𝜃 for ∀𝑡𝑥 ∈ [𝑡𝑚 , 𝑡𝑛].

Eligible lasting time calculates the number of continuous times-

tamps that the edge is “eligible” until the current timestamp. For

example, in Figure 1, for edge 𝑒 = (𝑣0, 𝑣1), we have 𝜆𝑡1,0.6 (𝑒) = 1,

𝜆𝑡2,0.6 (𝑒) = 2 and 𝜆𝑡3,0.6 (𝑒) = 0. We can easily derive that the

eligible lasting time of edges can be incrementally computed by

accessing the dynamic network chronologically.

Based on the eligible time, we can easily identify common edges

of multiple continuous graph instances, that can be utilized to

construct CRC with varying duration. Different from the vertex-

induced subgraph, the subgraph induced by an eligible edge set

2828

provides the guarantee to meet the requirement of edge weight 𝜃 .

Therefore, the eligible edge set can be used to prune the unqualified

𝑘-𝑐𝑜𝑟𝑒 candidates by using the following property.

Property 3.1 (Minimum𝑘-𝑐𝑜𝑟𝑒). Given an edge set 𝐸𝑡𝑛,𝜃 at times-
tamp 𝑡𝑛 with regards to a threshold 𝜃 , 𝐸𝑡𝑛,𝜃 can be pruned without
probing its induced communities if |𝐸𝑡𝑛,𝜃 | < 𝑘 (𝑘 + 1)/2, i.e., the
number of edges does not meet the density requirement of 𝑘-𝑐𝑜𝑟𝑒 .

In addition, we can calculate the upper bound of the reliability

score of CRCs constructed using 𝐸𝑡𝑛,𝜃 . Given 𝐺
′ = (𝑉 ′, 𝐸 ′) as a

𝑘-𝑐𝑜𝑟𝑒 in the induced subgraph 𝐺𝑡𝑛 [𝐸𝑡𝑛,𝜃], |𝐸𝑡𝑛,𝜃 | ≥ |𝐸 ′ | ≥ (𝑘 ·
|𝑉 ′ |)/2 must hold because there are at least 𝑘 edges for a vertex

in the 𝑘-𝑐𝑜𝑟𝑒 . Therefore, if 𝐺 ′ can form a CRC with its duration

as 𝑑 , then its vertex size satisfies that |𝑉 ′ | ≤ 2|𝐸𝑡𝑛,𝜃 |/𝑘 . Thus, we
haveN(𝑉 ′) ≤ 2 |𝐸𝑡𝑛,𝜃 |/𝑘

|𝑉 𝑘
𝑚𝑎𝑥 |

andN(𝑇) = 𝑑/|𝑇𝑄 | and we can determine

the upper bound of reliability score of the CRC constructed by the

given eligible edge set.

For simplicity of presentation, we omit the normalizers |𝑉𝑘
𝑚𝑎𝑥 | of

the maximum community size and |𝑇𝑄 | of the query time interval

in the following equations.

Property 3.2 (𝑆𝑟𝑒𝑙 Upper Bound of CRC w.r.t. 𝐸𝑡𝑛,𝜃). Given
an eligible edge set 𝐸𝑡𝑛,𝜃 , an integer 𝑘 , the upper bound reliability
score𝑈𝐵𝑅𝑑𝑡𝑛 of the CRC constructed using 𝐸𝑡𝑛,𝜃 whose duration is 𝑑
is calculated as:

𝑈𝐵𝑅𝑑𝑡𝑛 = (1 + 𝛼2) ·
2|𝐸𝑡𝑛,𝜃 |/𝑘 · 𝑑

(𝛼2 · 2|𝐸𝑡𝑛,𝜃 |/𝑘) + 𝑑
(3)

The key idea of EEF-based Online CRC Search is to filter out

edges in each graph instance𝐺𝑡𝑛 using the given threshold 𝜃 while

maintaining the lasting time of each edge by a timestamp. As shown

in Algorithm 1, we first initialize 𝐶𝑜𝑝𝑡 and𝑚𝑎𝑥𝑆 to store the most

reliable community and its reliability score (line 1). Then, for each

timestamp 𝑡𝑛 , we traverse the edges of𝐺𝑡𝑛 starting from the query

vertex 𝑞 in Breadth-First Search manner. In the meantime, vertices

and edges that violating the degree and weigh constraints are

pruned. During the traversing, the eligible time of edges is updated

incrementally, and the eligible edges are added to the edge set 𝐸𝑡𝑛,𝜃 .

Having 𝐸𝑡𝑛,𝜃 , we calculate its upper bound𝑈𝐵𝑅
1

𝑡𝑛
of potential CRC

whose duration is 1 (lines 2-10). Then, we visit each timestamp 𝑡𝑛 in

the descending order of 𝑈𝐵𝑅1𝑡𝑛 , which provides a best-first search

strategy to exploit the CRCs. We utilize 𝐸𝑡𝑛,𝜃 to construct CRC

with duration 𝑑 iterating from 1 to | [𝑡𝑖 , 𝑡𝑛] | (lines 11-19). At each
iteration, we select the edge set 𝐸 ′ where each edge has the eligible

time no less than 𝑑 and update the upper bound w.r.t. 𝑑 . Then we

adopt Property 3.1 and Property 3.2 to prune the CRC construction

if |𝐸 ′ | is too small or 𝑈𝐵𝑅𝑑𝑡𝑛
cannot exceed𝑚𝑎𝑥𝑆 . After that, we

can extract the CRC𝐶 (i.e., local maximal 𝑘-𝑐𝑜𝑟𝑒) from the induced

subgraph 𝐺𝑡𝑛 [𝐸 ′] by finding the connected component containing

𝑞 after the core decomposition, and then update 𝐶𝑜𝑝𝑡 and𝑚𝑎𝑥𝑆 .

Finally, the algorithm returns 𝐶𝑜𝑝𝑡 as the optimal result.

The time complexity of Algorithm 1 can be analyzed as below.

For each graph instance 𝐺𝑡𝑛 = (𝑉 , 𝐸𝑡𝑛), it takes 𝑂 (|𝑉 | + |𝐸𝑡𝑛 |) to
run the Breadth-First Search that requires to visit very vertex and

edge once. At the same time, the eligible time of each edge is ob-

tained (lines 2-18). Then, it needs 𝑂 (| [𝑡𝑖 , 𝑡𝑛] | · |𝐸𝑡𝑛 |) to compute

| [𝑡𝑖 , 𝑡𝑛] | number of CRCs where each CRC is obtained by a core

Algorithm 1: EEF-based Online CRC Search

Input: A dynamic weighted graph G = {𝐺𝑡1 ,𝐺𝑡2 , ...}, an
integer 𝑘 , a query vertex 𝑞, a query time period

𝑇𝑄 = [𝑡𝑖 , 𝑡 𝑗], and a threshold 𝜃 .

Output: The Most Reliable Community 𝐶𝑜𝑝𝑡

1 𝐶𝑜𝑝𝑡 ← ∅;𝑚𝑎𝑥𝑆 ← 0;

2 for 𝑡𝑛 ← 𝑡𝑖 to 𝑡 𝑗 do
3 while traverse edges 𝑒 = (𝑣,𝑤) starting from 𝑞 in BFS do
4 if 𝑑𝑒𝑔(𝑣,𝐺𝑡𝑛) ≤ 𝑘 then Remove vertex 𝑣 from 𝐺𝑡𝑛 ;

5 if𝑊𝑡𝑛 (𝑒) ≥ 𝜃 then
6 𝐸𝑡𝑛,𝜃 ← 𝐸𝑡𝑛,𝜃 ∪ {𝑒};
7 if 𝑒 ∈ 𝐸𝑡𝑛−1,𝜃 then
8 𝜆𝑡𝑛,𝜃 (𝑒) ← 𝜆𝑡𝑛−1,𝜃 (𝑒) + 1

9 else Remove edge 𝑒 from 𝐺𝑡𝑛 ;

10 Calculate𝑈𝐵𝑅1𝑡𝑛 by Equation 3

11 for 𝑡𝑛 ∈ 𝑇𝑄 in descending order of𝑈𝐵𝑅1𝑡𝑛 do
12 for 𝑑 ← 1 to | [𝑡𝑖 , 𝑡𝑛] | do
13 𝐸 ′ ← {𝑒 ∈ 𝐸𝑡𝑛,𝜃 |𝜆𝑡𝑛,𝜃 (𝑒) ≥ 𝑑};
14 Calculate𝑈𝐵𝑅𝑑𝑡𝑛

by Equation 3;

15 if |𝐸 ′ | ≥ 𝑘 (𝑘 + 1)/2 &𝑈𝐵𝑅𝑑𝑡𝑛 > 𝑚𝑎𝑥𝑆 then
16 𝐶 ← local maximal 𝑘-𝑐𝑜𝑟𝑒 in 𝐺𝑡𝑛 [𝐸 ′];
17 if 𝑆𝑟𝑒𝑙 (𝐶) ≥ 𝑆𝑟𝑒𝑙 (𝐶𝑜𝑝𝑡) then
18 𝑚𝑎𝑥𝑆 ← 𝑆𝑟𝑒𝑙 (𝐶);
19 𝐶𝑜𝑝𝑡 ← 𝐶;

20 Return 𝐶𝑜𝑝𝑡 .

decomposition process that needs to consume 𝑂 (|𝐸𝑡𝑛 |) [4] (lines
20-27). Therefore, for the query interval of |𝑇𝑄 | timestamps, Algo-

rithm 1 takes 𝑂 (∑𝑡𝑛 ∈𝑇𝑄 ((|𝑉 | + |𝐸𝑡𝑛 |) + (| [𝑡𝑖 , 𝑡𝑛] | · |𝐸𝑡𝑛 |))) in total,

which can be rewritten as 𝑂 (|𝑇𝑄 | · ((|𝑉 | + |𝐸𝑡 |) + (|𝑇𝑄 | · |𝐸𝑡 |)), i.e.,
𝑂 (|𝑇𝑄 |2 · |𝐸𝑡 | + |𝑇𝑄 | · (|𝐸𝑡 | + |𝑉 |)), where |𝐸𝑡 | denotes the average
number of edges of the graph instances.

4 INDEX BASED RELIABLE COMMUNITY
SEARCH

To further accelerate the query processing, in this section, we first

propose a forest index structure, called Weighted Core Forest Index
(WCF-Index), to maintain the (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 vertices for each graph

instance 𝐺𝑡𝑛 . Then, we develop an index-based dynamic program-

ming algorithm by using the proposed index and derive the reliable

score upper boundwith great pruning power to accelerate the query

algorithm.

4.1 WCF-Index
The general idea of this index is to maintain the vertex candidates of

the (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 with regards to the given 𝜃 and 𝑘 at each timestamp,

from which we can work out the satisfied CRCs containing 𝑞 with

the different continuous time intervals.

Definition 4.1 (𝜃 -threshold of a Vertex). Given a graph instance

𝐺𝑡=(𝑉 , 𝐸𝑡 ,𝑊𝑡) at a timestamp 𝑡 and an integer 𝑘 , for a vertex𝑢 ∈ 𝑉 ,
it may have a set of 𝜃 values and their corresponding (𝜃, 𝑘)-𝑐𝑜𝑟𝑒

2829

Figure 2: 𝜃-threshold of 𝐺𝑡1

,

()

Figure 3: 𝜃-tree of 𝐺𝑡1 , 𝑘=2

subgraphs containing 𝑢. Thus, we take the largest 𝜃 value in the 𝜃

set as the 𝜃 -threshold of 𝑢, denoted as 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑢,𝐺𝑡).

Example 4.1. Figure 2 shows the 𝜃 -threshold of vertices in 𝐺𝑡1 in

Figure 1 (a) with regards to different 𝑘 values, e.g., 𝜃 -𝑡ℎ𝑟𝑒𝑠2 (𝑣1,𝐺𝑡)
is 0.5 because (0.5, 2)-𝑐𝑜𝑟𝑒 (i.e., {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}) exists in 𝐺𝑡1 , but

no one (𝜃 ′, 2)-𝑐𝑜𝑟𝑒 containing 𝑣1 exists if 𝜃 ′ > 0.5.

According to the above definition and the example, we are able

to justify whether a vertex 𝑣 is contained in a (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 for given 𝜃
and 𝑘 if the 𝜃 -threshold values of vertices are maintained. However,

the 𝜃 -threshold only implies the vertex candidatures of a (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 ,
but fails to reflect the structural connectivity of vertices. Therefore,

it is highly desirable to design an index structure for maintaining

the 𝜃 -threshold and the structure information of vertices together.

Yang et al. in [44] proposed a forest-based index to query (𝑘, 𝜂)-
𝑐𝑜𝑟𝑒 in a static uncertain graph where 𝑘 implies the degree con-

straint of the vertex and 𝜂 implies the probability of the vertex to

appears in the subgraph. By maintaining 𝜂-𝑡𝑟𝑒𝑒𝑘 for each 𝑘 , it can

accelerate the search of all the (𝑘, 𝜂)-𝑐𝑜𝑟𝑒 with custom 𝜂 require-

ments. Motivated by 𝜂-𝑡𝑟𝑒𝑒𝑘 , in this work, we extend the concept

of 𝜂-𝑡𝑟𝑒𝑒𝑘 to the dynamic weighted network to construct the 𝜃 -

𝑡𝑟𝑒𝑒𝑘,𝑡 for each 𝑘 at time 𝑡 , which can support quick retrieval of

local maximal (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 from the indexed graph instance 𝐺𝑡 .

Definition 4.2 (𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡). Given a graph instance 𝐺𝑡 , an integer

𝑘 , 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 index is a tree structure, satisfying

(1) Node: each tree node V is a set of maximal connected

vertices in𝐺𝑡 with same 𝜃 -threshold value, denoted as V.𝜃 ,
i.e., ∀𝑣 ∈ V, 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑣,𝐺𝑡) = V.𝜃 ;

(2) Parent-child relationship: for a node W, 𝑁W (𝐺𝑡) de-
notes the tree nodes that are connected to W in 𝐺𝑡 with

𝜃 -threshold smaller than W.𝜃 . The parent node V of W
is the node with the largest 𝜃 -threshold in 𝑁W (𝐺𝑡), i.e.
V = 𝑎𝑟𝑔𝑚𝑎𝑥V∈𝑁W (𝐺𝑡)V.𝜃 .

Example 4.2. Figure 3 presents the constructed 𝜃 -𝑡𝑟𝑒𝑒2,𝑡1 of 𝐺𝑡1

from 𝜃 -threshold of 𝐺𝑡1 in Figure 2. If we search (0.5, 2)-𝑐𝑜𝑟𝑒 on
𝜃 -𝑡𝑟𝑒𝑒2,𝑡1 , three tree nodes will be returned, i.e., {𝑣0, 𝑣1}, {𝑣2, 𝑣3, 𝑣4},
and {𝑣7, 𝑣8, 𝑣9}. These tree nodes can induce two (0.5, 2)-𝑐𝑜𝑟𝑒 , i.e.,
𝑔1 and 𝑔2.

𝜃 -𝑡𝑟𝑒𝑒 can be composed of several trees where each tree repre-

sents a connected component in the graph instance. We denote I
as the WCF-Index where I[𝑘] [𝑡] represents the 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 of each 𝑘
and 𝑡 in the dynamic network.

Remark 1. In this work, we set the 𝜃 -threshold as the standard

values {0, 0.1, 0.2, ..., 0.9, 1}. If the 𝜃 -threshold of a vertex is not

in the standard set, we will round it down to the nearest stan-

dard value. Accordingly, fetching (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 with non-standard 𝜃

1,

= 5

1,

= 3

1,

= 4

1,

= 6

1,

= 5

, , , ,

,

1,

= 5

1,

= 3

1,

= 4

1,

= 6

1,

= 5

Figure 4:𝑈𝐵𝑅 of [𝑡1, 𝑡5]

value will also be processed as the nearest rounded down standard

value. For instance, to fetch (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 with 𝜃 = 0.55, the index

accesses the tree nodes from 𝜃 -threshold of 0.5 and then examines

the 𝜃 -threshold of vertices in the tree node V if V.𝜃 < 0.55. In the

following discussion, we skip this process for simplicity.

4.2 Dynamic Programming based CRC search
To solve the most reliable community search problem, we need to

compare CRC with different duration. In this section, we develop a

dynamic programming algorithm based on the recursive relation of

CRCs ending in consecutive timestamps and utilize the WCF-Index
to search CRC with varying duration efficiently.

Assume that the lasting time interval of the CRC is fixed (so does

the duration), then we only need to extract the CRC with the largest

size. Given the duration of the CRC is 𝑑 and the last timestamp

it spans is 𝑡𝑛 , we denote the maximal CRC w.r.t. the query input

as 𝐶 (𝑑, 𝑡𝑛). We can easily derive the following recursive relation

between CRCs:

𝐶 (𝑑, 𝑡𝑛) ⊆ 𝐶 (𝑑 − 1, 𝑡𝑛−1) ∩𝐶 (𝑑 − 1, 𝑡𝑛) (4)

The base situation is 𝐶 (1, ·) that can be retrieved from WCF-Index.
Based on Eq. 4, we can devise a DP algorithm to compute 𝐶 (𝑑, 𝑡𝑛).
More specifically, to get 𝐶 (𝑑, 𝑡𝑛), we simply compute the intersec-

tion of𝐶 (𝑑 − 1, 𝑡𝑛−1) and𝐶 (𝑑 − 1, 𝑡𝑛) and extract the local maximal

(𝜃, 𝑘)-core using core decomposition. The intermediate result of

𝐶 (𝑑, 𝑡𝑛) with varying 𝑑 is maintained to support the adoption of

the dynamic programming.

If at a timestamp 𝑡𝑎 , the maximal community𝐶 (1, 𝑡𝑎) does not ex-
ist, i.e. for a given query, there is no such subgraph satisfying (𝜃, 𝑘)-
𝑐𝑜𝑟𝑒 constraint at time 𝑡𝑎 , then it implies that further calculations

depending on 𝐶 (1, 𝑡𝑎) are unnecessary. In this work, these kinds

of timestamps like 𝑡𝑎 are called anchored timestamps of a query

time interval. The anchored timestamps split the query interval

[𝑡𝑖 , 𝑡 𝑗] into several non-overlapping time intervals 𝑇𝑆 = {𝑇1,𝑇2, ...}.
For each interval 𝑇𝑖 ∈ 𝑇𝑆 , we can compute the upper bound of the

reliability score of the communities.

Property 4.1 (𝑆𝑟𝑒𝑙 Upper Bound of CRCw.r.t.𝑇𝑖). Given a time
interval 𝑇𝑖 = [𝑡𝑠 , 𝑡𝑒] where 𝐶 (1, 𝑡𝑛) exists for every 𝑡𝑛 ∈ [𝑡𝑠 , 𝑡𝑒], we
can construct an array𝑀 = (𝜇𝑠 , 𝜇𝑠+1, ...𝜇𝑒) to store the size of𝐶 (1, ·),
where 𝜇𝑛 denotes the size of 𝐶 (1, 𝑡𝑛). The upper bound reliability
score (UBR) in this time interval can be calculated by:

𝑈𝐵𝑅𝑇𝑖 =𝑚𝑎𝑥𝜇𝑛 ∈𝑀 ((1 + 𝛼
2) · 𝜇𝑛 · 𝐿𝐶𝑇 (𝜇𝑛, 𝑀)
(𝛼2 · 𝜇𝑛) + 𝐿𝐶𝑇 (𝜇𝑛, 𝑀)

) (5)

where 𝐿𝐶𝑇 (𝜇𝑛, 𝑀) stands for the length of the Longest Consecutive
Timestamps 𝑆 of 𝜇𝑛 in array𝑀 such that {𝑖 ∈ 𝑆 |𝜇𝑖 ≤ 𝜇}.

2830

Example 4.3. For a community 𝐶 (1, 𝑡𝑛) of size 𝜇𝑛 , the largest

reliability score of a CRC constructed by 𝐶 (1, 𝑡𝑛) is determined

by the longest possible duration that 𝜇𝑛 can remain. Hence, the

upper bound score of a time interval is the maximum value among

all the largest possible scores for each 𝐶 (1, ·) size. Figure 4 shows
an illustrative example of calculating the UBR of interval [𝑡1, 𝑡5]
where we assume |𝑉𝑘

𝑚𝑎𝑥 | = 10. The size of 𝐶 (1, 𝑡3) is 4 and the

longest continuous timestamps for this size is 3 ([𝑡3, 𝑡5]), so the

largest possible score of the CRC constructed by𝐶 (1, 𝑡3) is 0.5/10 ∗
4 + 0.5/5 ∗ 3 = 0.5. The largest possible reliability score is obtained

by a CRC constructed by 𝐶 (1, 𝑡2) that contains three vertices and
spans for five timestamps.

Remark 2. Similar to Property 2, we use𝑈𝐵𝑅𝑑
𝑇𝑖
to denote the upper

bound calculated by the size of 𝐶 (𝑑, ·). However, it can determine

the maximum reliability score of the community with duration

longer than 𝑑 . We can derive that

𝑈𝐵𝑅𝑑𝑇𝑖
=𝑚𝑎𝑥𝜇𝑛 ∈𝑀 (

(1 + 𝛼2) · 𝜇𝑛 · (𝑑 + 𝐿𝐶𝑇 (𝜇𝑛, 𝑀) − 1)
(𝛼2 · 𝜇𝑛) + (𝑑 + 𝐿𝐶𝑇 (𝜇𝑛, 𝑀) − 1)

) (6)

where 𝜇𝑛 denotes the size of 𝐶 (𝑑, 𝑡𝑛) and (𝐿𝐶𝑇 (𝜇𝑛, 𝑀) − 1) rep-
resents the additional lasting timestamps of size 𝜇𝑛 on top of 𝑑 .

In the process of community search, 𝑈𝐵𝑅𝑇𝑖 can be updated with

different duration of CRC and provide sustainable pruning power.

Having 𝑈𝐵𝑅𝑇𝑖 calculated for each interval 𝑇𝑖 and updated during

the community exploration, we can skip exploring CRCs if 𝑈𝐵𝑅𝑇𝑖
is no larger than the reliability score of intermediate community

candidates we have obtained during the query processing.

Algorithm 2 presents the detailed dynamic programming pro-

cedure of the WCF-Index based CRC Search. We first initialize a

table 𝐿𝐶 ,𝑚𝑎𝑥𝑆 , and 𝐶𝑜𝑝𝑡 to store the extracted communities, the

maximum reliability score, and the most reliable community (line

1). For each timestamp 𝑡𝑛 ∈ [𝑡𝑖 , 𝑡 𝑗], we can obtain𝐶 (1, 𝑡𝑛) from the

𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡𝑛 index, and store it in 𝐿𝐶 [1] [𝑛] (lines 2-6). In addition, we

also determine whether 𝑡𝑛 is an anchored timestamp. Then we split

𝑇𝑄 into several non-overlapping time intervals 𝑇𝑆 = {𝑇1,𝑇2, ...}
with valid 𝐶 (1, ·) by the anchored timestamps, and calculate their

upper bound reliability score (lines 7-8). For each individual time

interval 𝑇𝑖 = [𝑡𝑠 , 𝑡𝑒], if its upper bound is no larger than 𝑚𝑎𝑥𝑆 ,

then the time interval is pruned (line 10). Otherwise, we initialize

an array 𝑄 to store the size of CRC and compute the CRC with

various duration 𝑑 based on Eq. 4, and store the intermediate CRC

𝐶 (𝑑, 𝑡𝑥) in 𝐿𝐶 [𝑑] [𝑥] (lines 11-16). Then, we update𝑚𝑎𝑥𝑆 and𝐶𝑜𝑝𝑡
and add the size of 𝐶 (𝑑, 𝑡𝑥) to 𝑄 for upper bound calculation (lines

17-20). Once 𝐶 (𝑑, ·) has been explored for every 𝑡𝑥 ∈ [𝑡𝑠 , 𝑡𝑒], we
can update the 𝑈𝐵𝑅 and determine whether it is necessary to ex-

plore communities with longer duration in this interval (line 21-22).

Finally, the algorithm returns the most reliable community 𝐶𝑜𝑝𝑡
whose reliability score is the largest.

The time complexity of Algorithm 2 is dominated by the oper-

ation of finding CRCs with various duration (lines 10-23) as the

𝐶 (1, ·) community can be queried from the index in constant time.

In the worst case, there are up to |𝑇𝑄 |2 subgraphs to be explored and
the community construction takes𝑂 (|𝐸𝑡 |) complexity, where𝑇𝑄 is

the query interval and |𝐸𝑡 | is the average number of edges of graph

instance𝐺𝑡 . The total complexity is𝑂 (|𝑇𝑄 |2 · |𝐸𝑡 |). Compared with

the EEF-based Online CRC Search Algorithm,WCF-Index can avoid

Algorithm 2:WCF-Index based CRC Search

Input: A dynamic weighted graph G = {𝐺𝑡1 ,𝐺𝑡2 , ...𝐺𝑇 },
query time [𝑡𝑖 , 𝑡 𝑗], theWCF-Index I, integer 𝑘 ,
weight threshold 𝜃 , query vertex 𝑞

Output: the most reliable community 𝐶𝑜𝑝𝑡

1 𝐿𝐶 ← [[]];𝑚𝑎𝑥𝑆 ← 0; 𝐶𝑜𝑝𝑡 ← ∅;
2 for 𝑡𝑛 ∈ [𝑡𝑖 , 𝑡 𝑗] do
3 Extract 𝐶 (1, 𝑡𝑛) from I[𝑘] [𝑡𝑛];
4 if 𝐶 (1, 𝑡𝑛) is ∅ then
5 set 𝑡𝑛 as anchored timestamp;

6 else 𝐿𝐶 [1] [𝑛] ← 𝐶 (1, 𝑡𝑛);
7 Get all the consecutive timestamps 𝑇𝑆 = {𝑇1,𝑇2, ...} split by

the anchored timestamp;

8 Calculate upper bound 𝑢𝑏 = {𝑈𝐵𝑅1
𝑇1
,𝑈 𝐵𝑅1

𝑇2
, ...} for each

consecutive time sequence by Equation 5;

9 for 𝑇𝑖 = [𝑡𝑠 , 𝑡𝑒] ∈ 𝑇𝑆 by descending of𝑈𝐵𝑅𝑇𝑖 do
10 if 𝑈𝐵𝑅1

𝑇𝑖
≤ 𝑚𝑎𝑥𝑆 then continue ;

11 for 𝑑 ← 1 to | [𝑡𝑠 , 𝑡𝑒] | do
12 𝑀 ← [];
13 for 𝑡𝑥 ∈ [𝑡𝑠 , 𝑡𝑒] do
14 if 𝑑 ≤ |[𝑡𝑠 , 𝑡𝑥] | then
15 if 𝑑 > 1 then
16 𝐿𝐶 [𝑑] [𝑥] ←local maximal 𝑘-core in

𝐿𝐶 [𝑑 − 1] [𝑥 − 1] ∩ 𝐿𝐶 [𝑑 − 1] [𝑡𝑥];
17 𝑚𝑎𝑥𝑆 ←𝑚𝑎𝑥 (𝑆𝑟𝑒𝑙 (𝐿𝐶 [𝑑] [𝑥]),𝑚𝑎𝑥𝑆);
18 if 𝑆𝑟𝑒𝑙 (𝐿𝐶 [𝑑] [𝑥]) ≥ 𝑆𝑟𝑒𝑙 (𝐶𝑜𝑝𝑡) then
19 𝐶𝑜𝑝𝑡 ← 𝐿𝐶 [𝑑] [𝑥];
20 𝑀.𝑎𝑝𝑝𝑒𝑛𝑑 (|𝐿𝐶 [𝑑] [𝑥] |);

21 Calculate𝑈𝐵𝑅𝑑
𝑇𝑖

by Equation 6;

22 if 𝑈𝐵𝑅𝑑
𝑇𝑖
≤ 𝑚𝑎𝑥𝑆 then break ;

23 Return 𝐶𝑜𝑝𝑡

searching a large number of edges, which helps to reduce the time

cost of computing 𝐶 (1, ·).

5 WCF INDEX CONSTRUCTION,
MAINTENANCE, AND COMPRESSION

In this section, we describe the procedure of index construction, and

propose index maintenance and compression strategies to support

efficient query processing over dynamic weighted networks and

reduce the time and space cost of the index.

5.1 WCF-Index Construction
Themain idea of constructingWCF-Index is to build the 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 for
each graph instance 𝐺𝑡 for 𝑘 ∈ [1, 𝑘𝑚𝑎𝑥], where 𝑘𝑚𝑎𝑥 denotes the

maximum core number of the vertex in 𝐺𝑡 . To obtain the 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 ,

we group the vertices by their 𝜃 -threshold value and add the vertex

groups as tree nodes into the 𝜃 -𝑡𝑟𝑒𝑒 according to the 𝜃 -threshold

and connectivity of the tree nodes, i.e., the vertex groups.

2831

Algorithm 3 presents the procedure of building theWCF-Index
I. For each graph instance𝐺𝑡 , we build 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 for each available

𝑘 by first computing 𝜃 -threshold of vertices and then construct and

insert tree nodes to the 𝜃 -𝑡𝑟𝑒𝑒 index. We first initialize two graphs

𝐺𝑝𝑟𝑒 and 𝐺𝑐𝑢𝑟 to store intermediate states of edge filtering (line

3). Then we iteratively pick 𝜃 ′ ∈ Θ in descending order. For each

𝜃 ′, we get the edge set 𝐸𝑡,𝜃 ′ whose weights are no less than 𝜃 ′ and
obtain the induced subgraph 𝐺𝑡 [𝐸𝑡,𝜃 ′] as the current state 𝐺𝑐𝑢𝑟 .

We can obtain a set of vertices 𝑉𝜃 ′ whose core number in 𝐺𝑐𝑢𝑟 is

increased with regards to the core number in the last state 𝐺𝑝𝑟𝑒 .

This implies that for a vertex 𝑤 ∈ 𝑉𝜃 ′ , the 𝜃 -threshold of 𝑤 is 𝜃 ′

w.r.t. its increased core number (lines 4-7). After that, we set the

previous state𝐺𝑝𝑟𝑒 to be𝐺𝑐𝑢𝑟 and obtain the distinct values of the

newly increased core numbers 𝐾 (lines 8-9). Then, according to

the newly identified 𝜃 -threshold, we can construct and add tree

nodes to the 𝜃 -𝑡𝑟𝑒𝑒𝑘′,𝑡 for 𝑘
′ ∈ 𝐾 (lines 10-21). To do that, we get

𝜃 -𝑡𝑟𝑒𝑒𝑘′,𝑡 from I[𝑘 ′] [𝑡], then we identify the groups of connected

vertices whose 𝜃 -threshold at 𝑘 ′ is 𝜃 ′ as the tree node X (lines 11-

14). To determine the position of X, we find each tree node Y that

contains any neighbor 𝑣 of𝐺𝑡 [X] and its root Z, so that X,Y,Z are
connected (lines 15-18). If Z.𝜃 > X.𝜃 , X is assigned as the parent

of Z, otherwise, their 𝜃 -threshold are the same because the smaller

𝜃 ′ has not been visited yet, so we need to merge X to Z (lines

19-21). After iterating all the standard threshold values, we can

construct all the 𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡 completely for each possible 𝑘 of each

𝐺𝑡 and return the WCF-Index I. The space cost of WCF-Index is

𝑂 (∑𝑡𝑖 ∈𝑇
∑
𝑢∈𝑉 𝑐𝑜𝑟𝑒 (𝑢,𝐺𝑡𝑖)) as each vertex 𝑢 appears 𝑐𝑜𝑟𝑒 (𝑢,𝐺𝑡𝑖)

times in each graph instance.

Example 5.1. Consider the graph instance 𝐺𝑡1 in Figure 1, we

calculate the 𝜃 -threshold of its vertices by inducing𝐺𝑡1 [𝐸𝑡1,𝜃] with
increasing 𝜃 . Upon inducing𝐺𝑡1 [𝐸𝑡1,0.5], comparing to𝐺𝑡1 [𝐸𝑡1,0.6],
we can observe the core number increase of 𝑣0 and 𝑣1 from 1 to

2, which implies 𝜃 -𝑡ℎ𝑟𝑒𝑠2 (𝑣0,𝐺𝑡1) = 𝜃 -𝑡ℎ𝑟𝑒𝑠2 (𝑣0,𝐺𝑡1) = 0.5. So we

add tree node to 𝜃 -𝑡𝑟𝑒𝑒2 because the core number is increased to

2. One node X = {𝑣0, 𝑣1} is constructed as 𝑣0 and 𝑣1 are connected.

𝜃 -𝑡𝑟𝑒𝑒2,𝑡1 has two nodes Y1 = {𝑣2, 𝑣3, 𝑣4} and Y2 = {𝑣7, 𝑣8, 𝑣9}
from previous steps and the node that contains neighbors of X
is Y1, whose root is itself. X can thus be added as the parent of

Y1 since Y1 .𝜃 > X.𝜃 . By now, 𝜃 -𝑡𝑟𝑒𝑒2 contains three tree nodes.

After inducing 𝐺𝑡1 [𝐸𝑡1,0] we can construct 𝜃 -𝑡𝑟𝑒𝑒2,𝑡1 as Figure 3.

𝜃 -𝑡𝑟𝑒𝑒1,𝑡1 and 𝜃 -𝑡𝑟𝑒𝑒3,𝑡1 will also be obtained.

5.2 WCF-Index Maintenance
In general, dynamic networks might have subtle changes, i.e., a

small percentage of edges and vertices change or update, in two

consecutive timestamps. It is time-consuming to simply compute

the 𝜃 -threshold for all vertices and re-construct the index. Therefore,

in this section, it is highly desirable to develop an indexmaintenance

strategy and update the index using the small number of changed

edges and vertices only.

To explore the relationships of vertices with regards to different

core numbers, we are motivated by the work in [36] that proposed

an incremental core number update method for an evolving graph.

It supports to locate a small set of vertices whose core number

will be affected by using the below two concepts. The other works

Algorithm 3: 𝜃 -Tree Construction
Input: A dynamic weighted graph G = {𝐺𝑡1 ,𝐺𝑡2 , ...𝐺𝑇 }
Output: The WCF-Index I

1 I ← ∅;
2 for 𝐺𝑡 ∈ G do
3 𝐺𝑝𝑟𝑒 ← ∅; 𝐺𝑐𝑢𝑟 ← ∅;
4 for 𝜃 ′ ∈ Θ in descending order do
5 𝐸𝑡,𝜃 ← {𝑒 ∈ 𝐸𝑡 |𝑊𝑡 (𝑒) ≥ 𝜃 };
6 𝐺𝑐𝑢𝑟 ← 𝐺𝑡 [𝐸𝑡,𝜃];
7 𝑉𝜃 ′ ← {𝑢 ∈ 𝑉 |𝑐𝑜𝑟𝑒 (𝑢,𝐺𝑐𝑢𝑟) > 𝑐𝑜𝑟𝑒 (𝑢,𝐺𝑝𝑟𝑒)};
8 𝐺𝑝𝑟𝑒 ← 𝐺𝑐𝑢𝑟 ;

9 𝐾 ← set of values {𝑐𝑜𝑟𝑒 (𝑢,𝐺𝑐𝑢𝑟) |𝑢 ∈ 𝑉𝜃 ′};
10 for each 𝑘 ′ ∈ 𝐾 do
11 𝜃 -𝑡𝑟𝑒𝑒𝑘′,𝑡 ← I[𝑘 ′] [𝑡];
12 𝐻 ← {𝑣 ∈ 𝑉𝜃 ′ |𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘′ (𝑣,𝐺𝑡) = 𝜃 ′};
13 for each connected vertex set X ⊆ 𝐻 do
14 X as a new tree node of 𝜃 -𝑡𝑟𝑒𝑒𝑘′,𝑡 ;

15 for each 𝑣 ∈ 𝑁 (𝐺𝑡 [X]) do
16 if 𝜃 -𝑡ℎ𝑟𝑒𝑠 (𝑣,𝐺𝑡) > 𝜃 ′ then
17 Y← get the node containing 𝑣 ;

18 Z← get the root of Y;

19 if Z.𝜃 > X.𝜃 then Z.𝑝𝑎𝑟𝑒𝑛𝑡 ← X ;

20 else merge node X to Z;

21 I[𝑘 ′] [𝑡] ← 𝜃 -𝑡𝑟𝑒𝑒𝑘′,𝑡 ;

22 Return I

[15, 26, 45] also follow the similar concepts of subcore and purecore
in [36] to maintain the core numbers.

Definition 5.1 (subcore in [36]). Given a graph 𝐺=(𝑉 , 𝐸) and a

vertex 𝑢 ∈ 𝑉 , the subcore of 𝑢 denoted as 𝑆𝑢 , is a set of vertices

having the same core number as 𝑢 and connected with 𝑢 via a path,

where each vertex on the path has the same core number as 𝑢.

Definition 5.2 (purecore in [36]). Given a graph 𝐺=(𝑉 , 𝐸) and a

vertex 𝑢 ∈ 𝑉 , the purecore of 𝑢 denoted as 𝑃𝑢 , is a set of vertices

where each vertex𝑤 ∈ 𝑃𝑢 satisfies:

(1) Condition 1: the core number 𝑐𝑜𝑟𝑒 (𝑤,𝐺) of 𝑤 is equal to

the core number 𝑐𝑜𝑟𝑒 (𝑢,𝐺) of 𝑢.
(2) Condition 2:𝑤 has a set𝑊 of neighbors whose core num-

bers are no less than 𝑐𝑜𝑟𝑒 (𝑤,𝐺), and |𝑊 | is larger than
𝑐𝑜𝑟𝑒 (𝑢,𝐺).

(3) Condition 3: 𝑤 is connected to 𝑢 via a path, where each

vertex on the path satisfies the conditions (1) and (2).

Specifically, given two vertices 𝑢 and 𝑣 in a graph 𝐺=(𝑉 , 𝐸), and
𝑐𝑜𝑟𝑒 (𝑢,𝐺) ≤ 𝑐𝑜𝑟𝑒 (𝑣,𝐺), if an edge (𝑢, 𝑣) is removed from 𝐺 , then

only the vertices in the subcore set 𝑆𝑢 may have their core number

decreased; if an edge (𝑢, 𝑣) is added to 𝐺 , then only the vertices in

the purecore set 𝑃𝑢 may have their core number increased. Thus,

we can extend the rules to the weighted graph, in which the updates

include edge insertion, edge deletion, and edge weight change.

Considering that 𝐺𝑡 ′𝑛 is obtained by inserting an edge (𝑢, 𝑣)
with weight 𝜃 ′ to 𝐺𝑡𝑛 = (𝑉 , 𝐸𝑡𝑛 ,𝑊𝑡𝑛). For a vertex 𝑤 ∈ 𝑉 , if

2832

()

,

()

()

()

Figure 5: 𝜃-tree of 𝐺𝑡 ′
1

, 𝑘=2

𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡𝑛) = 𝜃 ′′ and 𝜃 ′′ ≥ 𝜃 ′, then 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡 ′𝑛) will
remain unchanged.

Property 5.1 (Insertion of an Edge). Given a graph 𝐺𝑡𝑛 and
𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡𝑛 for each 𝑘 ∈ [1, 𝑘𝑚𝑎𝑥], and two vertices 𝑢 and 𝑣 such that
𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑢,𝐺𝑡𝑛) ≤ 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑣,𝐺𝑡𝑛), if an edge (𝑢, 𝑣) is inserted with
weight 𝜃 ′, then only the vertices {𝑤 ∈ 𝑃𝑢 |𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡𝑛) < 𝜃 ′}
may have their 𝜃 -threshold increased.

Property 5.2 (Deletion of an Edge). Given a graph 𝐺𝑡𝑛 and
𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡𝑛 for each𝑘 ∈ [1, 𝑘𝑚𝑎𝑥], and two vertices𝑢 and 𝑣 such that 𝜃 -
𝑡ℎ𝑟𝑒𝑠𝑘 (𝑢,𝐺𝑡𝑛) ≤ 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑣,𝐺𝑡𝑛), if an edge (𝑢, 𝑣) is removed with
weight 𝜃 ′, then only the vertices {𝑤 ∈ 𝑆𝑢 |𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡𝑛) ≤ 𝜃 ′}
may have their 𝜃 -threshold decreased.

The edge insertion and edge deletion can be treated as the update

of edge weight.

Property 5.3 (Update of EdgeWeight). Given a graph𝐺𝑡𝑛 and
𝜃 -𝑡𝑟𝑒𝑒𝑘,𝑡𝑛 for each 𝑘 ∈ [1, 𝑘𝑚𝑎𝑥], two vertices 𝑢 and 𝑣 such that 𝜃 -
𝑡ℎ𝑟𝑒𝑠𝑘 (𝑢,𝐺𝑡𝑛) ≤ 𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑣,𝐺𝑡𝑛), we have (1) if the weight of edge
(𝑢, 𝑣) increases from 𝜃1 to 𝜃2 (w.r.t. 𝜃1 < 𝜃2), then only the vertices
{𝑤 ∈ 𝑃𝑢 |𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡𝑛) ∈ [𝜃1, 𝜃2)} may have their 𝜃 -threshold
increased; (2) if the weight of edge (𝑢, 𝑣) decreases from 𝜃2 to 𝜃1
(w.r.t. 𝜃1 < 𝜃2), then only the vertices {𝑤 ∈ 𝑆𝑢 |𝜃 -𝑡ℎ𝑟𝑒𝑠𝑘 (𝑤,𝐺𝑡𝑛) ∈
(𝜃1, 𝜃2]} may have their 𝜃 -threshold decreased.

Example 5.2. Figure 5(a) shows an updated graph instance of 𝐺𝑡 ′
1

by adding an edge (𝑣3, 𝑣5) with weight 0.3 to 𝐺𝑡1 . We can identify

𝑃𝑣3 = {𝑣0, 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7, 𝑣8} in 𝐺𝑡1 . In addition, the 𝜃 -threshold

of 𝑣5 or 𝑣6 is less than 0.3 and other vertices’ 𝜃 -threshold is no

less than 0.3. According to Property 5.1, only 𝑣5 and 𝑣6 may have

their 𝜃 -threshold increased. After recalculating 𝜃 -𝑡ℎ𝑟𝑒𝑠2 (𝑣5,𝐺𝑡 ′
1

)
and 𝜃 -𝑡ℎ𝑟𝑒𝑠2 (𝑣6,𝐺𝑡 ′

1

), we can update the tree index from Figure 3

to Figure 5(b).

5.3 WCF-Index Compression
Sometimes, the graph instances of some consecutive timestamps

may be similar because the edge weight and graph structure change

progressively over time. Besides that, one tree node usually con-

tains multiple vertices as it gathers many connected vertices with

the same threshold. It is likely to have much duplicate information

across 𝜃 -𝑡𝑟𝑒𝑒 indices. Thus, we need to develop an index compres-

sion strategy in order to reduce the redundancy. The key idea is to

utilize a virtual node to replace the tree node that contains multiple

vertices and appears frequently. The actual vertices of the virtual

nodes are stored in an auxiliary table.

,

,

() ()

Virtual Actual Frequency

Node Nodes

Figure 6: CompressedWCF-Index and auxiliary table

Example 5.3. Figure 6 shows an example of compressed 𝜃 -𝑡𝑟𝑒𝑒2,𝑡1
and 𝜃 -𝑡𝑟𝑒𝑒

2,𝑡 ′
1

where the nodes with vertices {𝑣0, 𝑣1}, {𝑣2, 𝑣3, 𝑣4},
{𝑣7, 𝑣8, 𝑣9} are replaced by virtual nodes X1, X2, X3.

Each virtual node can be regarded as an encoding of a unique

vertex set. The space cost can be reduced if we use an auxiliary

table to only maintain one copy of the tree nodes that frequently

appear inWCF-Index, and keep a virtual id at the positions of these

nodes in WCF-Index. To make the compression, we only select the

tree nodes that can bring positive space gain.

Definition 5.3 (Space Gain). The space gain is defined as the space

saved from replacing the tree node X as a virtual node X, that is

𝑆𝐺 (X) = 𝑓 ∗ (|X| − 1) − |X|
where 𝑓 is the frequency of X that appears in the WCF-Index, and
|X| is the size the vertex set.

By scanning and counting the frequency of tree nodes, we can

calculate the space gains for all the tree nodes, and generate the

compressed index easily. We do not provide the pseud codes in this

paper due to the limited space.

6 EXPERIMENT
We conduct extensive experiments to evaluate the performance of

our proposed algorithms, including EEF-based Online CRC Search

in Algorithm 1,WCF-Index based CRC Search in Algorithm 2 and

𝜃 -Tree Construction in Algorithm 3, denoted as EEF-CRC, WCF-
CRC and WCF-Construct, respectively. We implement a baseline

method based on maximal spaning core (SpanCore) [14], which
calculates all the k-core subgraphs with different 𝑘 value in various

time intervals. We additionally remove the edges and calculate

the reliability score of each candidate subgraph to get the optimal

results. We compare the effectiveness of our proposed community

model with PC [22] and SC [35]. We also evaluate the effectiveness

of index maintenance (WCF-Maintain) and index compression. All

the experiments are conducted on a Windows machine with an

Intel i9-10900F CPU @ 2.80GHz and 32.0 GB DDR4-RAM.

6.1 Experimental Setup
Datasets. We conduct the experiments on eight real-world dy-

namic network datasets collected from SNAP
1
and Network Data

Repository
2
. In BitcoinAlpha (BA) and BitcoinOTC (BO) datasets,

1
https://snap.stanford.edu/data/

2
https://networkrepository.com

2833

Table 1: Dataset Statistics

BitcoinAlpha BitcoinOtc Retweet TAT Email Reddit HepPh StackOverFlow

|𝑉 | / |̂𝑉 | 3,783 / 688 5,881 / 997 18,470 / 4,249 34,761 / 3,613 986 / 658 55,863 / 4,908 28,093 / 4,009 2,601,977 / 79,629

|𝐸 | / |̂𝐸 | 24,186 / 1,497 35,592 / 2,247 61,157 / 5,554 171,403 / 5,122 332,334 / 2,619 571,927 / 8,556 4,596,803 / 78,535 63,497,050 /325,080

|𝑇 | 10 10 30 30 30 30 50 100�𝑑𝑒𝑛𝑠𝑖𝑡𝑦 0.0065 0.0047 0.0006 0.0015 0.0121 0.0007 0.0099 0.0002

𝑘̂𝑚𝑎𝑥 6.6 8.5 4.4 12.6 7.9 12.4 118.2 27.1

𝑘̂𝑞𝑢𝑒𝑟𝑦 3.5 4.3 1.9 7.1 3.9 5.5 59.4 10.2

Table 2: Parameters and default values

Parameter Values Description

𝑘 20%, 40%, 60%, 80% % of 𝑘𝑚𝑎𝑥

𝜃 0.0,0.2,0.4,0.6,0.8 weight threshold

𝑡 4, 8, 12, 16, 20 Time span (snapshots)

the edge weight represents the rating between two users. In the

remaining datasets, the edge weight is calculated from the interac-

tion frequency. The edge weight of all the datasets is normalized

to [0, 1] by min-max normalization. The statistics of the dataset

are shown in Table 1. The number of vertices and edges are de-

noted as |𝑉 | and |𝐸 |, respectively. For each dataset, we first sort the

edges by chronological order, and then divide them into |𝑇 | parti-
tions, i.e., |𝐸 |/|𝑇 | edges, where |𝑇 | is the target number of graph

instances. It guarantees each graph instance contains meaningful

𝑘-𝑐𝑜𝑟𝑒 components. For example, the largest dataset StackOverFlow
(SOF) is divided into |𝑇 | = 100 snapshots and the medium-sized

datasets, e.g., TechAsTopology (TAT), Retweet, etc. are divided into

|𝑇 | = 30 instances. We denote |̂𝑉 |, |̂𝐸 |, �𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑘̂𝑚𝑎𝑥 as the

average of vertex numbers, edge numbers, density, and the largest

core numbers of the |𝑇 | graph instances, respectively.

Parameters.Table 2 shows the detailed setting of the parameters

used in the experiments. To better fit the dataset and cover more

meaningful situations, we vary the query parameter 𝑘 as 20%, 40%,

60%, 80% of 𝑘̂𝑚𝑎𝑥 for each dataset with the default value 40%. The

threshold value varies from 0.0 to 0.8 with the default value of 0.4.

The length of the query time interval was specified as 4, 8, 12, 16,

20 with the default value of 12. Their default values are marked

in bold font. We also vary the 𝛼 parameter from 0 to 6 to show its

effect on the returned community. We sample 100 query vertices

whose core numbers are uniformly distributed in [1, 𝑘𝑚𝑎𝑥] for each
dataset and report their average running time as the time cost. The

average core number of the 100 query vertices is shown in Table 1

as 𝑘̂𝑞𝑢𝑒𝑟𝑦 . In general, 𝑘̂𝑞𝑢𝑒𝑟𝑦 is around 50% of 𝑘𝑚𝑎𝑥 , which reflects

the common scenario of query vertex.

6.2 Evaluation of Query Efficiency
In this section, we present the performance of SpanCore, EEF-

CRC, and WCF-CRC under the default parameter settings. Figure 7

demonstrates the time cost when we run the three algorithms over

eight datasets. Both of the proposed algorithms outperform the

baseline algorithm SpanCore. EEF-CRC is slightly faster than Span-
Core, as they both need to determine the core number of the vertices

but EEF-CRC only requires the local information of the query vertex.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

BA BO Retweet

TAT
Email

Reddit

HepPh
SOF

R
u

n
n

in
g

 t
im

e(
s) SpanCore

EEF−CRC
 WCF−CRC

Figure 7: CRC Query Time on All Datasets

10
−3

10
−2

10
−1

10
0

10
1

20% 40% 60% 80%

R
u

n
n

in
g

 t
im

e(
s)

(b) Reddit

EEF−CRC
WCF−CRC

SpanCore

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

20% 40% 60% 80%

(d) SOF

EEF−CRC
WCF−CRC

SpanCore

Figure 8: CRC Query Time with Varying 𝑘

WCF-CRC runs much faster than EEF-CRC. For instance, WCF-CRC
reduces the time cost of EEF-CRC by about 89 times.

To show the impact of each parameter, we also evaluate the

efficiency of the proposed algorithms by varying the values of

parameters 𝑘 , 𝜃 , and 𝑡 , respectively. We utilize two representative

datasets Reddit and SOF to demonstrate the experimental results.

Varying 𝑘 . Figure 8 shows the average time cost of our proposed

algorithms when 𝑘 varies from 20% to 80% of the corresponding

𝑘̂𝑚𝑎𝑥 values.WCF-CRC is significantly more efficient than the other

two algorithms, and SpanCore consumes the most time in all set-

tings. For instance, SpanCore takes 2.46s, EEF-CRC takes 1.76s, while

WCF-CRC only needs 0.03s to complete the query processing in

Reddit dataset where 𝑘 is 40% of the average large core number (i.e.,

𝑘 = 5). With the increase of 𝑘 , all the algorithms consume decreas-

ing time. But SpanCore and EEF-CRC are less sensitive to 𝑘 than

WCF-CRC because they need to scan all the edges and compute the

core numbers of the vertices induced by the edges, whileWCF-CRC
can directly retrieve the core numbers usingWCF-Index.

Varying threshold 𝜃 . Figure 9 shows the average time cost of

our proposed algorithms when the threshold 𝜃 varies from 0 to

0.8. WCF-CRC outperforms SpanCore and EEF-CRC significantly.

For instance, in Reddit, when 𝜃 = 0.2, SpanCore takes 3.33s, EEF-
CRC takes 2.41s while WCF-CRC takes 0.12s. WCF-CRC is faster

than the other two by more than 20 times. When 𝜃 is given as 0.8,

the three algorithms take 1.62s, 1.17s and 0.002s, respectively, i.e.,

2834

10
−3

10
−2

10
−1

10
0

10
1

 0 0.2 0.4 0.6 0.8

R
u

n
n

in
g

 t
im

e(
s)

(b) Reddit

EEF−CRC
WCF−CRC

SpanCore

10
−2

10
−1

10
0

10
1

10
2

10
3

 0 0.2 0.4 0.6 0.8

(d) SOF

EEF−CRC
WCF−CRC

SpanCore

Figure 9: CRC Query Time with Varying 𝜃

10
−3

10
−2

10
−1

10
0

10
1

 4 8 12 16 20

R
u

n
n

in
g

 t
im

e(
s)

(b) Reddit

EEF−CRC
WCF−CRC

SpanCore

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

 4 8 12 16 20

(d) SOF

EEF−CRC
WCF−CRC

SpanCore

Figure 10: CRC Query Time with Varying |𝑇𝑄 |

WCF-CRC can reduce the time cost of EEF-CRC by about 500 times.

With the increase of 𝜃 , the speedup trend of WCF-CRC becomes

significant because there are small number of tree nodes inWCF-
Index when 𝜃 is set as a large value, i.e., more vertices can be pruned.

Similarly, SpanCore and EEF-CRC also consume less time because

the significant number edges can be pruned with the higher 𝑡ℎ𝑒𝑡𝑎

threshold. However, scanning all the edges in the locally connected

subgraph for each query vertex is inevitable.

Varying time span |𝑇𝑄 |. Figure 10 shows the average time cost

of the proposed algorithms when the time span |𝑇𝑄 | varies from
4 to 20. All the algorithms consume higher time cost when the

query time span |𝑇𝑄 | increases. For instance, in Reddit dataset,
SpanCore takes 0.96s, 1.91s, 2.98s, 4.24s, and 5.44s. EEF-CRC takes

0.63s, 1.35s, 2.04s, 2.73s and 3.55s, respectively. But, WCF-CRC only

takes 0.0012s, 0.02s, 0.027s, 0.029s and 0.037s at the same settings.

The growth of runtime is consistent with the time complexity in

Section 3 and Section 4.2.

Efficiency of Upper Bound. Figure 11 shows the efficiency of the

proposed algorithms with (i.e., EEF-UB, WCF-UB) and without (i.e.,

EEF-Base,WCF-Base) using the upper bound pruning strategy on

the Reddit dataset with varying |𝑇𝑄 |. We can find that the pruning

capability of the upper bound can be accelerated with the increase

of the query time interval. For instance, EEF-UB is faster than EEF-
Base by 5% when |𝑇𝑄 | = 4, but the acceleration can achieve by

10% when |𝑇𝑄 | = 20. Compared to WCF-Base, the improvement of

WCF-UB is not significant. Since the nature of the upper bound

is to estimate the maximum reliability score of the community

candidates for each potential time interval, there are more chances

to prune more intermediate community candidates when query

time interval is large.

6.3 Evaluation of Index Construction and
Maintenance

In Figure 12, we report the runtime of WCF-Construct for all the
graph instances of eight datasets. Generally, it takes around 10s

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4 8 12 16 20

R
u
n
n
in

g
 t

im
e(

s)

(b) EEF

EEF−Base EEF−UB

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 4 8 12 16 20

(d) WCF

WCF−Base WCF−UB

Figure 11: Upper Bound Evaluation with Varying |𝑇𝑄 |

10
0

10
1

10
2

10
3

10
4

BA BO Retweet

TAT
Email

Reddit

HepPh
SOF

R
u
n
n
in

g
 t

im
e(

s)

WCF−Construct

Figure 12: Index Construction
Time on All Datasets

 0

 2

 4

 6

 8

 10

100 200 300 500 1000

R
u

n
n

in
g

 t
im

e(
s)

Number of changed edges

WCF−Construct WCF−Maintain

Figure 13: Index Construction
Time by Maintenance

for datasets with small number of vertices like BA, BO, and Email.
For the largest dataset like SOF, it needs 25h to complete the index

construction.

We also evaluate the effectiveness of the index maintenance

method. Taking the first graph instance of Reddit as the base, we
randomly sample 100, 200, 300, 500, 1000 edges and mix the opera-

tion of edge insertion, deletion, and weight update to generate a

synthetic instance. Figure 13 shows the time cost ofWCF-Construct
and WCF-Maintain on the synthetic graph, where the speed up

of WCF-Maintain is significant. For instance, reconstructing the

index takes 8s, butWCF-Maintain only takes 4s when 1000 edges

are updated.

6.4 Evaluation of Scalability
We evaluate the scalability of proposed algorithms including EEF-
CRC,WCF-CRC andWCF-Construct by using five graph instances

from two datasets Reddit and HepPh. For each dataset, we generate

four new datasets with different sizes by randomly sampling 20%,

40%, 60%, 80% edges from the dataset, respectively. The dataset itself

is considered with the 100% data size. Figure 14 shows the time

cost of WCF-CRC and EEF-CRC on the size-varying datasets. With

the increase of the data size, we can find that the running time of

WCF-CRC and EEF-CRC grow in a gentle trend, which implies that

both algorithms are easily applicable to large-scale networks.

Furthermore, we also show the scalability of index construction

in Figure 15. From this, we can observe a linear increasing trend

of the construction time. For instance, the index constructing time

of Reddit is 4.7s, 12.8s, 22.3s, 34.0s and 47.9s when the size of the

dataset increases as 20%, 40%, 60%, 80% and 100%, respectively.

6.5 Evaluation of Index Size with Compression
We show theWCF-Index size of the eight datasets in Table 3. For

each dataset, we take ten graph instances. The largest dataset Stack-
OverFlow takes 874,931kb and the smallest dataset BitcoinAlpha
takes 333kb. The compressed size is the sum of the compressed

2835

Table 3: Index Size & Compression (kb)

BitcoinAlpha BitcoinOtc Retweet TAT Email Reddit HepPh StackOverFlow

Raw Data 1,108 1,648 4,935 13,619 5,324 37,376 263,168 1,153,024

Original Index 333 645 1,569 7,047 1,139 45,216 252,561 874,931

Compressed 328 616 1,418 6,205 1,133 39,924 158,734 835,721

Auxiliary Table 3 11 120 430 3 834 11,406 5,361

10
−2

10
−1

10
0

10
1

20% 40% 60% 80% 100%

R
u

n
n

in
g

 t
im

e(
s)

(a) Reddit

 EEF−CRC WCF−CRC

10
−1

10
0

10
1

10
2

20% 40% 60% 80% 100%

R
u

n
n

in
g

 t
im

e(
s)

(b) HepPh

 EEF−CRC WCF−CRC

Figure 14: CRC Query Time with Different Sampling Ratios

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

20% 40% 60% 80% 100%

R
u

n
n

in
g

 t
im

e(
s)

(a) Reddit

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

20% 40% 60% 80% 100%

R
u

n
n

in
g

 t
im

e(
s)

(b) HepPh

Figure 15: Index Construction Time with Different Sampling
Ratios

Table 4: Case Study on Reddit

t Community (ASS) ASD ASCore ASCon

3

SC (65.4) 0.19 7.65 0.80

PC (50.2) 0.17 5.5 0.85

CRC (56) 0.31 10.6 0.77

4

SC (30.4) 0.31 6.5 0.89

PC (49.8) 0.23 7.3 0.83

CRC (41) 0.39 10.4 0.83

5

SC (23.2) 0.40 6.8 0.91

PC (48) 0.26 7.9 0.84

CRC (36) 0.43 10.3 0.83

index and the auxiliary table. A significant compression effective-

ness can be observed in Table 3, e.g., the index size of HepPh can

be compressed to 50% of the original size.

6.6 Evaluation of Query Effectiveness
To show the effectiveness of finding communities in dynamic or

temporal networks, we compare our (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable community

(CRC) with the Persistent Community (PC) and Stable Community

(SC) proposed by Li [22] and Qin [35], respectively. To do this,

we select five graph instances of Reddit dataset and return the

largest community 𝐶 obtained by SC, PC, and our CRC. To show

the quality of returned communities, we utilize three community

quality metrics:

• Average Snapshot Density (ASD) measures how dense is the

community and captures the intuition that a good community

should be closely connected inside. The larger is the density, the

closer the community is connected. Average snapshot density

is calculated as the average density of the community in each

snapshot: 𝐴𝑆𝐷 =
∑𝑡
𝑖=1 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐺𝑡𝑖 [𝐶])/𝑡 .

• Average Snapshot Core (ASCore) captures the degree infor-
mation of vertices and evaluates the closeness of the community.

The larger is the core number, the more interactions each vertex

will keep with others in the community. ASCore calculates the

average value of the average core number of each vertex in each

snapshot: 𝐴𝑆𝐶𝑜𝑟𝑒 =
∑𝑡
𝑖=1 (

∑
𝑣∈𝑉 𝑐𝑜𝑟𝑒 (𝑣,𝐺𝑡𝑖 [𝐶])/|𝑉 |)/𝑡 .

• Average Snapshot Conductance (ASCond) measures how

“well-knit” the graph is. The higher is the conductance, the easier

the community can communicate with the vertices outside the

community. In the local community detection task, the smaller

conductance is desired as it implies the community is tightly self-

capsulated. Here, the average snapshot conductance is calculated

as the average conductance of the community in each snapshot:

𝐴𝑆𝐷 =
∑𝑡
𝑖=1 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 (𝐺𝑡𝑖 [𝐶])/𝑡 .

Table 4 shows the experimental results of evaluating the com-

munity quality on the Reddit dataset. The community is obtained

with the same structural cohesiveness constraint (core number or

number of neighbors equals 8). We vary the duration or frequency

of the community (𝜏 in SC and PC, 𝑑 in CRC), denoted by 𝑡 in

Table 4, to compare the community quality with different temporal

features. The size of each community is also provided as the average

snapshot size ASS in Table 4. It can be observed that CRC performs

best in all the measurements. For example, when 𝑡 = 4, CRC finds a

community with the highest ASD of 0.39, the highest ASCore of 10.4
and the lowest ASCond of 0.83. When 𝑡 = 4 and 5, PC and CRC have

similar ASCond score. PC generally finds the largest community at

the cost of lower density and cohesiveness. CRC outperforms SC
with the larger community size and the closer connection.

Community with varying 𝛼 . Figure 16 shows an example of ob-

tained reliable community by querying the vertex funny in the

Reddit dataset where 𝛼 varies from 0 to 6. With the increase of 𝛼 ,

the duration of the optimal CRC increases and the community size

decreases. The progressive change of community duration shows

that parameter 𝛼 is able to smoothly adjust the balance between

community size and duration. Figure 17 shows the trending change

of the selected three quality metrics 𝐴𝑆𝐷,𝐴𝑆𝐶𝑜𝑟𝑒 and 𝐴𝑆𝐶𝑜𝑛𝑑

when 𝛼 increases. All the scores increase significant when 𝛼 varies

from 0 to 2. After that, their trends become steady relatively.

7 RELATEDWORKS
Local Community Search in Static and Time-varying Net-
works. Local community search has been studied in many existing

2836

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6
 0

 100

 200

 300

 400

 500

 600

 700

D
u

ra
ti

o
n

S
iz

e

Alpha

Duration Size

Figure 16: Community Size and Duration with Varying 𝛼

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

Alpha

ASD ASCond ASCore

Figure 17: Community Quality with Varying 𝛼

works. In static networks, existing methods can be classified into

two categories. The first method is based on random walk, which

aims to assign scores to the vertex from the query vertex and iden-

tify the local community based on the scores. Wu et al. [43] used a

single random walker, and Bian et al. [5] introduced multiple walk-

ers to assign vertex scores based on the hitting probability. Bian [6]

further proposed memory based multiple walker that records the

entire visiting history and supports multiple local communities w.r.t.

different query vertices simultaneously. Another method is based

on capturing cohesiveness structures [17] such as k-truss [2, 16, 27],
k-core [3, 11, 21] and k-clique [10, 39]. To deal with the changes of

network data over time, Takaffoli et al. [41] explored local commu-

nity mining in the dynamic social network by extending L-metric
[8] to an incremental version. Luo et al. [31] divided the formation

of the local community into three stages and designed different

dynamical membership functions to construct the local commu-

nity with better cohesiveness. DiTursi et al. [12] proposed PHASR

method to detect local community in the dynamic networks, and Pa-

padopoulos [33] expanded PHASR to fit the distributed processing

standard of Apache Spark engine.

K-core Community Search. In this work, we consider the

community size (number of vertices) and duration (continuity of

the vertex engagement) as two important factors, so we use k-
core model which is defined on vertex attributes rather than other

classic models like k-truss that defined on edge attributes. K-core
was firstly introduced by Seidman et al. [37] and becomes one of

the most widely used measurements of graph cohesiveness. Seide-

man et al. [40] developed a greedy algorithm to discover the dense

subgraph by iteratively removing the vertices with the minimum

degrees. Batagelj et al. [4] proposed a linear core decomposition

algorithm to compute the core number of all the vertices. Cui et

al. [11] developed a local community search algorithm that starts

from a query vertex 𝑞 and spans iteratively to include the local

optimal vertex into the community. Barbieri et al [3] proposed an

index structure based on the nested feature of the core number

and improved the community search significantly. Following [3],

Fang et al. [13] improved the efficiency of index construction. To

include network dynamics, Li et al. [23] devised a core maintenance

algorithm in large dynamic networks. Wu [42] proposed distributed

algorithms based on the block-centric model to compute cores in

the temporal graph. Galimberti et al. [14] identified all the maximal

𝑘-core with various time span and k value. Based on [14], Hung

and Tseng [18] extended to the maximal lasting k-core. However,

these works mainly focused on core decomposition in dynamic

graphs and didn’t consider the edge weight and query vertex like

this work.

Cohesive Subgraph Mining in Dynamic Networks. Our
work also relates to dense subgraph mining, which aims to identify

the densely connected vertices in temporal or dynamic networks.

Abdelhamid et al. [1] proposed an incremental approach called

IncGM+ to extend the traditional Frequent Subgraph Mining (FSM)

method into dynamic networks by only updating the “fringe” pat-

terns. Ma et al. [32] proposed a fast computation algorithm to

identify dense subgraphs in temporal graphs where edges have

positive or negative weights. However, their method relies on the

“evolving convergence phenomenon” that assumes weights of all

edges are increasing or decreasing in the same direction which is

too strict for the real world. And they didn’t consider the commu-

nity continuity. Semertzidis and Pitoura [38] proposed the problem

of querying the frequent subgraph patterns in the directed dynamic

networks and returns the top-𝑘 durable matches. Liu et al. [28]

considered the duration of the found dense subgraphs using an

expectation-maximization method. They are unable to deal with

edge weight, which is limited in real applications.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we first discussed the necessity of reliable local com-

munity in dynamic networks and proposed the novel most reli-

able community search problem. Then, we developed an online

(𝜃, 𝑘)-𝑐𝑜𝑟𝑒 reliable community search approach by pruning the in-

eligible edges based on the given threshold and their lasting times.

After that, we designed an effectiveWCF-Index to maintain the ver-

tex candidates of (𝜃, 𝑘)-𝑐𝑜𝑟𝑒 subgraphs, and developed an efficient

index-based dynamic programming approach. Finally, the empirical

evaluations on a variety of datasets and parameter settings illustrate

the efficiency and effectiveness of the proposed approaches. In this

work, we mainly focus on single quey vertex situation. However,

our proposed algorithms can be extended to support querying a set

of vertices. For EEF algorithm, we can start the edge search from

all query nodes simultaneously, and maintain a visited edge set to

avoid repeat traverse. Then we can follow the EEF algorithm to re-

turn the valid local k-core. ForWCF-Index query algorithm, multiple

query nodes can be easily supported by filtering the intermediate

result that does not contain all the query nodes. To explore the

significance of multiple query nodes in community discovery, one

potential research direction is to investigate the local engagement

of the query nodes and identify the meaningful communities.

ACKNOWLEDGMENTS
This work was mainly supported by the ARC Linkage Project under

Grant No. LP180100750.

2837

REFERENCES
[1] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhat-

tacharjee, Yuan-Chi Chang, and Panos Kalnis. 2017. Incremental frequent sub-

graph mining on large evolving graphs. IEEE Transactions on Knowledge and
Data Engineering 29, 12 (2017), 2710–2723.

[2] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. Proceedings of the VLDB Endowment 10,
11 (2017), 1298–1309.

[3] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo.

2015. Efficient and effective community search. Data mining and knowledge
discovery 29, 5 (2015), 1406–1433.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[5] Yuchen Bian, Jingchao Ni, Wei Cheng, and Xiang Zhang. 2017. Many heads are

better than one: Local community detection by the multi-walker chain. In 2017
IEEE International Conference on Data Mining (ICDM). IEEE, 21–30.

[6] Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, and Xiang

Zhang. 2018. On multi-query local community detection. In 2018 IEEE interna-
tional conference on data mining (ICDM). IEEE, 9–18.

[7] Zhan Bu, Zhiang Wu, Jie Cao, and Yichuan Jiang. 2015. Local community mining

on distributed and dynamic networks from a multiagent perspective. IEEE
Transactions on cybernetics 46, 4 (2015), 986–999.

[8] Jiyang Chen, Osmar R Zaiane, and Randy Goebel. 2009. Detecting communities

in large networks by iterative local expansion. In 2009 International Conference
on Computational Aspects of Social Networks. IEEE, 105–112.

[9] Aaron Clauset. 2005. Finding local community structure in networks. Physical
review E 72, 2 (2005), 026132.

[10] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. 277–288.

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search

of communities in large graphs. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. 991–1002.

[12] Daniel J DiTursi, Gaurav Ghosh, and Petko Bogdanov. 2017. Local community

detection in dynamic networks. In 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 847–852.

[13] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective com-

munity search for large attributed graphs. Proceedings of the VLDB Endowment
9, 12 (2016), 1233–1244.

[14] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco

Gullo. 2018. Mining (maximal) span-cores from temporal networks. In Proceed-
ings of the 27th ACM international Conference on Information and Knowledge
Management. 107–116.

[15] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipen Cai,

Xiuzhen Cheng, and Hanhua Chen. 2019. Faster parallel core maintenance

algorithms in dynamic graphs. IEEE Transactions on Parallel and Distributed
Systems 31, 6 (2019), 1287–1300.

[16] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[17] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2017. Community search

over big graphs: Models, algorithms, and opportunities. In 2017 IEEE 33rd inter-
national conference on data engineering (ICDE). IEEE, 1451–1454.

[18] Wei-Chun Hung and Chih-Ying Tseng. 2021. Maximum (L, K)-Lasting Cores in

Temporal Social Networks. In International Conference on Database Systems for
Advanced Applications. Springer, 336–352.

[19] Roberto Interdonato andAndrea Tagarelli. 2017. Personalized recommendation of

points-of-interest based onmultilayer local community detection. In International
Conference on Social Informatics. Springer, 552–571.

[20] Chaoyi Li and Yangsen Zhang. 2020. A personalized recommendation algorithm

based on large-scale real micro-blog data. Neural Computing and Applications
32, 15 (2020), 11245–11252.

[21] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential community

search in large networks. Proceedings of the VLDB Endowment 8, 5 (2015), 509–
520.

[22] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persis-

tent community search in temporal networks. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 797–808.

[23] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2013. Efficient core maintenance in

large dynamic graphs. IEEE Transactions on Knowledge and Data Engineering 26,

10 (2013), 2453–2465.

[24] Yuan Li, Jinsheng Liu, Huiqun Zhao, Jing Sun, Yuhai Zhao, and Guoren Wang.

2021. Efficient continual cohesive subgraph search in large temporal graphs.

World Wide Web 24, 5 (2021), 1483–1509.
[25] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Jifei Wang, Ling Liu, and Hai Jin.

2021. Mining stable quasi-cliques on temporal networks. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 52, 6 (2021), 3731–3745.

[26] Bin Liu and Feiteng Zhang. 2020. Incremental algorithms of the core maintenance

problem on edge-weighted graphs. IEEE Access 8 (2020), 63872–63884.
[27] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based community search over large directed graphs. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2183–2197.

[28] Xuanming Liu, Tingjian Ge, and Yinghui Wu. 2019. Finding densest lasting sub-

graphs in dynamic graphs: A stochastic approach. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 782–793.

[29] Dongsheng Luo, Yuchen Bian, Yaowei Yan, Xiao Liu, Jun Huan, and Xiang Zhang.

2020. Local community detection in multiple networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining.
266–274.

[30] Feng Luo, James Z Wang, and Eric Promislow. 2008. Exploring local community

structures in large networks. Web Intelligence and Agent Systems: An International
Journal 6, 4 (2008), 387–400.

[31] Wenjian Luo, Daofu Zhang, Hao Jiang, Li Ni, and Yamin Hu. 2018. Local com-

munity detection with the dynamic membership function. IEEE Transactions on
Fuzzy Systems 26, 5 (2018), 3136–3150.

[32] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast

computation of dense temporal subgraphs. In 2017 IEEE 33rd International Con-
ference on Data Engineering (ICDE). IEEE, 361–372.

[33] Apostolos N. Papadopoulos and Georgios Tzortzidis. 2020. Distributed Time-

Based Local Community Detection. In 24th Pan-Hellenic Conference on Informatics.
390–393.

[34] Oun Joung Park, Xinran Y Lehto, and Alastair M Morrison. 2008. Collaboration

between CVB and local community in destination marketing: CVB executives’

perspective. Journal of Hospitality & Leisure Marketing 17, 3-4 (2008), 395–417.

[35] Hongchao Qin, Rong-Hua Li, Guoren Wang, Xin Huang, Ye Yuan, and Jeffrey Xu

Yu. 2022. Mining Stable Communities in Temporal Networks by Density-Based

Clustering. IEEE Transactions on Big Data 8, 3 (2022), 671–684.
[36] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V Çatalyürek. 2016. Incremental k-core decomposition: algorithms and

evaluation. The VLDB Journal 25, 3 (2016), 425–447.
[37] Stephen B Seidman. 1983. Network structure and minimum degree. Social

networks 5, 3 (1983), 269–287.
[38] Konstantinos Semertzidis and Evaggelia Pitoura. 2018. Top-𝑘 Durable Graph

Pattern Queries on Temporal Graphs. IEEE Transactions on Knowledge and Data
Engineering 31, 1 (2018), 181–194.

[39] Jing Shan, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu. 2016. Searching

overlapping communities for group query. World Wide Web 19, 6 (2016), 1179–
1202.

[40] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 939–948.

[41] Mansoureh Takaffoli, Reihaneh Rabbany, and Osmar R Zaïane. 2013. Incremental

local community identification in dynamic social networks. In 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2013). IEEE, 90–94.

[42] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 649–658.

[43] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust local community

detection: on free rider effect and its elimination. Proceedings of the VLDB
Endowment 8, 7 (2015), 798–809.

[44] Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Rong-Hua Li.

2019. Index-based optimal algorithm for computing k-cores in large uncertain

graphs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 64–75.

[45] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A fast order-based

approach for core maintenance. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 337–348.

2838

