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ABSTRACT
Finding the densest subgraph (DS) from a graph is a fundamental

problem in graph databases. The DS obtained, which reveals closely

related entities, has been found to be useful in various application

domains such as e-commerce, social science, and biology. However,

in a big graph that contains billions of edges, it is desirable to find

more than one subgraph cluster that are not necessarily the densest,

yet they reveal closely-related vertices. In this paper, we study the

locally densest subgraph (LDS), a recently-proposed variant of DS.

An LDS is a subgraph which is the densest among the “local neigh-

bors”. Given a graph 𝐺 , a number of LDS’s can be returned, which

reflect different dense regions of𝐺 and thus give more information

than DS. The existing LDS solution suffers from low efficiency. We

thus develop a convex-programming-based solution that enables

powerful pruning. Extensive experiments on seven real large graph

datasets show that our proposed algorithm is up to four orders of

magnitude faster than the state-of-the-art.
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1 INTRODUCTION
In modern systems and platforms that manage intricate relation-

ship among objects, graphs have been widely used to model such

relationship information [13, 18, 25, 27–31, 37, 38]. For example, the

Facebook friendship network can be treated as a graph by mapping

users to vertices and friendships among users to edges connecting

vertices [13]. Figure 1 depicts a graph of friendship, where a and f
have an edge meaning that they are friends of each other. In biology,
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Figure 1: An undirected graph, 𝐺

graphs can be used to capture complex interactions among different

proteins [51] and relationships in genomic DNA [23].

Lying at the core of large scale graph data mining, the densest

subgraph (DS) problem [5, 21, 26, 45] is about the finding of a

“dense” subgraph from a graph 𝐺 with 𝑛 vertices and𝑚 edges. For

example, the DS of Figure 1 is the subgraph induced by vertex

subset 𝑆1, because its density, i.e., the average number of edges over

the number of vertices in the subgraph, is the highest among all

possible subgraphs of 𝐺 . The DS has been found useful to various

application domains [56]. For example, dense subgraphs can be used

to detect communities [12, 55] and discover fake followers [32] in

social networks. In biology, the DS found can be used to identify

regulatory motifs in genomic DNA [23] and find complex patterns

in gene annotation graphs [47]. In graph databases, a DS is used to

construct index structures for supporting reachability and distance

queries [33]. In system optimization, DS plays an important role

in social piggybacking [25, 56], which improves the throughput of

social networking systems (e.g., Twitter).

LDS model.Most existing studies [5, 10, 21, 26] on the DS prob-

lem focus on finding the densest subgraph. In fact, it is not un-

common to find more than one “dense subgraphs”. For example,

in community detection, it is interesting to explore multiple com-

munities in a social network, even if not all communities have the

highest density. Motivated by this, Qin et al. [45] proposed the

locally densest subgraph (LDS) model [45, 48, 56], which identi-

fies LDS’s of the graph. An LDS needs to be dense and compact.
Conceptually, an LDS is a subgraph with the highest density in its

vicinity. Moreover, LDS is “compact”, in the sense that any subset

of its vertices is highly connected to each other. (We will discuss

the formal definition of LDS in Section 3.) For Figure 1, the two

subgraphs induced by vertex subsets 𝑆1 and 𝑆2, denoted as 𝐺 [𝑆1]
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and 𝐺 [𝑆2] respectively, are two LDS’s of 𝐺 . On the other hand, the

subgraph 𝐺 [𝑆1 ∪ 𝑆3] is not an LDS.

The LDS problem has three important properties [45]:

• The LDS is parameter-free. As we will explain later, the two LDS’s

𝐺 [𝑆1] and𝐺 [𝑆2] can be obtained from𝐺 in Figure 1 without setting

density threshold or other parameters.

• For any pair of LDS’s on a given graph, they do not have com-

mon vertices (i.e., disjoint). In the above example, the two LDS’s

𝐺 [𝑆1] and 𝐺 [𝑆2] are disjoint. This allows us to identify all the

non-overlapping “dense regions” of a graph.

• The set of subgraphs found by the LDS problem is a superset

of the subgraph found by the DS problem. For example, DS only

identifies 𝐺 [𝑆1] in Figure 1, with a density of 2.5. However, LDS

returns {𝐺 [𝑆1],𝐺 [𝑆2]}. Notice that 𝐺 [𝑆2], which has a density of

2, does not overlap with 𝐺 [𝑆1].
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Figure 2: An LDS about “Ultraman”.

We have conducted a case study on a large movie graph provided

by TCL, an electronic product provider in China. We found that the

LDS’s found are about different topics (e.g., western films, Chinese

martial fiction, Danish comedies). Figure 2 shows an LDS, with the

third highest density, about the Japanese sci-fi series “Ultraman”.

The DS model can only find a subgraph about western films. The

case study shows that the LDS model can find representative dense

subgraphs of a graph.

Prior work. Based on the LDS model, Qin et al. proposed a

max-flow-based LDS solution with pruning techniques built on

𝑘-core, named LDSflow [45]. Here 𝑘-core [50] is a cohesive sub-

graph, which requires each vertex to have at least 𝑘 neighbors in the

subgraph. To find LDS’s, LDSflow adopts a prune-and-verify frame-

work. Specifically, the pruning bounds for vertices based on 𝑘-core

are derived, which are then used to prune vertices. The LDS’s are

then obtained by verifying the remaining vertices throughmax-flow

computation on the flow network. The main problem of LDSflow
is that it may not scale well on large graphs. For example, LDSflow
needs around 17 hours to output 15 LDS’s with the highest densities

from a graph with around 3 million edges.

Contributions. We have developed an efficient and scalable

LDS solution, as detailed below:

(1) Propose the compact number. Given a vertex 𝑣 , we define the

compact number of 𝑣 , which depicts the degree of compactness of

the most compact subgraph containing 𝑣 . We further use compact

numbers to link the LDS problem and a convex program for the

DS problem theoretically, leveraging the fact that vertices in an

LDS share the same compact number, and compact numbers can

be computed by solving the convex program.

(2) An efficient convex-programming-based algorithm with elegant
pruning techniques.We propose a prune-and-verify algorithm based

on the convex programming, named LDScvx. For pruning, we show
that an iterative Frank-Wolfe algorithm [22] can provide the tight

upper and lower bounds for compact numbers, which can be used

to prune vertices not contained by any LDS from the graph. For

verification, LDSflow [45] performs min-cut computation based on

a specific 𝑘-core of 𝐺 . In LDScvx, we only need to compute the

min-cut based on a smaller subgraph of the 𝑘-core by exploiting

the upper and lower bounds of compact numbers.

(3) Extensive experiments.We have experimentally compared our

LDS algorithm with the state-of-the-art algorithm on seven real

large datasets, with sizes up to 1.6 billion edges. Our results show

that LDScvx is up to four orders of magnitude faster than the state-

of-the-art. A case study on a large movie graph has also been per-

formed.

Outline. The rest of the paper is organized as follows. We review

the related work in Section 2. In Section 3, we formally present the

LDS problem. Section 4 defines the compact number, and discuss

its relationship with LDS and convex programming. We present

our LDS algorithm in Section 5 and empirical results in Section 6.

Section 7 concludes the paper.

2 RELATEDWORK
The densest subgraph is regarded as one kind of cohesive subgraph.

Tsourakakis and Chen [56] provides a comprehensive study of

techniques and applications of the DS problem. Other related topics

include 𝑘-core [50], 𝑘-truss [57], clique, and quasi-clique [14]. More

details on them can be found in [19, 20]. In the following, we focus

on densest subgraph discovery and its variants.

Densest subgraph discovery (DS). Goldberg [26] introduced
the densest subgraph (DS) problem on undirected graphs, which

aims to find the subgraph whose edge-density is the highest among

all the subgraphs where the edge-density of a graph 𝐺 = (𝑉 , 𝐸) is
defined as

|𝐸 |
|𝑉 | . To solve the DS problem, Goldberg [26] proposed

an exact algorithm based on flow network via solving 𝑂 (log(𝑛))
min-cut problems. Later, Fang et al. [21] improved the efficiency

of the flow-based exact algorithm by locating the DS in a specific

𝑘-core. Exact algorithms can process small graphs reasonably, but

they cannot scale well to large graphs. To remedy this issue, several

approximation algorithms [5, 8, 10, 21] have been developed.

Kannan and Vinay [34] extended the DS problem definition

to directed graphs. Charikar [10] developed an exact polynomial-

time algorithm to find the directed densest subgraph via 𝑂 (𝑛2)
linear programs. Khuller and Saha [35] presented a max-flow-based

exact algorithm. Ma et al. [40–42] improved the max-flow-based

algorithm by introducing the notion of [𝑥,𝑦]-core and exploiting

a divide-and-conquer strategy. To further boost the efficiency for
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large-scale graphs, approximation algorithms [10, 35, 39, 40, 49] for

the directed DS problem are also developed.

Further, there are some variants of the DS problem focusing on

different aspects. Asahiro et al. [3] studied the DS problem with

constraints on the size of the DS. However, the size constraints

(e.g., at least 𝑘 vertices or at most 𝑘 vertices to be included) make

the DS problem NP-hard [3]. Hence, Andersen and Chellapilla [2],

Khuller and Saha [35], and Chekuri et al. [11] studied efficient

approximation algorithms on the variants of the size-constrained

DS. Tsourakakis extended the notion of density based on edges to

𝑘-clique-density, and studied the DS problem with 𝑘-clique-density

[43, 52, 54]. Chang and Qiao [9] proposed a novel and efficient

index to report all minimal DS’s and enumerate all DS’s, where

the minimal DS is strictly denser than all of its proper subgraphs.

Tatti et al. [53] and Danisch et al. [15] studied the density-friendly

decomposition problem, which decomposes a graph into a chain of

subgraphs, where each subgraph is nested within the next one, and

the inner one is denser than the outer ones. Galbrun et al. [24] and

Dondi et al. [16, 17] studied the densest subgraphs with overlaps.

Locally densest subgraph (LDS). Qin et al. [45] proposed a

newDSmodel, named locally densest subgraph (LDS). Based on this

model, users can identify all the locally densest regions of a graph.

Qin et al. have shown that such subgraphs cannot be found by other

DS models theoretically and empirically. Compared to the original

DS model, Qin et al. [45] showed that the subgraphs provided by

the LDS model best represent different local dense regions of the

graph, while the DS model only provides the DS. Furthermore, they

compared the LDS model with a straightforward greedy approach

based on the DS, which finds the DS [26] at a time, removes it

from the graph, and repeats the process for 𝑘 times. Nevertheless,

this greedy approach has several shortcomings [45]: (1) The top-𝑘

results may not fully reflect the top-𝑘 densest regions. Especially

when the graph has a vast dense region, subgraphs in other dense

regions may have a low chance to appear. (2) A subgraph returned

by the greedy approach can be partial and contained by a better

subgraph. (3) This greedy approach is essentially a heuristic and

does not allow for a formal characterization of the result. The

above claims are also verified by the experimental results in [45].

With the LDS model justified, Qin et al. [45] proposed a max-flow-

based algorithm, LDSflow, to find the top-𝑘 LDS’s from a graph.

However, we found that LDSflow [45] does not scale to large graphs
because LDSflow needs to run the max-flow algorithm on the graph

several times to find an LDS candidate and verify it, and the max-

flow computation can be quite time-consuming. For example, the

state-of-the-art max-flow algorithm is proposed by Orlin with time

complexity of 𝑂 (𝑛𝑚) [44]. In this paper, we propose an efficient

and scalable LDS algorithm for finding the top-𝑘 LDS’s from large

graphs. We note that Samusevich et al. [48] extended the LDS

model from edge-based density to triangle-based density. We focus

on edge-based density, and leave triangle density based LDS for

future work.

3 PRELIMINARIES
This section formally defines the locally densest subgraph problem

(LDS problem). Table 1 lists the notations used in this paper.

Table 1: Notations and meanings.

Notation Meaning

𝐺 = (𝑉 , 𝐸) a graph with vertex set𝑉 and edge set 𝐸

𝐺 [𝑆 ] the subgraph induced by 𝑆

𝑑𝐺 (𝑢) the degree of a vertex 𝑢 in𝐺

density(𝐺) the density of graph𝐺 , i.e.,
|𝐸 |
|𝑉 |

𝜙 (𝑢), 𝜙𝐺′ (𝑢) compact number of 𝑢 in𝐺 and𝐺′ respectively

𝜙 (𝑢) the upper bound of 𝜙 (𝑢)
𝜙 (𝑢) the lower bound of 𝜙 (𝑢)

core𝐺 (𝑢) the core number of 𝑢 in𝐺

CP(𝐺) the convex program of𝐺 for densest subgraph

𝜶 the weights distributed from edges to vertices

𝒓 the weights received by each vertex

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with 𝑛 = |𝑉 | vertices and
𝑚 = |𝐸 | edges. For each vertex 𝑢 ∈ 𝐺 , we use 𝑑𝐺 (𝑢) to represent its
degree in 𝐺 . Given a subset 𝑆 ⊆ 𝑉 , 𝐸 (𝑆) denotes the set of edges
induced by 𝑆 , i.e., 𝐸 (𝑆) = 𝐸 ∩ (𝑆 × 𝑆). Hence, the subgraph induced

by 𝑆 is denoted by 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) . Following the classic graph

density definition [4, 5, 10, 26, 45], the density of a graph𝐺 = (𝑉 , 𝐸),
denoted by density(𝐺), is defined as:

density(𝐺) = |𝐸 ||𝑉 | . (1)

Based on the density definition, the densest subgraph problem is to

find the subgraph𝐺 [𝑆] of𝐺 such that density(𝐺 [𝑆]) is maximized.

Densest subgraph discovery is widely applied in many graph

mining tasks (e.g., [23, 32, 40, 42, 47]). However, as pointed out

by [45], it is usually not sufficient to find one dense subgraph, in

many applications such as community detection [18]. Qin et al.

[45] proposed a locally densest subgraph model to provide multiple

dense subgraphs, which are dense and compact. Equation (1) gives

the density of a subgraph. For compactness, Definition 3.1 defines

what is a 𝜌-compact subgraph, which comes from the intuition that

a graph is compact if any subset of vertices is highly connected to

others in the graph [45].

Definition 3.1 (𝜌-compact [45]). A graph𝐺 = (𝑉 , 𝐸) is 𝜌-compact

if and only if 𝐺 is connected, and removing any subset of vertices

𝑆 ⊆ 𝑉 will result in the removal of at least 𝜌 × |𝑆 | edges in𝐺 , where

𝜌 is a non-negative real number.

Definition 3.2 (Maximal 𝜌-compact subgraph [45]). A 𝜌-compact

subgraph 𝐺 [𝑆] of 𝐺 is a maximal 𝜌-compact subgraph of 𝐺 if and

only if there does not exist a supergraph 𝐺 [𝑆 ′] of 𝐺 [𝑆] (𝑆 ′ ≠ 𝑆) in

𝐺 such that 𝐺 [𝑆 ′] is also 𝜌-compact.

Remark. The locally dense subgraph in [53] is similar to the

maximal 𝜌-compact subgraph. But they are different because the

𝜌-compact subgraph needs to be connected.

Definition 3.3 (Locally densest subgraph [45]). A subgraph 𝐺 [𝑆]
of 𝐺 is a locally densest subgraph (LDS) of 𝐺 if and only if 𝐺 [𝑆] is
a maximal density(𝐺 [𝑆])-compact subgraph in 𝐺 .

From Definition 3.3, we can find that (1) the definition itself is

parameter-free; (2) an LDS is compact; (3) any supergraph of an LDS

cannot be more compact than the LDS itself; (4) any subgraph𝐺 [𝑆 ′]
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of an LDS 𝐺 [𝑆] cannot be denser than the LDS itself [45]. These

properties show that an LDS is indeed a locally densest subgraph.
The third one comes from that an LDS𝐺 [𝑆] is a maximal 𝜌-compact

subgraph. The last one can be proven by contradiction. Suppose that

𝐺 [𝑆 ′] has a density satisfying density(𝐺 [𝑆 ′]) > density(𝐺 [𝑆]).
If we remove vertex set 𝑈 = 𝑆 \ 𝑆 ′ from 𝐺 [𝑆], the number of

edges removed is density(𝐺 [𝑆]) × |𝑆 | − density(𝐺 [𝑆 ′]) × |𝑆 ′ | <
density(𝐺 [𝑆])×(|𝑆 |−|𝑆 ′ |) = density(𝐺 [𝑆])×|𝑈 |, which contradicts
that 𝐺 [𝑆] is density(𝐺 [𝑆])-compact. We further illustrate the LDS

definition with the following example.

Example 3.4 (LDS). Consider the graph𝐺 shown in Figure 1. The

subgraph 𝐺 [𝑆1] with density
5

2
is a maximal

5

2
-compact subgraph.

Hence, 𝐺 [𝑆1] is an LDS. Similarly,𝐺 [𝑆2] with density 2 is also an

LDS as it is a maximal 2-compact subgraph. The subgraph 𝐺 [𝑆3]
with density

5

4
is a

5

4
-compact subgraph. But 𝐺 [𝑆3] is not an LDS

because it is contained in 𝐺 [𝑆1 ∪ 𝑆3] which is
3

2
-compact (and

also
5

4
-compact). 𝐺 [𝑆1 ∪ 𝑆3] is also not an LDS, because its density

is
21

10
but it is not a

21

10
-compact subgraph. The compactness of

𝐺 [𝑆1 ∪ 𝑆3] is 3

2
= 6

4
, because removing 𝑆3 from 𝐺 [𝑆1 ∪ 𝑆3] will

result in removing of 6 edges. □

The LDS has a useful property that all the LDS’s in a graph 𝐺

are pairwise disjoint.

Lemma 3.5 (Disjoint property [45]). Suppose 𝐺 [𝑆] and 𝐺 [𝑆 ′]
are two LDS’s in 𝐺 , we have 𝑆 ∩ 𝑆 ′ = ∅.

According to Lemma 3.5, the LDS model can be used to find all

dense regions of a graph. However, most real-world applications

(e.g., community detection) usually require finding the top-𝑘 dense

regions of a graph [45]. Hence, we focus on finding the top-𝑘 LDS’s

with the largest densities following [45].

Problem 1 (LDS problem [45]): Given a graph 𝐺 and an integer

𝑘 , the LDS problem is to compute the top-𝑘 LDS’s with the largest

density in 𝐺 .

4 FROM COMPACTNESS TO CP
In this section, we first propose a new concept named compact
number, inspired by the core number related to 𝑘-core [50], which

is a cohesive subgraph model. Then, we present some interesting

properties of LDS from the perspective of compact numbers. Af-

terward, we show that the compact numbers can be computed via

a convex programming (CP) formulation of the densest subgraph

problem. Hence, the compact number acts as a bridge between the

LDS problem and the CP formulation, as shown in Figure 3.

LDS Compact number CPLemma 4.3 
Lemma 4.4 !eorem 4.6

Figure 3: Relation among LDS, Compact number, and CP.

4.1 Compact Number and LDS
Inspired by the core number of 𝑘-core [50], we define the com-
pact number of each vertex in graph 𝐺 with respect to 𝜌-compact

subgraphs of 𝐺 .

Definition 4.1 (Compact number). Given a graph 𝐺 = (𝑉 , 𝐸), the
compact number of each vertex 𝑢 ∈ 𝑉 , denoted by 𝜙 (𝑢), is the
largest 𝜌 such that 𝑢 is contained in a 𝜌-compact subgraph of 𝐺 .

We use 𝜙 (𝑢) and 𝜙 (𝑢) to denote the upper and lower bounds of

𝜙 (𝑢) in𝐺 , respectively. Besides, 𝜙𝐺′ (𝑢) denotes the upper bound
of 𝜙𝐺′ (𝑢) in 𝐺 ′, 𝐺 ′ is a subgraph of 𝐺 .

Example 4.2 (Compact number). Consider vertex q of 𝐺 in Fig-

ure 1. The compact number of q is
3

2
, i.e., 𝜙 (q) = 3

2
, because

𝐺 [𝑆1 ∪ 𝑆3] is a
3

2
-compact subgraph containing q and there is

no other subgraph containing q with a larger 𝜌 . Removing 𝑆3 from

𝐺 [𝑆1 ∪ 𝑆3] will remove 6 edges, so 𝐺 [𝑆1 ∪ 𝑆3] is 3

2
-compact.

Next, we discuss the relationship between the LDS and the com-

pact numbers of vertices within or adjacent to the LDS via the

following lemmas.

Lemma 4.3. Given an LDS 𝐺 [𝑆] in 𝐺 , ∀𝑢 ∈ 𝑆 , we have 𝜙 (𝑢) =
density(𝐺 [𝑆]).

Proof. As𝐺 [𝑆] is a maximal density(𝐺 [𝑆])-compact subgraph,

for each 𝑢 ∈ 𝑆 , there exists no other subgraph 𝐺 [𝑆 ′] containing 𝑢
such that 𝐺 [𝑆 ′] is a 𝜌-compact subgraph with 𝜌 > density(𝐺 [𝑆]).
We prove the claim by contradiction. Suppose𝐺 [𝑆 ′] is a 𝜌-compact

subgraphwith 𝜌 > density(𝐺 [𝑆]) and𝑢 ∈ 𝑆 ′, we have density(𝑆 ′) ≥
𝜌 > density(𝐺 [𝑆]). First 𝑆 ′ ⊆ 𝑆 , because 𝐺 [𝑆] is a maximal

density(𝐺 [𝑆])-compact subgraph and 𝑆 ′∩𝑆 ≠ ∅. If we remove𝑈 =

𝑆 \𝑆 ′ from𝐺 [𝑆], the number of edges removed is |𝐸 (𝑆) | − |𝐸 (𝑆 ′) | =
density(𝐺 [𝑆]) × |𝑆 | − density(𝐺 [𝑆 ′]) × |𝑆 ′ | < density(𝐺 [𝑆]) ×
(|𝑆 | − |𝑆 ′ |) = density(𝐺 [𝑆]) × |𝑈 |. This contradicts that 𝐺 [𝑆] is
density(𝐺 [𝑆])-compact. Hence, density(𝐺 [𝑆]) is the compact num-

ber of all vertices in 𝑆 . □

Lemma 4.4. Given an LDS 𝐺 [𝑆] in 𝐺 , ∀(𝑢, 𝑣) ∈ 𝐸, if 𝑢 ∈ 𝑆 and
𝑣 ∈ 𝑉 \ 𝑆 , we have 𝜙 (𝑢) > 𝜙 (𝑣).

Proof. The lemma follows from the LDS definition. Suppose

∃(𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 \ 𝑆 , 𝜙 (𝑢) ≤ 𝜙 (𝑣), which contradicts that

𝐺 [𝑆] is a maximal density(𝐺 [𝑆])-compact subgraph. □

Lemmas 4.3 and 4.4 indicate that the compact numbers of all

vertices in an LDS𝐺 [𝑆] are exactly density(𝐺 [𝑆]) and the compact

numbers of all vertices adjacent to vertices in𝐺 [𝑆] but not in𝐺 [𝑆]
are less than density(𝐺 [𝑆]), respectively. We further illustrate the

two lemmas via the following example.

Example 4.5. Consider the LDS𝐺 [𝑆1] of𝐺 in Figure 1.We can see

that ∀𝑢 ∈ 𝑆1, 𝜙 (𝑢) = density(𝐺 [𝑆1]) = 5

2
, which fulfills Lemma 4.3.

For vertices locating outside 𝐺 [𝑆1] but adjacent to some vertices

in 𝑆1, i.e., g, r, and q, their compact numbers satisfies Lemma 4.4:

𝜙 (g) = 4

3
< 5

2
, 𝜙 (r) = 𝜙 (q) = 2 < 5

2
.

According to Lemmas 4.3 and 4.4, compact numbers are powerful

to extract and verify LDS’s from a graph𝐺 . If the compact numbers

of all vertices are ready, we can partition the graphs into different

subgraphs, where the vertices within the same subgraph share the

same compact number and are connected, based on Lemma 4.3.

Then, Lemma 4.4 can be used to select LDS’s from all subgraphs.

Hence, the efficient computation of compact numbers is a key issue.

To tackle this issue, we show that compact numbers can be obtained

by solving a convex program in the next subsection.
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4.2 Compact Number and CP
In this subsection, we first review the convex program (CP) for

densest subgraphs by Danisch et al. [15]. Next, we theoretically

prove that compact numbers can be obtained by solving the convex

program.

CP(𝐺) min

∑︁
𝑢∈𝑉

𝑟2𝑢

𝑟𝑢 =
∑︁
(𝑢,𝑣) ∈𝐸

𝛼𝑢,𝑣, ∀𝑢 ∈ 𝑉

𝛼𝑢,𝑣 + 𝛼𝑣,𝑢 ≥ 1, ∀(𝑢, 𝑣) ∈ 𝐸
𝛼𝑢,𝑣, 𝛼𝑣,𝑢 ≥ 0. ∀(𝑢, 𝑣) ∈ 𝐸

(2)

The intuition ofCP(𝐺) is that each edge (𝑢, 𝑣) ∈ 𝐸 tries to distribute

its weight, i.e., 1, between its two endpoints 𝑢 and 𝑣 such that the

weight sum received by the vertices are as even as possible. Because

in the DS 𝐺 [𝑆] of 𝐺 , it is possible to distribute all edge weights

such that the weight sum received by each vertex in 𝑆 is exactly

density(𝐺 [𝑆]) =
|𝐸 (𝑆) |
|𝑆 | . Following the intuition, 𝛼𝑢,𝑣 in CP(𝐺)

indicates the weight assigned to 𝑢 from edge (𝑢, 𝑣), and 𝑟𝑢 is the

weight sum received by 𝑢 from its adjacent edges. Danisch et al.

[15] used 𝑟 and 𝛼 of CP(𝐺) to tentatively decompose the graph

into a chain of subgraphs and applied max-flow to fine-grain and

confirm the partitions such that each subgraph is nested within the

next one with densities in descending order.

Before proving the compact numbers can be obtained via solving

CP(𝐺), we briefly review the Frank-Wolfe-based iterative algorithm

proposed by Danisch et al. [15] for optimizingCP(𝐺). Frank-Wolfe
(Algorithm 1) outlines the steps to optimize CP(𝐺). Frank-Wolfe
first initializes𝜶 and 𝒓 (lines 2–3). Then, in each iteration, each edge
(𝑢, 𝑣) ∈ 𝐸 attempts to distribute its weight, i.e., 1, to the endpoint

with a smaller 𝑟 value (lines 4–10).

Algorithm 1: Frank-Wolfe-based algorithm [15]

1 Function Frank-Wolfe(𝐺 = (𝑉 , 𝐸) , 𝑁 ∈ Z+):
2 foreach (𝑢, 𝑣) ∈ 𝐸 do 𝛼

(0)
𝑢,𝑣 ← 1

2
, 𝛼
(0)
𝑣,𝑢 ← 1

2
;

3 foreach 𝑢 ∈ 𝑉 do 𝑟
(0)
𝑢 ← ∑

(𝑢,𝑣)∈𝐸 𝛼
(0)
𝑢,𝑣 ;

4 for 𝑖 = 1, . . . , 𝑁 do
5 𝛾𝑖 =

2

𝑖+2 ;

6 foreach (𝑢, 𝑣) ∈ 𝐸 do
7 if 𝑟 (𝑖−1)𝑢 < 𝑟

(𝑖−1)
𝑣 then 𝛼𝑢,𝑣 ← 1, 𝛼𝑣,𝑢 ← 0;

8 else 𝛼𝑢,𝑣 ← 0, 𝛼𝑣,𝑢 ← 1;

9 𝜶 (𝑖 ) ← (1 − 𝛾𝑖 ) · 𝜶 (𝑖−1) + 𝛾𝑖 ∗ �̂� ;

10 foreach 𝑢 ∈ 𝑉 do 𝑟
(𝑖 )
𝑢 ← ∑

(𝑢,𝑣)∈𝐸 𝛼
(𝑖 )
𝑢,𝑣 ;

11 return (𝒓 (𝑖 ) ,𝜶 (𝑖 ) )

Next, we prove that the compact numbers can be extracted from

the optimal solution of CP(𝐺).

Theorem 4.6. Suppose (𝒓∗,𝜶 ∗) is an optimal solution of CP(𝐺).
Then, each 𝑟∗𝑢 in 𝒓∗ is exactly the compact number of 𝑢, i.e., ∀𝑢 ∈
𝑉 , 𝑟∗𝑢 = 𝜙 (𝑢).

Proof. For a vertex 𝑢 ∈ 𝑉 , let 𝑋 = {𝑣 ∈ 𝑉 |𝑟∗𝑣 > 𝑟∗𝑢 }, 𝑌 = {𝑣 ∈
𝑉 |𝑟∗𝑣 = 𝑟∗𝑢 }, and 𝑍 = {𝑣 ∈ 𝑉 |𝑟∗𝑣 < 𝑟∗𝑢 }. Clearly, 𝑢 ∈ 𝑌 .

We first prove 𝐺 [𝑋 ∪ 𝑌 ] is a 𝑟∗𝑢 -compact subgraph. Removing

𝑌 from 𝐺 [𝑋 ∪ 𝑌 ] will result in the removal of 𝑟∗𝑢 × |𝑌 | edges in
𝐺 [𝑋 ∪ 𝑌 ]. The optimality of 𝒓∗ implies that

(1) ∀(𝑥,𝑦) ∈ 𝐸 ∩ (𝑋 × 𝑌 ), 𝑟∗𝑥 > 𝑟∗𝑦 and 𝛼𝑥,𝑦 = 0;

(2) ∀(𝑦, 𝑧) ∈ 𝐸 ∩ (𝑌 × 𝑍 ), 𝑟∗𝑦 > 𝑟∗𝑧 and 𝛼𝑦,𝑧 = 0.

Otherwise, suppose ∃(𝑥,𝑦) ∈ 𝐸∩(𝑋×𝑌 ) such that𝛼𝑥,𝑦 > 0without

loss of generality. There exists 𝑟∗𝑥 − 𝑟∗𝑦 > 𝜖 > 0 such that we can re-

duce 𝛼𝑥,𝑦 and increase 𝛼𝑦,𝑥 by 𝜖 , respectively. Hence, 𝑟∗𝑥 is reduced

and 𝑟∗𝑦 is increased by 𝜖 , respectively. After such modification, the

objective function be decreased by 2𝜖 (𝑟∗𝑥 −𝑟∗𝑦−𝜖), which contradicts
the optimality of 𝑟∗. Hence, 𝑟∗𝑢 × |𝑌 | =

∑
(𝑦,𝑥) ∈𝐸∧𝑦∈𝑌 𝛼𝑦,𝑥 = | ( (𝑋 ×

𝑌 )∪(𝑌×𝑌 ))∩𝐸 |, which is exactly the number of edges to be removed

when removing𝑌 from𝐺 [𝑋 ∪𝑌 ]. Besides, removing any𝑄 ⊆ 𝑋 ∪𝑌
from𝐺 [𝑋∪𝑌 ] will result in the removal of at least 𝑟∗𝑢×|𝑄 | edges, be-
cause

∑
(𝑠,𝑡 ) ∈𝐸 (𝑋∪𝑌 )∧𝑠∈𝑄 1 ≥ ∑

(𝑠,𝑡 ) ∈𝐸∧𝑠∈𝑄 𝛼𝑠,𝑡 ≥ 𝑟∗𝑢 × |𝑄 |, where
the second inequality follows from the first condition of CP(𝐺)
(Equation (2)). Hence, 𝐺 [𝑋 ∪ 𝑌 ] is a 𝑟∗𝑢 -compact subgraph.

For any other subgraph 𝐺 [𝑆] containing 𝑢, 𝐺 [𝑆] is a 𝜙-compact

subgraph, where 𝜙 ≤ 𝑟∗𝑢 . Clearly, 𝑆 ∩ (𝑌 ∪ 𝑍 ) ≠ ∅. Removing

𝑆 ∩ (𝑌 ∪ 𝑍 ) from 𝐺 [𝑆] will result in the removal of no more than

𝑟∗𝑢 × |𝑆 ∩ (𝑌 ∪ 𝑍 ) | edges, which can be proved by contradiction

analogously. □

Theorem 4.6 shows that given an optimal solution (𝒓∗,𝜶 ∗) to
CP(𝐺), the weight received by each vertex 𝒓∗𝑢 is exactly the compact

number of 𝑢. Example 4.7 further depicts Theorem 4.6 concretely.

Example 4.7. Consider the convex program CP(𝐺) for 𝐺 in Fig-

ure 1. We list the optimal solution (𝒓∗,𝜶 ∗) values in Table 2. Some

values of 𝜶 ∗ are omitted, as they can be inferred from other 𝑟∗𝑢 and

𝛼∗𝑢,𝑣 values. For each 𝑢 ∈ 𝑉 , 𝑟∗𝑢 is exactly the compact number of 𝑢,

𝜙 (𝑢).

Table 2: (𝒓∗,𝜶 ∗) to CP(𝐺) for 𝐺 in Figure 1.

Vertices 𝑟 ∗𝑢 Edges 𝛼∗𝑢,𝑣
a, b, c, d, e, f ∈ 𝑆1 5

2
(𝑢, 𝑣) ∈ 𝐸 (𝑆1) ∪ 𝐸 (𝑆2) 1

2

j, k, l, m, n ∈ 𝑆2 2 (g, f), (i, j), (r, e) 1

o, p, q, r ∈ 𝑆3 3

2
(g, h), (i, h) 1

3

g, h, i 4

3
· · ·

According to Corollary 4.9 of [15], it may need many iterations

for Frank-Wolfe to obtain the optimal (𝒓∗,𝜶 ∗). Fortunately, we
found that the approximate solution provided by Frank-Wolfe
already helps prune the vertices not contained in LDS’s and extract

LDS’s, which will be discussed in the next section.

5 OUR LDS ALGORITHM
In this section, we introduce our convex programming based LDS al-

gorithm, named LDScvx. Figure 4 presents the workflow of LDScvx.
First, we compute an approximate solution (𝒓 ,𝜶 ) via Frank-Wolfe;
next, we extract stable groups, which can be used to bound the com-

pact numbers, from 𝐺 based on (𝒓,𝜶 ) via ExtractSG; afterward,
we prune invalid vertices according to their compact numbers and

generate LDS candidates via Pruning; finally, we verify the LDS

candidates via IsLDS. If the verification failed, we repeat the above
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process to provide higher-quality (𝒓,𝜶 ) and compact number esti-

mation.

Top-k
LDS’s

Frank-Wolfe
<latexit sha1_base64="+3a5kTreQmKS7rnnTz7FAXDKJu0="></latexit>

* ExtractSG
<latexit sha1_base64="r+DldWVbxL6YqchAV1DpTvEv4YE=">AAACoHicbVFdSxtBFJ2s9aNaNVp86stgKEQIYVdEfRQt1IdAFRoVkxDuTm6SITOzy8xdSVjyY3xtf1H/jbMxhSbphWHOnHPv3K84VdJRGP4pBWsf1jc2tz5u73za3dsvHxw+uCSzApsiUYl9isGhkgabJEnhU2oRdKzwMR7dFPrjC1onE/OTJil2NAyM7EsB5Klu+ajajnVupzVe3G1Q6RCmJ91yJayHM+OrIJqDCpvbXfeg5Nq9RGQaDQkFzrWiMKVODpakUDjdbmcOUxAjGGDLQwMaXSef1T/lXz3T4/3E+mOIz9h/I3LQzk107D010NAtawX5P62VUf+yk0uTZoRGvCfqZ4pTwoth8J60KEhNPABhpa+ViyFYEORHtpBl9neKYqGTfJwZKZIeLrGKxmRhkYy1fzskDdIUXeYNabIxb8gY/YwM/lV9mkKufpMDSa7W8Hsyte8WcXSyEuLXFC0vZRU8nNaj8/rZ/Vnl6nq+sC32hR2zKovYBbtit+yONZlgOXtlv9jv4Di4DX4E9++uQWke85ktWPD8BilX0o4=</latexit>

(U, ͕)

Pruning
IsLDS

<latexit sha1_base64="WTjGTZmqC5nZ5h1B5hRcx2YQheM="></latexit>

*0<latexit sha1_base64="cJgQxW9ooaawPRqI027VWlglPBs="></latexit>

N

Input

LDScvx Tighter bounds  

Fewer LDS 
candidates

Output
Smaller flow 

network

Figure 4: Algorithm workflow.

Comparison with LDSflow. LDSflow [45] also follows a prune-
and-verify framework. Specifically, LDSflow prunes vertices, ac-

cording to pruning bounds that are derived via 𝑘-cores. The LDS’s

are obtained by verifying the remaining vertices via max-flow com-

putation. Compared to LDSflow, our LDScvx provides tigher bounds
via convex programming, which allows more vertices to be pruned.

Hence, fewer LDS candidates need to be verified. Further, we con-

struct smaller flow networks to verify LDS’s via exploiting lower

bounds of compact numbers. The above techniques will be intro-

duced in detail and empirically evaluated.

5.1 Extract Stable Groups
In this subsection, we first introduce a new concept stable group,
which can be used to provide upper and lower bounds of compact

numbers, inspired by the stable subset in [15]. Then, we discuss

how to extract stable groups from the approximate solution (𝒓,𝜶 )
provided by Frank-Wolfe.

Definition 5.1 (Stable group). Given a feasible solution (𝒓 ,𝜶 ) to
CP(𝐺), a stable group with respect to (𝒓,𝜶 ) is a non-empty subset

𝑆 ∈ 𝑉 , if the following conditions hold.

(1) For any 𝑣 ∈ 𝑉 \ 𝑆 , 𝑟𝑣 satisfies either 𝑟𝑣 > max𝑢∈𝑆 𝑟𝑢 or

𝑟𝑣 < min𝑢∈𝑆 𝑟𝑢 ;
(2) For any 𝑣 ∈ 𝑉 , if 𝑟𝑣 > max𝑢∈𝑆 𝑟𝑢 , we have that ∀(𝑣,𝑢) ∈

𝐸 ∩ ({𝑣} × 𝑆), 𝛼𝑣,𝑢 = 0;

(3) For any 𝑣 ∈ 𝑉 , if 𝑟𝑣 < min𝑢∈𝑆 𝑟𝑢 , we have that ∀(𝑢, 𝑣) ∈
𝐸 ∩ (𝑆 × {𝑣}), 𝛼𝑢,𝑣 = 0.

higro qpa feb c d nk lj m

r values in descending order
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Figure 5: Stable groups w.r.t. (𝒓∗,𝜶 ∗).

Definition 5.1 defines stable group. We further use the stable

groups w.r.t. (𝒓∗,𝜶 ∗) (depicted in Figure 5) as an example to illus-

trate the properties of the stable groups. The definition indicates

that if we sort all vertices 𝑢 ∈ 𝑉 w.r.t. their 𝑟 values in descending

order, we can observe the following properties:

(1) The vertices within the same stable group 𝑆 form a consecutive

subsequence of the whole sequence. For example, the stable groups

in Figure 5 give a partition to the entire sequence.

(2) The weights of edges whose endpoints fall into different stable

groups are assigned to the endpoints with smaller 𝑟 values. In

Figure 5, we use arrows to denote weight assignments of edges

across different stable groups. Note that edges within the same

stable group are omitted. We can find that all arrows are pointed to

the vertices with smaller 𝑟 values.

Before discussing how to extract stable groups from (𝒓,𝜶 ), we
first prove by the following lemma that the stable groups help derive

the upper and lower bounds of compact numbers.

Lemma 5.2. Given a feasible solution (𝒓,𝜶 ) to CP(𝐺) and a stable
group 𝑆 w.r.t. (𝒓,𝜶 ), for all 𝑢 ∈ 𝑆 , we have that min𝑣∈𝑆 𝑟𝑣 ≤ 𝜙 (𝑢) ≤
max𝑣∈𝑆 𝑟𝑣 .

Proof. We prove the lemma by contradiction. According to

Theorem 4.6, ∀𝑢 ∈ 𝑉 , 𝜙 (𝑢) = 𝑟∗𝑢 . Suppose there exists a vertex𝑢 ∈ 𝑆
such that 𝑟∗𝑢 = 𝜙 (𝑢) < min𝑣∈𝑆 𝑟𝑣 ≤ 𝑟𝑢 . There must exist another

vertex 𝑥 ∈ 𝑉 such that 𝑟∗𝑥 = 𝜙 (𝑥) > 𝑟𝑥 . Here 𝑟𝑥 ≥ min𝑣∈𝑆 𝑟𝑣
according to the 3-rd condition in Definition 5.1. There exists 𝜖 >

0 such that we could increase 𝑟∗𝑢 by 𝜖 and decrease 𝑟∗𝑥 by 𝜖 , via

manipulating the corresponding 𝜶 ∗ values, to strictly decrease

∥𝒓∗∥2
2
(i.e., the objective function). This contradicts that 𝒓∗ is the

optimal solution to CP(𝐺). □

According to Lemma 5.2, the minimum and maximum 𝑟 values

in the stable group 𝑆 are the lower and upper bounds of compact

numbers of vertices in 𝑆 , respectively.

Now the key issue becomes how to extract stable groups from the

approximate solution (𝒓,𝜶 ) provided by Frank-Wolfe. Our stable
groups closely connect to the stable subsets in [15]. Compared to

our stable group, the stable subset does not allow vertices not in

the subset having larger 𝑟 values than vertices in the subset. For

example, 𝑆2 cannot be a stable subset, but 𝑆1 ∪ 𝑆2 is a stable subset.
Hence, the stable subset [15] can be treated as the union of several

stable groups with largest 𝑟 values. Due to the close relationship

between our stable groups and stable subsets in [15], we adapt the

stable subset extraction method [15] to extract our stable groups.

In general, we first extract the tentative stable groups from 𝒓 , and
then verify or merge the tentative ones via Definition 5.1 to give

the stable groups. For the optimal solution (𝒓∗,𝜶 ∗) to CP(𝐺), we
can just group the vertices with the same 𝑟 values to form the stable

groups (refer Table 2 and Figure 5). Although we cannot perform

such aggregation based on (𝒓,𝜶 ), the stable groups obtained from

(𝒓∗,𝜶 ∗) can still provide useful heuristic for us.

Consider the stable groups in Figure 5. After sorting the vertices

according to their 𝑟 values, let 𝑉[1:𝑖 ] denote the first 𝑖 vertices in
the sequence. We can find that the index 𝑖 of the last vertex in

each stable group is exactly argmax𝑗≥𝑖 density(𝐺 [𝑉[1:𝑗 ] ]), i.e., the
subgraph induced by more vertices than the first 𝑖 vertices cannot

have a larger density. For example, the index of the last element

in 𝑆1 is 6, and the density of 𝐺 [𝑉[1:6] ] is 3 and is the maximum

among all subgraphs induced by 𝐺 [𝑉[1:𝑗 ] ], where 𝑗 ≥ 6. Hence,

we use argmax𝑗≥𝑖 density(𝐺 [𝑉[1:𝑗 ] ]) to find indices for extracting
stable group candidates. Note we break the tie via taking a larger

index value for 𝑗 , when two index values give the same density.

Then, we verify each candidate by Definition 5.1. Specifically, we

restrict all edges adjacent to the candidate stable group satisfying

conditions (2) and (3) of Definition 5.1 by modifying 𝜶 and 𝒓 and
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then check whether condition (1) of Definition 5.1 is fulfilled. If so,

the candidate becomes a stable group. Otherwise, it may need to

be merged with the next candidate.

Algorithm 2: Extract stable groups from (𝒓 ,𝜶 )
1 Function ExtractSG(𝐺 = (𝑉 , 𝐸) , 𝒓 , 𝜶):
2 sort vertices in𝑉 according to 𝒓 : 𝑟𝑢1

≥ 𝑟𝑢2
≥ · ≥ 𝑟𝑢𝑛 ;

3 𝐼 ← {𝑖 |𝑖 = argmax𝑖≤ 𝑗≤𝑛 density(𝐺 [𝑉[1:𝑗 ] ]) };
4 ˆS ← partition𝑉 according to 𝐼 ;

5 S ← ∅, 𝑆 ← ∅;
6 while ˆS is not empty do
7 𝑆′ ← pop out the first candidate from

ˆS;
8 𝑆 ← 𝑆 ∪ 𝑆′;
9 if 𝑆 is a stable group then // via Definition 5.1
10 put 𝑆 into S, 𝑆 ← ∅;

11 foreach 𝑆 ∈ S do
12 foreach 𝑢 ∈ 𝑆 do 𝜙 (𝑢) ← min{𝜙 (𝑢),max𝑣∈𝑆 𝑟𝑣 } ;
13 foreach 𝑢 ∈ 𝑆 do 𝜙 (𝑢) ← max{𝜙 (𝑢),min𝑣∈𝑆 𝑟𝑣 } ;

14 return S, 𝜙 , 𝜙

Based on the above discussion, we present the algorithm to ex-

tract stable groups from (𝒓,𝜶 ), named ExtractSG, in Algorithm 2.

ExtractSG first sorts the vertices in𝑉 according to their 𝑟 values de-

scendingly (line 2). Then, ExtractSG finds the indices 𝐼 and extracts

stable group candidates
ˆS following the above heuristic (lines 3–4).

Next, we check the candidate in
ˆS one-by-one via Definition 5.1

(lines 6–10): if the candidate is a stable group, push it into the list

of stable groups S (lines 9–10); otherwise, the current candidate 𝑆

will be merged with the next candidate 𝑆 ′ in the next iteration (line

8). After all stable groups in S are obtained, we update the upper

and lower bounds of compact numbers according to Lemma 5.2

(lines 11–14). Finally, ExtractSG returns the stable groups S and

updated upper and lower bounds of compact numbers (line 14).

5.2 Prune Invalid Vertices
In this subsection, we present how to prune the vertices, which

are certainly not contained by any LDS, based on compact number

bounds derived in Section 5.1.

We begin with a powerful corollary.

Corollary 5.3 (Pruning rule 1). For any 𝑢 ∈ 𝑉 , if ∃(𝑢, 𝑣) ∈ 𝐸,
such that 𝜙 (𝑣) > 𝜙 (𝑢), 𝑢 is not contained by any LDS in 𝐺 .

Proof. The corollary directly follows Lemma 4.4. □

Example 5.4 (Pruning rule 1). Reconsider the graph𝐺 in Figure 1

and the stable groups in Figure 5. For vertices in 𝑆3, we can prune

r, as shown in Figure 6. Because for edge (e, r), we have 𝜙 (r) =
3

2
< 𝜙 (e) = 5

2
, respectively. Similarly, the two vertices g and i in

𝑆4 are also pruned by Pruning rule 1 (Corollary 5.3).

Following Example 5.4, we can find that after removing r and
q from 𝐺 , denoting the graph after removal by 𝐺 ′, there is only
one edge adjacent to o and q, as shown in Figure 6. We can find

that 𝜙𝐺′ (o) = 𝜙𝐺′ (q) = 1 < 𝜙 (o) = 𝜙 (q) = 3

2
. It means that

r o

q p

ig h
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r pruned by Rule 1 h pruned by Rule 2 

Figure 6: Pruning rules illustration.

any LDS in 𝐺 cannot contain o and q, because it needs to include

some already pruned vertices, such as r, to obtain a 𝜙 (o)-compact

subgraph containing o or q in𝐺 . Hence, we derive another pruning

rule from the above case.

Lemma 5.5 (Pruning rule 2). Let𝐺 ′ denote the graph after prun-
ing vertices according to Corollary 5.3 and Lemma 5.5. For any vertex
𝑢 in 𝐺 ′, if 𝜙𝐺′ (𝑢) < 𝜙 (𝑢), 𝑢 is not contained by any LDS in 𝐺 .

Proof. 𝜙𝐺′ (𝑢) < 𝜙 (𝑢) means that only relying on the vertices

in 𝐺 ′ cannot form a 𝜙 (𝑢)-compact subgraph containing 𝑢, which

means that some already pruned vertices are needed. Hence, 𝑢

cannot be contained by any LDS in 𝐺 . □

To efficiently compute 𝜙𝐺′ (𝑢) in 𝐺 ′, we use 𝑘-core [50], which
is a cohesive subgraph model, following [45].

Definition 5.6 (𝑘-core and core number [50]). The 𝑘-core of 𝐺 is

the maximal subgraph 𝐺 [𝑆] such that for any 𝑢 ∈ 𝑆 , 𝑑𝐺 [𝑆 ] (𝑢) ≥ 𝑟 .

For any 𝑢 ∈ 𝑉 , the core number of 𝑢, denoted by core𝐺 (𝑢), is the
largest 𝑘 such that 𝑢 is contained in the 𝑘-core of 𝐺 .

Lemma 5.7. Let𝐺 ′ denote the graph after pruning invalid vertices.
core𝐺′ (𝑢) provides an upper bound of 𝜙𝐺′ (𝑢).

Proof sketch. The lemma follows from Lemma 4.7 of [45]. □

Following the above discussion about Example 5.4, Lemma 5.7

provides a useful approach to obtain the upper bounds of compact

numbers of o and p after r and q are removed.

Example 5.8 (Pruning rule 2). After r is pruned from 𝐺 in Exam-

ple 5.4, we obtain the upper bounds of compact numbers of o, q,

and p in the residual graph 𝐺 ′ via Lemma 5.7: 𝜙𝐺′ (o) = 𝜙𝐺′ (q) =
𝜙𝐺′ (p) = 1. Then, we apply Pruning rule 2 (Lemma 5.5) to remove

o, q, and p from the graph, as shown in Figure 6. Analogically, h in

𝑆4 is also pruned.

Following the above two examples, we further compare our prun-

ing rules with those in LDSflow [45]. LDSflow mainly used core

numbers for pruning: for vertex 𝑢, if (𝑢, 𝑣) ∈ 𝐸 and core𝐺 (𝑢) <
core𝐺 (𝑣)

2
, or core𝐺′ (𝑢) < core𝐺 (𝑢)

2
, 𝑢 can be pruned, where 𝐺 ′ de-

notes the graph with some vertices already pruned. From the per-

spective of compact numbers, the rationale behind the pruning in

LDSflow is that they actually used core numbers to provide rela-

tively loose upper and lower bounds for compact numbers.

Based on the two pruning rules, i.e., Corollary 5.3 and lemma 5.5,

we present our pruning algorithm, named Pruning, in Algorithm 3.
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Algorithm 3: Prune invalid vertices

1 Function Pruning(𝐺 = (𝑉 , 𝐸) , S, 𝜙 , 𝜙):
2 𝐺′ = (𝑉 ′, 𝐸′) ← 𝐺 ;

3 foreach (𝑢, 𝑣) ∈ 𝐸 do
4 if 𝜙 (𝑢) < 𝜙 (𝑣) then remove 𝑢 from𝐺′;

5 compute core𝐺′ (𝑢) for all vertices in𝐺′;
6 while ∃𝑢 ∈ 𝑉 ′, core𝐺′ (𝑢) < 𝜙 (𝑢) do
7 remove 𝑢 from𝐺′;

8 update core numbers of vertices adjacent to 𝑢;

9 foreach stable group 𝑆 ∈ S do 𝑆 ← 𝑆 ∩𝑉 ′;
10 return S

We first replicate the graph𝐺 to𝐺 ′ (line 1). Then, we apply Pruning
rule 1 (Corollary 5.3) to remove invalid vertices (lines 3–4). Next, we

compute the core numbers for all vertices in𝐺 ′ (line 5). Afterwards,
Pruning rule 2 (Lemma 5.5) is applied (lines 6–8). Finally, Pruning
updates the stable groups by intersecting them with the vertices

not been pruned (line 9), and returns the updated stable groups

(line 10).

The following subsectionwill introduce how to extract and verify

LDS from the updated stable groups.

5.3 Extract and Verify LDS
Here, we discuss how to extract and verify the LDS from the stable

groups after pruning. First, we can find that the vertices within the

stable group 𝑆 with largest 𝑟 values in S satisfy Lemma 4.4 w.r.t. the

current valid vertices, otherwise they are pruned in Pruning. But,
we are not sure whether𝐺 [𝑆] is the densest among all its subgraphs

(i.e., 𝐺 [𝑆] is self-densest) and whether there exists another larger

density(𝐺 [𝑆])-compact subgraph of𝐺 containing𝐺 [𝑆], according
to Definition 3.3.

We first examine whether 𝐺 [𝑆] is self-densest because the com-

putation cost for self-densest examination is smaller than checking

whether it is a maximal density(𝐺 [𝑆])-compact subgraph.

Verifying whether 𝐺 [𝑆] is the densest among all subgraphs of

𝐺 [𝑆] is one step in the binary search of computing densest subgraph

[26], i.e., checking whether there is a subgraph with higher density

than density(𝐺 [𝑆]). Generally, we use IsDensest to verify the self-
densest via computing the max-flow on the flow network generated

based on 𝐺 [𝑆] following [52].
If 𝐺 [𝑆] is the DS of itself (i.e., IsDensest returns True), we

need to further verify whether𝐺 [𝑆] is the maximal density(𝐺 [𝑆])-
compact subgraph in 𝐺 . We first review how 𝐺 [𝑆] is verified as an

LDS in [45], and next we give our improved verification algorithm.

Qin et al. [45] first use breadth-first-search starting from 𝐺 [𝑆]
to traverse each vertice 𝑢 with 𝜙 (𝑢) ≥ density(𝐺 [𝑆]). Recall that
they use core𝐺 (𝑢) as 𝜙 (𝑢) (briefed in Section 5.2). We use 𝐺𝑡

to

denote the subgraph traversed. If there does not exist an already

computed LDS in𝐺𝑡
,𝐺 [𝑆] is an LDS. Otherwise, Qin et al. construct

a flow network based on𝐺𝑡
, then use the min-cut algorithm to find

all maximal density(𝐺 [𝑆])-compact subgraphs in 𝐺𝑡
, and check

whether 𝐺 [𝑆] is maximal.

We can observe that the verification algorithm in [45] needs to

compute the min-cut on the flow-network based on the vertices

with 𝜙 (𝑢) ≥ density(𝐺 [𝑆]). We will show that only the vertices

with𝜙 (𝑢) ≥ density(𝐺 [𝑆]) and𝜙 (𝑢) ≤ density(𝐺 [𝑆]), which form
a subset of the set of vertices needed in [45], are needed to verify

whether 𝐺 [𝑆] is an LDS of 𝐺 .

Algorithm 4 presents our improved verification algorithm, named

IsLDS. IsLDS first initializes an empty queue 𝑄 , an empty vertex

set 𝑇 , an empty edge set 𝐿, and 𝜌 with density(𝐺 [𝑆]) (lines 2–3).
Next, the algorithm performs a breadth-first search starting from 𝑆

(lines 4–13). Specifically, IsLDS uses 𝑄 to store the vertices to be

traversed. Each time, it pops out the first vertex 𝑣 from 𝑄 (line 5),

and iterates all neighbors of 𝑣 (lines 8–13). For each neighbor 𝑤 ,

if 𝜙 (𝑤) > 𝜌 , 𝑤 will not be added to 𝑇 and 𝑄 , but a self loop of 𝑣

is added to 𝐿 (lines 10–11). If 𝜙 (𝑤) ≤ 𝜌 ≤ 𝜙 (𝑤), 𝑤 is added into

𝑄 and 𝑇 (lines 12–13). If IsLDS does not encounter a vertex with
𝜙 (𝑤) > 𝜌 during the traversal, we can return True (line 14), which
means that there does not exist an already computed LDS in the

traversed subgraph. Otherwise, we construct a subgraph 𝐺𝑡
with

all edges induced by 𝑇 and self loops in 𝐿 (lines 15). Afterward,

we compute all 𝜌-compact subgraphs in 𝐺𝑡
via min-cut following

[45] (line 16). Finally, we return True if𝐺 [𝑆] is maximal 𝜌-compact;

otherwise, False is returned (line 17). We can observe that 𝐺𝑡
only

contains vertices with 𝜙 (𝑤) ≥ density(𝐺 [𝑆]) ≥ 𝜙 (𝑤). Hence, the
flow network generated in our algorithm is much smaller than that

generated in [45].

Algorithm 4: Check whether 𝐺 [𝑆] is an LDS of 𝐺

1 Function IsLDS(𝑆 , 𝜙 , 𝜙 ,𝐺 = (𝑉 , 𝐸)):
2 𝑄 ← an empty queue, 𝜌 ← density(𝐺 [𝑆 ]) ;
3 𝑇 ← ∅, 𝐿 ← ∅, 𝑖𝑠𝐿𝐷𝑆 ← True;
4 foreach 𝑢 ∈ 𝑆 do
5 if 𝑢 ∉ 𝑇 then push 𝑢 to𝑄 , insert 𝑢 into𝑇 ;

6 while𝑄 is not empty do
7 𝑣 ← pop out the front vertex in𝑄 ;

8 foreach (𝑣, 𝑤) ∈ 𝐸 do
9 if 𝑤 ∉ 𝑇 then
10 if 𝜙 (𝑤) > 𝜌 then
11 add edge (𝑣, 𝑣) to 𝐿, 𝑖𝑠𝐿𝐷𝑆 ← False

12 else if 𝜙 (𝑤) > 𝜌 then
13 push 𝑤 to𝑄 , add 𝑤 into𝑇

14 if 𝑖𝑠𝐿𝐷𝑆 then return True;
15 𝐺𝑡 ← (𝑇, 𝐸 (𝑇 ) ∪ 𝐿) ;
16 𝐺′ ← all 𝜌-compact subgraphs in𝐺𝑡

via min-cut;

17 return𝐺 [𝑆 ] is a connected component in𝐺′

Before proving the correctness of Algorithm 4, we use an example

to illustrate the traversed subgraph 𝐺𝑡
.

Example 5.9. Consider the graph in Figure 7. Suppose 𝑆 = {f, g, h}
and we want to verify whether 𝐺 [𝑆] is an LDS of 𝐺 . Clearly, 𝐺 [𝑆]
is the DS of itself. We illustrate the scope of the subgraph 𝐺𝑡

in

Algorithm 4. Following Algorithm 4, 𝑇 contains f, g, h, e and 𝐿

consists of edge (e, e) because 𝜌 (b) > 1 = density(𝐺 [𝑆]). Hence,
𝐺𝑡

in our IsLDS contains 4 vertices and 5 edges, while the traversed
subgraph in LDSflow [45] contains all eight vertices (i.e., a, b, c, d,
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Figure 7: LDS verification illustration.

e, f, g, h) as shown in Figure 7, because core numbers of all vertices

are larger than 1, i.e., density(𝐺 [𝑆]).

Theorem 5.10. Given a graph 𝐺 and a subgraph 𝐺 [𝑆], where
𝐺 [𝑆] is the DS of itself,𝐺 [𝑆] is an LDS of𝐺 if and only if Algorithm 4
returns True.

Proof. First, if 𝐺 [𝑆] is an LDS, Algorithm 4 returns True. Be-
cause only the loops in 𝐿might increase the compact numbers in𝐺𝑡

compared to the compact numbers in𝐺 . Hence,𝐺 [𝑆] is still an LDS

in 𝐺𝑡
. Otherwise the maximal density(𝐺 [𝑆])-compact subgraph

containing𝐺 [𝑆] must contain a vertex 𝑢 with self loop, and then

we can construct a larger density(𝐺 [𝑆])-compact subgraph in 𝐺

by including vertices with 𝜙 (𝑤) > density(𝐺 [𝑆]) connected to 𝑢.

Hence, the contradiction proves the claim.

On the other direction, if 𝐺 [𝑆] is not an LDS of 𝐺 , we will find

a larger density(𝐺 [𝑆])-compact subgraph containing 𝐺 [𝑆] in 𝐺𝑡
.

Hence, 𝐺 [𝑆] is also not an LDS in 𝐺𝑡
. Thus, the algorithm returns

False. □

By now, we have introduced all building blocks of our LDS algo-

rithm. In the next subsection, we will present our LDS algorithm

LDScvx by combining these components.

5.4 The Overall Algorithm LDScvx
Combining Algorithms 1 to 4 with reference to Figure 4, we will

obtain our LDS algorithm, named LDScvx in Algorithm 5.

Algorithm 5: Our LDS algorithm, LDScvx

Input :A graph𝐺 = (𝑉 , 𝐸) and two integers 𝑘 and 𝑁

Output :LDS’s with top-𝑘 densities

1 𝐺′ ← 𝐺 ;

2 𝑠𝑡𝑘 ← an empty stack;

3 while 𝑘 > 0 do
4 (𝒓,𝜶 ) ← Frank-Wolfe(𝐺′, 𝑁);

5 S, 𝜙, 𝜙 ← ExtractSG(𝐺′, 𝒓 ,𝜶);

6 S ← Pruning(𝐺′, S, 𝜙 , 𝜙);
7 foreach 𝑆 ∈ S reversely do push 𝑆 into 𝑠𝑡𝑘 ;

8 𝑆 ← pop out the top stable group from 𝑠𝑡𝑘 ;

9 if IsDensest(𝐺 [𝑆 ]) then
10 if IsLDS(𝑆 , 𝜙 , 𝜙 ,𝐺) then output𝐺 [𝑆 ], 𝑘 ← 𝑘 − 1;
11 if 𝑠𝑡𝑘 is empty then break;

12 𝑆 ← pop out the top stable group from 𝑠𝑡𝑘 ;

13 𝐺′ ← 𝐺 [𝑆 ];

In LDScvx, we first assign𝐺 to𝐺 ′ (line 1) and initialize an empty

stack 𝑠𝑡𝑘 (line 2). Next, we extract the stable groups from the graph

𝐺 ′ via Frank-Wolfe, ExtractSG, and Pruning (lines 4-6). Then, the
algorithm pushes the stable groups in S reversely into 𝑠𝑡𝑘 (line 7).

For stable groups in 𝑠𝑡𝑘 , the corresponding 𝜙 value is decremented

from top to bottom. Afterward, the first stable group in 𝑠𝑡𝑘 , which

is also the one with the highest 𝜙 value, is poped out (line 8) and is

examined by IsDensest and IsLDS (line 9–10). If 𝐺 [𝑆] is an LDS,

we output it and decrease 𝑘 by 1 (line 10). If 𝐺 [𝑆] is not an LDS

but is the DS of itself, we update 𝑆 as the top stable group from 𝑠𝑡𝑘

(line 12). Next, we assign 𝐺 [𝑆] to 𝐺 ′ for the next iteration (line 13).

The above process is repeated until top-𝑘 LDS’s are found (line 3),

or the stack is empty (line 11).

Next, we use an example to explain further the overall procedure

of LDScvx (Algorithm 5).

Example 5.11. We still use the graph𝐺 in Figure 1 as the example.

Suppose we want to find top-2 LDS’s from 𝐺 . Assume we obtain

(𝒓∗,𝜶 ∗) in Table 2 after Frank-Wolfe. Then, we will obtain the sta-

ble groups shown in Figure 5, as well as the upper and lower bounds

of compact numbers via ExtractSG. Next, in the Pruning process,

the vertices in 𝑆3 and 𝑆4 will be pruned according to Corollary 5.3

and Lemma 5.5, which means that S contains 𝑆1 and 𝑆2. Afterward,

𝑆2 and 𝑆1 will be pushed into the stack 𝑠𝑡𝑘 . Now, the stable groups

in 𝑠𝑡𝑘 satisfy that the compact numbers of vertices in the stable

group higher in 𝑠𝑡𝑘 are larger than those in the stable group lower

in 𝑠𝑡𝑘 . Next, we pop out the top stable group 𝑆1 from 𝑠𝑡𝑘 and verify

that it is an LDS via IsDensest and IsLDS. We output𝐺 [𝑆1] as the
first LDS, pop out 𝑆2 from 𝑠𝑡𝑘 , and repeat the above process. After

𝑆2 is verified as an LDS, 𝑠𝑡𝑘 is empty, we break while loop (line 10

in Algorithm 5). In the end, we obtain two LDS’s,𝐺 [𝑆1] and𝐺 [𝑆2].

Complexity. The time complexity of LDScvx is𝑂 ((𝑁FW+𝑁SG) ·
(𝑛 +𝑚) + 𝑁Flow · 𝑡Flow), where 𝑁FW is number of iterations that

Frank-Wolfe needs, and 𝑁SG ≤ 𝑛 is the number of stable groups

in total, 𝑁Flow is number of times IsLDS and IsDensest are called,

and 𝑡Flow denotes the time complexity of max-flow computation.

Note that an iteration in Frank-Wolfe and verifying a stable group
in ExtractSG both take𝑂 (𝑛+𝑚) time cost. Thememory complexity

is 𝑂 (𝑛 +𝑚).

6 EXPERIMENTS
6.1 Setup
We use nine real datasets [6, 7, 36, 46, 58] which are publicly avail-

able
1
except for TL. The TL dataset is provided by a television

company TCL Technology. The dataset contains film information

provided on its smart TV platform, mainly used for a case study.

Other graph datasets cover various domains, including social net-

works (e.g., LiveJournal), e-commerce (e.g., Amazon), and video

platforms (e.g., YouTube). Table 3 summarizes the statistics.

We compare the following LDS algorithms:

• LDScvx is our convex-programming based top-𝑘 LDS algorithm

(Section 5.4).

• LDSflow [45] is the state-of-the-art top-𝑘 LDS algorithm based

on max-flow.

1
https://networkrepository.com/, https://snap.stanford.edu/data/index.html, and https:

//law.di.unimi.it/datasets.php

2727

https://networkrepository.com/
https://snap.stanford.edu/data/index.html
https://law.di.unimi.it/datasets.php
https://law.di.unimi.it/datasets.php


Table 3: Graphs used in our experiments.

Dataset Full name Category |𝑉 | |𝐸 |
TL movie-TCL Movie 108K 168K

AM com-amazon E-commerce 335K 926K

YT com-youtube Video-sharing 1.13M 2.99M

LJ com-lj Social 4.00M 34.7M

OR com-orkut Social 3.07M 117M

IC indochina-2004 web 7.41M 194M

AB arabic-2005 web 22.7M 639M

IT web-it-2004-all Web 41.3M 1.03B

LK links-anon Hyperlink 52.6M 1.61B

All the algorithms above are implemented in C++ with STL used.

The source codes of LDSflow are provided by the authors of [45].

We run all the experiments on a machine having an Intel(R) Xeon(R)

Silver 4110 CPU @ 2.10GHz processor and 256GB memory, with

Ubuntu installed.

6.2 Efficiency Results
To choose the best setting of 𝑁 , i.e., the number of Frank-Wolfe
iterations, we tested the running time of LDScvx w.r.t. different

values of 𝑁 from 50 to 200 with 𝑘 fixed to 5. Table 4 reports the

average relative running time w.r.t. 𝑁 over eight large datasets. The

relative running time for a specific value of 𝑁 on each dataset is

obtained via dividing the running time by the minimum running

time over all 𝑁 values for the dataset. The mean is then obtained

by averaging over all datasets. We can find that when 𝑁 = 100, we

obtain the minimum average relative running time. Hence we use

𝑁 = 100 as the default parameter value in other experiments.

Table 4: Relative running time w.r.t. different 𝑁

𝑁 50 100 150 200

Average relative time 1.64 1.10 1.12 1.20

Next, we compare our top-𝑘 LDS algorithm LDScvx with the

state-of-the-art LDSflow [45] w.r.t. running time.

We first fix 𝑘 = 5 to overview the two algorithms on the nine

datasets w.r.t. running time. Figure 8 shows the efficiency results of

the two algorithms. The datasets are ordered by graph size on the x-

axis. Note that for some datasets, the bars of LDSflow touch the solid
upper line, which means LDSflow cannot finish within 600 hours on
those datasets. From Figure 8, we can observe: first, the running time

of LDSflow increases along with the graph size increasing; second,

LDScvx is up to four orders of magnitude faster than LDSflow. We

reckon that the speedup comes from more vertices pruned due to

tighter bounds, fewer LDS candidates verified, and smaller flow

networks as stated in Section 5.

We further provide the running time trends of the two algorithms

w.r.t. different 𝑘 values on four representative datasets in Figure 9

due to space limit. For LDSflow, we do not show its trends on dataset

LK because it cannot finish within 600 hours even with 𝑘 = 5. We

can see that when 𝑘 increases, the running time of both LDScvx and
LDSflow increases. Furthermore, there is a significant increase in

LDSflow (about two orders of magnitude) when 𝑘 is increased from

Inf.
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Figure 8: Efficiency of LDScvx and LDSflow with 𝑘 = 5.
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Figure 9: Efficiency of LDScvx and LDSflow w.r.t. different 𝑘 .

10 to 15 on dataset YT. To analyze this significant surge, we examine

the running process of the two algorithms. We found that many

LDS candidates in LDSflow do not pass the verification process

when 𝑘 is increased from 10 to 15. Recall that LDSflow needs to

perform max-flow computation on a flow network to verify each

LDS candidate according to Section 5.3. Hence, the number of failed

LDS candidates can reveal to some extent the reason of the spike

in running time.

Table 5: Numbers of failed LDS candidates on YT w.r.t. 𝑘 .

Algorithm 𝑘 = 10 𝑘 = 15 increased times

LDScvx 37 84 2.27×
LDSflow 277 18399 66.42×
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We report the numbers of failed LDS candidates on YT with

𝑘 = 10 and 15 for both algorithms in Table 5. We observe that

the number of failed candidates in LDSflow increased around 66×
when 𝑘 increases from 10 to 15, which explains the surge of running

time in Figure 9. In contrast, the number of failed candidates in

LDScvx only increases by about 2×. This is why the running time

of LDScvx does not increase much when 𝑘 is increased from 10 to

15. Another observation from Table 5 is that the failed numbers for

LDScvx are smaller than LDSflow on both 𝑘 values, respectively.

The reason is that we provide tight upper and lower bounds for

compact numbers via convex programming and stable groups, and

the tight bounds further enable more vertices to be pruned, which

results in fewer LDS candidates to be examined. Apart from that, to

examine an LDS candidate, our LDScvx only needs a subgraph of

what is needed in LDSflow to calculate the max-flow by leveraging

the lower bounds of compact numbers, according to Section 5.3. We

believe the above two improvements explain why we are around

three orders of magnitude faster on YT when 𝑘 = 15.

We further tested the scalability w.r.t. the density via synthetics

datasets. The six synthetic graphs are generated by Barabási-Albert

(BA) model [1]. The numbers of vertices in all synthetic graphs

are fixed to 1,000,000, and the densities are increased linearly from

2 to 12. In other words, the numbers of edges are from 2,000,000

to 12,000,000. We report the running time of LDScvx on the six

synthetic datasets in Figure 10. We observe that LDScvx scales well

w.r.t. the graph density.
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Figure 10: The scalability w.r.t. the density.

6.3 Memory Usage Comparison
In this subsection, we test the memory usage of the two algorithms.

The maximum memory usage is tested via the Linux command

/usr/bin/time -v. For the cases that LDSflow does not finish

reasonably, we record the maximum resident memory during the

running process. Figure 11 reports the maximum memory usage

of the two algorithms. The datasets are sorted on the x-axis in

ascending order of graph size. We can observe that the memory

usages of both algorithms increase along with the increasing graph

size. Besides, the memory costs of LDScvx and LDSflow are around

the same scale because the two algorithms take linear memory

usage w.r.t. the graph size.

6.4 Time Proportion Analysis
Here, we evaluate how the different building blocks of LDScvx
contribute to the whole running time after the graph is loaded
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Figure 11: Memory usage of algorithms with 𝑘 = 5.
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and preprocessed. Figure 12 reports the proportion of each part

in the total running time: Frank-Wolfe (Algorithm 1), ExtractSG

(Algorithm 2), Pruning (Algorithm 3), and VerifyLDS (Algorithm 4)

with 𝑘 = 5 over nine datasets. We can observe that the Frank-Wolfe

computation is the most computationally expensive part on most

datasets. For LK and YT datasets, the time used by verifying LDS

takes the majority. We further examine the number of failed LDS

candidates (i.e., on which IsLDS returns False) on the nine datasets.

Table 6 reports the results. We can find that the numbers of failed

candidates on LK and YT are much higher than other datasets,

which means that these two datasets need more time to verify

LDS’s, which explains the results in Figure 12 to some extent. For

IC, the time used by verifying LDS is also high, because the first

LDS in IC is quite large and takes relatively long time to verify.

Table 6: Numbers of failed LDS candidates with 𝑘 = 5.

Dataset TL AM YT LJ OR IC AB IT LK

#failed 1 0 9 1 1 0 0 0 6
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6.5 Ablation Study of IsLDS
Here, we conduct an ablation study on LDScvx to understand the

effectiveness of IsLDS (Algorithm 4). Recall that in IsLDS we only

include the vertices satisfying 𝜙 (𝑢) ≥ density(𝐺 [𝑆]) ≥ 𝜙 (𝑢) into
the flow network computation, while its counterpart in LDSflow

[45] includes all vertices satisfying 𝜙 (𝑢) ≥ density(𝐺 [𝑆]), named

by IsLDS-ab (ablation). We report the time used for verifying LDS’s

with IsLDS and IsLDS-ab, respectively, on the nine datasets when

𝑘 = 5 in Table 7. Here, the time of IsLDS-ab is measured by re-

placing IsLDS with IsLDS-ab in LDScvx. The time of IsLDS-ab on
LK is marked as ≥ 259200s because it cannot finish within three

days. From the results, we observe that the verification process

with IsLDS is up to 110× faster than that with IsLDS-ab. Hence,
reducing the number of vertices by the lower bounds in IsLDS does
help speed up the LDS verification process.

Table 7: Effect of IsLDS with 𝑘 = 5.

Dataset IsLDS IsLDS-ab Speedup

TL 0.0399s 0.0748s 1.87×
AM 0.3334s 0.3623s 1.09×
YT 2.6575s 80.9994s 30.48×
LJ 2.1204s 2.3924s 1.13×
OR 18.4089s 723.6035s 39.31×
IC 285.4502s 288.9184s 1.01×
AB 60.2669s 62.0416s 1.03×
IT 147.9361s 188.8527s 1.28×
LK 2335.4461s ≥ 259200s ≥ 110.99×

6.6 Subgraph Statistics
In this subsection, Figure 13 reports the densities of the top-15

densest subgraphs w.r.t. the size (number of vertices) returned by

three different models on four datasets, where Greedy iteratively
computes a densest subgraph and removes it from the graph, and

FDS denotes the density-friendly decomposition model [15, 53].

From Figure 13, we can find that the densest subgraph can be found

by all three algorithms, because the densest subgraph is also an

LDS. But there are some dense subgraphs found by Greedy that do

not qualify as LDS’s. Hence, the subgraphs found by LDScvx have
a wide range of densities and sizes. For FDS, we can find that the

subgraphs have increasing sizes and decreasing densities. This is

because FDS outputs a chain of subgraphs, where each subgraph is

nested within the next one, and the inner one is denser than the

outer ones.

6.7 Case Study
Here, we perform a case study on the TL dataset. The TL dataset is

provided by a Chinese television company, TCL Technology, which

contains three types of vertices: director, movie, and actor.

After examining the top-10 LDS’s returned by our LDS algorithm,

we found that the LDS’s on the TL dataset are about different topics.

For example, Figure 2 shows the LDS with the third-highest density.

This LDS contains eight movies related to a famous Japanese sci-

fiction series “Ultraman” with four actors and one director. In this
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Figure 13: Subgraph statistics: density w.r.t. size.

LDS, the four actors participated in all eight films, and the director

directed five of them. The LDS with the second-highest density is a

subgraph about Chinese martial fiction. Other LDS’s cover topics

about western films, Danish comedies, and cartoons, while the DS

model can only find a large subgraph about western films. Hence,

from the output of the case study, we reckon that the subgraphs

returned by the LDS algorithm are good representations of different
local dense regions in the graph.

7 CONCLUSION
In this paper, we study the problem of finding the top-𝑘 locally

densest subgraphs (LDS’s) in a graph to identify the local dense

regions. The LDS’s are usually compact and dense. To facilitate

the LDS discovery, we propose a new concept, named compact
number for each vertex, which denotes the compactness of the

most compact subgraph containing the vertex. By leveraging the

compact number and its relations with the LDS problem and a

specific convex program, we derive a convex-programming based

algorithm LDScvx following the pruning-and-verifying paradigm.

Extensive experiments on nine datasets show that LDScvx is up to

four orders of magnitude faster than the state-of-the-art algorithm.
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