
Turbo-Charging SPJ Query Plans with Learned Physical Join
Operator Selections

Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang Lehner
TU Dresden, Dresden Database Research Group

Dresden, Germany
firstname.surname@tu-dresden.de

ABSTRACT
The optimization of select-project-join (SPJ) queries entails two
major challenges: (i) finding a good join order and (ii) selecting
the best-fitting physical join operator for each single join within
the chosen join order. Previous work mainly focuses on the com-
putation of a good join order, but leaves open to which extent the
physical join operator selection accounts for plan quality. Our anal-
ysis using different query optimizers indicates that physical join
operator selection is crucial and that none of the investigated query
optimizers reaches the full potential of optimal operator selections.
To unlock this potential, we propose TONIC, a novel cardinality
estimation-free extension for generic SPJ query optimizers in this
paper. TONIC follows a learning-based approach and revises op-
erator decisions for arbitrary join paths based on learned query
feedback. To continuously capture and reuse optimal operator selec-
tions, we introduce a lightweight yet powerfulQuery Execution Plan
Synopsis (QEP-S). In comparison to related work, TONIC enables
transparent planning decisions with consistent performance im-
provements. Using two real-life benchmarks, we demonstrate that
extending existing optimizers with TONIC substantially reduces
query response times with a cumulative speedup of up to 2.8x.

PVLDB Reference Format:
Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang Lehner.
Turbo-Charging SPJ Query Plans with Learned Physical Join Operator
Selections. PVLDB, 15(11): 2706 - 2718, 2022.
doi:10.14778/3551793.3551825

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/axhertz/TONIC.

1 INTRODUCTION
Query optimization of arbitrary select-project-join (SPJ) queries has
been a core research topic for decades, but it is still far from being
solved [7, 26]. According to [6], the most challenging issues for
the optimization of complex SPJ queries are: (i) finding a good join
order and (ii) selecting the best-fitting physical join implementation
for each join within the chosen join order. A textbook query opti-
mizer solves these challenges using three modules: First, the plan
enumerator which spans – according to the relational algebra – the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551825

cumulative query response times [s]

PS

PV

253

418

253

296

102

102

hash join restricted
native operator selection
optimal operator selection

Figure 1: Join-Order-Benchmark: Cumulative query re-
sponse times (also denoted as benchmark response time) for
two different optimizers and three physical operator selec-
tion methods. For more details see Section 2.

search space of all possible query execution plans (QEPs). Second,
the cost model to assess the cost of any given query execution plan
prior to its execution. And third, the cardinality estimator which
delivers the size of intermediate results as most crucial input to the
cost model. However, achieving reliable and accurate cardinality es-
timates for arbitrary joins with acceptable overhead is and remains
an open challenge [27].

Despite many years of research and to the best of our knowledge,
no clear understanding has evolved yet to which extent the selection
of physical join operators accounts for the plan quality of complex
SPJ queries. In line with recent work [4, 9, 14, 29], we conducted a
comprehensive experimental analysis using a recent open-source
PostgreSQL. In our evaluation, we ran the Join-Order-Benchmark
(JOB) [25] with different join orders and fine-grained physical oper-
ator selections. To determine different good join orders, we utilized
the textbook-oriented built-in PostgreSQL optimizer denoted as
Postgres Vanilla (PV) and, for instance, an alternative optimizer
based on an upper bound called Postgres Simplicity (PS) [14].

We first executed the determined QEPs using only hash joins
for each JOB query. As demonstrated in Figure 1, the resulting
benchmark response times (execution and planning) are quite dif-
ferent due to different join orders, this leads to the conclusion that
the join order is essential for SPJ query optimization. This effect
is reinforced when physical optimization is also considered. In
addition to the join order, the traditional Postgres optimizer PV
natively selects physical join operators according to the estimated
join cardinalities. Executing PV’s native join orders and operator
selections significantly reduces the query response times as shown
in Figure 1. However, the overall benchmark response time is still
greater than for PS with the restriction to hash joins. Due to the
upper bound (overestimation) for intermediate result sizes, PS lacks
a fine-grained operator selection and relies on hash joins.

To analyze the potential of optimal operator selections, we ex-
ecuted the following steps for PV and PS: (i) determine the join

2706

https://doi.org/10.14778/3551793.3551825
https://github.com/axhertz/TONIC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551825
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(2) REUSE

Learned Case

Repaired Case

Retrieved Case

Solved Case

Case Base

New Case
New Problem

(1) RETRIEVE

(3) REVISE

(4) RETAIN

Figure 2: Case-Based-Reasoning Life-Cycle.

order for each JOB query, (ii) systematically execute each join order
with all possible physical operator combinations, and (iii) extract
the optimal operator choices for the executions with the lowest run
times. Then, we ran the join orders of PV and PS with the optimal
operator selection determined previously. As indicated in Figure 1,
the optimal selection has a decisive impact as benchmark response
times are reduced by a factor of 2.5 to 2.8 compared to an execution
with the native operator selections. Most importantly, we observe
that the different join orders of PV and PS with their respective
optimal physical operator assignments lead to a similar JOB run
time. Thus, we may conclude that the physical operator selection
really matters and leaves room for improvement.

Contribution: This paper presents a lightweight learning-based
physical execuTiOn plaN refInement Component called TONIC to
turbo-charge QEPs with learned physical join operator selections.
TONIC bootstraps an existing cost model and learns from previous
query executions. TONIC is explicitly designed to augment any re-
lational query optimizer. The input of TONIC is a QEP determined
by a generic optimizer, while the output is a QEP with the same join
order but with learned physical operator selections. To solve the
selection problem within TONIC, we apply Case-Based-Reasoning
(CBR), a well-established paradigm in the area of artificial intelli-
gence. As illustrated in Figure 2, the core of CBR is the case base,
which is a collection of previously made and stored solutions called
cases. Transferred to TONIC, the case base is a collection of already
executed join orders with a summary of the exact costs for the avail-
able physical join operators. In particular, a case based reasoner
solves new problems by reusing solutions from cases in the case
base. For this purpose, one or several relevant cases are collected
(RETRIEVE-stage). Once a similar case is selected, the solution is
adapted to solve the current problem (REUSE-stage). Transferred to
TONIC, we match the join order of a new QEP with join orders of
previous QEPs and assign physical join operators according to the
stored solutions. Finally, when a new solution to the new problem
is found (REVISE-stage), the new solution is stored in the case base
(RETAIN-stage), thus reflecting the learning behavior. Transferred
to TONIC, costs of physical join operators are computed and stored
after query execution when exact cardinalities of intermediate re-
sults are known. Advantages of the CBR concept are: (i) no need
for an elaborate training phase for initialization and (ii) continu-
ous learning to adapt to new circumstances. However, challenges
are: (i) defining the problem statement for CBR, (ii) organizing the
case base to quickly find similar prior problem solutions, and (iii)
adapting the prior solution to fit new needs.

Outline. To present TONIC, the remainder of the paper is struc-
tured as follows: We start with a problem statement using an ex-
perimental analysis to investigate the effect of physical operator
selection on fixed join orders in Section 2. In Section 3, we describe
our execuTiOn plaN refInement Component (TONIC) to turbo-charge

QEPs with near-optimal operator choices. In particular, we intro-
duce a novel Query Execution Plan Synopsis (QEP-S) as main ingre-
dient of TONIC. While Section 3 gives a general overview of TONIC,
Section 4 details different design considerations for the query execu-
tion plan synopsis. In Section 5, we evaluate TONIC in combination
with different query optimizers and two real-life datasets. To show
the effectiveness and applicability of TONIC, we also provide a
detailed comparison to a recent machine learning approach. We
further highlight interesting results and implications of our work
for future research. After discussing related work in Section 6, we
conclude the paper with a short summary in Section 7.

2 PHYSICAL JOIN OPERATORS MATTER
To demonstrate the effect of physical operator selections on plan
quality for complex SPJ queries, we present results of an exhaus-
tive experimental evaluation based on the popular Join-Order-
Benchmark (JOB) [25]. JOB comprises 113 analytical queries with
multiple joins and different complex filter predicates over real-world
data that covers various challenges such as varying distinct values,
correlation, and skewwith a total size of 10GiB. To test a diversity of
query plans – in particular join orders – and to simultaneously eval-
uate the impact of cardinality estimation, we investigate different
query optimizer designs using: (1) fast but error-prone cardinality
estimates, e.g., based on standard histograms, (2) costly but precise
cardinality estimates, e.g., based on machine learning or sketch
building, and (3) cardinality estimation-free join enumeration. In
particular, we use the following instances as representatives:

(1) Postgres Vanilla (v9.6 / v12.4): A vanilla installation of the
open-source disk-centric row store PostgreSQL [36].

(2) Postgres Sketch (v9.6): An instance, modified by Cai et al. [4]
that provides precise cardinality estimates. It is publicly avail-
able at [12]. Based on the precise estimates, Postgres deter-
mines the join order and physical operator selection.

(3) Postgres Simplicity (v9.6 / v12.4): Postgres Vanilla enhanced
with the simplistic upper bound approach of [14] without
fine-grained physical operator selections.

To assess the effect of physical join operator decisions, we keep
the logical join order fixed and only substitute physical join op-
erators. In particular, given the query execution plan of a generic
optimizer, we compare the optimizer’s native plan (native) to (i) an
equivalent plan only using hash joins (hash) and (ii) to an equiva-
lent plan with optimal physical operator selections (optimal). The
optimal selections are determined by exhaustive execution of all
possible operator combinations. Moreover, the restriction to (index)
nested loop joins is not considered as multiple plans did not finish in
this case – despite providing foreign-key and primary-key indices.
We run all queries after a warm-up phase on a 64-bit Linux machine
with a single-socket Intel Core i7-6700 CPU, 16GiB of main memory,
and SSD storage. To force the execution of a particular physical
join operator selection, we use the pg_hint_plan extension [10] and
SQL hints described in [14] to bypass logical join reordering.

2.1 Results
Table 1 comprises the cumulative query response time for all 113
JOB queries using different query optimizers and different physical
operator selections alternatives. Since Sketch is only available on

2707

Table 1: Cumulative query response times using different query optimizers and different physical plan alternatives (hash
restricted, native, and optimal). The relative speedup compares the native and optimal operator selection.

hash join restricted native operator selection optimal operator selection relative speedup
Vanilla (v12.4) 418s 296s 102s 2.8x
Simplicity (v12.4) 253s 253s 102s 2.5x
Vanilla (v9.6) 641s did not finish 191s ∞
Simplicity (v9.6) 658s 658s 244s 2.7x
Sketch (v9.6) 622s (+1325s planning) 252s (+1325s planning) 167s (+1325s planning) 1.5x (1.1x with planning)

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

−101

−100

0

100

101

102

in
di

vi
du

al
 sp

ee
d-

up
 [s

]

-131s

260s

time savings due to
good operator selections

time loss due to
bad operator selections

Δ(Postgres Hash Join, Postgres Native)
Δ(Postgres Hash Join, Postgres Optimal)

(a) Vanilla (v12.4)

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

−4

−2

0

2

4

6

8

10

12

-19s

388s

time savings due to
good operator selections

time loss due to
bad operator selections

Δ(Sketch Hash Join, Sketch Native)
Δ(Sketch Hash Join, Sketch Optimal)

(b) Sketch (v9.6)

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

151s

potential gain based on
optimal operator selections

Δ(Simplicity Hash Join, Simplicity Optimal)

(c) Simplicity (v12.4)

Figure 3: Distribution of sub-optimal planning decisions showing the effect of good physical operator selections.

Postgres v9.6, we report the results of Vanilla and Simplicity using
both, a recent Postgres instance (v12.4), and Postgres v9.6 as well.
Moreover, as Sketch imposes a substantial planning overhead, we
break out the planning time for this approach. With regard to
Table 1, Figure 3 indicates the distribution of sub-optimal planning
decisions for physical join operators. The individual queries are
sorted according to their time difference in comparison to their hash
join restricted plan equivalent for (i) using the native optimizer’s
operator selection and (ii) using the optimal operator selection.
While query plans of the red area execute faster with the restriction
to hash joins, the green area represents native plans that outperform
their hash join restricted equivalent. The blue gap indicates the
missed potential with respect to the optimal operator selection.

Postgres Vanilla.While a recent Postgres (v12.4) achieves de-
cent query response times for JOB, using an older version (v9.6)
fails to execute JOB within a 1h time limit (cf. Table 1). However,
by limiting the physical execution to hash joins, the benchmark
completes, showcasing the implications of sub-optimal operator
selections. Comparing the hash join restricted and native plans,
we observe that as many as 20% of the queries execute signifi-
cantly faster when avoiding loop joins completely (cf. red area in
Figure 3a). The distribution of potential time savings due to the op-
timal operator selection (cf. dashed line in Figure 3a) shows that all
113 benchmark queries benefit from the revised operator selection.
Substituting the native operator selections with the optimal join
operators reveals a significant speed-up of factor 2.8x.

Sketch. The sketch-based approach of Cai et al. [4] captures
data correlations and provides high-quality estimates for interme-
diate result sizes (cardinalities). As a result, Sketch performs close
to the optimal operator selection. We observe that less than 10%
of the native plans execute marginally faster when avoiding loop
joins completely (cf. Figure 3b). However, as reported in Table 1,

online sketch building imposes a substantial planning overhead
that exceeds plan execution time by a factor of more than 6x. Un-
fortunately, such serious planning overhead renders this approach
impractical for queries requiring plenty of joins. Despite the high-
quality estimates, a marginal speed-up of 1.1x with planning time
and 1.5x without planning time can be achieved when using the
optimal selection of join operators across all queries.

Simplicity. The Simplicity strategy reflects a lightweight upper
bound approach to minimize the risk of disastrous planning deci-
sions. The bound calculation only requires the selectivity of base
table filter expressions and basic frequency counts (top-k statistics).
Besides using a generic greedy enumeration for n:m joins, Simplic-
ity considers 1:n joins as special filters as they may shrink but never
expand the size of the foreign key table. Similar to the push down of
regular filters, 1:n joins are prioritized over the potentially expand-
ing n:m joins. In line with the upper bound n:m join enumeration,
Simplicity heavily relies on hash joins as they generally outperform
loop joins given large intermediate results [42]. Thus, there is no
difference between the native and the hash join restricted plan (cf.
Table 1). Accordingly, Figure 3c only highlights the difference to
the optimal operator selection. This distribution of potential time
savings demonstrates that a significant speed-up requires good
operator selection across all queries instead of optimizing single
outliers. Overall, comparing the native (hash restricted) plans to
the optimal operator assignment reveals a substantial speed-up of
factor 2.5x that is missed due to the simplistic operator selection.

2.2 Lesson Learned
Our experimental analysis exhaustively tested the execution plans
of three different query optimizers while systematically substitut-
ing the native physical operator selections for JOB. By comparing

2708

Figure 4: TONIC‘s case base: QEP-S trie.

the response times of the hash join restricted plans of each opti-
mizer, we see the implications of different join orders produced by
the optimizers. Moreover, while the fast but error-prone cardinal-
ity estimates of Vanilla v12.4 result in better operator selections
than purely relying on hash joins, Vanilla v9.6 proposes plans that
cannot be executed within the given time limit. In contrast, Sketch
showcases that high-quality cardinality estimates achieve operator
combinations that perform close to the optimal operator selection.
However, these accurate estimates often entail substantial over-
heads. Moreover, our results show that good operator selection
matters and usually requires accurate cardinality estimates. Still,
none of the considered optimizers fully reaches the potential of opti-
mal operator selections. By applying the optimal operator selection
to the native plans, the cumulative JOB response times land in the
same ballpark, regardless of the join ordering concept. Providing
the lightweight optimizers (Vanilla, Simplicity) with optimal opera-
tor selections achieves a speed-up between 2.5x and 2.8x compared
to the native operator selections. On the one hand, we observe that
good join operator selections can substantially improve single long
running queries. For instance, the Vanilla (v12.4) QEP of query 19d
executes in 138s in the hash restricted scenario. In case of Vanilla,
this is as much as 30% of the cumulative response time of all 113
benchmark queries. Turbo-charging query 19d with the optimal
operator selection reduces the response time from 138s to 8s. On
the other hand, all Simplicity query plans execute in less than 10s.
Still, running the turbo-charged QEPs of Simplicity, the benchmark
executes more than twice as fast as with the native plans.

3 TONIC OVERVIEW
To turbo-charge QEPs with optimal operator selections, we propose
TONIC, a novel learning-based physical execuTiOn plaN refInement
Component that replaces cardinality estimation with collected em-
pirical data. The core idea of TONIC is to continuously learn and
reuse the exact costs of physical join operator alternatives. The
exact costs are determined after query execution, allowing optimal
physical join operator selections. TONIC’s assumption is that dif-
ferent SPJ queries share join orders such that optimal physical join
operator selections of previous queries can be reused. To realize
that, Case-Based Reasoning (CBR) as introduced in Section 1, is the
perfect foundation of TONIC.

3.1 Case Base: Query Execution Plan Synopsis
As illustrated in Figure 2, CBR requires a case base storing target
problems and their experienced solutions. As target problem for
our TONIC reasoner, we define the join order given by a generic
query optimizer (e.g., extracted from the determined QEP for an

1

Architecture Overview

3
2

Query Optimizer
Enumerator

Cost Model

Cardinality
Estimator

initial query
execution plan

match join order
with existing prefix

REVISE & RETAIN
operator costs of
current join order

A query from the
current workload

RETRIEVE new join
order from initial QEP

execute: physically
reoptimized plan

Query Execution Plan
Synopsis (QEP-S)

query feedback:
true cardinalities

Retain QEP-S with
new solution

get cost of dif-
ferent operator
alternatives

REUSE operator
selection of longest
prefix match

Figure 5: TONIC’s operation mode.

SPJ query). Accordingly, the solution of the target problem requires
the selection of optimal physical join operators for the given join
order to minimize the cost or query response time, respectively.

To enable an efficient case base representation for TONIC, we
introduce the concept of a Query Execution Plan Synopsis (QEP-S)
that captures core characteristics of query execution plans in a
concise data structure. In particular, QEP-S is a prefix tree (trie) that
reflects arbitrary join orders from multiple query execution plans.
Since join orders already comply with a tree-like structure, we build
the QEP-S as a trie where nodes represent tables or intermediate
results and edges represent the respective joins. Additionally, each
QEP-S node T stores a cost summary 𝐶T for different physical
operator implementations – e.g., nested loop (nlj) and hash join
(hash) – for joining table T with the join intermediate result that
combines all tables in the node’s prefix. Thus, the cost summary
at every node sketches multiple query execution plans of previous
queries that share join orders to some extent. Based on previous
executions, we are able to reuse already existing QEP-S prefixes to
select physical join operators of minimal cost for new queries.

Figure 4 showcases the prefix recycling for the join orders of
four query plans. As the result set of 𝑅 ⊲⊳ 𝑆 is the first intermediate
result of (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑈 , both join orders share the same prefix. In
the shown example, 𝐶𝑇 is the cost summary for the join 𝑆 ⊲⊳ 𝑇 ,
which stores the sum of costs for different join operators from
previous query executions. Given 𝐶𝑇 , we can identify the physical
join operator of minimal cost that we reuse for the first intermediate
result of (𝑆 ⊲⊳ 𝑇) ⊲⊳ 𝑈 and (𝑆 ⊲⊳ 𝑇) ⊲⊳ 𝑉 .

3.2 Life-Cycle Overview
Next, we apply QEP-S as TONIC’s case base following the general
CBR life cycle. Starting with an empty QEP-S, TONIC continuously
copies the join order of each executed query and annotates it with
the cost of each physical join operator alternative. Figure 5 gives an
overview of TONIC’s operation mode, consisting of the four stages
of Case-Based-Reasoning:

1○ RETRIEVE: In the first stage, TONIC receives the execution
plan of a new SPJ query determined by a generic query optimizer,

2709

U:[12,125] � NL Join

R:

SELECT * FROM R
JOIN S ON (R.a = S.b)
JOIN T ON (T.c = S.d)
JOIN U ON (U.e = T.f);

Cost FeedbackNLJ Hash

>

<

>

S:[195,98] � Hash Join

T:[53,42] � Hash Join

(a) 1st query: build initial QEP-S

SELECT * FROM R
JOIN S ON (R.a = S.b AND S.y = x)
JOIN T ON (T.c = S.d)
JOIN U ON (U.e = T.f);

S:[195+92,98+81] � Hash Join

T:[53+11,42+39] � NL Join

U:[12+9,125+86] � NL Join

R: Cost FeedbackNLJ Hash

<

(b) 2nd query: conflict at node T

S:[287+195,179+98]

T:[64,81]

U:[21,211]

R:

SELECT * FROM R
JOIN S ON (R.a = S.b)
JOIN V ON (V.c = S.d)
JOIN W ON (W.e = V.f);

V:[44,37]

W:[14,17]

FeedbackNLJ Hash

(c) 3rd query: add new branch

Figure 6: Detailed Example of the QEP-S Life-Cycle. Join orders are depicted by the explicit join syntax.

extracts the join order and searches for the longest prefix match
within the QEP-S to find the most similar case.

2○REUSE: In the second stage it will be tried to use the retrieved
prefix for solving the operator selection for the new QEP. The phys-
ical join operators that resulted in the lowest cost in previous execu-
tions are selected for each node (join) in the retrieved prefix. Then,
we overwrite the given execution plan with the selected operators
for matching joins and keep the default optimizer’s operator selec-
tions for the remaining joins. Afterward, the re-optimized query
execution plan is executed.

3○ REVISE: After query execution, the actual sizes of join inter-
mediate results as feedback from the execution engine are available.
In the third stage, we use the actual join cardinalities as input for
the default optimizer’s cost model to determine the cost of every
physical join operator alternative. Based on the cost feedback, we
revise the operator decisions of the previous stage.

4○ RETAIN: After retrieving the exact costs for each join and
each physical operator alternative of the refined QEP, we integrate
the adjusted solution into QEP-S in the fourth stage. For existing
prefixes, we only add the determined cost feedback to the corre-
sponding QEP-S nodes. If the considered join order includes joins
that are not yet represented by a QEP-S prefix, we extend an exist-
ing QEP-S branch or add a new branch to the trie where we store
the determined operator costs to derive new solutions. Thus, this
stage represents the learning phase.

To sum up, TONIC builds and continuously maintains a light-
weight query execution plan synopsis (QEP-S) which is used to
turbo-charge execution plans with learned physical join operator
selections of previous, similar plans.

3.3 Example Walk Through
As query optimizers are commonly challenged with the choice
between hash- and index nested loop joins, we use these physical
join operator variants as a running example. However, our QEP-S
case base can capture an arbitrary number of operator alternatives,
e.g., different hash join or sort-merge join implementations [37].

Figure 6 illustrates the evolution of the QEP-S case base for three
query plans. For ease of reading, we assume that the join orders of
the query execution plans correspond to the join orders given in
the explicit SQL syntax. Let ((𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇) ⊲⊳ 𝑈 be the join order
of tables 𝑅, 𝑆,𝑇 ,𝑈 . Starting from an empty trie, we execute every

join according to the default optimizer’s decisions. After query
execution, TONIC uses the actual join cardinalities to initialize the
QEP-S with the cost of all available join operator alternatives.

As Figure 6a depicts, the corresponding QEP-S node of 𝑇 stores
the operator costs 𝑐𝑛𝑙 𝑗 (𝐼1 ⊲⊳ 𝑇), 𝑐ℎ𝑎𝑠ℎ (𝐼1 ⊲⊳ 𝑇), where 𝐼1 is the in-
termediate result 𝑅 ⊲⊳ 𝑆 , 𝑐𝑛𝑙 𝑗 the cost function of a nested loop join,
and 𝑐ℎ𝑎𝑠ℎ the cost function of a hash join. Analogous to traditional
query optimization, TONIC searches for the operator sequence that
minimizes the combined cost, e.g.,minCost = 98 + 42 + 12 for using
a hash join for 𝐼1, 𝐼2 = 𝐼1 ⊲⊳ 𝑇 , and a loop join for 𝐼3 = 𝐼2 ⊲⊳ 𝑈 .

As illustrated by Figure 6b, adding a filter condition to the first
query may still result in the same join order. However, the optimal
operator selection now requires a loop join for 𝐼1 ⊲⊳ 𝑇 instead of a
hash join due to the filter selectivity. To decide which operator to
recommend, TONIC keeps adding the cost of operator alternatives
for each execution of a particular join path. Thus, rather than cap-
turing optimal individual join operator selections, the plain QEP-S
design captures operator selections that are – based on the current
workload – considered most efficient for an abstract join order.

Figure 6c depicts another query that continues the existing pre-
fix R-S by joining 𝑉 ,𝑊 . Since the prefix R-S is already contained,
TONIC explicitly uses the QEP-S to recommend a hash join. Thus,
although the join order of the third query is not yet fully contained
in the QEP-S, we can still exploit the operator recommendation of
the already existing prefix. As the prefixes R-S-V and R-S-V-W have
not yet been considered, TONIC implicitly falls back to the default
optimzer’s operator selections for 𝐼 ′2 = 𝐼1 ⊲⊳ 𝑉 , 𝐼 ′3 = 𝐼 ′2 ⊲⊳𝑊 . After
query execution, the respective cost feedback for 𝐼 ′2, 𝐼

′
3 is stored in

a new branch V-W under the existing prefix R-S.
Algorithm 1 summarizes the QEP-S’ life-cycle as foundation of

our Case-Based-Reasoning selection strategy. Given the logical join
order from the underlying optimizer, we traverse the join order
while searching for corresponding QEP-S nodes (Line 3-15). For
the operator recommendation, we distinguish the following cases:
If the prefix does not contain at least two tables, there is no join
and therefore no operator selection (Line 14-15). If the join path
considered so far does not match any existing QEP-S prefix, we
initialize a new QEP-S node and fall back to the operator selection
of the underlying query optimizer (Line 7-12). Otherwise, we reuse
an existing QEP-S prefix and apply the operator with the minimal
associated cost for the join (Line 15). After executing the query

2710

Algorithm 1: QEP-S life-cycle
Input: logical join order logicalPlan, plan synopsis QEP-S
/* retrieve and reuse */

1 initialize empty prefix;
2 QNode = root node of QEP-S;
3 while logicalPlan.hasNode() do
4 nextNode = logicalPlan.nextNode();
5 nextId = nextNode.identifier;
6 add nextId to prefix;
7 if not QEP-S.contains(prefix) then
8 initialize new QEP-S node newQNode;
9 newQNode.identifier = nextId;

10 newQNode.costSummary = empty list;
11 newQNode.recommended =

operator selection of DBM’s native optimizer;
12 QNode.childNodes[nextId] = newQNode;

/* get matching QEP-S node */

13 QNode = QNode.childNodes[nextId];
14 if prefix contains IDs of at least two tables then
15 use QNode.recommended to join next table;
16 execute query with recommended join operators;

/* revise and retain */

17 collect actual cardinalities of intermediate results;
18 foreach QEP-S node corresponding to logicalPlan do
19 get cost of operator alternatives from cost model;
20 add operator cost to the nodes’s cost summary;
21 set node.recommended to operator with minimal cost;

with the recommended join operators (Line 16), we reiterate and
update all previously considered QEP-S nodes according to the cost
feedback based on the actual join cardinalities (Line 17-21).

4 QEP-S DESIGN CONSIDERATIONS
The Query Execution Plan Synopsis (QEP-S) as case base is the most
important ingredient of TONIC. To give a general overview of
TONIC, we previously introduced only a rudimentary version of the
QEP-S. This section is dedicated to elaborate on specific challenges
and their solutions. These challenges are as follows: (C1) While a
QEP-S prefix corresponds to a linear join order so far, how can we
incorporate bushy join plans into the QEP-S trie? (C2) While QEP-S
nodes continuously accumulate the cost of operator alternatives
for each query execution, how can we ensure the freshness of the
cost feedback? (C3) While two query plans may have the same join
order, how can we account for different optimal operator selections
due to different base table filters?

4.1 C1 - Integrating Bushy Query Plans
This section discusses the QEP-S representation of bushy join plans.
In the following, we use the term sub-query as a synonym for inde-
pendent branches of a bushy join tree. Having a QEP-S containing
the prefix R-S-T-U for joining tables 𝑅, 𝑆,𝑇 ,𝑈 , how can we distin-
guish the bushy plan (𝑅 ⊲⊳ 𝑆) ⊲⊳ (𝑇 ⊲⊳ 𝑈) from the linear join
path ((𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇) ⊲⊳ 𝑈 ? While the QEP-S prefix R-S-T-U tracks

Figure 7: Dealing with sub-queries.

the cost of subsequently joining single tables to the intermediate
result of the preceding joins, the bushy plan requires the cost of
joining two intermediate results. Further, the linear prefix stores
the cost for joining 𝑈 with 𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇 but the bushy plan requires
a sub-query where 𝑈 joins with 𝑇 before joining with 𝑅 ⊲⊳ 𝑆 .

Node identifier. The integration of bushy trees into the QEP-S
trie requires the identification of join intermediate results. In case of
a linear join order, we implicitly used the base table IDs as identifier
for QEP-S nodes along the prefix. To distinguish single table nodes
from sub-query nodes, we use "#" as unique tag and combine the
IDs of all tables considered in the sub-query, e.g., #T#U for sub-
query (𝑇 ⊲⊳ 𝑈). Accordingly, a QEP-S node can either represent a
single table or a join intermediate result. Analogously to single table
nodes, sub-query nodes summarize the cost feedback for joining
the embodied intermediate result with the result of the preceding
joins. To account for single table joins within a sub-query (𝑇 ⊲⊳ 𝑈),
we add a dedicated QEP-S branch #T-#U which tracks the cost of
joining 𝑇 with𝑈 before joining 𝑇 ⊲⊳ 𝑈 with 𝑅 ⊲⊳ 𝑆 .

Figure 7 illustrates the previous example for storing bushy join
plans. The sub-query join 𝑇 ⊲⊳ 𝑈 is highlighted yellow. We store
the sub-query’s join path #T–#U to indicate that this QEP-S branch
participates in a sub-query. The result of the sub-query is repre-
sented by the sub-query node #T#U on the QEP-S prefix R–S–#T#U
while the prefix R-S-T-U depicts a linear join plan.

By integrating sub-queries, we get a rudimentary QEP-S version
that supports arbitrary join orders. We call this version plain QEP-S.

4.2 C2 - Adapting to Changes
So far, TONIC recommends physical join operators according to
the QEP-S prefix tree, where each node contains an unbiased cost
summary from previous query feedback. That is, TONIC decides
for the operator associated with the smallest sum of costs:

𝑛∑
𝑖=0

𝑐𝑖 = 𝑐0 + 𝑐1︸ ︷︷ ︸
stale over time

+ · · · + 𝑐𝑛︸︷︷︸
most recent

, (1)

where 𝑐𝑖 is an operator’s cost for the 𝑖-th query (cf. Figure 6). As
more queries are processed, we can be sure that the operator with
minimal accumulated cost is –holistically seen– the single best

2711

choice for the encountered workload. However, the stored costs of
previously executed queries might become stale over time due to
changing workload or data characteristics. Therefore, it is appealing
to give more weight to recent queries. To strike the right balance
between an exact cost accumulation and a fast workload adaptation,
we use the following gamma-weighted sum:

C𝑛 =

𝑛∑
𝑖=0

𝛾𝑛−𝑖𝑐𝑖 = 𝛾𝑛𝑐0 + 𝛾𝑛−1𝑐1 + ... + 𝛾0𝑐𝑛, 𝛾 ∈ (0, 1]

As we only add the current cost 𝑐𝑛 to the previous sum C𝑛−1,
we can use the gamma-weighting recursively:

C𝑛 = 𝑐𝑛 + 𝛾 ∗ C𝑛−1, with C0 = 𝑐0 .

Thereby, the choice of 𝛾 mediates the bias towards the most re-
cent queries. The smaller the gamma-weight, the more we focus on
the most recent history and vice versa. Using 𝛾 = 1 will degenerate
the weighted sum to Equation (1). Further, using 𝛾 < 1 circumvents
an ever-increasing cumulative sum of costs for frequent queries.
That is, considering a specific join with operator-cost 𝑐𝑜𝑠𝑡 , which
is executed an arbitrary number of times, the weighted sum will
never exceed the following fixpoint:

𝛾 ∗ fixpoint+𝑐𝑜𝑠𝑡 = fixpoint ⇐⇒ 𝑐𝑜𝑠𝑡

1 − 𝛾
= fixpoint

Thus, the gamma-weighted sum bounds the cost representation
within a QEP-S node, mediates the bias to recent queries, and can
be seamlessly integrated due to its recursive equivalent.

4.3 C3 - Filter Sensitive Branching
So far, we have described the plain QEP-S as synopsis which cap-
tures abstract join orders of query execution plans. Recall that
TONIC only adds new branches to the plain QEP-S when no existing
prefix matches the given join order. Otherwise, existing branches
are updated with the join operator costs of the current query. While
two queries can result in the same logical join order, their physical
join costs and optimal operator decisions can differ due to different
base table filters. For instance, given filter expressions with small
selectivities, a chain of index nested loop joins might be more cost
efficient than scanning and building hash maps from base tables.
These situations are not covered by the plain QEP-S design.

Filter-aware QEP-S. To reduce conflicting operator decisions
for identical join orders, we propose the filter-aware QEP-S, a QEP-S
that is highly sensitive to filter expressions. Instead of defining a
prefix as plain concatenation of table IDs, we additionally add the
respective filter expressions to the prefix, thus achieving a filter-
sensitive distinction of QEP-S nodes. Accordingly, the filter-aware
QEP-S might introduce new branches for already considered join
orders to account for different filter expressions. Let (𝑅 ⊲⊳ 𝑆) and
(𝜎𝑅.𝑥=𝑦 (𝑅) ⊲⊳ 𝑆) be two logical query plans for joining𝑅, 𝑆 that only
differ in the base table select statement 𝜎𝑅.𝑥=𝑦 (𝑅). While a plain
QEP-S branch R—S would match both plans, the filter-aware version
of TONIC adds a dedicated QEP-S branch R[x=y]—S to account for
the filter expression. Essentially, we only extend the identifier of
a QEP-S node and use a more detailed prefix to distinguish join
orders subject to different base table filter expressions. Other than
that, all previously considered concepts stay the same.

plain QEP-S design filter-aware QEP-S
nodes: 437 nodes: 751

ex
ec

ut
io

n
tim

e
[s

]

296

157

213

114 103

native
optimal

empty QEP-S
pre-populated

(a) JOB

plain QEP-S design filter-aware QEP-S
nodes: 66 nodes: 5375

938
834 823

752
646

native
optimal

empty QEP-S
pre-populated

(b) Stack

Figure 8: Tonic performance overview (Vanilla v12.4).

5 EVALUATION
To evaluate TONIC, we use two different real-world SPJ benchmarks;
namely the Join-Order-Benchmark (JOB) [25] and Stack [29]. While
JOB is based on 10GiB of data extracted from the Internet Movie
Database, Stack contains over 18 million questions and answers
from StackExchange websites with a total size of 100GiB. From
a query perspective, JOB consists of 113 SPJ queries that can be
separated into 33 SPJ-patterns. In contrast, Stack provides fewer join
patterns than JOB but vastly more queries with more diverse filter
predicates per SPJ-pattern. For the Stack benchmark, we restrict
ourselves to 1,000 randomly selected queries from 10 patterns.

All experiments are carried out under the same hardware envi-
ronment as reported in Section 2. We implemented our core data-
structure QEP-S in C++ and use Python scripts as communication
link between Postgres and TONIC. We decided for this loosely-
coupled integration in order to perform a flexible evaluation with
different Postgres versions – namely v12.4 and v9.6. Moreover, to
enable non-trivial decisions between hash and index loop joins,
we run the benchmarks with all foreign key indices available and
analyze particular index requirements in Section 5.5. Further and in
line with related work, we execute all benchmark queries in a ran-
dom order. The following results are consistent with a downstream
re-evaluation based on different execution orders.

General performance. As shown in Figure 8, TONIC signifi-
cantly reduces response times for both benchmarks. The response
times were determined using Postgres Vanilla v12.4 with an explicit
warm-up run. In this warm-up run, the respective benchmark was
executed to fill the database caches. Moreover, both branching poli-
cies (plain and filter-aware) for our QEP-S have been evaluated and
the TONIC learning approach uses a perfect cost model based on
actual response times. The term empty QEP-S indicates that TONIC
starts with an empty trie for the benchmark evaluation and updates
the QEP-S after each query execution. As a result, already learned
operator selections for abstract join paths become available for the
remaining benchmark queries. The term pre-populated indicates
that TONIC has already seen every query, e.g. during the preceding
empty QEP-S run. That is, the pre-populated QEP-S stores operator
selections for all relevant join paths. As each join has a guaranteed
prefix match, the operator selection is fully dictated by TONIC’s
knowledge base. While running the benchmark from an empty
QEP-S evaluates adaptation capabilities, we can judge the informa-
tion loss (distance to optimal planning decision) when running the
benchmark with a pre-populated QEP-S.

2712

native plan TONIC costmodel 1 TONIC costmodel 2

tim
e

[s
]

caching
effects

604

458 453

296

368

114

point of reference
optimal selection

cold start
hot start

(a) Vanilla (v12.4)

native plan TONIC costmodel 1 TONIC costmodel 2

TONIC per-
formance

292
272

251253

162

110

(b) Simplicity (v12.4)

native plan TONIC costmodel 1 TONIC costmodel 2

665
608 618

252 269

182

(c) Sketch (v9.6)

Figure 9: Response times with and without TONIC. To raise awareness of the different time scales we add a point of reference.

From the JOB experiment shown in Figure 8a, we see that TONIC
with the plain QEP-S already heavily reduces query response times
during the first benchmark iteration (empty QEP-S run). Re-running
the benchmark and therefore applying the pre-populated QEP-S re-
veals that the filter-aware QEP-S is able tomatch the best-performing
operator selection (fastest benchmark response time).

Additionally, Figure 8b reveals interesting characteristics of the
Stack benchmark. Again, TONIC considerably reduces benchmark
response times. However, the vast difference between nodes counts
for the plain and filter-aware design indicates less complex join
patterns and a stronger focus on filter expressions. As a result, the
filter-aware QEP-S clearly outperforms the plain design in terms of
query response times but requires substantially more nodes.

5.1 Performance Factors
The results so far only promote a rough impression of TONIC’s
promising behavior. In this section, we provide a representative
in-depth analysis of external performance factors such as different
join orders and cost models. Therefore, we examine TONIC with
multiple optimizers (cf. Sec. 2), where (i) Vanilla is the standard
Postgres v12.4 optimizer, (ii) Sketch is the standard Postgres v9.6
optimizer with access to costly but precise cardinality estimates [4],
and (iii) Simplicity is a pessimistic join ordering concept restricted to
hash joins [14]. Moreover, we evaluate the following scenarios:
cold start. We run the benchmark without a dedicated warm-up

phase of the database. This scenario corresponds to loading
data and directly executing an analytical query workload.

hot start. We run the benchmark after a dedicated warm-up phase.
This scenario corresponds to periodically issuing a query
workload, e.g., to update a dashboard application.

cold start + TONIC. We start the benchmark according to the
cold setting with an empty QEP-S.

hot start + TONIC. We run the benchmark according to the hot
start setting with a pre-populated QEP-S.

Since TONIC bootstraps the cost model of the Postgres optimizer,
we further evaluate TONIC’s performance with two cost functions:
costmodel 1. We use the untuned cost model of a default Postgres

instance. Based on the actual join cardinalities, we search
for the operator selection that minimizes the cost approxi-
mation of the default optimizer. Using the optimizer’s cost

model requires no additional query execution. As a cost func-
tion usually is a relatively simple algebraic expression, the
imposed overhead is ≪ 1%, and thus, can be neglected.

costmodel 2. To avoid approximation errors, the second model
simulates a perfect cost model based on real response times.
That is, the operator selection that minimizes the cost of cost-
model 2 directly minimizes the response time of the bench-
mark. As this model requires additional plan executions, its
imposed overhead is tied to the respective query.

Since TONIC might integrate several cost models for asynchronous
QEP-S updates, we do not report dedicated cost model overheads.
For instance, we can use costmodel 1 for ad-hoc QEP-S updates and
costmodel 2 to fine-tune the QEP-S during low traffic times.

Figure 9 shows representative evaluation results for JOB and
TONIC using the plain QEP-S. The following statements apply in
a similar way to Stack and TONIC using the filter-aware QEP-S.
In accordance with Figure 8, Figure 9 demonstrates that building
TONIC’s case-base in the cold start, empty QEP-S setting positively
affects query response times in all considered scenarios – no matter
the underlying query optimizer and cost model. Applying a QEP-S
pre-populated with feedback from costmodel 2 substantially out-
performs the native operator selections with query response times
close to the optimal selection. In line with Section 2, Vanilla and
Simplicity receive substantial improvements while Sketch performs
already well due to high-quality cardinality estimates. In contrast
to Simplicity, we observe a vast difference between the hot start
and cold start setting when using the unmodified Vanilla plans.
This gap indicates a strong caching behavior for the native plans.
Unfortunately, Postgres’ native cost function (costmodel 1), does
not account for these caching effects. Surprisingly, TONIC’s refined
plans result in smaller cost estimates according to costmodel 1 but
execute slower than the Vanilla native plans in the hot start setting.
However, using costmodel 2 fixes this issue as it accounts for the
caching behavior. As individual outliers and the caching behavior
of Postgres Vanilla combined with costmodel 1make it hard to sepa-
rate TONIC’s performance from caching effects, we use costmodel 2
and a hot database state in the following experiments.

5.2 Rate of Improvement
As has been shown, TONIC with a fully pre-populated QEP-S de-
livers the fastest response times for the considered optimizers and

2713

plain 0 88 161 198 241 261 305 364 388 405 437
filter 0 100 189 260 326 378 458 546 616 669 751

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

100

150

200

250

300

350

400

450

500

re
sp

on
se

 ti
m

e
[s

]
no

de
s

native plan Bao (fully trained)
filter-aware QEP-S
plain QEP-S design
optimal hint selection

(a) Join-Order-Benchmark

plain 0 51 54 54 66 66 66 66 66 66 66
filter 0 653 1242 1767 2302 2830 3299 3835 4372 4904 5375

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

650

700

750

800

850

900

950

1000

1050

re
sp

on
se

 ti
m

e
[s

]
no

de
s

native plan
Bao (fully trained)
optimal hint selection

plain QEP-S design
filter-aware QEP-S

(b) Stack-Benchmark

Figure 10: Rate of improvement: Comparison between TONIC and a recent ML approach.

benchmarks. This pre-population can also be interpreted as a train-
ing phase. In this section, we analyze this aspect in more detail and
show that TONIC achieves satisfying results with significantly less
training samples than Bao [29]. In the following, we refer to the
achieved response time improvement based on a certain amount of
training data as rate of improvement.

Vanilla: In the context of this work, Bao [29] is a very relevant
and recent competitor. Like TONIC, Bao builds on top of an exist-
ing query optimization infrastructure – e.g., Postgres Vanilla – and
issues planning decisions on a per-query base. Bao employs state-of-
the-art tree convolutional neural networks to recognize meaningful
query patterns and to learn when to activate (or deactivate) opti-
mization features. Therefore, the Bao model selects certain query
hints, e.g. "set enable_nestloop to false" to guide planning
decisions of the underlying optimizer for every query. However,
according to [29], these hints are incapable of making fine-grained
planning decision, e.g. avoiding a loop join between table 𝐴 and 𝐵,
while still allowing a loop join between table 𝐶 and 𝐷 .

The Bao Postgres extension is available at [28] and builds on top
of Postgres’ default optimizer. In order to ensure a fair compari-
son, we run TONIC and Bao with Postgres Vanilla v12.4. Moreover,
we evaluate TONIC’s rate of improvement in comparison to Bao.
That means, we train TONIC and Bao based on a certain fraction
of retrieved queries and freeze the respective models (QEP-S and
Neural Network) afterwards. We use the frozen snapshot and run
the full benchmark queries to assess the rate of improvement for
both approaches. To enable Bao’s full potential, we exhaustively
use Bao’s exploration mode [11] where Bao executes and collects
actual response times for every query and hint combination. Thus,
Bao is trained with the maximum amount of feedback possible.

Figure 10 reports benchmark response times of Bao and TONIC
depending on the number of learned queries. The red line marks the
optimal benchmark response time as theoretical optimum within
Bao’s search space. Figure 10a reveals that Bao significantly reduces
query response times after receiving 80% of JOB-queries. Given
only few training examples, Bao’s performance seems unreliable
and strongly fluctuates between training fractions. Interestingly,

TONIC already performs well with few training queries and is able
to surpass the optimal hint selection of Bao due tomore fine-grained
planning decisions. Further, Figure 10b shows that Bao reliably out-
performs the native Postgres plans on the Stack-Benchmark with a
performance close to TONIC with the plain QEP-S design. However,
using TONIC with the filter-aware branching policy substantially
decreases query response times even for small training fractions,
resulting in a much better rate of improvement. In contrast to Bao,
TONIC falls back to the underlying optimizer for completely un-
known query patterns and therefore shows stable improvements
with an increasing number of retrieved queries.

Simplicity: To demonstrate a broad applicability, we reiterate
the previous experiment with the Simplicity join orders and addi-
tionally detail the reuse of already retrieved query patterns (pre-
fixes) to understand why TONIC is able to achieve a good perfor-
mance given only few training examples. Figure 11a shows the
benchmark response time difference to the best operator selection
depending on the fraction of already retrieved queries. As a base-
line we use the optimal operator selection for already retrieved
queries and the native operator selection for the remaining bench-
mark queries. Comparing node counts for the filter-aware and plain
QEP-S, we see that the filter-aware branching again manifests in a
significantly higher number of QEP-S nodes. Using the plain QEP-S,
TONIC is able to transfer meaningful operator decisions to un-
known queries. After retrieving 30% of the queries, the plain QEP-S
already reduces the cumulative benchmark time by 82s (>50% of
maximum reduction). In contrast, the filter-aware QEP-S performs
close to the native operator selection of Simplicity.

To analyze the reuse of learned query patterns, we attach a
counter to QEP-S nodes that is increased whenever a node is ac-
cessed. In line with the previous experiment, we freeze the QEP-S
after receiving a certain fraction of queries and re-run the full
benchmark with the frozen snapshot while only incrementing node
counters whenever a query pattern matches the respective prefix.
Figure 11b comprises the frequency with which prefixes of a partic-
ular length are accessed across all benchmark queries depending

2714

plain 0 92 134 185 218 251 293 325 361 369
filter 0 110 198 280 346 404 488 579 673 735

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrieved queries

10

30

50

70

90

110

130

150

tim
e

di
ff.

 to
 o

pt
im

al
 se

le
ct

io
n

[s
]

no
de

s

optimal, reuse disabled
filter-aware QEP-S
plain QEP-S design

(a) TONIC: rate of improvement

11 22 33 45 56 67 79 90 101
58 73 87 90 99 100 101 101 105

10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrieved queries

2
3

4
5

6
7

8
pr

ef
ix

 le
ng

th

78 102 108 108 111 111 111 113 113

76 91 97 103 106 106 106 108 108

44 59 73 76 83 86 86 90 91

40 58 71 76 81 86 86 90 91

24 43 51 60 71 73 76 84 85

20 25 39 50 60 64 65 68 69

19 25 39 50 59 64 65 68 69

learned-
faster-

plain QEP-S design

11 22 33 45 56 67 79 90 101
25 44 53 60 68 77 83 94 102

10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrived queries

30 56 68 77 86 94 97 103 106

26 42 54 61 68 77 86 93 97

19 28 36 45 51 57 68 75 81

15 25 33 45 51 57 68 75 81

13 23 28 37 45 54 62 70 77

9 13 21 28 33 41 48 55 62

9 13 21 28 33 41 48 55 62

filter-aware QEP-S

20

30

40

50

60

70

80

90

100

(b) QEP-S prefix reutilization

Figure 11: TONIC + Simplicity: rate of improvement and prefix reutilization.

on the number of retrieved training queries and the QEP-S branch-
ing policy. Access counts are indicated by a blue color gradient
where brighter tones mean more accesses. To highlight differences
between the filter-aware and plain QEP-S design, the presentation
is limited to prefixes with up to eight nodes (maximum length is 18).
The table at the bottom reports the absolute number of retrieved
(learned) queries used to populate the QEP-S. Further, out of the
113 JOB queries, we see the number of queries that execute faster
than the native plans based on the number of learned queries.

With regard to Figure 11a, we observe that the smaller node
counts of the plain QEP-S coincide with a stronger prefix reutiliza-
tion. That is, after retrieving 10% of the workload, TONIC with the
plain QEP-S already improves response times for more than 50%
of the JOB queries. After retrieving 40% of the workload, 90% of
the queries have a guaranteed prefix match for the first two joins
(prefix length three). Note that not all queries with a prefix match
receive a response time improvement as the underlying optimizer
might already select the optimal operators in some cases.

5.3 Data Shift
Due to TONIC’s learning capabilities, a quick adaptation to query
changes within workloads is possible. In this section, we analyze
TONIC’s adaptation capabilities under a heavy data shift. Therefore,
we create another JOB instance where we randomly remove half the
tuples from tables with at least 100k tuples. Due to the multiplicity
of join cardinalities the combined tuple count of all query result
sets decreases from 28.8Mio to 196K. To simulate a data shift, we
first run TONIC with the reduced dataset and use the resulting
pre-populated QEP-S to run the default benchmark afterward. That
is, instead of starting with an empty QEP-S, we consecutively reuse
and update the pre-populated QEP-S.

Figure 12a comprises the benchmark response time difference
to the best operator selection and node counts depending on the
fraction of retrieved queries for the pre-populated QEP-S. As a com-
parison, we mark the initial performance for starting with an empty
(not pre-populated) QEP-S by dashed lines. Interestingly, this com-
parison reveals that both QEP-S designs heavily benefit from query
feedback collected during a single run over the reduced dataset. We

already observe a response time reduction of 80s for applying the
pre-populated QEP-S without any feedback from the default dataset
(query fraction 0%). Thus, the QEP-S structure enables TONIC to
maintain meaningful operator decisions under a heavy data shift.
Since the reduced dataset leads to different join orders than the de-
fault JOB dataset, we see a slight increase of QEP-S nodes compared
to the initial empty QEP-S run.

Gamma. To understand to which extent the gamma-weighted
cost feedback (cf. Sec. 4.2) affects adaptation speed, we evaluate
different values of 𝛾 next. By running queries several times, we
continuously add cost feedback to the QEP-S nodes and increase
the cost difference between operator alternatives. Thus, previously
accumulated costs may prevent fast adaptation under data shifts as
we need to override the outdated decisions with a similar amount of
feedback. To simulate stagnating operator decisions, we use TONIC
with the plain QEP-S design and run the benchmark queries 100
times on the reduced dataset while continuously updating theQEP-S.
Afterward, we run the queries 100 times over the default dataset
while updating the pre-populated QEP-S with fresh feedback.

As shown in Figure 12b, we consider 𝛾 ∈ [0.6, 1] and report
the time difference to the optimal operator selection depending
on the number of completed update cycles (workload iterations).
Note that the x-axis is log-scaled as we are most interested in
the first iterations. Iteration 1 corresponds to the first data point
of Figure 12a, that is, applying the pre-populated QEP-S’ operator
decision without feedback from the default dataset. While setting
𝛾 = 1 corresponds to an unweighted cost accumulation, it entails the
slowest adaptation speed. Due to the heavy bias on the deprecated
operator decisions, TONIC needs to revise and retain the QEP-S
more than 60 times for each query to reach near peak performance.
Setting 𝛾 = 0.99 considerably accelerates the adaptation speed.
Using 0.8 ≤ 𝛾 ≤ 0.95 achieves the fastest adaption while preserving
the decision quality of the unweighted feedback history (𝛾 = 1).
Using 0.6 ≤ 𝛾 ≤ 0.7 still achieves a similar performance as the
larger 𝛾 values when directly applying the deprecated operator
decisions (iteration 1). However, since these smaller values of 𝛾
add a massive bias towards the very recent feedback, they provide
quick adaptation but degrade the holistic operator selection quality.

2715

plain 301 307 312 325 328 330 338 357 376 376 378
filter 667 682 710 725 746 751 767 811 835 840 852

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

10

30

50

70

90

110

130

150

tim
e

di
ff.

 to
 o

pt
im

al
 se

le
ct

io
n

[s
]

no
de

s

filter-aware, not pre-populated
plain QEP-S, not pre-populated
filter-aware, pre-populated
plain QEP-S, pre-populated

(a) TONIC’s performance after heavy data shift.

1 10 100
update cycle / workload iteration

10

20

30

40

50

60
70

tim
e

di
ff.

 to
 o

pt
im

al
 se

le
ct

io
n

[s
]

gamma = 1.00
gamma = 0.99
gamma = 0.95
gamma = 0.90
gamma = 0.80
gamma = 0.70
gamma = 0.60

(b) Adaptation speed of plain QEP-S with regard to gamma.

Figure 12: Data shift: Adaptivity after single workload iteration (left) and 100 iterations (right) depending on gamma.

In particular, using 𝛾 = 0.7 indicates a breakpoint where TONIC
erratically switches to the optimal operators selection of the most
recent query. Therefore, frequently used prefixes optimize single
queries instead of capturing operator combinations that minimize
the workload-wide cost of all matching join paths.

5.4 TONIC - Runtime Traits
To test the runtime overhead of TONIC, we anlayze our prototypical
C++ implementation of the QEP-S. Recall that the plain QEP-S con-
stitutes a standard prefix tree where nodes are composed of a table
identifier, the accumulated cost feedback, and references to child
nodes. Child nodes are stored in a standard STL map where keys
correspond to the identifiers of the next join partners considered
along the logical join path (prefix). For the filter-aware QEP-S, we
extend the string type identifier with base table filter expressions
to achieve a filter sensitive distinction of the abstract join patterns.

Table 2 comprises the memory consumption of each fully popu-
lated QEP-S design after benchmark completion. We observe that
the plain QEP-S consumes very little memory due to its simple struc-
ture and small number of nodes. Although the filter-aware QEP-S
uses the same data structure as the plain QEP-S, it requires more
memory due to the higher node count and the extended identifier.
Moreover, the table comprises the cumulative time spent in any in-
teraction with the QEP-S structure split into maintenance and reuse.
Maintenance is the time required to generate the pre-populated
QEP-S during the first workload iteration. This includes all QEP-S
life-cycle stages (cf. Sec. 3.2). In contrast, reuse only reports lookup
times for existing prefixes and thus excludes the time to integrate
new feedback. This is equivalent to a second workload iteration
with a pre-populated, frozen QEP-S. On average, both QEP-S designs
spent less than 20µs per query to recommend operator selections

Table 2: QEP-S runtime traits.∑
JOB memory maintenance reuse (lookup)

plain QEP-S 33.8 KB 0.42 ms 0.01 ms
filter-aware 102.3 KB 1.03 ms 0.15 ms

and integrate new query feedback. Due to the STL map’s constant
lookup time complexity (O(1)), maintenance and reuse times are
mostly unaffected by the branching degree of the QEP-S.

5.5 Discussion
Comparing the plain and filter-aware design, we observe a trade-off
between fast generalization and fine-grained case-by-case decisions.
Therefore, we may conclude that the plain design is more practical
for applications that are expected to run an analytical workload
once, while the filter-aware design better fits dashboard-like appli-
cations that periodically issue a set of analytical queries.

Node Eviction. Despite the lowmemory consumption, we note
an occasionally strong increase of QEP-S nodes —especially for the
filter-aware design— in some scenarios (cf. Fig. 10). To limit the size
of the QEP-S, we consider adding timestamps or access counters to
evict nodes according to a standard policy like LFU or LRU.

Index availability. We show that TONIC’s learned operator se-
lections for hash joins and index loop joins considerably reduce
query response times. However, as index loop joins require the
respective indices, TONIC’s performance also depends on index
availability. Since Postgres uses clustered primary-key indices as
default, we only consider changing foreign-key indices. Starting
with all indices available, we systematically analyze response time
regressions after dropping foreign-key indices. Interestingly, since
TONIC accumulates the cost of operator alternatives, we can ap-
proximate an index significance rating from the QEP-S cost history.
Therefore, standard cost functions can be used to simulate index-
based joins without having access to the actual index [38]. Using
Algorithm 2, we can asses the relevance of (potential) indices by
traversing all QEP-S nodes and summarizing the (potential) perfor-
mance gain of index loop joins for each join participant.

To test the relevance of a particular index, we run JOB with and
without having access to the respective index using TONIC with
the plain QEP-S design. Figure 13 reports benchmark response time
regressions depending on the index availability sorted by the actual
response time difference. Moreover, the figure indicates TONIC’s
approximated time difference for different values of 𝛾 . Remarkably,
for high values of 𝛾 (≥ 0.9), the ranking lines up with the actual

2716

Algorithm 2: QEP-S foreign-key analysis
1 idxGain = dictionary that maps join participants to relative

cost savings due to (potential) fk-indices;
2 for node in QEP-S do
3 if not node.identifier in idxGain.keys then
4 idxGain[node.identifier] = 0;
5 if node.hashJoinCost > node.indexLoopJoinCost then
6 idxGain[node.identifier] +=

node.hashJoinCost - node.indexLoopJoinCost;

other

mk.movie_id

ci.p
erson_id

mi.info_type_id

mc.m
ovie_id

mi.movie_id

ci.m
ovie_id

0

10

20

30

40

50

Δ
re

sp
on

se
 ti

m
e

[s
]

<0.5 1.0

7.2 7.9
10.1

18.3

49.0actual index relevance
QEP-S rating: gamma = 1
QEP-S rating: gamma = 0.9
QEP-S rating: gamma = 0.8

Figure 13: Indices sorted by response time savings.

response time differences. Further, Algorithm 2 commonly identifies
indices (e.g. pi.person_id) that do not contribute to any response
time savings, and thus, can be dropped to free resources.

Two-stage optimizer design. By extending different query op-
timizers, we demonstrate a broad applicability of TONIC. Interest-
ingly, the combination Postgres Simplicity and TONIC offers a new
and comprehensive way for SPJ query optimization. As described
in [14], Simplicity uses a lightweight upper bound and prioritizes
1:n over n:m joins instead of relying on error-prone cardinality
estimates. In the same vein, TONIC incorporates direct query feed-
back without using a dedicated cardinality estimator. Since Sim-
plicity lacks a fine-grained operator selection strategy, TONIC per-
fectly complements the –initially– hash join restricted plans. By
combining Simplicity and TONIC, we envision a novel cardinality
estimation-free two-stage optimizer design that separates logical join
enumeration from fine-grained operator selection. While stage one
relies on the pessimistic join enumeration of Simplicity, stage two
turbo-charges the pessimistic join orders by appropriate operator
selections according to TONIC. In our future research, we seek to
further investigate this approach.

6 RELATED WORK
According to Chaudhuri [6], traditional optimization of arbitrary
SPJ queries requires precise estimates of intermediate result sizes
(cardinalities). Unfortunately, as shown in [35], ad-hoc estimation
techniques are unlikely to achieve such precise estimates. In the
same vein, Leis et al. [25] provide empirical evidence that cost-based
optimizers are prone to disastrous planning decisions if precise
cardinality estimates cannot be provided. To tackle this issue, recent
work investigates more computationally intensive sketches [4, 18,
22] or machine learning (ML) approaches [16, 21, 34, 40, 41] to

achieve precise cardinality estimates. Beyond cardinality estimation,
some ML approaches [23, 29–31] apply reinforcement learning
(RL) for holistic query plan optimization. In particular, Bao [29]
learns and injects SQL hints to guide general planning decisions of
the underlying optimizer. In Section 5.2, we provide an in-depth
comparison with Bao as the most recent RL competitor.

Another related research branch studies adaptive query optimiza-
tion [2] to re-optimize execution plans based on a profiler routine
that tries to identify more suitable plan alternatives. Approaches
like Eddies [1] and Cuttlefish [20] change join orders (or physical
operators, respectively) on a tuple granularity at query runtime.

DB2’s optimizer LEO [39] took a different route and pioneered
the integration of a query feedback loop to account for estimation er-
rors. While LEO builds a fine-grained secondary statistic of relative
adjustments to repair cardinality misestimates, our approach is com-
pletely decoupled from cardinality estimation. The key differences
are as follows: (i) LEO inherently relies on cardinality estimates on
a per-query basis, while TONIC uses a workload-dependent cost
history/summary of abstract join paths, and (ii) LEO’s healing statis-
tic is unable to capture arbitrary predicate correlations – especially
join-crossing correlations. Contrary, TONIC uses a novel synopsis
to store cost feedback based on the exact sizes of join intermediate
results that can be subject to arbitrary predicate correlations.

Moreover, the comprehensive survey by Cormode et al. [8] high-
lights designs and applications of several data-specific synopses.
According to Cormode et al., synopses are compact representations
of massive data sets to capture core characteristics such as distinct
counts, frequency moments, and variance. Data synopses are the
foundation of Approximate Query Processing [5] and cardinality es-
timation for ad-hoc query optimization [24]. The literature covers
a wide spectrum of data synopses, ranging over histograms [3, 17],
wavelets [13, 32], sketches [4, 19], and sampling [15, 33]. In contrast
to data synopses, ourQEP-Synopsis is an abstract of query execution
plans as novel means for physical operator selection.

7 CONCLUSION
Despite many years of research, there has not yet evolved a clear
picture to which extent physical join operator selection accounts
for the plan quality of complex SPJ queries. Therefore, we system-
atically substituted join operators of various query execution plans.
From our evaluation it is evident that good physical join opera-
tor selection is crucial to achieve high-quality plans. To unlock
the potential of optimal operator selections, we present TONIC, a
lightweight, learning-based execuTiOn plaN refInement Component.
To continuously capture and reuse optimal operator selections,
TONIC uses a novel Query Execution Plan Synopsis (QEP-S). We
demonstrate that extending state-of-the-art optimizers with TONIC
substantially improves query response times with little overhead.
Further, TONIC paves the way for new interesting research. In par-
ticular, combining TONIC with Simplicity enables the concept of a
novel two-stage cardinality estimation-free optimizer.

ACKNOWLEDGMENTS
This work was funded by the German Research Foundation (DFG)
within the RTG 1907 (RoSI). We would like to thank the anonymous
reviewers for their valuable and constructive feedback.

2717

REFERENCES
[1] Ron Avnur and JosephM. Hellerstein. 2000. Eddies: Continuously Adaptive Query

Processing. In SIGMOD. ACM, 261–272. https://doi.org/10.1145/335191.335420
[2] Shivnath Babu and Pedro Bizarro. 2005. Adaptive Query Processing in the

Looking Glass. In CIDR 2005.
[3] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-

mensional Workload-aware Histogram. In SIGMOD. 211–222. https://doi.org/10.
1145/375663.375686

[4] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality
Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. In SIGMOD.
18–35. https://doi.org/10.1145/3299869.3319894

[5] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2001. Approximate query processing using wavelets. In PVLDB. VLDB Endow-
ment, 199–223. https://doi.org/10.1007/s007780100049

[6] S. Chaudhuri. 1998. An overview of query optimization in relational systems. In
PODS. ACM, 34–43. https://doi.org/10.1145/275487.275492

[7] Surajit Chaudhuri. 2009. Query Optimizers: Time to Rethink the Contract?. In
SIGMOD. ACM, 961–968. https://doi.org/10.1145/1559845.1559955

[8] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2011.
Synopses forMassive Data: Samples, Histograms,Wavelets, Sketches. Foundations
and Trends in Databases 4, 1–3 (2011), 1–294. https://doi.org/10.1561/1900000004

[9] Asoke Datta, Yesdaulet Izenov, Brian Tsan, and Florin Rusu. 2021. Simpli-Squared:
A Very Simple Yet Unexpectedly Powerful Join Ordering Algorithm Without
Cardinality Estimates. arXiv preprint arXiv:2111.00163 (2021).

[10] Kyotaro Horiguchi et al. 2021. Postgres pg_hint_plan extension. https://
pghintplan.osdn.jp/pg_hint_plan.html. Accessed: 2021-4-20.

[11] R. Marcus et al. 2022. Bao documentation. https://rmarcus.info/bao_docs/. Ac-
cessed: 2022-05-11.

[12] W. Cai et al. 2020. Modified Postgres v. 9.6. https://github.com/waltercai/pqo-
opensource. Accessed: 2020-08-07.

[13] Minos Garofalakis and Amit Kumar. 2005. Wavelet Synopses for General Error
Metrics. 30, 4 (Dec. 2005), 888–928. https://doi.org/10.1145/1114244.1114246

[14] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering. In CIDR.

[15] Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Florian
Wolf, and Lars Fricke. 2021. Small SelectivitiesMatter: Lifting the Burden of Empty
Samples. In SIGMOD. ACM, 697–709. https://doi.org/10.1145/3448016.3452805

[16] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries!. In PVLDB. VLDB Endowment, 992–1005. https://doi.org/10.14778/
3384345.3384349

[17] Yannis Ioannidis. 2003. The History of Histograms (Abridged). In PVLDB. VLDB
Endowment, 19–30. https://doi.org/10.1016/B978-012722442-8/50011-2

[18] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS:
Online Sketch-based Query Optimization for In-Memory Databases. In SIGMOD.
ACM, 804–816. https://doi.org/10.1145/3448016.3452840

[19] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. Online
Sketch-based Query Optimization. CoRR abs/2102.02440 (2021).

[20] Tomer Kaftan, Magdalena Balazinska, Alvin Cheung, and Johannes Gehrke. 2018.
Cuttlefish: A lightweight primitive for adaptive query processing. arXiv preprint
arXiv:1802.09180 (2018).

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[22] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. 2019. Estimating

Cardinalities with Deep Sketches. arXiv preprint arXiv:1904.08223 (2019).
[23] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion

Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[24] Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. 2007. Cardi-
nality estimation using sample views with quality assurance. In SIGMOD. ACM,
175–186. https://doi.org/10.1145/1247480.1247502

[25] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?. In
PVLDB. VLDB Endowment, 204–215. https://doi.org/10.14778/2850583.2850594

[26] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. In PVLDB.
VLDB Endowment, 643–668. https://doi.org/10.1007/s00778-017-0480-7

[27] Guy Lohmann. 2014. Is Query Optimization a “Solved” Problem? https://wp.
sigmod.org/?p=1075. Accessed: 2019-09-23.

[28] R. Marcus. 2022. Bao Postgres extension. https://github.com/learnedsystems/
BaoForPostgreSQL. Accessed: 2022-05-11.

[29] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.
In SIGMOD. ACM, 1275–1288. https://doi.org/10.1145/3448016.3452838

[30] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[31] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for
Join Order Enumeration. In aiDM. ACM. https://doi.org/10.1145/3211954.3211957

[32] Yossi Matias, Jeffrey Scott Vitter, andMinWang. 1998. Wavelet-Based Histograms
for Selectivity Estimation. In SIGMOD. ACM, 448–459. https://doi.org/10.1145/
276304.276344

[33] Guido Moerkotte and Axel Hertzschuch. 2020. alpha to omega: the G(r)eek
Alphabet of Sampling. In CIDR.

[34] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. In PVLDB. VLDB Endowment, 2019–2032. https://doi.
org/10.14778/3476249.3476259

[35] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019.
How I Learned to Stop Worrying and Love Re-optimization. In ICDE. 1758–1761.

[36] Postgres Team. 2020. PostgresSQL. https://www.postgresql.org/. Accessed:
2020-07-22.

[37] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional
Analysis of HashingMethods and Its Implications on Query Processing. In PVLDB.
VLDB Endowment, 96–107. https://doi.org/10.14778/2850583.2850585

[38] K-U Sattler, Eike Schallehn, and Ingolf Geist. 2004. Autonomous query-driven
index mining. In IDEAS. IEEE, 439–448. https://doi.org/10.1109/IDEAS.2004.
1319819

[39] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO-
DB2’s learning optimizer. In PVLDB. VLDB Endowment, 19–28.

[40] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. 2019. Cardinality estimation with local deep learning models. In aiDM.
ACM, 5:1–5:8. https://doi.org/10.1145/3329859.3329875

[41] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. In PVLDB.
VLDB Endowment, 61–73. https://doi.org/10.14778/3421424.3421432

[42] Hansjörg Zeller and Jim Gray. 1990. An Adaptive Hash Join Algorithm for
Multiuser Environments. In PVLDB. VLDB Endowment, 186–197.

2718

https://doi.org/10.1145/335191.335420
https://doi.org/10.1145/375663.375686
https://doi.org/10.1145/375663.375686
https://doi.org/10.1145/3299869.3319894
https://doi.org/10.1007/s007780100049
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/1559845.1559955
https://doi.org/10.1561/1900000004
https://pghintplan.osdn.jp/pg_hint_plan.html
https://pghintplan.osdn.jp/pg_hint_plan.html
https://rmarcus.info/bao_docs/
https://github.com/waltercai/pqo-opensource
https://github.com/waltercai/pqo-opensource
https://doi.org/10.1145/1114244.1114246
https://doi.org/10.1145/3448016.3452805
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1016/B978-012722442-8/50011-2
https://doi.org/10.1145/3448016.3452840
https://doi.org/10.1145/1247480.1247502
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/s00778-017-0480-7
https://wp.sigmod.org/?p=1075
https://wp.sigmod.org/?p=1075
https://github.com/learnedsystems/BaoForPostgreSQL
https://github.com/learnedsystems/BaoForPostgreSQL
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/276304.276344
https://doi.org/10.1145/276304.276344
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://www.postgresql.org/
https://doi.org/10.14778/2850583.2850585
https://doi.org/10.1109/IDEAS.2004.1319819
https://doi.org/10.1109/IDEAS.2004.1319819
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.14778/3421424.3421432

