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ABSTRACT
Learned indexes, which use machine learning models to replace

traditional index structures, have shown promising results in recent

studies. However, existing learned indexes exhibit a performance

gap between synthetic and real-world datasets, making them far

from practical indexes.

In this paper, we identify that ignoring the importance of data

partitioning during model training is the main reason for this prob-

lem. Thus, we explicitly apply data partitioning to index construc-

tion and propose a new efficient and updatable cache-aware RMI

framework, called CARMI. Specifically, we introduce entropy as a

metric to quantify and characterize the effectiveness of data parti-

tioning of tree nodes in learned indexes and propose a novel cost

model, laying a new theoretical foundation for future research.

Then, based on our novel cost model, CARMI can automatically de-

termine tree structures and model types under various datasets and

workloads by a hybrid construction algorithm without any manual

tuning. Furthermore, since memory accesses limit the performance

of RMIs, a new cache-aware design is also applied in CARMI, which

makes full use of the characteristics of the CPU cache to effectively

reduce the number of memory accesses. Our experimental study

shows that CARMI performs better than baselines, achieving an

average of 2.2×/1.9× speedup compared to B+ Tree/ALEX, while

using only about 0.77×memory space of B+ Tree. On the SOSD plat-

form, CARMI outperforms all baselines, with an average speedup

of 1.2× over the nearest competitor RMI, which has been carefully

tuned for each dataset in advance.
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1 INTRODUCTION
As an indispensable access method of database systems, indexes

provide fast data accesses by avoiding expensive table scans. Tradi-

tional index structures are general-purpose, in the sense that they

organize data according to fixed rules without taking advantage of

the characteristics of underlying data distribution. Recently, Kraska

et al. [24] pioneered a line of researchwhere indexes are constructed
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using machine learning models. Specifically, they proposed a struc-

ture called the Recursive Model Index (RMI). In RMI, index nodes

themselves are ML models, and they are connected hierarchically.

To perform a lookup, we traverse the tree-like structure using the

ML model in each node to determine the child branch to continue.

Upon arriving at a position in the data array (i.e., leaf nodes), we

perform the “last-mile” search within a range to correct the model

prediction error. [24] demonstrates that the RMI and learned in-

dexes generally exhibit smaller memory consumption and superior

search performance compared to B+trees.

Despite the promising results shown in the latest research [13,

15, 16, 22, 24, 33, 41], few real database systems choose to adopt

learned indexes. An outstanding reason, as indicated in the SOSD

benchmark paper [21], is that the performance of learned indexes

(represented by the RMIs) drops significantly when moving from

synthetic datasets to real-world datasets. The average latency of

an index lookup is 2.92× larger on real-world datasets than that on

the same-sized synthetic ones, as shown in [21].

We argue that the main reason behind such a performance gap

lies in the fact that existing RMI designs overlook the importance

of data partitioning during model training. Many current RMIs,

including the original proposal [24], typically emphasize the “model-

fitting” aspect during index construction. Since the fanout and depth

of the index are predetermined (andmanually tuned), each leaf node

is assigned a corresponding subset of the data and tries to train

a model to fit the cumulative distribution function (CDF) of the

assigned data as accurately as possible.

The consequence of such a rigid data partitioning strategy con-

tributes to the large performance gap between synthetic and real-

world datasets for RMIs. For synthetic datasets, the local data distri-

bution at each leaf node is relatively “smooth” so that the expected

prediction error is small, leading to a fast last-mile search. Real-

world datasets, however, are much “bumpier”, and the degree of

“bumpiness” varies across data ranges. Such irregularity in data

distribution makes it difficult for simple models (e.g., linear re-

gression) to achieve accurate predictions under predetermined or

manually-tuned data partitions. Larger prediction errors require

more memory accesses to correct and, therefore, hurt the index

performance. Prior work such as [13, 16, 45] has attempted to au-

tomate partitioning during index construction. Their approaches,

however, are heuristic-based and only work on a fixed model type,

i.e., linear model.

In this paper, we propose to address the issue by explicitly incor-

porating data partitioning into the RMI construction process. First,

we propose a new cost model that considers the data partitioning

aspect for RMI training. The effectiveness of data partitioning is

quantified using the entropy [18] over the number of data points in
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each partition. The intuition is that larger entropy indicates smaller

partition sizes and a more even size distribution. Smaller partitions

are preferable because they facilitate leaf-node training and pro-

duce more accurate models, especially on non-linear datasets. In

addition, smaller child partitions flatten the hierarchical structure

of RMI, and thus reduce cache misses. Meanwhile, more even child

partitions lead to a more balanced tree structure.

Based on the new cost model, we formalize the index construc-

tion problem as an optimization problem and solve it using an

algorithm combining the greedy and the dynamic programming

approaches. Unlike CDFShop [33], where the node types for each

layer are determined ahead of time, our algorithm selects the best

model and the best partition fanout for each node automatically at

construction time without the need for recompilation.

Finally, since memory accesses dominate the lookup perfor-

mance for RMIs [31], we design the memory layout for each node

in a cache-aware manner. Specifically, we require the size for every

node with a model to be exactly the cache line size (i.e., 64 bytes) so

that each node visit (or model inference) incurs at most one cache

miss. For leaf nodes containing data points across multiple cache

lines, we adopt a two-level B+tree design, consisting of a 64-byte

root and multiple 256-byte data blocks. Such a cache-aware layout

can effectively reduce the number of memory accesses during the

last-mile search as in existing solutions [13, 22, 24, 33], especially on

real-world datasets, with only a small space overhead. In addition,

fixed-sized nodes facilitate memory prefetching where memory

accesses are parallelized to further reduce the access latency.

We present CARMI, a novel Cache-Aware RMI framework that

implements the new ideas introduced above with six example tree

node (model) types. Our experimental study shows that CARMI

outperforms all baselines on both our microbenchmark and the

SOSD benchmark. In our microbenchmark, CARMI achieves an

average speedup of 2.2× (up to 4.2×) and 1.9× (up to 7.2×) compared

to B+tree and ALEX, respectively, while only using about 0.77×
memory space of B+tree. On the SOSD benchmark, CARMI achieves

an average speedup of 2.5× (up to 3.0×)/1.5× (up to 2.3×) compared

to B+tree/ALEX, respectively. Compared to its closest competitor

RMI, which has been carefully tuned for each dataset in advance,

CARMI is still 1.2× faster on average (up to 1.5×).
We make the following contributions:

• We identify that the inflexibility of data partitioning for learned

indexes is one of the key reasons why there is a significant

performance gap when applying them to synthetic and real-

world datasets.

• We propose a new cost model for RMI training, which uses

entropy across partition sizes to measure the effect of data parti-

tioning on index performance.

• We formalize the index construction problem as an optimization

problem and propose an algorithm to solve it efficiently and

automatically.

• We propose CARMI, a novel RMI framework incorporating the

new cost model and automatic node selection algorithm. CARMI

also uses a new memory layout that is more cache-friendly, es-

pecially for the last-mile search.

• We conduct a series of experiments to demonstrate the superior

performance and robustness of our framework.

The remainder of this paper is outlined as follows: In Section 2,

we review the RMI framework and discuss the two ways of viewing

RMI: model fitting vs. data partitioning. In Section 3, we derive a

cost model for the entire index structure, and introduce entropy as a

metric for characterizing the node performance. Section 4 discusses

the cost-based hybrid index construction algorithm, which is used

to choose different node settings flexibly to construct the optimal

index structure during runtime. In Section 5, we explain the cache-

aware designs of CARMI, including the new memory layout and

a prefetching mechanism. The experimental setup and results are

shown in Section 6. We discuss the possible extension directions

and future works in Section 7. Finally, we discuss related work in

Section 8 and conclude in Section 9.

2 MOTIVATION AND CARMI
2.1 RMI and Data Partitioning
Figure 1 shows the structure of the Recursive Model Index (RMI), an

ML-based index framework. Each inner node in the RMI represents

an order-preserving regression model: the model 𝑓 : 𝑘 → 𝑖𝑑𝑥

takes a key 𝑘 as input, and outputs an integer 𝑖𝑑𝑥 ∈ {1, 2, . . . , 𝑐},
where 𝑐 is the number of child nodes of this inner node. The order-

preserving property guarantees 𝑘1 ≤ 𝑘2 ⇒ 𝑓 (𝑘1) ≤ 𝑓 (𝑘2) so that

an RMI can answer range queries correctly. At the bottom layer,

leaf nodes are trained using linear models to fit the underlying data

points. Searching the RMI given 𝑘 proceeds as follows: starting

from the root, we evaluate the model to determine which child

node to visit for the next step. This process is repeated until a leaf

node is reached. Finally, we perform a binary search (bounded by

the maximum error) to retrieve the matching records.

key

root  model

model 2.1 model 2.2 model 2.n…

model 3.2model 3.1 model 3.nmodel 3.1 …

array / gapped array

Inner Nodes

p = /* output of  model */

idx = p * childNumber

key

the pointer to the corresponding branch

inner node

Binary search among them
 (size is childNumber) 

…

input_key

The branch to the next  level
（key[i] ≥ input_key）

key[i- 1] < input_key

array
gapped array

array / 
gapped array

LR inner node

NN inner node

BS inner node

Histogram 
inner node

Leaf Nodes

key root  model

model 2.1 model 2.2 model 2.n…

model 3.2model 3.1 model 3.nmodel 3.1 …

Inner Nodes

Leaf Nodesleaf  node leaf  node leaf  node leaf  node…

p = /* output of  
model */ next branch

inner node
idx = p * 

childNumberkey

Figure 1: Learned Index

Existing RMI designs [13, 15, 16, 22, 24, 33, 41] view the index

construction problem from the perspective of model fitting. In this

view, models are trained to minimize a loss function (e.g., squared

loss function) to best fit the CDF of a given dataset. Specifically,

the root model aims to fit the CDF of the entire dataset, while

the leaf-node models try to fit local distributions. Under such a

problem setting, however, the index fanout and depth are typically

predetermined before model training, thus wasting opportunities to

improve model accuracies through more flexible data partitioning.

Approaching RMI construction via a “model-fitting” view can

lead to a significant performance drop when shifting from synthetic

datasets to real-world datasets. Because real-world datasets are of-

ten non-smooth and non-linear, as shown in Section 6.3, simple

models such as linear regression cannot fit well in certain CDF

ranges if the partitioning is too coarse-grained. Inaccurate pre-

dictions from the models then require additional procedures such
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as large range scans to finish the “last-mile” search. These large-

range searches span many cache lines and require multiple memory

accesses, resulting in performance degradation.

In this paper, we propose to look at RMI construction from a

“data-partitioning” view, where the models aim to partition a given

dataset more evenly into smaller chunks to form a flatter and more

balanced tree. Moreover, larger fanouts (i.e., more child partitions)

of the upper-level models are preferable in terms of the overall

prediction accuracy because lower-level nodes now can work on

smaller local datasets to reduce their maximum model prediction

errors. However, more partitions could lead to space overhead and

performance degradation because of potentially more complexmod-

els. Therefore, we include the effectiveness of data partitioning in

our new cost model along with search time and space, and de-

velop an algorithm to train an RMI automatically using an objective

function derived from the cost model.

To quantify the effectiveness of data partitioning, we propose to

use entropy, an information-theoretic metric [18]. Suppose a node

𝑀 distributes a total of 𝑛 data points into 𝑐 different child nodes
1
,

then the entropy 𝐻 (𝑀) is defined as: 𝐻 (𝑀) = −∑𝑐
𝑖=1 𝑝𝑖 log2 𝑝𝑖 ,

where 𝑝𝑖 =
𝑛𝑖
𝑛 and 𝑛𝑖 is the number of data points allocated to the

𝑖-th child node. As mentioned in the introduction, larger entropies

mean that datasets are divided more evenly into smaller subsets,

which is more desirable as discussed above. Further, the entropy

also helps establish the notion of local node efficiency, as described

in Section 3.3.1, which combines the time and space cost of a single

node and its dataset partitioning utility into a single metric. With

this metric, we can effectively compare models locally without

global information, thus speeding up index construction.

2.2 Overview of CARMI
In this paper, we extend the RMI framework and propose a re-

fined general RMI framework that can automatically build suitable

and updatable indexes for given datasets, called Cache-Aware RMI

(CARMI). CARMI retains RMI’s core idea of replacing traditional

indexes with ML models and has similar procedures for querying

data points. There are two types of nodes in CARMI: inner nodes

and leaf nodes. Inner nodes use the trained models to navigate in

the tree structure, while leaf nodes store 8-byte pointers to the

data records (similar to leaf nodes in a B+tree). Differently from

the original RMI, we use a new memory layout (§ 5) where all tree

nodes are limited to 64 bytes and are stored in a single array. In

addition, CARMI allows nodes to use different types of models for

different sub-ranges in the dataset to maximize performance and

compression.

For index construction, CARMI uses a hybrid algorithm (§ 4)

whose optimization objective is to minimize the weighted sum

of time and space costs (§ 3). With this algorithm, CARMI can

automatically construct indexes with good performance at runtime.

We show an example of CARMI below:

Example 1. Consider a dataset consisting of 500 data points 𝐷 =

{0, 1, · · · 199, 200, 202, · · · , 798}. As shown in Figure 2, an example
CARMI has four layers. The root node adopts a linear regression model
(𝑖𝑑𝑥 = ⌊0.005 × 𝑘𝑒𝑦⌋) to index its children. The LR inner node 𝑀0

1
Note that the number of child nodes for an inner node is part of the model configura-

tions, and we need to determine its optimal value when constructing the index.

Root
(linear regression model)

M0 (LR model) [0, 199]

Data: 𝐷 = {0, 1, 2, … , 199,
200, 202, 204, … , 798}

Find key: 592 

M1 [200, 398]

L14 [200, 230]
…

M2 [400, 598]

L27 [592, 598]

M3 [600, 798]

L28 [600, 630] L34 [792, 798]…

Leaf nodes M1 – M5

Data blocks  L0 – L34  (actually store data points)

Inner nodes M0

M4 [0, 99]

L0
[0, 15]

L6
[96, 99]

M5 [100, 199]

L7
[100, 115]

L13
[196, 199]

… …

Figure 2: A Simple Example of CARMI

manages the first 200 data points, which are further indexed by two
leaf nodes 𝑀4 and 𝑀5. The remaining 300 data points are directly
indexed by leaf nodes (𝑀1 −𝑀3), each of which is associated with 7
data blocks.

Suppose we have a point query with key = 592. We first access
the root node and use its model to calculate the next index (𝑖𝑑𝑥 =

⌊0.005×592⌋ = 2). After fetching the content of𝑀2, we use its strategy
to get the index of the data block (𝐿27), where we perform a binary
search for key 592. Because each node in CARMI occupies exactly one
cache line, assuming that the root is already in the CPU cache, the
above query only requires two random memory accesses: one for leaf
node𝑀2 and the other for data block 𝐿27.

3 COST MODEL OF CARMI
In this section, we describe our new cost model for index construc-

tion in CARMI. To quantify the performance of tree nodes in a

standalone manner, we first characterize each node in terms of time

cost, space cost, and entropy, and then derive a cost model for the

entire index structure. Since the analysis is generic, CARMI can

support any new node types as long as they can be represented ac-

cordingly. Then, we use the cost model as an optimization objective

to find the suitable node design and tree structure at runtime. We

also briefly describe some example node designs available in our

open-sourced CARMI [1] and used in our experiments in Section 6.

The rest of the section is organized as follows. We analyze in-

ner/leaf nodes from three aspects in Sections 3.1 and 3.2, respec-

tively. The entire cost model and the formulation of the index con-

struction problem are described in Section 3.3. Finally, we briefly

discuss a few specific tree node designs in Section 3.4.

3.1 Inner Nodes
The main functionality of inner nodes is determining which branch

to go through, so that we can quickly map a given key to its cor-

responding leaf node. In the following, we discuss three separate

dimensions for characterizing inner nodes: the time required for

determining the next branch, the space cost of the node, and the

data partitioning effectiveness of the node.

3.1.1 Time. The time cost of an inner node includes two parts: the

access time and the computation time, denoted as 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 and

𝑇𝐶𝑜𝑠𝑡𝐶𝑃𝑈 , respectively. 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 refers to the time to read the

node content, which is equal to the latency of the main memory

due to our cache-aware design in Section 5. 𝑇𝐶𝑜𝑠𝑡𝐶𝑃𝑈 is the time

required for a model to compute the index of the next node, which

only depends on the model type. Then, the total time required

for an inner node 𝑀 to predict the next branch is: 𝑇𝐶𝑜𝑠𝑡 (𝑀) =

𝑇𝐶𝑜𝑠𝑡𝐶𝑃𝑈 +𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 .
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Root (M1)

M2 M3

M4 M5 Mi…

Mi+1 Mi+2 … Mj MK…Leaf nodes

Inner nodes

TCost(Mi) : 𝑇𝐶𝑜𝑠𝑡𝐶𝑃𝑈 + 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠
SCost(Mi):  64 𝐵𝑦𝑡𝑒𝑠
H(Mi):    −∑𝑝k log 𝑝𝑘
TCostread (Mj): 𝑇𝐶𝑜𝑠𝑡!""#$$ + 𝑇𝐶𝑜𝑠𝑡%&'( + 𝑇𝐶𝑜𝑠𝑡)*+",(

TCostwrite (Mj): 𝑇𝐶𝑜𝑠𝑡!""#$$ + 𝑇𝐶𝑜𝑠𝑡%&'- + 𝑇𝐶𝑜𝑠𝑡)*+",-

SCost(Mj): 64 𝐵𝑦𝑡𝑒𝑠 + 𝑆𝑝𝑎𝑐𝑒 𝑑𝑎𝑡𝑎

𝔼𝑞𝜖𝑄 [TCost (T, q)]= ∑.!∈0 𝑃 𝑀1 𝑇𝐶𝑜𝑠𝑡(𝑀1) SCost (T) = ∑.!∈0 𝑆𝐶𝑜𝑠𝑡(𝑀1) P(Mi):
# +3 41$15$ 5+ 6+7# .!

# +3 !** 89#:1#$

Root node

Figure 3: Cost Model of CARMI

3.1.2 Space. The space cost of an inner node𝑀 is the total amount

of space in bytes, which is denoted as 𝑆𝐶𝑜𝑠𝑡 (𝑀).

3.1.3 Entropy. Weuse the entropymetric to characterize the ability

of an inner node to partition a dataset evenly. The entropy of an

inner node𝑀 is: 𝐻 (𝑀) = −∑𝑐
𝑖=1 𝑝𝑖 log2 𝑝𝑖 (details in Section 2.1).

3.1.4 Root Node. The root node in CARMI is handled differently

compared to inner nodes. Since the root node is always accessed

during lookup, we can assume that it is in the cache memory. As a

result, its 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 is equal to the latency of the cache memory.

3.2 Leaf Nodes
Leaf nodes are used to manage the actual data points and can also be

characterized in terms of time and space cost. The third dimension

is the capacity for storing data points (i.e., how many data points

can be stored in the leaf node).

In CARMI, we design a new type of leaf node similar to a two-

level B+tree node. Its root is 64 bytes and contains pointers to

multiple 256-byte data blocks that store data points.

3.2.1 Time. For leaf nodes, the time cost of two specific operations

is analyzed: insert a new data point and lookup a data point
2
.

Similar to inner nodes, the time to access the node (𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 )

is equal to the main memory access latency. Due to the new leaf

node, finding a data point requires first finding the index of the

data block, and then locating the data point within the block. Their

time costs are denoted as 𝑇𝐶𝑜𝑠𝑡𝑅
𝐶𝑃𝑈

and 𝑇𝐶𝑜𝑠𝑡𝑅
𝐵𝑙𝑜𝑐𝑘

, respectively.

As for the insert operation, the content of both leaf node and

data blocks might need to be changed accordingly. To reflect this,

we use a different superscript (𝑇𝐶𝑜𝑠𝑡𝑊
𝐶𝑃𝑈

and 𝑇𝐶𝑜𝑠𝑡𝑊
𝐵𝑙𝑜𝑐𝑘

).

Overall, the time cost of a leaf node is modeled as:

𝑇𝐶𝑜𝑠𝑡𝑟𝑒𝑎𝑑 (𝑀) = 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 +𝑇𝐶𝑜𝑠𝑡𝑅𝐶𝑃𝑈 +𝑇𝐶𝑜𝑠𝑡𝑅
𝐵𝑙𝑜𝑐𝑘

𝑇𝐶𝑜𝑠𝑡𝑤𝑟𝑖𝑡𝑒 (𝑀) = 𝑇𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠 +𝑇𝐶𝑜𝑠𝑡𝑊𝐶𝑃𝑈 +𝑇𝐶𝑜𝑠𝑡𝑊
𝐵𝑙𝑜𝑐𝑘

(1)

3.2.2 Space. The space cost of a leaf node𝑀 , consists of the bytes

of metadata and data blocks. Then the total space cost is:

𝑆𝐶𝑜𝑠𝑡 (𝑀) = 𝑆𝐶𝑜𝑠𝑡𝑙𝑒𝑎𝑓 + 𝑆𝑝𝑎𝑐𝑒 (𝑑𝑎𝑡𝑎) (2)

where 𝑆𝐶𝑜𝑠𝑡𝑙𝑒𝑎𝑓 is 64 bytes, and 𝑆𝑝𝑎𝑐𝑒 (𝑑𝑎𝑡𝑎) is the total amount

of space occupied by the data blocks.

2
Deletion and update operations are not discussed since they are similar to the read

access operations (we adopt a lazy deletion approach).

3.2.3 Capacity of Leaf Nodes. The capacity of a leaf node refers to

the number of data points stored in it, and it depends on the total

amount of space allocated for data points and the way they are

arranged. For example, if we need to make room for future inserts

to reduce the latency of insert operations, then the capacity of the

leaf node will be reduced accordingly.

3.3 The Optimization Problem
Based on the above analysis, we can define a cost model for the

entire index structure. The time cost of queries can be estimated

by utilizing the above analysis results: For any query 𝑞 and index

structure 𝑇 , let the traversal path of 𝑞 in 𝑇 be𝑀1 (𝑟𝑜𝑜𝑡) → 𝑀2 →
. . . → 𝑀𝑘 (𝑙𝑒𝑎𝑓 ), then the time cost of 𝑞 can be approximated as:

𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞) =
𝑘∑︁
𝑖=1

𝑇𝐶𝑜𝑠𝑡 (𝑀𝑖 ) (3)

The space cost of the index structure is simply the sum of the

space cost of all inner nodes and leaf nodes:

𝑆𝐶𝑜𝑠𝑡 (𝑇 ) =
∑︁
𝑀𝑖 ∈𝑇

𝑆𝐶𝑜𝑠𝑡 (𝑀𝑖 ) (4)

Now we can formalize the index construction problem as an

optimization problem: We would like to find the optimal index

structure that minimizes the average time cost of each query under

a given space cost budget. Here the average time cost is evaluated

with respect to a fixed query workload known in advance, which

can be obtained from users’ recent history queries. In most cases,

recent history queries will faithfully reflect the characteristics of

future queries. If no history queries are available, we can use a

uniform access workload where each data point is accessed once.

The problem of finding an optimal tree structure is formulated

as follows:

Problem 1. Let 𝑄 = {𝑞1, . . . , 𝑞𝑚} be a collection of queries, and
𝐷 = {𝑑1, . . . , 𝑑𝑛} be the collection of keys to be maintained in the
index structure. Find the optimal index tree structure 𝑇 such that
E𝑞∈𝑄 [𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞)] is minimized, under the constraint that the total
space cost of 𝑇 does not exceed a fixed budget 𝐵: 𝑆𝐶𝑜𝑠𝑡 (𝑇 ) ≤ 𝐵.

Problem 1 is a constrained optimization problem, and one com-

mon strategy for solving it is to convert it to an unconstrained
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problem using the Lagrange multiplier method [9]. Then, Prob-

lem 1 can be transformed into a roughly equivalent form with a

linear combination of time and space cost as the objective:

Problem 2. Let 𝑄 = {𝑞1, . . . , 𝑞𝑚} be a collection of queries, 𝐷 =

{𝑑1, . . . , 𝑑𝑛} be the collection of keys maintained in the index, and 𝜆
be a positive constant parameter. Find the optimal index tree structure
𝑇 such that E𝑞∈𝑄 [𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞)] + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑇 ) is minimized.

Problem 2 suggests that we ultimatelywant tominimize aweighted

sum of the time and space cost of the index, and we will describe

an algorithm for solving it in Section 4.

Let 𝑃 (𝑀𝑖 ) be the fraction of history queries passing through

a tree node 𝑀𝑖 . Then the expression E𝑞∈𝑄 [𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞)] can be

rearranged into an alternative form:

E𝑞∈𝑄 [𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞)] =
∑︁
𝑀𝑖 ∈𝑇

𝑃 (𝑀𝑖 )𝑇𝐶𝑜𝑠𝑡 (𝑀𝑖 ) (5)

Finally, a summarization of the cost model of CARMI can be

found in Figure 3 for fast reference.

3.3.1 Theoretical Analysis. In the following analysis, we assume

the history queries to be a uniform access of data points for simplic-

ity. Then, the value of 𝑃 (𝑀𝑖 ) is the same as the total fraction of data

points in the subtree of 𝑀𝑖 . With this assumption, the following

theorem establishes a connection between

∑
𝑖 𝑃 (𝑀𝑖 )𝐻 (𝑀𝑖 ) and the

total number of data points 𝑛.

Theorem 3.1. Let 𝑇 = {𝑀1, . . . , 𝑀𝐾 } be an index structure with
𝐾 nodes in total. 𝑃 (𝑀𝑖 ) represents the ratio of data points in node𝑀𝑖
relative to the total number 𝑛. Then we have:

∑𝐾
𝑖=1 𝑃 (𝑀𝑖 )𝐻 (𝑀𝑖 ) =

log
2
𝑛, where for leaf nodes,𝐻 (𝑀𝑖 ) is defined as log2 (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑖 ))

and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑖 ) is the capacity of leaf nodes (§ 3.2.3).

The proof of this theorem can be found in our technical re-

port [47]. Essentially, Theorem 3.1 states that the weighted sum of

the entropy of all tree nodes is always a constant value. In other

words, entropy characterizes the “contribution" of each tree node

to the index structure: the higher entropy each node contributes,

the less the overall number of tree nodes we need in the index

structure.

It is also of interest to compare Theorem 3.1 with the optimiza-

tion objective of Problem 2. We can rewrite the objective using

Equation 5:

Objective =

𝐾∑︁
𝑖=1

[𝑃 (𝑀𝑖 )𝑇𝐶𝑜𝑠𝑡 (𝑀𝑖 ) + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑀𝑖 )]

Comparing with Theorem 3.1, we see that intuitively each tree

node𝑀 contributes 𝑃 (𝑀)𝐻 (𝑀) entropy-wise to the index structure
while incurring 𝑃 (𝑀)𝑇𝐶𝑜𝑠𝑡 (𝑀) + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑀) cost to the overall

objective. Thus the ratio of these two terms can be used to quantify

the local efficiency of node𝑀 :

cost-ratio(M) =
𝑃 (𝑀)𝑇𝐶𝑜𝑠𝑡 (𝑀) + 𝜆(𝑆𝐶𝑜𝑠𝑡 (𝑀))

𝑃 (𝑀)𝐻 (𝑀) (6)

Generally, we want to minimize the cost-ratio of all tree nodes,

especially the ones with a large value of 𝑃 (𝑀)𝐻 (𝑀). For example,

if all tree nodes have a cost-ratio less than 𝑐 , then the optimization

objective would be bounded by 𝑐 log
2
𝑛.

Table 1: The Mechanism of Various Types of Nodes

Node Mechanism

LR Use a LR model to determine the corresponding branch

P. LR The model is a piecewise linear regression model

Hist Determine the branch through a histogram lookup table

BS

Use binary search to determine the branch, similar to

B+tree nodes

CF Array A two-layer cache-friendly structure similar to a B+tree

Ext. Array

Only store meta data, and data points are stored in an

external location

3.4 Specific Implementation
We have implemented four types of inner nodes and two types

of leaf nodes in CARMI. For inner nodes, they use either linear

regression, piecewise linear regression, binary search or histogram

models to predict the next branch. We have implemented two differ-

ent types of leaf nodes: cache-friendly array (CF array) and external

array. CF array leaf nodes store data points compactly in data blocks

in a sequential manner, and the leaf node itself stores the minimum

key values of data blocks. External array leaf nodes are used for

primary index structures, where the original data points are already

sequentially stored in an external location. In such a case, we only

need to store pointers to external locations in the leaf node.

Note that the choice of inner/leaf nodes can be flexibly deter-

mined at runtime and do not need to agree on a single one through-

out the tree structure. The mechanism of each type is outlined

in Table 1. The specific implementation details can be found in

our technical report [47], along with the empirical performance,

entropy, and local efficiency of these nodes.

4 INDEX CONSTRUCTION ALGORITHM
In Section 3.3, we have shown that the optimal index tree structure

can be constructed by minimizing the weighted sum of the time

and space cost of the index structure (see Problem 2). In this section,

we describe an algorithm for solving it.

First, let us rearrange the optimization objective as follows:

E𝑞∈𝑄 [𝑇𝐶𝑜𝑠𝑡 (𝑇, 𝑞)] + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑇 ) = 𝑇𝐶𝑜𝑠𝑡 (𝑟𝑜𝑜𝑡) + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑟𝑜𝑜𝑡)

+
𝑐∑︁
𝑖=1

[
��𝑄𝑇𝑖 ��
|𝑄 | E𝑞∈𝑄𝑇𝑖

[𝑇𝐶𝑜𝑠𝑡 (𝑇𝑖 , 𝑞)] + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑇𝑖 )] (7)

where 𝑐 represents the number of child nodes of the root node,𝑇𝑖 is

the sub-index tree of the 𝑖-th child node, and𝑄𝑇𝑖 is the collection of

queries that access𝑇𝑖 . Note that the number of child nodes is chosen

from an exponentially increasing sequence to reduce training time,

such as the powers of 2.

As we can see, the terms inside the square brackets have a very

similar form compared to the original objective. In other words,

once the root node of this subtree is fixed, the original optimiza-

tion problem can be broken down into several independent sub-

problems with similar forms, and each sub-problem can be solved

independently. We have two algorithms to solve each sub-problem:
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• Node selection algorithm: A greedy algorithm that only con-

siders local information to construct nodes, which is used when

the subtree manages a large dataset (e.g., the root node).

• Dynamic programming (DP) algorithm: This algorithm is

guaranteed to find the optimal sub-structure but is slower, and

we only use it when the sub-dataset is small.

Our hybrid construction algorithm uses these two algorithms in

combination, and the overall workflow for constructing the index

structure for a given dataset is:

• First, we choose a root node setting using the greedy node selec-

tion algorithm.

• Next, we use the setting obtained in the previous step to assign

the dataset to the child nodes of the root, and then construct a

sub-index tree over each assigned sub-dataset.

• Each child node chooses the appropriate algorithm to build the

sub-index structure according to the size of the sub-dataset.

• Finally, all the sub-structures are merged together and linked to

the root node to form the complete index tree.

The rest of this section is organized as follows: The greedy node

selection step is described in Section 4.1, and the DP algorithm is

described in Section 4.2.

4.1 Node Selection Algorithm
For nodes that manage a large dataset, such as the root node, we

hope to quickly select a good node design using only local informa-

tion. Below, we develop a greedy node selection algorithm to find

the locally optimal solution without considering the design of the

lower-level nodes:

• For the current node, this algorithm enumerates various possible

node types and considers several choices for the number of child

nodes. For each setting, we calculate the time cost, space cost

and entropy of the node.

• Then, we calculate the cost ratio of each setting using Equation 6

in Section 3.3, and select the one with the minimum cost ratio as

the current node.

• Using the setting obtained in the previous step, we assign each

data point to one of the child nodes of the current node.

• Finally, the sub-index tree of each child node is constructed

recursively using either this algorithm or the DP algorithm.

4.2 Dynamic Programming Algorithm
As shown in Equation 7, the original optimization problem can be

decomposed into similar sub-tasks once the root node is fixed. Based

on this intuition, we can use a dynamic programming algorithm to

solve this problem:

• State: The state of each step is the dataset handled by the current
node, denoted as 𝐷𝑙,𝑟 , where 𝑙 and 𝑟 are the left and right indexes

of the entire dataset. Let 𝑄𝑙,𝑟 be the collection of queries that

access 𝐷𝑙,𝑟 , and 𝑇𝑙,𝑟 be the sub-index tree for 𝐷𝑙,𝑟 . Then the

corresponding entry 𝑐𝑜𝑠𝑡 [𝑙, 𝑟 ] in the DP table is the value of the

following expression:

𝑐𝑜𝑠𝑡 [𝑙, 𝑟 ] = min

𝑇𝑙,𝑟
{
��𝑄𝑙,𝑟 ��
|𝑄 | E𝑞∈𝑄𝑙,𝑟

[𝑇𝐶𝑜𝑠𝑡 (𝑇𝑙,𝑟 , 𝑞)] + 𝜆𝑆𝐶𝑜𝑠𝑡 (𝑇𝑙,𝑟 )} (8)

• State transition equation: Let 𝑆 be the collection of all possible

settings for the root node of the sub-index tree, including the

type of the root node and the number of the child nodes. Then

according to Equations 7 and 8, the state transition equation is:

𝑐𝑜𝑠𝑡 [𝑙, 𝑟 ] = min

(𝑀,𝑐) ∈𝑆
{
��𝑄𝑙,𝑟 ��
|𝑄 | 𝑇𝐶𝑜𝑠𝑡 (𝑀)+𝜆𝑆𝐶𝑜𝑠𝑡 (𝑀)+

𝑐∑︁
𝑗=1

𝑐𝑜𝑠𝑡 [𝑙 𝑗 , 𝑟 𝑗 ]}

where𝑀 and 𝑐 are the node type and the number of child nodes

(if the node is a leaf node, 𝑐 is 0), respectively, 𝑙 𝑗 and 𝑟 𝑗 are the

left and right indexes of the sub-dataset that belongs to the child

node 𝑗 . If the dataset is smaller than a certain threshold, then

we only consider the leaf node settings in the state transition

equation.

Specifically, given a sub-dataset 𝐷𝑙,𝑟 , we need to enumerate all

its possible settings for the root node, and compute the cost of

each setting separately. Then, the setting with minimum cost is

selected to construct the current node, and the cost is stored in the

entry 𝑐𝑜𝑠𝑡 [𝑙, 𝑟 ]. For each setting, we first look up the time/space

cost of the root node from our cost model, and use the sub-dataset

𝐷𝑙,𝑟 to train the root node model 𝑀 . Then, we use the trained

model𝑀 to assign the dataset to 𝑐 child nodes and obtain their cost

via a memorized search approach: for each subtask of computing

𝑐𝑜𝑠𝑡 [𝑙 𝑗 , 𝑟 𝑗 ], the algorithm first checks whether it has been solved

before. Then according to the check result, it either returns the

minimum cost directly from the DP table or recursively calls the

process of the DP algorithm. When the number of data points in

the subtree is less than a pre-specified threshold, the algorithm will

directly construct a leaf node as the current node. Otherwise, the

algorithm considers two cases (leaf nodes or subtrees with inner

nodes) and chooses the optimal design according to the transition

equation. The pseudocode can be found in our technical report [47],

as well as a simple example to illustrate our construction algorithm.

Although, in principle, the dynamic programming algorithm

can be used to construct the optimal index structure for the entire

dataset, in practice, it is too slow to handle large datasets. Therefore,

we only use it to solve sub-problem that are small enough.

5 CACHE-AWARE DESIGN
In this section, we describe the cache-aware design of CARMI with

a new memory layout in detail, use some examples to explain the

intuition and benefits of such a design, and also discuss the potential

opportunities for using memory prefetching instructions to further

speed up queries.

The rest of this section is organized as follows: Section 5.1 dis-

cusses the details of cache-aware design, and Section 5.2 describes

our new memory layout and the basic lookup and insert operations.

The use of memory prefetch will be discussed in Section 5.3.

5.1 Details of Cache-Aware Design
B+tree with tree nodes occupying exactly a cache line size can

outperform standard binary search trees [40]. Specifically, each

memory access always copies a fixed-size memory content (i.e.,

cache line size, usually 64 bytes), then indexes that utilize the cache

and do not “waste" any data retrieved into cache memory can

generally outperform standard data structure by a large margin.
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In CARMI, we employ the same design decision as in B+tree and

enforce all tree nodes to have a fixed size of 64 bytes. To under-

stand the intuition behind such a design, we briefly analyze the

performance bottleneck of the lookup procedure in RMI. For an

index structure within the RMI framework (shown in Figure 1), the

process for accessing a data point is as follows:

• We first access the content of the root node, and then use its

model to choose a child node of the root.

• Subsequently, in each layer, we visit a node chosen by the node

in the previous layer, and then use the model of this node to

choose one of its child nodes. We repeat this step until we have

reached a leaf node.

In the above procedure, for each tree node, we need at least one

memory access to get its content before performing the model com-

putation. For simple models (e.g., linear models), the computation

time is usually less than 20 ns, while a memory access takes about

70-100 ns if the node content is not cached. Therefore, the time

required for memory access would actually take up most of the

time we spent on data lookup. In other words, the performance

bottleneck of RMI is memory access.

Based on the above analysis, we hope to minimize the number of

memory accesses and fully utilize each access during data lookup.

In CARMI, we achieve them from the following two aspects.

First, we enforce each node to have a size of exactly 64 bytes to

align the cache line. This design allows the node to be fetched with

only one memory access. Furthermore, the large node size allows

it to store rich information, which helps to reduce the average tree

depth, thus reducing the number of needed memory accesses.

To further reduce the number of memory accesses in the last

mile, we design a new leaf node called Cache-Friendly array leaf

node, which is conceptually similar to a two-layer B+tree node. The

first layer is a 64-byte root that stores pointers to several 256-byte

data blocks in the second layer and the minimum key values of

each block. With such a design, we only need one memory access

to obtain metadata to determine the next data block and narrow

down the last-mile search range to 256 bytes, effectively reducing

memory accesses on real-world datasets.

5.2 Memory Layout
For the memory layout of CARMI, we have two main arrays, 𝑑𝑎𝑡𝑎

and 𝑛𝑜𝑑𝑒 , to assist in implementing our cache-aware design. These

two arrays are used to store data points and tree nodes, respectively,

as shown in Figure 4, with details as follows:

• Data array: The𝑑𝑎𝑡𝑎 array is used to store data points in CARMI.

It is a large array containing many small data blocks, each of

which has a fixed size, represented by a parameter 𝑘𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

with a default value of 256. Data points are stored in these data

blocks. In the 𝑑𝑎𝑡𝑎 array, data blocks managed by the same leaf

node are stored in adjacent locations.

• Node array:All tree nodes, including inner nodes and leaf nodes,
are stored in the 𝑛𝑜𝑑𝑒 array. Each tree node occupies a total of

64 bytes: the first byte is always the node type identifier, and

the next three bytes are used to store the number of child nodes

(the number of data blocks for leaf nodes). For inner nodes, the

following 4 bytes represent the starting index of the child nodes

in the 𝑛𝑜𝑑𝑒 array. For leaf nodes, they store the starting index

of data blocks in the 𝑑𝑎𝑡𝑎 array instead. The remaining 56 bytes

store additional information depending on the tree node type.

……

data
used to store 
data blocks

……

M0 M1 M2 Mk

data blocks in leaf node 0
(the size of each block is fixed)

node
used to store  

tree nodes

a union structure of all types of nodes
(64 bytes)

4 bytes

4 bytes

type inner: # of child nodes
leaf: # of data blocks

start_index (the index of its 
first child node/data block)

additional information56 bytes

Figure 4: Memory Layout

With the help of the above two arrays, we can perform operations

such as lookup and insert. The way we use them in lookup and

insert operations is described below.

5.2.1 Lookup Operation. When accessing a data point, we first use

the root node model to compute the index of the node in the next

layer. Next, we access the tree node according to the index value

and use its model to update the value of the index variable. This

process is repeated iteratively until a leaf node is visited. Finally, we

search within this leaf node to get the corresponding data record.

5.2.2 Insert Operation. The basic process of the insert operation is

similar to the lookup operation. After finding the correct data block

for insertion, we insert the data point into it. In addition, there are

two mechanisms that can be initiated by the leaf node under certain

situations:

• Expand:When a leaf node needs more space, it can initiate an

expand operation to get more data blocks. We first collect all the

data points stored in it, then construct a new leaf node at a new

location with more space, as shown in Figure 5. The new leaf

node then replaces the original one to complete the process.

• Split: If we can no longer use a single leaf node to efficiently

manage all the data points, it needs to be split. The leaf node will

be replaced with a subtree consisting of a new inner node and

several new leaf nodes, as shown in Figure 5. The number of leaf

nodes in the subtree depends on the trained model of the new

inner node.

Leaf node

L0 L1 L6

Inner node

L0 L1
……

Leaf node 0 Leaf node 1 Leaf node k……

L0 L0 L3……

L0 L1 L2 L0 L1 L2 L3

Leaf node Leaf node

Split

Expand

Figure 5: Expand and Split Mechanism

5.3 Prefetch
5.3.1 Prefetch Mechanism. In some cases, when the key value dis-

tribution in the dataset is very regular (e.g., uniform distribution),

the index of the data block can be directly predicted from the input

key value. In such cases, we can further reduce the data access

latency by utilizing memory prefetching. Specifically, we add an

additional prefetch model to the root node in order to predict the
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data block in which a given key value may be stored. Therefore,

during the access process, the predicted data block is prefetched

at the root node. This prefetching operation can be executed in

parallel with other memory accesses in the normal process. If the

prediction is correct, the data block will be available in the cache

when we need to access it. In this way, we can speed up the access

for datasets with regular data distributions. We demonstrate the

prefetch mechanism via the following example:

(4.1) 80.09 ns

2 5

(4.2) 90.09 ns

1

(7) 48.5ns3 CPU Time

Access Time 
(normal process)

CPU Time:
(2) Calculate the idx of a leaf node
(3) Predict the idx of a block (Prefetch)
(5) Calculate the idx of a block
(7) Get the data points

Access Time 
(prefetch)

2 18.38 ns 3 20.87 ns 5 24.23 ns

8.29 ns

Access Time:
(1) Access root (cache)
(4.1) Parallel access a leaf node (memory)
(4.2) Parallel access a block (memory)  (Prefetch)
(6.1) Access the data block (cache)
(6.2) Access the data block (memory)

(4.1) 80.09 ns

5

1

(7) 48.5 ns

CPU Time
Access Time2 20.38 ns 5 24.23 ns

8.29ns (6.2) 90.09 ns

Time cost with prefetch: 205.65 ns

Time cost without prefetch: 272.47 ns
2

6.1 5.29 ns

Figure 6: Memory Prefetch in CARMI

Example 2. We use the same settings as in Example 1 to show the
effect of prefetching. The time cost of accessing a data point in CARMI
can be divided into CPU time and access time. In this example, we
need to access: the root node (8.29 ns), the leaf node (80.09 ns), and
the data block (90.09ns). The CPU time consists of model calculations
in the root node (20.38 ns), the leaf node (24.23 ns), and the search
process (48.5 ns) in the data block. Note that the CPU calculations
cannot be processed until the corresponding cache/memory access is
complete.Without prefetching, CPU calculations and access operations
are executed sequentially and do not overlap, resulting in a total time
cost of 272.47 ns.

To utilize the prefetch mechanism, an additional 28.87 ns of CPU
time are required to predict the index of the data block in order to
prefetch it in advance at the root node. The advantage of such prefetch-
ing step is that when we need the data block later in the process, it will
already be in the cache and can be fetched rapidly, hence reducing the
time required for a memory access. In this case, a lookup operation
with prefetching requires only 205.65 ns, a reduction of 67 ns compared
to the situation without prefetching.

5.3.2 Prefetch Support. To support the prefetching design, we need
tomake a few changes to the construction algorithm: we need to add

an additional model at the root node to predict the index of the data

block, and we also want to store data points in data blocks according

to the prefetch prediction model whenever possible. Details of these

changes can be found in our technical report [47], together with

the pseudocode of the construction algorithm.

6 EXPERIMENTS
In this section, we conduct experiments on various datasets and

workloads to evaluate the performance of CARMI and delve into

CARMI from different aspects through several auxiliary experi-

ments. Due to page limitations, some contents are described in our

technical report [47].

6.1 Experimental Setup
We conducted all the single-threaded experiments on an Ubuntu

Linux machine equipped with an AMD Ryzen 3700X 8-Core Pro-

cessor and 32GB RAM.

6.1.1 Datasets. We use 7 datasets in our experiments. Synthetic

datasets are stored as key-value pairs of <𝑑𝑜𝑢𝑏𝑙𝑒, 𝑑𝑜𝑢𝑏𝑙𝑒>, while

real-world datasets are <𝑢𝑖𝑛𝑡64, 𝑢𝑖𝑛𝑡64>. Each dataset is 1GB (i.e.,

the number of records is 67,108,864), and the details are as follows:

• Four synthetic datasets: These datasets are generated from 4

distributions: (a) lognormal: 𝑙𝑜𝑔(𝑘𝑒𝑦) ∼ N (0, 1); (b) uniform:

𝑘𝑒𝑦 ∼ U(0, 1); (c) normal: 𝑘𝑒𝑦 ∼ N(0, 1); (d) exponential:
𝑘𝑒𝑦 ∼ Exp(0.25). Key values are multiplied by 10

8
.

• YCSB dataset: YCSB represents the IDs from the YCSB bench-

mark [12], which are uniformly distributed.

• OSMC dataset: This dataset is generated from a public dataset

of Open Street Maps [2], which includes the latitude and longi-

tude of points worldwide.

• Facebook dataset: This dataset is generated from the IDs of

Facebook users [21, 42].

We have also ported CARMI into the SOSD [31] platform to test

its performance, and the details are shown in Section 6.3.

6.1.2 Evaluation Workloads. In our experiments, we use 4 differ-

ent query workloads. The first three workloads are similar to the

workloads in the YCSB benchmark [12]: (a) a write-heavy workload

with a mix of 50% reads and 50% inserts; (b) a read-heavy workload

with a mix of 95% reads and 5% inserts; (c) a read-only workload.

Finally, we include a range scan workload with a mix of 95% range

scan and 5% inserts as in [13].

For each workload, we execute 100,000 operations and measure

the average time used by each operation. The lookup keys are se-

lected randomly from the existing keys in the index. We consider

two access patterns for generating queries: Zipfian distribution (the

normalized frequency of the 𝑥-th element is: 𝑓 (𝑥) = 1

𝑥𝛼 /
∑𝑁
𝑖=1

1

𝑖𝛼 ,

𝛼 = 0.99 as in [13]) and uniform distribution. In workloads in-

volving insert operations, read and insert operations alternate pro-

portionally. For example, in read-heavy workloads, we execute 19

lookups followed by 1 insert operation. For range scan workloads,

the length of each range scan is uniformly sampled from [1, 100].

The queries for the YCSB dataset are handled differently: read

queries are generated from the Zipfian distribution, but insert keys

are monotonically increasing to align with the YCSB benchmark.

6.1.3 Implementation and Baseline. We compare against the fol-

lowing baselines: STX B+tree [3] and ALEX [13]. The node size of

B+tree is 512 bytes, which is optimal for in-memory queries [46].

All other parameters use the default values in the source code.

SOSD benchmark [21] also includes other indexes as baselines in

Section 6.3. The source code for CARMI is available at [1]. In our

experiments, we only tune one parameter 𝜆, which is sensitive

to data distribution and dataset size. All other parameters do not

need to be tuned and use the default values unless otherwise stated.

Among them, the size of each data block is 256 bytes, and the max-

imum capacity of external leaf nodes is 512. The default value of

𝑘𝐷𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is 512, which is used to switch between the DP and

greedy algorithms. If the size of a sub-dataset is less than 90, we
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uniform zipfian uniform zipfian uniform zipfian uniform zipfian

CARMI 1394.3 114.3 85.1 1475.7 129.2 92.1 11.4* 93.2 1771.5 287.5 160.1 1812.6 248.5 166.4 

ALEX 1474.3 112.5 83.3 1476.7 115.5 89.3 1474.3 97.6 1522.0 421.9 221.4 1522.0 404.0 228.1 

B-Tree 2276.0 482.6 267.8 2276.0 480.6 268.1 2276.0 269.7 2276.0 479.9 262.5 2276.0 480.6 261.5 

CARMI 1509.9 168.4 154.5 2127.4 190.3 168.6 11.4* 161.2 1772.5 357.9 246.0 1882.7 316.9 246.2 

ALEX 1474.3 164.1 147.0 1476.7 294.0 262.9 1474.3 317.3 1522.0 1109.1 893.3 1522.0 1801.7 1777.6 

B-Tree 2276.0 500.3 419.9 2276.0 522.4 421.9 2276.0 401.2 2276.0 503.5 421.3 2276.0 498.7 432.9 

CARMI 1509.4 135.8 102.1 2077.5 155.0 104.2 11.4* 104.4 1771.9 330.2 172.5 1812.9 278.3 174.2 

ALEX 1474.3 116.2 89.2 1476.7 121.7 95.4 1474.3 234.7 1522.0 651.7 420.4 1522.0 993.8 829.0 

B-Tree 2276.0 488.9 286.8 2276.0 483.4 292.5 2276.0 280.4 2276.0 483.1 284.5 2276.0 477.6 280.1 

CARMI 1509.4 402.4 256.4 2077.5 434.3 271.3 11.4* 266.4 1771.9 585.6 305.3 1812.9 600.9 323.9 

ALEX 1474.3 375.0 233.6 1476.7 383.6 240.3 1474.3 359.3 1522.0 935.3 598.2 1522.0 1246.4 990.5 

B-Tree 2276.0 704.5 416.5 2276.0 728.5 414.7 2276.0 393.1 2276.0 696.4 417.1 2276.0 698.7 415.3 

* Does not include the space of external array.
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Figure 7: CARMI vs. Baselines: Time and Space Usage Comparison.

will directly construct a leaf node instead of choosing a better one

from leaf/inner nodes. When a leaf node needs to split, we replace

it with an inner node and 16 leaf nodes.

6.1.4 Training Queries for Index Construction in CARMI. In our

experiments, the training query workload for index construction

is specified as a uniform read access over all data points, and a

uniformly sampled subset of data points to serve as key values for

insert queries (except the YCSB dataset). The ratio of read/insert

queries is the same as in the target query workload.

6.2 General Efficiency Comparison
In this section, we evaluate the performance of CARMI

3
and com-

pare it with the baselines. We consider 4 query workloads and 7

different datasets, as explained in Section 6.1. We consider two

access patterns for datasets other than YCSB. These result in a total

of 52 possible configurations. We show 36 of the results in Figure 7.

Normal and exponential datasets have similar results to the uniform

dataset, so we omit them.

In general, the time efficiency of both learned indexes is signifi-

cantly better than B+tree. Comparing CARMI with ALEX, which is

also a learned index, we see that these two learned indexes perform

roughly the same over synthetic datasets. However, CARMI sig-

nificantly outperforms on these real-world datasets, achieving an

average speedup of 1.2×/2.2× on read-only/read-write workloads.

This demonstrates the effectiveness of data partitioning and cache-

aware design over real-world datasets, in which data location is

much harder to predict.

6.2.1 Read-only Workload. For read-only workloads, the lookup

speed of CARMI is about 1.6-4.2× faster than B+tree and 1.2× faster

on average than ALEX. Meanwhile, CARMI uses only 0.7× of mem-

ory space compared to B+tree (excluding YCSB
4
dataset).

It is interesting to compare CARMI with B+tree since their dif-

ference is only on the upper level. The significant speed gain of

3
We also provide an extended version of CARMI, the results of which are presented in

our technical report [47].

4
For the YCSB dataset, since CARMI uses the external leaf nodes, which only store a

pointer of the location of data points, the space cost of 11.4 MB only counts the space

of the tree structure itself and does not include the space used by external data.

CARMI is mainly due to the following reasons: (a) CARMI uses fast

model prediction instead of binary search. (b) the larger fanout of

the nodes in CARMI reduces the depth of the index. Then, most

data points are managed by leaf nodes directly under the root node,

making the index structure flatter. To verify this, we also measure

the average tree depth with respect to keys, where a single root

node has a depth of 1. CARMI has an average tree depth of 2.1,

while ALEX and B+tree have average tree depths of 2.5 and 7.3.

Comparing the two learned indexes, we find that the main dif-

ference is in the performance over OSMC/Face, in which CARMI

achieves an average speedup of 1.5×. These two real-world datasets
have highly non-linear local distribution, as shown in Figure 8,

which invalidates ALEX’s strategy of storing data points accord-

ing to the predicted location and causes the index to grow deeper.

Meanwhile, our construction algorithm can automatically select

suitable nodes to obtain good performance. Section 6.3 shows simi-

lar results on other real-world datasets, indicating that this is not a

coincidence.

In summary, CARMI outperforms B+tree and achieves similar

or better performance than ALEX under read-only workloads, and

the gain is more evident on real-world datasets.

6.2.2 Read-Write Workloads. For read-write workloads, CARMI

achieves an average speedup of 2.0×/2.2× compared to B+tree and

ALEX
5
while using 0.8×/1.2× space on average.

It is generally difficult for learned indexes to partition non-linear

datasets evenly, leading to a large gap between the numbers of

data points in each node. This results in additional expansion costs

in ALEX during the insert operations. On the other hand, CARMI

handles well even under such scenarios, using only 0.42× time of

ALEX on lognormal/real-world datasets.

In summary, CARMI has a better time efficiency, uses a similar

amount of space compared to ALEX, and has more significant

advantages on non-linear and real-world datasets.

5
The insert of the YCSB protocol is to continuously insert new data points at the end

of the dataset, and ALEX does not strictly follow this mode for insert in their paper.

Thus, our reported number differs from the values in their paper.
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Figure 8: The CDFs of Datasets in SOSD [21].

6.3 SOSD Results
To further evaluate the performance of CARMI on practical datasets,

we integrate CARMI into the SOSD benchmark [21, 31], a platform

for testing learned indexes. We use all real-world datasets in it, each

consisting of 200 million unsigned 32-bit/64-bit integers: amzn is

book sale popularity data [4], face is the user IDs of Facebook [42],

wiki is Wikipedia article edit timestamps [5], and osmc is derived
from Open Street Maps [2]. SOSD performs 10 million lookups on

each dataset, where lookup keys are uniformly chosen from the set

of keys, and computes the average latency per lookup.

SOSD includes ten baselines: (a) three learned indexes: RMI,

RS, and ALEX; (b) three traditional indexes: B+tree, FAST, and
ART (FAST and ART do not support all the datasets as explained in

SOSD [21]); (c) three on-the-fly algorithms that directly operate

on a sorted array: BS, IS and TIP; (d) one auxiliary index that uses

small auxiliary structures: RBS. Table 2 shows the average lookup

time of indexes, where the results with the shortest latency and

those slightly slower (within 20ns) are bolded.

Table 2: The Average Lookup Time (ns) on SOSD Platform.

uint32 uint64

(ns) amzn face amzn face wiki osmc

CARMI 192.84 187.43 201.80 334.41 217.50 368.65

RMI 265.43 274.53 266.54 334.54 222.43 402.32

RS 280.03 362.54 296.61 436.63 218.43 412.39

ALEX 210.99 434.69 251.32 496.48 289.81 499.04

RBS 325.43 312.39 385.96 334.73 335.75 529.06

FAST 246.03 228.79 N/A N/A N/A N/A

ART N/A 182.36 N/A 391.76 N/A N/A

B+tree 529.43 524.54 601.23 592.43 608.42 599.43

BS 1014.5 983.49 1015.1 961.93 1002.3 987.24

TIP 731.97 880.12 750.89 1124.6 942.84 4773.8

IS 3852.7 1007.7 4103.9 1494.8 6836.4 66474

We also examine the distribution of datasets. As shown in Fig-

ure 8, a major difference between synthetic and real-world datasets

is that synthetic datasets all have locally linear CDF, which is rare

in real-world datasets. The highly non-linear local CDFs of real-

world datasets make it difficult for prior solutions to accurately

predict the location of individual records, leading to large-range

searches in the last mile. In contrast, CARMI is designed based on

the data partitioning view with a more cache-friendly leaf node

layout. Thus, it is less penalized by these highly non-linear parts

and thus performs better in practical datasets: CARMI can achieve

an average speedup of 1.21× even compared to a well-tuned RMI.

Interestingly, most learned indexes do not outperform traditional

indexes on particular real-world datasets, as shown in Table 2.

Specifically, FAST takes only 237.41 ns on average on amzn32 and

face32, while RMI, RS, and ALEX take 1.14×/1.35×/1.36× average

lookup time, respectively. ART takes an average of 287.06 ns on

face32 and face64, while RMI, RS, and ALEX take 1.06×/1.39×/1.62×,
respectively. Despite this, CARMI’s lookup latency is either the

shortest or very near to the shortest of all indexes for all datasets.

We also report the average space usage of each index in Table 3.

The space required by CARMI is comparable to that of traditional

indexes with good performance, such as FAST and ART. Note that

users can adjust the space cost of CARMI.

Table 3: Average Space Usage (MB) on SOSD.

CARMI RMI RS ALEX RBS

uint32 3918.30 2471.65 2299.63 3336.74 2289.82

uint64 5481.44 3143.31 3064.33 4430.83 3052.76

FAST ART B+tree BS TIP IS

uint32 5120.00 4596.52 2657.31 2288.82 2288.82 2288.82

uint64 N/A 5280.92 3540.52 3051.76 3051.76 3051.76

6.4 Tradeoff between Time and Space
Another advantage of our cost-based index construction algorithm

is that one can now flexibly choose the balance point between

time and space cost. As shown in Figure 9, by tuning the value of

parameter 𝜆 in Problem 2, one can reduce the memory usage of

indexes at the cost of increased read access latency. The curves of

real-world datasets exhibit the characteristics of convex functions,

but the optimal solution for each dataset depends on the actual data

distributions. Therefore, we need to carefully tune 𝜆 according to

practical scenarios to find the optimal solution, so as to obtain a

more desired tradeoff between time and space.

6.5 Cost of Construction
We compare the time to construct each index for 1GB datasets

using different values of the parameter 𝑘𝐷𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . We use this

parameter to adjust the threshold for the size of the sub-datasets

using the DP algorithm, thus obtaining a tradeoff between the

construction time and the average lookup latency. As shown in

Figure 10, the construction of CARMI with different settings can be

finished within 0.3-3.2 minutes, while B+tree and ALEX take 10s

and 20s on average, respectively. Although CARMI takes longer

to build indexes than baselines, it is generally acceptable for most
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Figure 9: The Tradeoff Between Time and Space Cost

practical scenarios. Moreover, 𝑘𝐷𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 has a slight impact

on the average lookup latency, with the difference between 96 and

1024 being around 10 ns.
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Figure 10: Construction/Lookup Time of Indexes.

To conclude, in scenarios where construction time is important,

𝑘𝐷𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can be tuned to reduce the construction time. While

in most practical scenarios, the default value can be used directly.

6.6 Performance Breakdown
In this section, we investigate the contribution of each idea to

the overall performance. We implement 4 variants of CARMI to

simulate indexes with different ideas and perform read-only work-

loads on 5 datasets, including 3 synthetic datasets and 2 real-world

datasets. A brief introduction of these variants is as follows:

• RMI: a two-layer RMI with an LR root node and 131072 external

leaf nodes.

• Greedy: a dynamic index constructed by the greedy algorithm.

• Greedy cache-aware: a dynamic index equipped with the cache-

aware design and greedy algorithm.

• CARMI: a complete CARMI equipped with all proposed ideas.

As shown in Figure 11, most of the benefits of the CARMI frame-

work come from the data partitioning view, which results in an

average speedup of 1.84× for the greedy index compared to RMI.

Specifically, the greedy index only uses the greedy algorithm, so
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Figure 11: Latency of Four CARMIs.

each node is determined by the entropy-based notion of local effi-

ciency. This means that larger fanouts can effectively reduce large-

range searches in RMI, and four inner nodes can be mixed to handle

different situations well to improve data partitioning effectiveness.

Next, in the greedy cache-aware index, we replace leaf nodes

with CF array leaf nodes and cooperate with the prefetching mech-

anism to examine the effect of our cache-aware design. Due to the

influence of data distributions and local partitions, the cache-aware

design shows different effects. Among them, the speedup for log-

normal and face64 datasets is more significant. In summary, this

index still obtains an average speedup of 1.21× compared to the

greedy index, which is the contribution of cache-aware design.

If sufficient resources are available, users can use the hybrid

construction algorithm comprised of the greedy algorithm and

DP algorithm to build better indexes. According to the average

access time when the parameter 𝑘𝐷𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is 1024, as shown

in Figure 11, the complete CARMI can reduce the average access

time by about 10ns.

6.7 Robustness of CARMI
In this section, we simulate three groups of workload and data

distribution shifts to examine the robustness of CARMI. First, we

build indexes on the OSMC/Face datasets with history queries that

obey a uniform distribution. Then we query them with eight access

patterns: seven Zipfian distributions and one uniform distribution

to simulate the situation where new sets of keys are queried. To

simulate read-write workload shifts, we construct indexes with

history queries under read-heavy and write-heavy workloads, re-

spectively, and test them with write-heavy workloads. Next, we use

the uniform dataset to build the index and perform a write-heavy

workload by inserting the keys from the OSMC dataset to simulate

the data distribution shifts. As shown in Figure 12, CARMI can

still maintain good performance in these situations and is robust to

workload and data distribution shifts.

7 DISCUSSION AND FUTUREWORK
7.1 CARMI in Disk/NVM
In our current implementation of CARMI, both inner nodes and

leaf nodes are stored in memory. We can easily extend CARMI to

involve disk operations. If we keep records on disk, we need to

design a new type of leaf node that accesses a disk page instead

of an in-memory data block. The corresponding time and space

costs of this new type of node should also reflect the latency of
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Figure 12: Robustness of Indexes in Different Situations.

disk operations. The current hybrid construction algorithm can be

directly used without any change.

Moreover, with the rapid development of non-volatile memory

(NVM) [26], memory capacity can be vastly expanded while re-

taining decently high access speed. CARMI can adapt to different

storage devices by modifying the cost model.

7.2 Other Data Types
In our implementation of CARMI, we only support numerical key

types. It is possible to extend CARMI to handle other types as well.

Generally speaking, the existing RMI framework cannot readily

handle strings since the distribution of strings is hard to fit well

by their current models. Our perspective based on data partition

can potentially address this difficulty. It is necessary to design new

nodes for strings and make specific changes to the storage method.

The hybrid construction algorithm and the cost model require slight

modifications, but the main ideas and processes of this algorithm

can still be applied.

8 RELATEDWORK
In this section, we introduce some related works in the field of

database index. Due to page limitation, some related works, in-

cluding researches in the field of database that utilize ML tech-

niques [17, 20, 23, 25, 32, 36, 44], are not discussed here and can be

found in our technical report [47].

Traditional Indexes:Many researchers have optimized index

structures in the past decades and have proposed many indexes to

achieve good performance, such as B-tree, B+tree [7, 8], T tree [27],

balanced B-tree [6], and red-black tree [10], etc. Since most indexes

are stored in the main memory, CSS-tree [39] restricts node size to

the cache line size and eliminates child nodes’ pointers to utilize

the cache, and CSB+ tree [40] is then proposed to support updates.

ART [28] is an adaptive cardinality tree designed to reduce the

number of cache misses. For further acceleration, pB+-tree [11]

and FAST [19] use prefetching instructions and SIMD instructions,

respectively. Masstree [30] effectively handles possible binary keys

of any length, including keys with long shared prefixes.

Learned Indexes: Kraska et al. [24] propose a recursive model

index (RMI), which uses ML models to build index structures. How-

ever, RMI does not support inserts. FITing-tree [16] uses linear

models to replace leaf nodes of B-trees to compress the index. PGM-

index [15], a compressed learned index with provable worst-case

bounds, extends FITing-tree and provides an optimal method to

find the piecewise linear models. These two indexes support inserts

by additional buffers, and the performance can be improved. To

support writes, ALEX [13] uses model-based inserts and gapped

array leaf nodes to make room for future inserts. However, it re-

quires large-range searches to accurately locate records, resulting in

performance degradation on real-world datasets. In this paper, we

adopt a data partitioning view and use a cost-based construction al-

gorithm to select suitable node settings to build an updatable index.

CARMI uses various types of nodes to handle different situations,

thus maintaining good performance on real-world datasets.

CDFShop [33] uses Pareto analysis to find Pareto optimal config-

uration for the static two-layer RMI. They use a parameter search

strategy, which is unsuitable for dynamic structures due to the

exponentially large number of configurations in the search space.

On the other hand, CARMI can automatically tune tree structures

and model types at runtime through a new dynamic architecture

and the cost-based algorithm.

Besides, RadixSpline [22] focuses more on building indexes in a

single pass, and PLEX [41] is built on RS and retains only one hyper-

parameter for more convenient use. LIPP[45] uses entry types and

a conflict degree metric to decide tree node layout. Mitzenmacher

et al. [34] build a learning bloom filter that uses neural network

models to predict whether keywords belong to a specific set. In

addition, several other works apply the idea of the learned index to

multi-dimensional indexes [14, 35] and spatial query processing [29,

37, 38, 43] to improve performance.

9 CONCLUSION
This paper conducts in-depth research on the basic framework of

learned indexes (RMI), and argues that the inflexibility of data par-

titioning is an important reason for the performance degradation

of RMIs in practical scenarios. To address this issue, we propose to

view RMI construction from a data partitioning view and propose

a general cache-aware RMI framework called CARMI. Specifically,

we use the entropy metric to quantify the data partitioning effec-

tiveness and propose a new cost model to characterize the perfor-

mance of individual tree nodes, which helps to design more robust

indexes. Furthermore, CARMI is equipped with a new memory

layout that is more cache-friendly and uses a hybrid algorithm to

automatically construct index structures for different datasets and

workloads without manual tuning. Experimental results show that

CARMI has an outstanding performance under various datasets and

workloads, achieving an average of 2.2×/1.9× speedup compared

to B+tree/ALEX, respectively, while using only 0.77× the memory

space on average. This paper demonstrates that data partitioning is

important for learned indexes during construction and that the new

cost model can well characterize the performance of a single node,

which is beneficial to improving the performance and flexibility of

indexes. Finally, the CARMI framework is highly extensible and

robust and can be applied to a wider range of scenarios if we design

different types of nodes for it.
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