
Shortest-PathQueries on Complex Networks: Experiments,
Analyses, and Improvement

Junhua Zhang

AAII, FEIT, University of Technology

Sydney, Australia

junhua.zhang@student.uts.edu.au

Wentao Li
∗

AAII, FEIT, University of Technology

Sydney, Australia

wentao.li@uts.edu.au

Long Yuan

Nanjing University of Science and

Technology, China

longyuan@njust.edu.cn

Lu Qin

AAII, FEIT, University of Technology

Sydney, Australia

lu.qin@uts.edu.au

Ying Zhang

AAII, FEIT, University of Technology

Sydney, Australia

ying.zhang@uts.edu.au

Lijun Chang

The University of Sydney, Australia

lijun.chang@sydney.edu.au

ABSTRACT
The shortest-path query, which returns the shortest path between

two vertices, is a basic operation on complex networks and has nu-

merous applications. To handle shortest-path queries, one option is

to use traversal-based methods (e.g., breadth-first search); another

option is to use extension-based methods, i.e., extending existing

methods that use indexes to handle shortest-distance queries to

support shortest-path queries. These two types of methods make

different trade-offs in query time and space cost, but comprehen-

sive studies of their performance on real-world graphs are lacking.

Moreover, extension-based methods usually use extra attributes to

extend the indexes, resulting in high space costs. To address these

issues, we thoroughly compare the two types of methods mentioned

above. We also propose a new extension-based approach, Mono-

tonic Landmark Labeling (MLL), to reduce the required space cost

while still guaranteeing query time. We compare the performance

of different methods on ten large real-world graphs with up to 5.5

billion edges. The experimental results reveal the characteristics of

various methods, allowing practitioners to select the appropriate

method for a specific application.
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1 INTRODUCTION
A graph (or network) is a common structure for describing entities

and their relationships [5, 35]. Many real-world graphs, such as

social networks, web graphs, and biological networks, are called
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complex networks because of their complex topology [9, 13]. These

complex networks can have millions or even billions of vertices

and edges [25, 26], necessitating the development of efficient tools

to support operations on these graphs [3, 4].

This paper studies the shortest-path query, a basic operation on

complex networks. In a graph 𝐺 , the shortest-path query QP (𝑠, 𝑡)
returns the shortest path between two vertices 𝑠 and 𝑡 . Shortest-

path queries have a wide range of applications [15, 20]. For example,

the shortest path between two users in a social network reveals how

their relationship is formed [33]. The shortest path also describes

how two components interact in a biological network [31, 32] and

is critical for resource management in a communication network [9,

30]. Finding one shortest path between two vertices is also a key

component in solving problems such as the Steiner tree [23] and the

keyword search [37]. Considering the above applications, efficient

answering of shortest-path queries is necessary.

One option to handle shortest-path queries is to use traversal-
based methods, such as breadth-first search (BFS, for unweighted

graphs) [7] or Dijkstra’s algorithm (for weighted graphs) [22]. How-

ever, traversal on large graphs is slow because its runtime is propor-

tional to the graph size [27]. To speed up graph traversal, several pre-

processing techniques [38, 41], such as Highway Hierarchies [36],

or Contraction Hierarchies [16], have been proposed to limit the

traversal scope. However, traversal-based methods still take a long
time to process a query, even with the preprocessing techniques [27].

Moreover, these preprocessing techniques often rely on the proper-

ties of road networks (e.g., planarity and hierarchical structures [1]),

rendering them inapplicable to dealing with complex networks [27].

Another option is to use extension-based methods, i.e., ex-
tending methods designed for shortest-distance query processing

to support shortest-path queries. The shortest-distance query is an

operation closely related to the shortest-path query, which returns

the length 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) of the shortest path between two vertices 𝑠 and

𝑡 [25]. In recent years, many approaches have been proposed to

build indexes for shortest-distance query processing in complex

networks [3, 4, 25–27], and the well-known approaches are Pruned

Landmark Labeling (PLL [3]) and Core-Tree Labeling (CTL [26]).

To extend these methods, we can add an extra attribute to each

entry in the index for path recovery. Although the extension-based

methods can handle shortest-path queries rapidly, the introduction
of extra attributes makes the space cost too high.
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Motivations. Traversal and extension-based methods make differ-

ent trade-offs in query time and space cost: traversal-based methods

do not require high space cost but have no guarantee of query time;

extension-based methods provide a quick query response, but their

space costs are high. Yet, comprehensive studies of these two types

of methods’ performance on real-world graphs are lacking. This

makes it hard for practitioners to select an appropriate method for

applications that use shortest-path queries as a basic component.

Also, extension-based methods typically add extra attributes to the

original index designed for shortest-distance queries, thus allowing

tracking of all vertices on the shortest path. Such an extension often

leads to a too large index to support shortest-path queries.

Our Solution. To address the aforementioned issues, we thor-

oughly compare various methods for handling shortest-path

queries. Moreover, we propose a new extension-based approach,

Monotonic Landmark Labeling (MLL), to enable the index designed
for shortest-distance queries to work for shortest-path queries.MLL
non-trivially creates an additional lightweight index as a plug-in to

the original index; instead of extending every index entry (which

would result in an extended index nearly twice the size of the orig-

inal index). As a result, MLL can still give rapid query responses

but with a low (extra) space cost.

Contributions. The contributions of this paper are summarized

as follows.

• Efficient extension of distance query processing methods (Sec-
tion 3).We extend the shortest-distance query processing meth-

ods PLL [3] and CTL [26] to allow them to efficiently handle

shortest-path queries. Our idea is to add an extra attribute to

each index entry so that the path can be found by tracking each

vertex on the shortest path using the extra attribute. We discuss

the correctness and time complexity of these extension-based

methods in processing shortest-path queries.

• A new extension-based approach (Section 4). We propose a

new extension-based approach,MLL, tailored for shortest-path

queries.MLL non-trivially builds an extra lightweight index on

top of the index designed for shortest-distance queries. MLL
works by decomposing the shortest path between two vertices

into several subpaths, which are then indexed. During query

processing, the shortest path can be found efficiently by finding

and splicing subpaths. We verify that MLL consumes less space

than extending each index entry with an extra attribute while

still having a fast query speed.

• Extending MLL to handle directed graphs (Section 5). We describe

how to adapt the proposed approach MLL to handle directed

graphs. We thus enable our proposed methodMLL to work for

more general graphs.

• Comprehensive experimental studies (Section 6). We select four

traversal-based and three extension-based methods for experi-

mental comparisons. We extensively evaluate the performance of

various methods on ten real-world graphs. We also examine the

impact of directed graphs on the index size ofMLL. To the best

of our knowledge, this is the first work to empirically compare

shortest-path query processing methods on complex networks.

Due to space limitations, the proofs and some examples are

omitted in this paper and can be found in our technical report [43].
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Figure 1: The Example Graph𝐺

2 PRELIMINARY
Let 𝐺 (𝑉 , 𝐸) be an undirected unweighted graph with 𝑛 = |𝑉 (𝐺) |
vertices and𝑚 = |𝐸 (𝐺) | edges. The neighbors 𝑁 (𝑣,𝐺) of each ver-

tex 𝑣 ∈ 𝑉 (𝐺) are defined as 𝑁 (𝑣,𝐺) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}. The size
of 𝑁 (𝑣,𝐺) is the degree 𝑑𝑒𝑔(𝑣,𝐺) of 𝑣 , i.e., 𝑑𝑒𝑔(𝑣,𝐺) = |𝑁 (𝑣,𝐺) |.
The length of each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) is a positive value 𝛿 (𝑢, 𝑣,𝐺).
In an unweighted graph, the length of all edges is 1.

The path 𝑝 (𝑠, 𝑡,𝐺) between two vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) is a sequence
of vertices, i.e., 𝑝 (𝑠, 𝑡,𝐺) = {𝑠 = 𝑣0, 𝑣1, · · · , 𝑡 = 𝑣𝑙 }. The inner

vertices of 𝑝 (𝑠, 𝑡,𝐺) are vertices 𝑣𝑖 , where 𝑣𝑖 ≠ 𝑠, 𝑣𝑖 ≠ 𝑡 , and 𝑖 ∈
[1, 𝑙 −1]. The precursor 𝑝𝑟𝑒𝑣 (𝑣𝑖 ) of a vertex 𝑣𝑖 on the path 𝑝 (𝑠, 𝑡,𝐺)
is 𝑣𝑖−1, where 𝑖 ∈ [1, 𝑙]; the successor 𝑠𝑢𝑐𝑐 (𝑣𝑖 ) of a vertex 𝑣𝑖 on

the path 𝑝 (𝑠, 𝑡,𝐺) is 𝑣𝑖+1, where 𝑖 ∈ [0, 𝑙 − 1]. Given two paths

𝑝1 = {𝑣0, 𝑣1, · · · , 𝑣𝑎} and 𝑝2 = {𝑤0,𝑤1, · · · ,𝑤𝑏 }, when (𝑣𝑎,𝑤0) ∈
𝐸 (𝐺), then the splicing operation on 𝑝1 and 𝑝2 is defined as 𝑝1 +
𝑝2 = {𝑣0, 𝑣1, · · · , 𝑣𝑎,𝑤0,𝑤1, · · · ,𝑤𝑏 }; or 𝑣𝑎 = 𝑤0, then 𝑝1 + 𝑝2 =

{𝑣0, 𝑣1, · · · , 𝑣𝑎 = 𝑤0,𝑤1, · · · ,𝑤𝑏 }.
The length of 𝑝 (𝑠, 𝑡,𝐺) is defined as |𝑝 (𝑠, 𝑡,𝐺) | =

Σ (𝑣𝑖 ,𝑣𝑖+1)𝛿 (𝑣𝑖 , 𝑣𝑖+1,𝐺), where 𝑖 ∈ [0, 𝑙 − 1]. The shortest path

between 𝑠 and 𝑡 is the one with the minimum length among all 𝑠-𝑡

paths, and the shortest distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑡,𝐺) is the length of the 𝑠-𝑡

shortest path. Without loss of generality, we assume that graph

𝐺 is connected since otherwise, we can work on each connected

component separately (as the shortest distance between the

vertices of different connected components is positive infinity). If

the context is obvious, we remove 𝐺 from notations for simplicity.

Example 2.1. Fig. 1 gives the example graph 𝐺 , which contains

𝑛 = 12 vertices and 𝑚 = 16 edges. For the vertex 𝑣5, 𝑁 (𝑣5) =

{𝑣6, 𝑣7}, so 𝑑𝑒𝑔(𝑣5) = 2. 𝑝 (𝑣5, 𝑣3) = {𝑣5, 𝑣6, 𝑣8, 𝑣3} is a 𝑣5-𝑣3 path.
The inner vertices of 𝑝 (𝑣5, 𝑣3) are 𝑣6 and 𝑣8. The precursor (resp.

successor) of 𝑣6 is 𝑣5 (resp. 𝑣8) on 𝑝 (𝑣5, 𝑣3). 𝑝 (𝑣5, 𝑣3) is the shortest
path between 𝑣5 and 𝑣3, thus 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣3) = 3. 𝑝 (𝑣4, 𝑣2) = {𝑣4, 𝑣2} is
a 𝑣4-𝑣2 path. As (𝑣3, 𝑣4) ∈ 𝐸, we use the splicing operation to get

𝑝 (𝑣5, 𝑣3) + 𝑝 (𝑣4, 𝑣2) = {𝑣5, 𝑣6, 𝑣8, 𝑣3, 𝑣4, 𝑣2}, which is a 𝑣5-𝑣2 path.

Problem Definition. Given an undirected unweighted graph

𝐺 (𝑉 , 𝐸), a shortest-path query is defined as QP (𝑠, 𝑡), where 𝑠, 𝑡 ∈ 𝑉 .

The answer to query QP (𝑠, 𝑡) is an 𝑠-𝑡 shortest path 𝑝 (𝑠, 𝑡). If mul-

tiple 𝑠-𝑡 shortest paths exist, an arbitrary one can be returned. The

studied problem is how to process query QP (𝑠, 𝑡) efficiently on 𝐺 .

3 DISTANCE QUERIES AND EXTENSIONS
The shortest-distance query is an operation closely related to the

shortest-path query, which returns the shortest path length of two

vertices. Many methods have been proposed to create indexes to

process shortest-distance queries on complex networks; the well-

known methods are PLL [3] and CTL [25]. This section describes

how to extend PLL and CTL to support shortest-path queries.
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Table 1: Comparison of Different Approaches
PLL CTL MLL

𝑣1 (𝑣1, 0,−) (𝑣1, 0,−)
𝑣2 (𝑣1, 1,−), (𝑣2, 0,−) (𝑣1, 1,−), (𝑣2, 0,−) (𝑣1,−)
𝑣3 (𝑣1, 1,−), (𝑣2, 1,−), (𝑣3, 0,−) (𝑣1, 1,−), (𝑣2, 1,−), (𝑣3, 0,−) (𝑣1,−), (𝑣2,−)
𝑣4 (𝑣1, 1,−), (𝑣2, 1,−), (𝑣3, 1,−), (𝑣4, 0,−) (𝑣1, 1,−), (𝑣2, 1,−), (𝑣3, 1,−), (𝑣4, 0,−) (𝑣1,−), (𝑣2,−), (𝑣3,−)
𝑣5 (𝑣1, 4, 𝑣6), (𝑣2, 4, 𝑣6), (𝑣3, 3, 𝑣6), (𝑣5, 0,−) (𝑣3, 3, 𝑣6) (𝑣3, 𝑣6)
𝑣6 (𝑣1, 3, 𝑣8), (𝑣2, 3, 𝑣8), (𝑣3, 2, 𝑣8), (𝑣5, 1,−), (𝑣6, 0,−) (𝑣3, 2, 𝑣8), (𝑣5, 1,−) (𝑣3, 𝑣8), (𝑣5,−)
𝑣7 (𝑣1, 3, 𝑣9), (𝑣2, 3, 𝑣9), (𝑣3, 2, 𝑣9), (𝑣5, 1,−), (𝑣7, 0,−) (𝑣3, 2, 𝑣9), (𝑣5, 1,−) (𝑣3, 𝑣9), (𝑣5,−)
𝑣8 (𝑣1, 2, 𝑣3), (𝑣2, 2, 𝑣3), (𝑣3, 1,−), (𝑣5, 2, 𝑣6), (𝑣6, 1,−), (𝑣8, 0,−) (𝑣3, 1,−), (𝑣5, 2, 𝑣6), (𝑣6, 1,−) (𝑣3,−), (𝑣6,−)
𝑣9 (𝑣1, 2, 𝑣3), (𝑣2, 2, 𝑣3), (𝑣3, 1,−), (𝑣5, 2, 𝑣7), (𝑣7, 1,−), (𝑣9, 0,−) (𝑣3, 1,−), (𝑣5, 2, 𝑣7), (𝑣7, 1,−) (𝑣3,−), (𝑣7,−)
𝑣10 (𝑣1, 1,−), (𝑣2, 1,−), (𝑣10, 0,−) (𝑣1, 1,−), (𝑣2, 1,−) (𝑣1,−), (𝑣2,−)
𝑣11 (𝑣1, 1,−), (𝑣11, 0,−) (𝑣1, 1,−) (𝑣1,−)
𝑣12 (𝑣1, 2, 𝑣2), (𝑣2, 1,−), (𝑣12, 0,−) (𝑣2, 1,−) (𝑣2,−)

3.1 PLL and Its Extension
Pruned landmark labeling (PLL) is a classical method for processing

shortest-distance queries. PLL supports queries by creating an index
LPLL offline. The index assigns a label LPLL (𝑢) = {(𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣))} to
each vertex 𝑢 ∈ 𝑉 in the graph𝐺 . LPLL (𝑢) contains some selected

landmarks 𝑣 and the corresponding shortest distance 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) for
𝑢. The number of landmarks contained in the label of 𝑢 is defined

as the label size |LPLL (𝑢) |. The maximum label size ΔPLL
of PLL is

defined as the value of the largest label size among all vertices. The

index size |LPLL | is the sum of the label size over each vertex 𝑢 ∈ 𝑉 ,

i.e., |LPLL | = Σ𝑢∈𝑉 |LPLL (𝑢) |.
Distance Query Processing. To report the shortest distance

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) between vertices 𝑠 and 𝑡 in 𝐺 , we only need to use the

labels of 𝑠 and 𝑡 , as given in Equation 1.

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min

𝑤∈LPLL (𝑠)∩LPLL (𝑡 )
𝑑𝑖𝑠𝑡 (𝑠,𝑤) + 𝑑𝑖𝑠𝑡 (𝑤, 𝑡) . (1)

We find common landmarks𝑤 in the labels of 𝑠 and 𝑡 , and select

the smallest distance 𝑑𝑖𝑠𝑡 (𝑠,𝑤) + 𝑑𝑖𝑠𝑡 (𝑤, 𝑡) through 𝑤 as a result.

The time cost to compute 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) is 𝑂 ( |LPLL (𝑠) | + |LPLL (𝑡) |).
Example 3.1. Consider the graph 𝐺 in Fig. 1. The PLL column

of Table 1 shows LPLL (ignore the third attribute marked blue in

each entry) of𝐺 . For 𝑣2, its label LPLL (𝑣2) = {(𝑣1, 1), (𝑣2, 0)} has two
landmarks, 𝑣1 and 𝑣2, so |LPLL (𝑣2) | = 2. The index size is |LPLL | = 44.

To compute 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣3), we use the labels of 𝑣2 and 𝑣3 and get the

common landmarks {𝑣1, 𝑣2}. As 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣1) +𝑑𝑖𝑠𝑡 (𝑣3, 𝑣1) = 1+1 = 2

and 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣2) + 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣3) = 0 + 1 = 1, by Equation 1, we know

that 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣3) = 1 and 𝑣2 is the landmark on 𝑣2-𝑣3 shortest path.

Theorem 3.2 presents the condition for determining whether

vertex 𝑣 will join the label of 𝑢 as a landmark.

Theorem 3.2 ([25]). The entry (𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) is in LPLL (𝑢) iff
𝑟 (𝑣) ≥ 𝑟 (𝑤) for ∀𝑤 on all 𝑣-𝑢 shortest paths.

Extension to Path Queries. We next extend the PLL index to

support shortest-path queries. The extended index LPLLE assigns

a label LPLLE (𝑢) = {(𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), 𝑠𝑢𝑐𝑐 (𝑢))} to each vertex 𝑢. We

add an extra attribute 𝑠𝑢𝑐𝑐 (𝑢), the successor of 𝑢 on the shortest

path {𝑣0 = 𝑢, 𝑣1 = 𝑠𝑢𝑐𝑐 (𝑢), · · · , 𝑣𝑙−1, 𝑣𝑙 = 𝑣} from 𝑢 to 𝑣 , in the

label LPLLE (𝑢) of 𝑢. If 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 2, then the successor 𝑠𝑢𝑐𝑐 (𝑢) is
meaningless, and we store “−” instead. The successor can be used

to track all vertices on the shortest path and thus recover this path.

Example 3.3. Consider the graph 𝐺 in Fig. 1, where Table 1 lists

the extended index LPLLE . For 𝑣6, (𝑣3, 2, 𝑣8) ∈ LPLLE (𝑣6), where 𝑣3 is
the landmark and 𝑣8 is the successor of 𝑣6 on 𝑣6-𝑣3 shortest path.

Algorithm 1: Processing QP (𝑠, 𝑡) Based on LPLLE

Input: QP (𝑠, 𝑡 ) , index LPLLE
Output: The shortest path 𝑝 (𝑠, 𝑡 )

1 𝑤,𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) ← Equation 1;

2 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) = 0 then 𝑝 (𝑠, 𝑡 ) ← {𝑠 }; return 𝑝 (𝑠, 𝑡 ) ;
3 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) = 1 then 𝑝 (𝑠, 𝑡 ) ← {𝑠, 𝑡 }; return 𝑝 (𝑠, 𝑡 ) ;
4 𝑝1 ← {𝑠 }, 𝑝2 ← {𝑡 };
5 while 𝑑𝑖𝑠𝑡 (𝑠, 𝑤) > 1 do
6 𝑠 ← 𝑠𝑢𝑐𝑐 (𝑠) , where (𝑤,𝑑𝑖𝑠𝑡 (𝑠, 𝑤), 𝑠𝑢𝑐𝑐 (𝑠)) ∈ LPLLE (𝑠) ;
7 𝑝1 ← 𝑝1 + {𝑠 };
8 while 𝑑𝑖𝑠𝑡 (𝑤, 𝑡 ) > 1 do
9 𝑡 ← 𝑠𝑢𝑐𝑐 (𝑡 ) , where (𝑤,𝑑𝑖𝑠𝑡 (𝑡, 𝑤), 𝑠𝑢𝑐𝑐 (𝑡 )) ∈ LPLLE (𝑡 ) ;

10 𝑝2 ← {𝑡 } + 𝑝2 ;
11 return 𝑝 (𝑠, 𝑡 ) = 𝑝1 + {𝑤 } + 𝑝2

Path Query Processing. We describe how to answer QP (𝑠, 𝑡)
using index LPLLE in Algorithm 1. First, we use Equation 1 to

get 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) and the landmark 𝑤 in the labels of 𝑠 and 𝑡 , s.t.,

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡 (𝑠,𝑤) + 𝑑𝑖𝑠𝑡 (𝑤, 𝑡) (Line 1). If 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) is 0, then
𝑠 = 𝑡 and we return {𝑠} as a path (Line 2); if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) is 1, then
{𝑠, 𝑡} is an edge and we return this edge as a path (Line 3). Other-

wise,𝑤 is used to decompose the 𝑠-𝑡 shortest path into two subpaths

𝑝1 and 𝑝2. 𝑝1 is first initialized to contain only vertex 𝑠 (Line 4),

then we use LPLLE (𝑠) to get the successor 𝑠𝑢𝑐𝑐 (𝑠) of 𝑠 on the 𝑠-𝑤

subpath and iteratively add the vertices on the 𝑠-𝑤 subpath to 𝑝1 by

assigning 𝑠𝑢𝑐𝑐 (𝑠) to 𝑠 (Line 5-7); similarly, we use LPLLE (𝑡) to itera-

tively add the vertices on the 𝑡-𝑤 subpath to 𝑝2 (Line 8-10). Finally,

𝑝1 and 𝑝2 are spliced with𝑤 to produce the answer (Line 11).

Example 3.4. Consider the graph 𝐺 in Fig. 1. Given QP (𝑣6, 𝑣3),
we use Equation 1 to get 𝑑𝑖𝑠𝑡 (𝑣6, 𝑣3) = 2 and the landmark 𝑣3 on

the 𝑣6-𝑣3 shortest path 𝑝 (𝑣6, 𝑣3). The shortest path is divided into

two subpaths 𝑝1, 𝑝2 by the landmark 𝑣3. We initialize 𝑝1 = {𝑣6}
and inquire LPLLE (𝑣6) to obtain the successor 𝑠𝑢𝑐𝑐 (𝑣6) = 𝑣8 of the

starting vertex 𝑣6 on the 𝑣6-𝑣3 subpath. We add 𝑣8 to 𝑝1 and use

𝑣8 as the new starting vertex for the next round of iterations. The

iteration stops here because 𝑑𝑖𝑠𝑡 (𝑣8, 𝑣3) = 1. We then initialize

𝑝2 = {𝑣3}, but the iteration ends because 𝑑𝑖𝑠𝑡 (𝑣3, 𝑣3) = 0. Finally,

we return the answer 𝑝1 + {𝑣3} + 𝑝2 = {𝑣6, 𝑣8, 𝑣3}.

Lemma 3.5. Algorithm 1 correctly answers the query QP (𝑠, 𝑡).

Lemma 3.6. Algorithm 1 requires1 𝑂 (𝑑𝑖𝑠𝑡 (𝑠, 𝑡) × logΔPLL) to find
the 𝑠-𝑡 shortest path, where ΔPLL is PLL’s maximum label size.

1
If additional data structures such as hash tables or pointers are used to store the

labels for the quick label lookup, the complexity can be reduced to𝑂 (𝑑𝑖𝑠𝑡 (𝑠, 𝑡 )) . We

disregard this optimization due to the oversized PLL index.
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Figure 2: (Core-)Tree Decomposition of𝐺

3.2 CTL and Its Extension
CTL is proposed to avoid the oversized indexes of PLL [25, 26] for

shortest-distance queries. CTL relies on the concept of core-tree

decomposition, which is a special kind of tree decomposition.

Definition 3.7 (Tree Decomposition). The tree decomposition of a

graph 𝐺 (𝑉 , 𝐸), denoted as 𝑇𝐺 , is a rooted tree, where every node

𝑋 ∈ 𝑉 (𝑇𝐺 ) in the tree is a subset of vertices of the graph 𝐺 , i.e.,

𝑋 ⊆ 𝑉 (𝐺). 𝑇𝐺 meets the following three conditions.

(1)

⋃
𝑋 ∈𝑉 (𝑇𝐺 ) 𝑋 = 𝑉 (𝐺);

(2) For every edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) in the graph 𝐺 , there exists a

node 𝑋 in 𝑉 (𝑇𝐺 ) such that 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑋 ;

(3) For every vertex 𝑣 ∈ 𝑉 (𝐺) in the graph𝐺 , the set𝑇 (𝑣) = {𝑋 ∈
𝑉 (𝑇𝐺 ) |𝑣 ∈ 𝑋 } is a connected subtree.

The root of subtree 𝑇 (𝑣) is 𝑋 (𝑣), for ∀𝑣 ∈ 𝑉 (𝐺). The treewidth of

𝑇𝐺 is defined as 𝑡𝑤 (𝑇𝐺 ) = max𝑋 ∈𝑉 (𝑇𝐺 ) |𝑋 | − 1.

We refer to each 𝑣 ∈ 𝑉 (𝐺) as a vertex and each 𝑋 ∈ 𝑉 (𝑇𝐺 ) as
a node. The ancestor nodes ANC(𝑋 ) of node 𝑋 are all the nodes

on the shortest path from 𝑋 to the root in 𝑇𝐺 ; the parent node
PAR(𝑋 ) of 𝑋 is the ancestor node connecting to 𝑋 .

Example 3.8. Fig. 2 is the tree decomposition 𝑇𝐺 of 𝐺 in Fig. 1.

We verify three conditions for 𝑇𝐺 . (1) Each vertex of 𝐺 (say 𝑣1)

appears in some node (say 𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}) of 𝑇𝐺 . (2) For each
edge of𝐺 , say (𝑣1, 𝑣2), we find a node𝐶 containing both endpoints

𝑣1, 𝑣2. (3) For vertex 𝑣5 of𝐺 , all (marked in red) nodes in𝑇𝐺 contain-

ing 𝑣5 form a connected subtree 𝑇 (𝑣5). The root of subtree 𝑇 (𝑣5)
is 𝑋 (𝑣5). Similarly, 𝑋 (𝑣7) is the root of the subtree consisting of

the nodes containing 𝑣7. On 𝑇𝐺 , the ancestor nodes of 𝑋 (𝑣7) are
ANC(𝑋 (𝑣7)) = {𝑋 (𝑣7), 𝑋 (𝑣5),𝐶}, and the parent node of 𝑋 (𝑣7) is
PAR(𝑋 (𝑣7)) = 𝑋 (𝑣5). The treewidth of 𝑇𝐺 is 𝑡𝑤 (𝑇𝐺 ) = |𝐶 | − 1 = 3.

Definition 3.9 (Core-Tree Decomposition). Given a parameter 𝑑 ,

the core-tree decomposition 𝑇𝐺 of graph 𝐺 is a tree decomposition

with the fourth condition: there is a special node (defined as the

core part)𝐶 ∈ 𝑉 (𝑇𝐺 ), s.t., |𝐶 | > 𝑑 + 1; for the other nodes (defined
as the tree part) 𝑋 ∈ 𝑉 (𝑇𝐺 ) \𝐶 , |𝑋 | ≤ 𝑑 + 1.
Decomposing a Graph. To obtain a core-tree decomposition 𝑇𝐺
(with parameter 𝑑) of graph 𝐺 , we can use minimum degree elimi-

nation (MDE) [8]. MDE creates nodes and then edges of 𝑇𝐺 .

Node elimination. MDE selects the smallest degree vertex for elimi-

nation each time. When the degree of the vertex selected at some

time is ≥ 𝑑 + 1, elimination stops. We initialize 𝐺1 = 𝐺 , and then

every time 𝑖 , we eliminate vertex 𝑣 with the smallest degree in 𝐺𝑖 .

(1) 𝑣 : the vertex with the smallest degree in the graph𝐺𝑖 (or any

of them if there is a tie), and the order of 𝑣 is set to 𝑟 (𝑣) = 𝑖 .

(2) For 𝑣 ’s neighbors 𝑁 (𝑣,𝐺𝑖 ) in 𝐺𝑖 , we add extra edges to make

𝑁 (𝑣,𝐺𝑖 ) form a clique (i.e., complete graph).

(a) If 𝑢,𝑤 ∈ 𝑁 (𝑣,𝐺𝑖 ) is not an edge in 𝐺𝑖 , we add edge (𝑢,𝑤)
whose length equals the length of the path {𝑢, 𝑣,𝑤}, i.e.,

𝛿 (𝑢, 𝑣,𝐺𝑖 ) + 𝛿 (𝑤, 𝑣,𝐺𝑖 ). To record that (𝑢,𝑤) is made by re-

moving 𝑣 , we set 𝑣 as the elimination vertex of (𝑢,𝑤).
(b) Otherwise (𝑢,𝑤) is an edge of 𝐺𝑖 , then we set its length to

the smallest of the current length and the length of the path

{𝑢, 𝑣,𝑤}, i.e. min{𝛿 (𝑢, 𝑣,𝐺𝑖 ), 𝛿 (𝑢, 𝑣,𝐺𝑖 ) + 𝛿 (𝑤, 𝑣,𝐺𝑖 )}. If the
edge length is updated with a smaller value, we set 𝑣 as the

elimination vertex of (𝑢,𝑤).
(3) Form a node 𝑋 (𝑣) = 𝑣 ∪ 𝑁 (𝑣,𝐺𝑖 ).
(4) Delete 𝑣 from 𝐺𝑖 to form 𝐺𝑖+1 for the next round (𝑖 ← 𝑖 + 1).
Edge generation.We next describe how to generate edges by impos-

ing parent relations for the nodes in 𝑇𝐺 . When the vertex elimina-

tion stops, suppose the value of 𝑖 is 𝜆, then we get a graph 𝐺𝜆 . We

get all the nodes 𝑋 (𝑣) in the tree part of𝑇𝐺 , where 𝑟 (𝑣) ∈ [1, 𝜆− 1].
(1) Take all vertices 𝑉 (𝐺𝜆) in 𝐺𝜆 as the core part 𝐶 of 𝑇𝐺 .

(2) For each node 𝑋 (𝑣) in the tree part,

(a) if the vertices of 𝑋 (𝑣) \ {𝑣} all belong to 𝐶 , then make 𝐶 the

parent of 𝑋 (𝑣);
(b) otherwise, find the vertex 𝑢 ∉ 𝐶 with the lowest order 𝑟 (𝑢)

in 𝑋 (𝑣) \ {𝑣}, and make 𝑋 (𝑢) the parent of 𝑋 (𝑣).
After the whole process, we get the core-tree decomposition 𝑇𝐺 .

CTL Index. Given a core-tree decomposition 𝑇𝐺 of 𝐺 , we create

separate indexes for the core part 𝐶 and the tree part 𝑉 (𝑇𝐺 ) \ 𝐶 .
For vertices 𝑣 in the tree part, the order 𝑟 (𝑣) is set to the moment 𝑖

when 𝑣 is eliminated; For vertices 𝑣 in the core part, the order 𝑟 (𝑣)
is set according to the degree (as in PLL). The order of vertices in
the core part is forced to be set higher than the vertices in the tree

part. The indexes of the two parts together form the index LCTL.

Core index. For the core part𝐶 , we create the index in the graph𝐺𝜆

using PLL, thus assigning a core label for each vertex in 𝐶 .

Tree index. For each node 𝑋 (𝑣) ∈ 𝑉 (𝑇𝐺 ) \ 𝐶 in the tree part, we

assign a tree label for the corresponding vertex 𝑣 of 𝑋 (𝑣). The label
of 𝑣 contains the distances between 𝑣 and its landmarks 𝑢 where

𝑢 ∈ ⋃𝑋 ∈ANC(𝑋 (𝑣))\𝐶 𝑋 , and 𝑢 ≠ 𝑣 .

When using the index LCTL to obtain the distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) be-
tween two vertices 𝑠 and 𝑡 , if both 𝑠 and 𝑡 are in the core part, then

we can just use the core index to complete the distance query ac-

cording to Equation 1; otherwise, if one of the vertices is not in the

core part, then we need to use both the core index and the tree index

to complete the distance query
2
. The time cost of shortest-distance

queries using LCTL is 𝑂 (𝑑 · log |𝐶 | · 𝑡𝑤 (𝑇𝐺 )), where 𝑡𝑤 (𝑇𝐺 ) is the
treewidth of 𝑇𝐺 .

3.2.1 Extension to Path Queries. To handle shortest-distance

queries,CTL assigns a (core or tree) label LCTL (𝑢) = {(𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣))}
to each vertex 𝑢 ∈ 𝑉 in the graph, where 𝑣 is the landmark of 𝑢.

To make CTL support shortest-path queries, like PLL, we need

to add an extra attribute 𝑎𝑢𝑥𝑖 (𝑢) to the label entry (𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣))
of each vertex 𝑢, thus obtaining the extended label LCTLE (𝑢) =

{(𝑣, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), 𝑎𝑢𝑥𝑖 (𝑢))}. The extra attribute 𝑎𝑢𝑥𝑖 (𝑢) is an inner

vertex on the 𝑢-𝑣 shortest path; it is used to help find the shortest

path between two vertices. If 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 1, then 𝑎𝑢𝑥𝑖 (𝑢) is unnec-
essary, and we store “-” instead. Because CTL separates the vertices

into two parts, we discuss two different extended labels.

2
For a more detailed distance query process, please refer to the literature [26].
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Extended Core Label. For a vertex 𝑢 ∈ 𝐶 in the core part, we

extend the label of 𝑢 in a similar way as we extend PLL, i.e., for
any landmark 𝑣 of 𝑢, we set 𝑎𝑢𝑥𝑖 (𝑢) to 𝑠𝑢𝑐𝑐 (𝑢), the successor of 𝑢
on the 𝑢-𝑣 shortest path in 𝐺𝜆 . The only difference is that for an

edge (𝑢, 𝑣) in 𝐺𝜆 , its weight 𝛿 (𝑢, 𝑣,𝐺𝜆) may be greater than 1. In

this case, we need to further find the corresponding 𝑢-𝑣 shortest

path in 𝐺 for this edge (𝑢, 𝑣) in 𝐺𝜆 . To do so, instead of assigning

𝑎𝑢𝑥𝑖 (𝑢) the value “-”, we assign the elimination vertex𝑤 of (𝑢, 𝑣)
— eliminating𝑤 forms the edge (𝑢, 𝑣) — to 𝑎𝑢𝑥𝑖 (𝑢).
Extended Tree Label. For each node 𝑋 (𝑢) ∈ 𝑉 (𝑇𝐺 ) \ 𝐶 in the

tree part, we extend the tree label of the vertex 𝑢 corresponding to

that node. Specifically, for each landmark 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 2,

𝑎𝑢𝑥𝑖 (𝑢) is set to “-”; otherwise, we choose some vertex on the 𝑢-𝑣

shortest path to be assigned to 𝑎𝑢𝑥𝑖 (𝑢). (1) If 𝑣 ∉ 𝑋 (𝑢), an inner

vertex on the 𝑢-𝑣 shortest path can be picked from 𝑋 (𝑢) as 𝑎𝑢𝑥𝑖 (𝑢)
— According to Lemma 3 of [11], 𝑋 (𝑢) \𝑢 is the cut that separates 𝑢

and 𝑣 , so 𝑋 (𝑢) must contain some inner vertex on the 𝑢-𝑣 shortest

path; (2) Otherwise, an inner vertex on the 𝑢-𝑣 shortest path can

be found from either 𝑋 (𝑢) or the elimination vertex 𝑤 of (𝑢, 𝑣)
as 𝑎𝑢𝑥𝑖 (𝑢) — Lemma 3 of [11] does not necessarily apply to this

case, and the 𝑢-𝑣 shortest path may contain the elimination vertex

𝑤 , since 𝑤 must be on the (local) 𝑢-𝑣 shortest path whose inner

vertices all do not belong to 𝑋 (𝑢) [26].

Example 3.10. Consider the core-tree decomposition in Fig. 2

and the extended CTL index LCTLE in Table 1. Given the vertex 𝑣8
in the tree part, for landmark 𝑣5 of 𝑣8, as 𝑣5 ∉ 𝑋 (𝑣8), we pick an

inner vertex 𝑣6 ∈ 𝑋 (𝑣8) on the 𝑣8-𝑣5 shortest path from 𝑋 (𝑣8) =
{𝑣8, 𝑣6, 𝑣3} as 𝑎𝑢𝑥𝑖 (𝑣8) to extend the label entry. Given the vertex

𝑣6 in the tree part, for landmark 𝑣3 of 𝑣6, as 𝑣3 ∈ 𝑋 (𝑣6), we find an

inner vertex 𝑣8 on the 𝑣6-𝑣3 shortest path as 𝑎𝑢𝑥𝑖 (𝑣6) to extend the
label entry, where 𝑣8 is the elimination vertex of the edge (𝑣6, 𝑣3).

3.2.2 PathQuery Processing. We use the extended CTL index LCTLE
to process the path query QP (𝑠, 𝑡), thus getting the 𝑠-𝑡 shortest

path 𝑝 (𝑠, 𝑡). There is some complexity in using the extended CTL
index for path queries. For the sake of convenience, we first discuss

two special cases of queries, and then introduce how to handle the

general case of path queries based on these two special cases.

Special Cases. We first give two special cases (sp1-sp2) of queries.

sp1: 𝑝 (𝑠, 𝑡) contains only the vertices of the tree part.We find the 𝑠-𝑡

shortest path 𝑝 (𝑠, 𝑡) using the following steps.

(1) We first use tree index
3
and a similar function to Equation 1

to find 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) as well as the landmark vertex 𝑤 on 𝑝 (𝑠, 𝑡);
we divide the path 𝑝 (𝑠, 𝑡) into two parts by landmark 𝑤 : 𝑠-

𝑤 subpath 𝑝1 and 𝑤-𝑡 subpath 𝑝2. The following steps only

explain how to find 𝑝1, and the process of finding 𝑝2 is similar.

(2) If 𝑑𝑖𝑠𝑡 (𝑠,𝑤) = 0, we return 𝑝1 = {𝑠}; if 𝑑𝑖𝑠𝑡 (𝑠,𝑤) = 1, re-

turn 𝑝1 = {𝑠,𝑤}. Otherwise, we find (𝑤,𝑑𝑖𝑠𝑡 (𝑤, 𝑠), 𝑎𝑢𝑥𝑖 (𝑠)) ∈
LCTLE (𝑠). We use attribute 𝑎𝑢𝑥𝑖 (𝑤) to decompose 𝑝1 into 𝑠-

𝑎𝑢𝑥𝑖 (𝑠) and 𝑎𝑢𝑥𝑖 (𝑠)-𝑤 subpaths. We recursively call Step (2)

to find them. Finally, they are spliced together as 𝑝1 to return.

(3) Return 𝑝1 + {𝑤} + 𝑝2 as the 𝑠-𝑡 shortest path.

3
Note that each vertex𝑢 of the tree part uses itself as landmark during query processing,

i.e., generate a new label entry (𝑢, 0, “−′′) .

sp2: 𝑝 (𝑠, 𝑡) contains vertices of both parts, 𝑠 ∉ 𝐶 , 𝑡 ∈ LCTLE (𝑠) ∩𝐶 . If
𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 1, then 𝑝 (𝑠, 𝑡) = {𝑠, 𝑡}. Otherwise, since 𝑡 ∈ LCTLE (𝑠),
we can obtain the label entry (𝑡, 𝑑𝑖𝑠𝑡 (𝑠, 𝑡), 𝑎𝑢𝑥𝑖 (𝑠)) to get the ex-

tra attribute 𝑤 = 𝑎𝑢𝑥𝑖 (𝑠). We then use 𝑤 to find the path 𝑝 (𝑠, 𝑡)
recursively (similar to Step (2) of sp1).

Example 3.11. Consider the extended CTL index in Table 1. For

the query QP (𝑣9, 𝑣5), since the shortest path 𝑝 (𝑣9, 𝑣5) does not

pass through the vertices of the core part, it belongs to sp1. To
process QP (𝑣9, 𝑣5), we use the tree index to find a landmark 𝑣5
on the 𝑣9-𝑣5 path to divide the path into subpath 𝑝1(𝑣9, 𝑣5) and
the trivial subpath 𝑝2(𝑣5, 𝑣5). (Step (1)). Next, to find 𝑝1(𝑣9, 𝑣5), we
query LCTLE (𝑣9) to get (𝑣5, 2, 𝑎𝑢𝑥𝑖 (𝑣5) = 𝑣7), and then use the extra

attribute 𝑣7 to query and splice paths recursively until 𝑝1(𝑣9, 𝑣5) =
{𝑣9, 𝑣7, 𝑣5} is found (Step (2)). For the queryQP (𝑣5, 𝑣3), since 𝑣5 ∉ 𝐶

and 𝑣3 ∈ LCTLE (𝑣5) ∩ 𝐶 , it belongs to sp2. To process QP (𝑣5, 𝑣3),
we first query LCTLE (𝑣5) to get (𝑣3, 3, 𝑎𝑢𝑥𝑖 (𝑣5) = 𝑣6), and then use

the extra attribute 𝑣6 to query and spice paths recursively until

𝑝 (𝑣5, 𝑣3) = {𝑣5, 𝑣6, 𝑣8, 𝑣3} is returned.
General Cases. Based on sp1 and sp2, we are now ready to give

query processing in general.

Case 1: 𝑠, 𝑡 ∈ 𝐶 . First, we use a similar method to Algorithm 1 to

get the shortest path 𝑝 (𝑠, 𝑡,𝐺𝜆) between 𝑠 and 𝑡 in 𝐺𝜆 . For each

edge (𝑢, 𝑣) on the path, if 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) = 1, then the edge (𝑢, 𝑣) is
returned directly; otherwise, the edge (𝑢, 𝑣) needs to be unfolded

to the 𝑢-𝑣 shortest path on the original graph — suppose 𝑟 (𝑢) >
𝑟 (𝑣), then (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣), 𝑎𝑢𝑥𝑖 (𝑣) = 𝑤) ∈ LCTLE (𝑣), we divide 𝑝 (𝑢, 𝑣)
into 𝑢-𝑤 subpath 𝑝1 and𝑤-𝑣 subpath 𝑝2. Since eliminating𝑤 ∉ 𝐶

produces the edge (𝑢, 𝑣) in 𝐺𝜆 , then 𝑢, 𝑣 ∈ 𝑋 (𝑤) by the core-tree

decomposition process and thus 𝑢 and 𝑣 are the landmarks of 𝑤 .

Therefore, the subpaths 𝑝1 and 𝑝2 can be both found using sp2,
which can be spliced to produce 𝑝 (𝑢, 𝑣). The 𝑠-𝑡 shortest path in 𝐺

is obtained by applying the above process to all edges in 𝑝 (𝑠, 𝑡,𝐺𝜆).
Case 2: 𝑠 ∉ 𝐶, 𝑡 ∈ 𝐶 (or vice versa). Using the distance query of CTL,
we can get the vertex 𝑐 on 𝑝 (𝑠, 𝑡), where 𝑐 ∈ LCTLE (𝑠) ∩ 𝐶 (𝑐 is

the interface [26]). We divide the 𝑠-𝑡 shortest path 𝑝 (𝑠, 𝑡) into two

segments, 𝑝 (𝑠, 𝑐) and 𝑝 (𝑐, 𝑡), where the subpath 𝑝 (𝑠, 𝑐) can be found
by sp2 and the subpath 𝑝 (𝑐, 𝑡) can be processed by Case 1. Finally,

𝑝 (𝑠, 𝑐) and 𝑝 (𝑐, 𝑡) can be spliced to obtain 𝑝 (𝑠, 𝑡).
Case 3: 𝑠, 𝑡 ∉ 𝐶 . Using the distance query of CTL, we can get the

vertex 𝑐 (resp. 𝑑) on 𝑝 (𝑠, 𝑡), where 𝑐 ∈ LCTLE (𝑠) ∩ 𝐶 (resp. 𝑑 ∈
LCTLE (𝑠) ∩𝐶). If both 𝑐 and 𝑑 do not exist, this indicates that 𝑠 and 𝑡

do not pass through the core part, then 𝑝 (𝑠, 𝑡) is obtained directly

using sp1; otherwise, since 𝑐 ∈ 𝐶 , the subpath 𝑝 (𝑠, 𝑐) can be handled
by Case 2; since both 𝑐, 𝑑 ∈ 𝐶 , the subpath 𝑝 (𝑐, 𝑑) can be handled by

Case 1; since 𝑑 ∈ 𝐶 , the subpath 𝑝 (𝑑, 𝑡) can be processed by Case 2.

𝑝 (𝑠, 𝑡) can be obtained by splicing 𝑝 (𝑠, 𝑐), 𝑝 (𝑐, 𝑑), and 𝑝 (𝑑, 𝑡).
Example 3.12. Consider the extended index LCTLE in Table 1. We

show how to process the query QP (𝑣5, 𝑣10) (Case 3). (1) We first

find 𝑐 = 𝑣3 ∈ LCTLE (𝑣5) on the 𝑣5-𝑣10 path using the distance query

of CTL. We can find the subpath 𝑝 (𝑣5, 𝑣3) = {𝑣5, 𝑣6, 𝑣8, 𝑣3} (Case 2).
(2) We then find 𝑑 = 𝑣1 ∈ LCTLE (𝑣10) on the 𝑣5-𝑣10 path by querying

the CTL index. We can find the subpath 𝑝 (𝑣1, 𝑣10) = {𝑣1, 𝑣10} (Case
2). (3) We find the subpath 𝑝 (𝑣3, 𝑣1) = {𝑣3, 𝑣1} via the extended core
index (Case 1). Hence, 𝑝 (𝑣5, 𝑣10) = 𝑝 (𝑣5, 𝑣3)+𝑝 (𝑣3, 𝑣1)+𝑝 (𝑣1, 𝑣10) =
{𝑣5, 𝑣6, 𝑣8, 𝑣3, 𝑣1, 𝑣10}.
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Lemma 3.13. Using LCTLE can correctly answer the query QP (𝑠, 𝑡).

Lemma 3.14. Using LCTLE requires 𝑂 (𝑑𝑖𝑠𝑡 (𝑠, 𝑡) × logΔCTL) to an-
swer the query QP (𝑠, 𝑡), where ΔCTL is CTL’s maximum label size.

4 MONOTONIC LANDMARK LABELING
Section 3 describes how to extend PLL and CTL to support shortest-
path queries. Implementing the extensions requires adding an extra

attribute to each index entry to enable fast pathfinding. However,

adding the extra attributes makes the extended PLL and CTL in-

dexes too large: both the extended PLL and CTL indexes occupy

about twice the size of the original index. On the other hand, al-

though using the traversal-based approach does not require high

space cost, there is no way to guarantee query time.

In this section, we propose a new extension-based approach,

Monotonic Landmark Labeling (MLL), to further balance the space

cost and query time. Considering that CTL can handle large graphs

that PLL cannot [26], we choose to extend CTL. Instead of adding

extra attributes to each entry of the CTL index, our approach MLL
is to non-trivially create an additional lightweight index (i.e., the

MLL index LMLL
) on top of the CTL index as a plug-in to facilitate

shortest-path queries. This lightweight index not only avoids the ex-

cessive space cost caused by the extra attributes but also guarantees

query time. We will introduce the new MLL index in Section 4.1,

followed by a description of how to use both the CTL index and the

MLL index to support queries in Section 4.2, and finally, we will

introduce how to create theMLL index in Section 4.3.

4.1 Index Structure
The concept of the monotonic shortest path underpins our method

MLL. We set the vertex order of MLL using the same order as CTL.

Definition 4.1 (Monotonic Shortest Path). Given two vertices 𝑠, 𝑡

of 𝐺 , the 𝑠-𝑡 shortest path 𝑝 (𝑠, 𝑡) = {𝑣0 = 𝑠, 𝑣1, · · · , 𝑣𝑙 = 𝑡} is
monotonic iff 𝑟 (𝑣𝑖 ) < min{𝑟 (𝑠), 𝑟 (𝑡)} for ∀𝑣𝑖 ∈ 𝑝 (𝑠, 𝑡), 𝑖 ∈ [1, 𝑙 − 1].

The shortest path 𝑝 (𝑠, 𝑡) is monotonic if the order of inner ver-

tices (i.e., vertices excluding 𝑠 and 𝑡 ) is lower than both 𝑠 and 𝑡 . Any

edge in the graph is a trivial monotonic shortest path. We show any

shortest path can be split into several monotonic shortest paths.

Lemma 4.2. The shortest path 𝑝 (𝑠, 𝑡) between any two ver-
tices 𝑠 and 𝑡 can be split into a set of monotonic shortest paths
{𝑝1, 𝑝2, · · · , 𝑝𝑙 }, s.t., 𝑝 (𝑠, 𝑡) = 𝑝1 + 𝑝2 · · · 𝑝𝑙 .

Example 4.3. Consider the graph 𝐺 in Fig. 1. We assume that

𝑟 (𝑣1) > 𝑟 (𝑣2) > · · · > 𝑟 (𝑣12). The 𝑣3-𝑣5 shortest path 𝑝 (𝑣3, 𝑣5) =
{𝑣3, 𝑣9, 𝑣7, 𝑣5} is monotonic as the order of inner vertices {𝑣9, 𝑣7}
is lower than 𝑣3 and 𝑣5. The 𝑣5-𝑣4 shortest path 𝑝 (𝑣5, 𝑣4) =

{𝑣5, 𝑣7, 𝑣9, 𝑣3, 𝑣4} is not monotonic as the order of the inner vertex

𝑣3 is higher than 𝑣5. We describe how to decompose 𝑝 (𝑣5, 𝑣4) into
several monotonic shortest paths. First, starting from 𝑣5, we find a

vertex 𝑣3 of order higher than 𝑣4 and stop, forming the first mono-

tonic path 𝑝1 (𝑣5, 𝑣3) = {𝑣5, 𝑣7, 𝑣9, 𝑣3}. Then starting from 𝑣4 until

meeting 𝑣3, we get the second monotonic path 𝑝2 (𝑣3, 𝑣4) = {𝑣3, 𝑣4}.
It follows that 𝑝 (𝑣5, 𝑣4) = 𝑝1 (𝑣5, 𝑣3) + 𝑝2 (𝑣3, 𝑣4).

MLL Index. Lemma 4.2 shows that any shortest path can be split

into several monotonic shortest paths. Our basic idea is to index

monotonic shortest paths, and these indexed shortest paths can be

stitched together to answer any shortest-path query. Based on this,

we create a new kind of index LMLL
. The index LMLL

assigns a label

LMLL (𝑢) to each vertex 𝑢 ∈ 𝑉 in the graph, which includes some

landmark 𝑣 selected for 𝑢 and the auxiliary vertex ℎ(𝑢).

Definition 4.4. The entry (𝑣, ℎ(𝑢)) is in LMLL (𝑢) iff
(1) 𝑟 (𝑣) ≥ 𝑟 (𝑤) for ∀𝑤 on all 𝑢-𝑣 shortest paths, and 𝑣 ≠ 𝑢;

(2) All 𝑢-𝑣 shortest paths are monotonic.

ℎ(𝑢) is the highest-order inner vertex on all 𝑢-𝑣 shortest paths.

For MLL, if 𝑣 is a landmark of 𝑢, then 𝑣 needs to satisfy two

conditions. The first condition is that 𝑟 (𝑣) is the highest over all
vertices in 𝑢-𝑣 shortest paths. Note that PLL only requires this

condition to add 𝑣 as the landmark of 𝑢 (see Theorem 3.2). Also, we

require 𝑣 ≠ 𝑢 to forbid 𝑣 to become its own landmark. The second

condition is that all 𝑢-𝑣 shortest paths must be monotonic. Without

this condition,MLL will index the shortest paths (between any two

vertices) as in PLL. Because of this condition, MLL only indexes

the monotonic shortest paths, causingMLL to have a significantly

smaller index size than PLL.
Also, we record the inner vertex ℎ(𝑢) that has the highest order

among all𝑢-𝑣 shortest paths. If 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 2, then there is no inner

vertex on the 𝑢-𝑣 shortest path, so we store “-” instead. The role

of ℎ(𝑢) is similar to that of the precursor used to extend PLL for

shortest-path queries (see Algorithm 1), i.e., using ℎ(𝑢), we can

track all vertices on a shortest path and thus recover the path.

Example 4.5. Consider the graph 𝐺 in Fig. 1, where the MLL
column of Table 1 gives the MLL index. For vertex 𝑣6, (𝑣3, 𝑣8) ∈
LMLL (𝑣6) because all 𝑣3-𝑣6 shortest paths are monotonic and 𝑣3
has the highest order on all paths; ℎ(𝑣6) = 𝑣8 as 𝑣8 is the inner

vertex with the highest order on all 𝑣3-𝑣6 paths. Similarly, for 𝑣2,

(𝑣1,−) ∈ LMLL (𝑣2) because all 𝑣1-𝑣2 shortest paths are monotonic

and 𝑣1 has the highest order; ℎ(𝑣2) = − because 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2) = 1.

A careful reading of Definition 4.4 reveals redundancy. The sec-

ond condition (all 𝑢-𝑣 shortest paths are monotonic) implies that

all inner vertices𝑤 on 𝑢-𝑣 shortest paths are of a lower order than

𝑣 , i.e., 𝑟 (𝑣) > 𝑟 (𝑤). We give a more intuitive condition to decide if

𝑣 is a landmark of 𝑢.

Theorem 4.6. The entry (𝑣, ℎ(𝑢)) is in LMLL (𝑢) iff all𝑢-𝑣 shortest
paths are monotonic, and 𝑟 (𝑣) > 𝑟 (𝑢).

Index Size. MLL supports path queries by building an additional

MLL index on top of the CTL index, so the total index size of MLL
includes the CTL index size and the MLL index size (as the extra

space cost). On the other hand, extending CTL (and PLL) by extra

attributes also introduces an extra space cost. According to em-

pirical results, the extra space required for the extended CTL (and

PLL) method occupies almost the same size as the original index.

To intuitively compare the extra space cost required by MLL and

the extended CTL (and PLL) method, we compare the MLL index

size with the original CTL (and PLL) index size.
We define the label size |LMLL (𝑢) | of 𝑢 as the number of land-

marks contained in LMLL (𝑢). Then theMLL index size is defined as

|LMLL | = Σ𝑢∈𝑉 |LMLL (𝑢) |. We show the PLL index size exceeds the

MLL index size (suppose PLL and MLL use the same vertex order.).
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Theorem 4.7. |LMLL | < |LPLL |.
We show that the CTL index size exceeds theMLL index size. We

define the label size of each vertex𝑢 as the number of𝑢’s landmarks

in 𝑢’s label for CTL. So the CTL index size |LCTL | is the total label
size of all vertices.

Theorem 4.8. |LMLL | < |LCTL |.

Remark. In practice, the MLL index size is small. From the exper-

imental results in Section 6, the MLL index size on all graphs does

not exceed 23 GB. Compared to the index sizes of PLL and CTL, the
size of theMLL index is on average 22 times and 5.19 times smaller

than that of the PLL and CTL indexes (before the extension).

4.2 Query Processing
We first describe how to process queries using LMLL

(and LCTL) if
all shortest paths between two vertices are monotonic, and then

show how to process queries in general. The entire query process

is given in Algorithm 2.

Case 1: All Paths Are Monotonic. For MLL, by Definition 4.4,

if 𝑣 is a landmark of 𝑢, i.e., (𝑣, 𝑥 = ℎ(𝑢)) ∈ LMLL (𝑢), then all

𝑣-𝑢 shortest paths are monotonic. To find the 𝑣-𝑢 shortest path

𝑝 (𝑢, 𝑣) in this case, we use an idea similar to the one used in the

PLL extension, i.e., to employ an auxiliary vertex ℎ(𝑢) (similar to

𝑠𝑢𝑐𝑐 (𝑢) in Algorithm 1) to track all vertices on a shortest path.

Specifically, we define Procedure Unfold(𝑢, 𝑣, 𝑥) in Algorithm 2

(Line 12-18).

We use 𝑥 = ℎ(𝑢) to decompose 𝑝 (𝑢, 𝑣) into subpaths 𝑝 (𝑢, 𝑥) and
𝑝 (𝑥, 𝑣) to find them separately. For 𝑝 (𝑢, 𝑥), if 𝑑𝑖𝑠𝑡 (𝑢, 𝑥) = 1, then

(𝑢, 𝑥) is an edge and is returned as 𝑝 (𝑢, 𝑥) (Line 14). Otherwise, we
take out (𝑢,ℎ(𝑥)) from LMLL (𝑥), and call Unfold(𝑢, 𝑥, ℎ(𝑥)) recur-
sively to find 𝑝 (𝑢, 𝑥) (Line 15). Similarly, we find 𝑝 (𝑥, 𝑣) (Line 16-17)
and return 𝑝 (𝑢, 𝑥) + 𝑝 (𝑥, 𝑣) as a result (Line 18).

Example 4.9. Consider the graph 𝐺 in Fig. 1. 𝑣3 is a landmark

of 𝑣5: (𝑣3, 𝑣6) ∈ LMLL (𝑣5). To find the 𝑣3-𝑣5 shortest path, we

call Procedure Unfold(𝑣3, 𝑣5, 𝑣6). (1) Since 𝑑𝑖𝑠𝑡 (𝑣3, 𝑣6) > 1 and

(𝑣3, 𝑣8) ∈ LMLL (𝑣6), we recursively call Unfold(𝑣3, 𝑣6, 𝑣8) to get

path 𝑝 (𝑣3, 𝑣6) = {𝑣3, 𝑣8, 𝑣6}. (2) Since 𝑑𝑖𝑠𝑡 (𝑣6, 𝑣5) = 1, we di-

rectly return {𝑣6, 𝑣5} as the 𝑣6-𝑣5 shortest path 𝑝 (𝑣6, 𝑣5). 𝑝 (𝑣3, 𝑣6) +
𝑝 (𝑣6, 𝑣5) = {𝑣3, 𝑣8, 𝑣6, 𝑣5} is returned as 𝑝 (𝑣3, 𝑣5).

Lemma 4.10. Procedure Unfold(𝑢, 𝑣, 𝑥 = ℎ(𝑢)) correctly returns
the 𝑢-𝑣 shortest path 𝑝 (𝑢, 𝑣) when (𝑣, ℎ(𝑢)) ∈ LMLL (𝑢).

Lemma 4.11. Procedure Unfold(𝑢, 𝑣, 𝑥 = ℎ(𝑢)) requires
𝑂 (𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) shortest-distance queries to return the 𝑢-𝑣 shortest path
𝑝 (𝑢, 𝑣) when (𝑣, ℎ(𝑢)) ∈ LMLL (𝑢).

Case 2: General Case. If not all shortest paths between two ver-

tices 𝑠 and 𝑡 are monotonic, then we cannot use Procedure Unfold
to find the 𝑠-𝑡 shortest path 𝑝 (𝑠, 𝑡): 𝑡 is not a landmark of 𝑠 (as-

sume 𝑟 (𝑠) ≤ 𝑟 (𝑡)). To handle this case, we resort to Lemma 4.2,

which states that any shortest path can be decomposed into several

monotonic shortest (sub)paths. When 𝑝 (𝑠, 𝑡) is broken down into

monotonic shortest subpaths, Procedure Unfold can find each of

them. By splicing these subpaths, we can find out 𝑝 (𝑠, 𝑡).
Algorithm 2 describes how to answer QP (𝑠, 𝑡) in a general case.

We swap 𝑠 and 𝑡 to make 𝑟 (𝑠) ≤ 𝑟 (𝑡) (Line 1). Then we run a

Algorithm 2: Processing QP (𝑠, 𝑡) forMLL

Input: QP (𝑠, 𝑡 ) , index LCTL , index LMLL

Output: The shortest path 𝑝 (𝑠, 𝑡 )
1 if 𝑟 (𝑠) > 𝑟 (𝑡 ) then swap 𝑠 and 𝑡 ;

2 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) ← query by LCTL ;
3 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) = 0 then 𝑝 (𝑠, 𝑡 ) ← {𝑠 }, return 𝑝 (𝑠, 𝑡 ) ;
4 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) = 1 then 𝑝 (𝑠, 𝑡 ) ← {𝑠, 𝑡 }, return 𝑝 (𝑠, 𝑡 ) ;
5 for (𝑤,ℎ (𝑠)) ∈ LMLL (𝑠) do
6 𝑑𝑖𝑠𝑡 (𝑠, 𝑤), 𝑑𝑖𝑠𝑡 (𝑡, 𝑤) ← query by LCTL ;
7 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑤) + 𝑑𝑖𝑠𝑡 (𝑡, 𝑤) = 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) then break;

8 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑤) = 1 then 𝑝 (𝑠, 𝑤) ← {𝑠, 𝑤 };
9 else 𝑝 (𝑠, 𝑤) ← Unfold(s, w, h(s));

10 𝑝 (𝑤, 𝑡 ) ← Algorithm 2(𝑤, 𝑡 ) ;
11 return 𝑝 (𝑠, 𝑤) + 𝑝 (𝑤, 𝑡 )

12 Procedure Unfold(u, v, x)
13 𝑑𝑖𝑠𝑡 (𝑢, 𝑥), 𝑑𝑖𝑠𝑡 (𝑥, 𝑣) ← query by LCTL ;
14 if 𝑑𝑖𝑠𝑡 (𝑢, 𝑥) = 1 then 𝑝 (𝑢, 𝑥) ← {𝑢, 𝑥 };
15 else 𝑝 (𝑢, 𝑥) ← Unfold(u, x, h(x)), where (𝑢,ℎ (𝑥)) ∈ LMLL (𝑥) ;
16 if 𝑑𝑖𝑠𝑡 (𝑥, 𝑣) = 1 then 𝑝 (𝑥, 𝑣) ← {𝑥, 𝑣 };
17 else 𝑝 (𝑥, 𝑣) ← Unfold(x, v, h(x)), where (𝑣,ℎ (𝑥)) ∈ LMLL (𝑥) ;
18 return 𝑝 (𝑢, 𝑥) + 𝑝 (𝑥, 𝑣)

distance query using LCTL to get 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) (Line 2). If 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) is 0
or 1, we can return the path 𝑝 (𝑠, 𝑡) directly (Line 3-4). Otherwise,

we enumerate all landmarks in LMLL (𝑠) and find the one 𝑤 that

is on 𝑝 (𝑠, 𝑡) (Line 5-7). If 𝑑𝑖𝑠𝑡 (𝑠,𝑤) = 1, we set the edge {𝑠,𝑤} as
𝑝 (𝑠,𝑤) directly (Line 8); otherwise, since𝑤 is a landmark of 𝑠 , the

𝑠-𝑤 shortest path 𝑝 (𝑠,𝑤) can be discovered by Procedure Unfold
(because all 𝑠-𝑤 shortest paths aremonotonic) (Line 9). Here, 𝑝 (𝑠,𝑤)
is the first monotonic shortest subpath of 𝑝 (𝑠, 𝑡), we then set𝑤 as 𝑠

to continue with Algorithm 2, until all monotonic shortest subpaths

of 𝑝 (𝑠, 𝑡) are found (Line 10-11).

Example 4.12. Consider the graph 𝐺 in Fig. 1. When answering

QP (𝑣6, 𝑣4) that finds the 𝑣6-𝑣4 shortest path 𝑝 (𝑣6, 𝑣4), we first find
the landmark 𝑣3 from the label of 𝑠 = 𝑣6, which is on 𝑝 (𝑣6, 𝑣4).
Since 𝑑𝑖𝑠𝑡 (𝑣6, 𝑣3) > 1, we call Unfold(𝑣6, 𝑣3, ℎ(𝑣6) = 𝑣8) to find the

𝑣6-𝑣3 shortest path 𝑝 (𝑣6, 𝑣3) = {𝑣6, 𝑣8, 𝑣3}. Then we set 𝑠 = 𝑣3 and

since 𝑑𝑖𝑠𝑡 (𝑣3, 𝑣4) = 1, we find 𝑝 (𝑣3, 𝑣4) = {𝑣3, 𝑣4} directly. Splicing
𝑝 (𝑣6, 𝑣3) with 𝑝 (𝑣3, 𝑣4) yields 𝑝 (𝑣6, 𝑣4) = {𝑣6, 𝑣8, 𝑣3, 𝑣4}.

Theorem 4.13. Algorithm 2 correctly answers the query QP (𝑠, 𝑡).

Lemma 4.14. Algorithm 2 requires 𝑂 (Σ𝑣∈𝑝 (𝑠,𝑡 ) |LMLL (𝑣) |)
shortest-distance queries to answer the query QP (𝑠, 𝑡).

Lemma 4.15. LMLL is minimal for correct query processing.

Remark. The best-case scenario for MLL’s query time is similar

to extending PLL and CTL using extra attributes, soMLL’s query
speed will be slightly inferior. However, MLL’s sacrifices in query

time allow us to use less space cost to support queries. Moreover,

the query time of MLL (Algorithm 2) is related to the length of the

shortest path (bounded by the graph diameter 𝐷) and the label size

of MLL. For complex networks (used in this paper), since both the

diameter 𝐷 (mostly under 50) and the average label size (all less

than 150) are small, the query time forMLL is still fast in practice

— shortest-path queries using MLL on all graphs can be completed

in less than 2 milliseconds.
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Algorithm 3:MLL Index Construction

Input: Graph𝐺 (𝑉 , 𝐸) , Index LCTL
Output: The index LMLL

1 for each vertex 𝑣 ∈ 𝑉 in parallel do
2 𝑄 ← a queue with only vertex 𝑣;

3 𝑑𝑖𝑠𝑡 (𝑣, 𝑣) ← 0 and 𝑑𝑖𝑠𝑡 (𝑣,𝑢) ← ∞, ∀𝑢 ∈ 𝑉 \ {𝑣 };
4 ℎ (𝑢) ← −, ∀𝑢 ∈ 𝑉 ;

5 while𝑄 ≠ ∅ do
6 𝑢 ← 𝑄.𝑝𝑜𝑝 () ;
7 if 𝑟 (𝑢) > 𝑟 (𝑣) then continue;

// Check if all 𝑢-𝑣 shortest paths are monotonic

8 if Check(u, v, dist(v,u)) then
9 Insert (𝑣,ℎ (𝑢)) into LMLL (𝑢) ;

10 for 𝑤 ∈ 𝑁 (𝑢) do
11 if 𝑑𝑖𝑠𝑡 (𝑣, 𝑤) = ∞ then
12 𝑑𝑖𝑠𝑡 (𝑣, 𝑤) ← 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 1;𝑄.𝑝𝑢𝑠ℎ (𝑤) ;
13 if 𝑑𝑖𝑠𝑡 (𝑣, 𝑤) = 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 1 and 𝑑𝑖𝑠𝑡 (𝑣, 𝑤) > 1 then
14 ℎ (𝑤) ← argmax𝑥∈{𝑢,ℎ (𝑢),ℎ (𝑤) }𝑟 (𝑥) ;
15 return LMLL

16 Procedure Check(u, v, d)
17 if 𝑢 ∈ 𝐶 then L(𝑢) ← the core label of 𝑥 from the CTL index;

18 if 𝑢 ∉ 𝐶 then L(𝑢) ← 𝑋 (𝑢) ;
19 if 𝑣 ∉ L(𝑢) then return False;
20 for 𝑤 ∈ L(𝑢) \ {𝑢, 𝑣 } do
21 𝑑𝑖𝑠𝑡 (𝑢, 𝑤), 𝑑𝑖𝑠𝑡 (𝑤, 𝑣) ← query by LCTL ;
22 if 𝑑 = 𝑑𝑖𝑠𝑡 (𝑢, 𝑤) + 𝑑𝑖𝑠𝑡 (𝑤, 𝑣) return False;
23 return True;

4.3 Index Construction
We create the MLL index LMLL

based on the label condition given

by Theorem 4.6, which states that vertex 𝑣 is added to the label of

vertex 𝑢 as the landmark if all 𝑣-𝑢 shortest paths are monotonic

and 𝑟 (𝑣) > 𝑟 (𝑢). If we can check whether all 𝑣-𝑢 shortest paths are

monotonic, then indexing vertex 𝑣 becomes a process of adding

𝑣 to lower-order vertices 𝑢. This process can be completed using

a 𝑣-sourced BFS. Since there is no dependency between the BFSs

of different vertices, the indexing process of all vertices can be

executed in parallel. Once all vertices complete BFS for the indexing

process, LMLL
is created.

Indexing Algorithm. Algorithm 3 describes how to create LMLL

in parallel for each vertex 𝑣 . First, each vertex 𝑣 is inserted into

the queue 𝑄 , and a 𝑣-sourced BFS begins (Line 2). We initialize

the distances from 𝑣 to all vertices, and set the highest-order inner

vertex ℎ(𝑢) on all 𝑣-𝑢 shortest paths as nil (denoted by “−”) (Line 3-
4). Then, we pop an element 𝑢 from 𝑄 (Line 6). If the order of

𝑢 is higher than 𝑣 , then the expansion from 𝑢 is pruned (Line 7).

Otherwise, we need to check if all 𝑣-𝑢 shortest paths are monotonic.

We use Procedure Check(𝑢, 𝑣, 𝑑𝑖𝑠𝑡 (𝑣,𝑢)) for this purpose, which
will be described later. If True, 𝑣 is added as a landmark to the label

of 𝑢 (Line 8-9). For each unvisited neighbor vertex𝑤 ∈ 𝑁 (𝑢) of 𝑢,
we update 𝑑𝑖𝑠𝑡 (𝑣,𝑤) and add𝑤 to𝑄 (Line 11-12). If 𝑑𝑖𝑠𝑡 (𝑣,𝑤) + 1 =
𝑑𝑖𝑠𝑡 (𝑣,𝑢), we set ℎ(𝑤) to the one 𝑥 with the highest order in 𝑢,

ℎ(𝑢), and ℎ(𝑤), i.e., argmax𝑥 ∈{𝑢,ℎ (𝑢),ℎ (𝑤) }𝑟 (𝑥) (Line 15-16).

Example 4.16. Consider the graph 𝐺 in Fig. 1. We run in parallel

to index each vertex in𝐺 . Taking 𝑣3 as an example. 𝑣3 first adds itself

to𝑄 . Then, 𝑣3 is popped from𝑄 andwe push 𝑣3’s neighbors𝑁 (𝑣3) =
{𝑣1, 𝑣2, 𝑣4, 𝑣8, 𝑣9} into𝑄 . Next, 𝑣1 and 𝑣2 is popped and pruned. Then,

𝑣4 is popped, and 𝑣3 is added as a landmark of 𝑣4 since 𝑟 (𝑣4) < 𝑟 (𝑣3)
and all 𝑣4-𝑣3 shortest paths are monotonic. Next, 𝑣8 is popped, and

𝑣3 is added as a landmark of 𝑣8; meanwhile, we insert 𝑣6 ∈ 𝑁 (𝑣8)
to 𝑄 and update ℎ(𝑣6) = argmax𝑥 ∈{𝑣8,ℎ (𝑣8)=−,ℎ (𝑣6)=−}𝑟 (𝑥) = 𝑣8.

After 𝑄 becomes empty, we stop.

Procedure Check(𝑢, 𝑣, 𝑑). Next, we introduce Procedure

Check(𝑢, 𝑣, 𝑑) (Line 16-23), where 𝑟 (𝑣) > 𝑟 (𝑢), 𝑑 = 𝑑𝑖𝑠𝑡 (𝑣,𝑢). The
purpose is to examine if all 𝑣-𝑢 shortest paths are monotonic.

A simple way is to enumerate all 𝑢-𝑣 shortest paths, and then

compare the order of each inner vertex with 𝑢. However, this

approach is inefficient, and we instead use the CTL index to speed

up the checking. Given the core-tree decomposition 𝑇𝐺 (under

parameter 𝑑) of graph 𝐺 , CTL uses PLL to assign a core label to

each vertex of the core part 𝐶 to form the core index.

The CTL index is sufficient to check if all 𝑣-𝑢 shortest paths are

monotonic. We first determine whether vertex𝑢 belongs to the core

part 𝐶 , and if so, we set L(𝑢) as the core label of 𝑢 from the CTL
index (Line 17). If𝑢 does not belong to𝐶 , we find the corresponding

tree node 𝑋 (𝑢) in 𝑇𝐺 and assign 𝑋 (𝑢) to L(𝑢) (Line 18). If 𝑣 is

not in L(𝑢), we return False, i.e., not all 𝑣-𝑢 shortest paths are

monotonic (Line 19). Otherwise, we enumerate the vertices 𝑤 in

L(𝑢), where 𝑤 ≠ 𝑢,𝑤 ≠ 𝑣 , and obtain distances 𝑑𝑖𝑠𝑡 (𝑢,𝑤) and
𝑑𝑖𝑠𝑡 (𝑤, 𝑣) by querying the CTL index (Line 20-21). If there is a

vertex𝑤 ∈ L(𝑢) \ {𝑢, 𝑣} on the 𝑢-𝑣 shortest path (i.e., 𝑑𝑖𝑠𝑡 (𝑢,𝑤) +
𝑑𝑖𝑠𝑡 (𝑤, 𝑣) = 𝑑𝑖𝑠𝑡 (𝑢, 𝑣)), then False is returned (Line 22); otherwise

True is returned (Line 23).

Example 4.17. Consider the graph𝐺 in Fig. 1, where the core-tree

decomposition (𝑑 = 2) is in Fig. 2. For Check(𝑣8, 𝑣4, 2), since 𝑣8 ∉ 𝐶 ,

𝑋 (𝑣8) = {𝑣6, 𝑣3} is assigned to L(𝑣8). As 𝑣4 ∉ L(𝑣8), we return

False. For Check(𝑣2, 𝑣1, 1), since 𝑣2 ∈ 𝐶 , the label {(𝑣1, 0), (𝑣2, 0)}
of 𝑣2 from the core index is assigned to L(𝑣2). As 𝑣1 ∈ L(𝑣2) and
�𝑤 ∈ L(𝑣2) \ {𝑣1, 𝑣2} on the 𝑣1-𝑣2 shortest path, True is returned.

Lemma 4.18. Check(𝑢, 𝑣, 𝑑) correctly checks if all 𝑢-𝑣 shortest
paths are monotonic (𝑟 (𝑣) > 𝑟 (𝑢)).

Lemma 4.19. Algorithm 3 correctly creates theMLL index.

Lemma 4.20. Algorithm 3 requires 𝑂 (ΔCTL × |LCTL |) shortest-
distance queries, where ΔCTL is CTL’s maximum label size.

5 EXTENSION OF MLL
In this section, we generalize our methodMLL to directed graphs.

In Section 4, we assumed that the complex network is undirected

forMLL.MLL can also be extended to support shortest-path queries
on directed graphs. Given a directed graph 𝐺 (𝑉 , 𝐸), if (𝑢, 𝑣) ∈ 𝐸,

then 𝑢 is an in-neighbor of 𝑣 and 𝑣 is an out-neighbor of 𝑢.

Index construction.MLL relies on theCTL index, but building the
CTL index on directed graphs is challenging due to performing core-

tree decomposition on directed graphs. There are two differences

when decomposing a directed graph compared to an undirected

graph. (1) We perform the decomposition using minimum degree

elimination (MDE) [8], which iteratively finds the vertex 𝑣 with the

smallest degree (the total number of in-/out-neighbors) in a graph.

In eliminating the vertex 𝑣 , we connect any two neighbors 𝑢,𝑤 of 𝑣

by directed edges, set the edge weight, and remove 𝑣 using similar

methods to that of undirected graphs; the other parts are the same.

(2) For each vertex 𝑢 in the tree node 𝑋 (𝑣), we need to store two
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shortest distances: the forward distance 𝑑𝑖𝑠𝑡+ (𝑢, 𝑣) from 𝑢 to 𝑣 and

the backward distance 𝑑𝑖𝑠𝑡− (𝑢, 𝑣) from 𝑣 to 𝑢.

When the graph is decomposed, we get a directed graph𝐺𝜆 , and

we can use PLL to create a forward label LCTL+ (𝑢) for each vertex

𝑢 ∈ 𝐶 . Then, the direction of the edges of 𝐺𝜆 is reversed to get a

reverse graph, and we create a backward label LCTL− (𝑢) for each
𝑢 ∈ 𝐶 by using PLL on the reverse graph of 𝐺𝜆 . As for the tree

index, for each landmark 𝑣 of 𝑢, we calculate the distance from 𝑣

to 𝑢 as a forward label and the distance from 𝑢 to 𝑣 as a backward

label. Similarly, for our MLL index, we use Algorithm 3 to create a

forward label LMLL
+ (𝑢) for each vertex 𝑢 ∈ 𝑉 on the original graph

𝐺 and a backward label LMLL
− (𝑢) on the reverse graph of 𝐺 .

Query processing. To perform shortest-path queries on directed

graphs, we can use a similar way as on undirected graphs (by

Algorithm 2). One thing to note is that we need to consider whether

to use forward or backward labels for each vertex. For example,

when we need to obtain the shortest path from 𝑠 to 𝑡 , we should use

the forward label LMLL
+ (𝑠) for 𝑠 and the backward label LMLL

− (𝑡) for
𝑡 . Algorithm 2 also needs the support of shortest-distance queries

using CTL, which can be adapted similarly on directed graphs.

6 EXPERIMENTS

Algorithms. We intend to conduct thorough experimental com-

parisons of traversal-based and extension-based approaches for

dealing with shortest-path queries on complex networks.

• Traversal-based: we select and implement four representative

methods, all of which need graph traversal to process queries.

– BFS. We start a BFS from 𝑠 until 𝑡 is met to process QP (𝑠, 𝑡).
– BiBFS. Bidirectional BFS, i.e., search the path from both the

𝑠 and 𝑡 sides to process QP (𝑠, 𝑡).
– PLLB. This method uses both the index and graph traversal.

To reduce the PLL index size, we construct a partial PLL by

only constructing labels within a specific distance (≤ 5 in

this paper) and ignoring others with larger distance values.

This partial PLL index is extended to support shortest-path

queries. When dealing with QP (𝑠, 𝑡), if the partial PLL index

finds 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) ≤ 5, then the 𝑠-𝑡 shortest path can be returned

using Algorithm 1; otherwise, the query is handled by BiBFS.

– CTLB. We use CTL as preprocessing to speed up BFS, that is,

when processingQP (𝑠, 𝑡), theCTL index can provide distance
information to determine whether a vertex 𝑤 is on the 𝑠-𝑡

shortest path, i.e., whether 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡 (𝑠,𝑤) +𝑑𝑖𝑠𝑡 (𝑤, 𝑡).
Vertices not on the 𝑠-𝑡 shortest path can be pruned directly.

• Extension-based: we select the extended PLL and CTL intro-

duced in Section 3 and MLL introduced in Section 4, all of

which use only indexes to process queries.

– PLLE. We use the extended PLL index, i.e., add an extra at-

tribute to each index entry, for query processing. The query

method is in Algorithm 1. We use the parallel version of PLL
to speed up index creation, whose source code is provided

by the authors of [25].

– CTLE. We use the extended CTL index, i.e., add an extra

attribute to each index entry, for query processing. The query

processing method is introduced in Section 3.2.2. The index

Table 2: Dataset Description
Datasets 𝑛 𝑚 Type Diameter 𝑑𝑖𝑠𝑡𝑎𝑣𝑔 𝐷𝑒𝑔𝑎𝑣𝑔

DELI Delicious
4

536,109 1,365,961 Social 14 5.16 5.10

DIGT DIGT
4

4,000,151 8,649,016 Social 15 7.81 4.32

FRIE Friendster
4

8,658,745 55,170,227 Social 25 5.37 12.74

STAC Stack
4

6,024,271 63,497,050 Interaction 11 3.86 21.08

LIVE LiveJournal
5

5,363,260 79,023,142 Social 20 5.45 29.47

FACE Facebook
4

58,790,783 92,208,195 Social 24 7.25 3.14

TWIT Soc-Twitter
4

21,297,772 265,025,809 Social 26 4.87 24.89

SK05 SK-2005
5

50,636,154 1,949,412,601 Web 40 5.20 77.00

UK06 UK-2006
5

77,741,046 2,965,197,340 Web 42 6.16 76.28

UK07 UK-2007
5

133,633,040 5,507,679,822 Web 257 6.22 82.43

construction of CTL can be accelerated using multiple cores.

The source code of CTL is provided by the authors of [26].

– MLL.MLL uses both the CTL index and theMLL index for

query processing (see Algorithm 2). The index ofMLL can

be constructed in parallel, and the construction algorithm is

presented in Algorithm 3.

We implemented all the algorithms using C++ and compiled

them using GNU GCC 4.8.5 and -O3 level optimizations. We use

OpenMP to support the implementation of the parallel algorithms.

All experiments were conducted on a machine with 64 CPU cores

and 500 GB main memory running Linux (Red Hat Linux 4.8.5,

64bit). Each CPU core is Intel Xeon 2.4GHz.

Datasets. We ran experiments on 10 real-world graphs, whose

details are given in Table 2. The largest graph has over 5.5 billion

edges. These graphs are small-world graphs, most of which have

diameters (longest shortest distances) less than 50, and the average

distance between two vertices of all graphs, i.e., 𝑑𝑖𝑠𝑡𝑎𝑣𝑔 , is less than

10. The average degree of these graphs, 𝐷𝑒𝑔𝑎𝑣𝑔 , varies between

3.14 and 82.43. The dataset comes from various complex networks,

including social networks, web graphs, and interaction networks.

All graphs were downloaded from Network Repository
4
[34] and

Laboratory for Web Algorithms
5
[10].

Summary of Findings. For traversal-based methods (i.e., BFS,

BiBFS, PLLB, andCTLB), BFS and BiBFS can process queries without
building indexes, but their query speed is slow. CTLB tries to use

the CTL index to accelerate BFS, but it cannot guarantee query

time. PLLB can speed up the query process by creating a partial

PLL index, but it still cannot guarantee query time for shortest-path

queries with long distances. Thus, the traversal-based approaches

are only applicable when the query speed is not so demanding

while the space budget is low.

On the other hand, extension-based methods (i.e., PLLE, CTLE,
and MLL) use the pre-computed index for query processing, and

their query speed is much faster than traversal-based methods

since they avoid graph traversal at query time. Moreover, the three

extension-based methods make a different trade-off between query

time and space cost: among them, MLL has the smallest index size

and PLLE has the largest index size, while the index size of CTL
is in between; MLL has the slowest query speed and PLLE has the

fastest query speed, while the query speed of CTL is in between.

Ex-1: Query Time Comparison.We compare the query time of

all methods. For the approach using indexes for query processing,

we set the query time to “INF” if the index cannot be built. We

4
https://networkrepository.com/networks.php

5
https://vigna.di.unimi.it
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Figure 3: The Comparison of Different Methods

generated 1000 random queries and obtained the average query

processing time. We show the results in Fig. 3(a).

Comparison among extension-based methods. Since the extension-

based methods (i.e., PLLE, CTLE, and MLL) do not rely on graph

traversal, they can process queries very quickly: all of them han-

dle shortest-path queries within two milliseconds. Among them,

PLLE has the fastest query speed, and the query time of PLLE is on

average 10.53 times shorter than that ofMLL. The query speed of

MLL is comparable to that of CTLE, and the query time of CTLE is

on average 1.94 times shorter than that of MLL. Considering the

performance of extension-based methods in query processing, they

are suitable for applications requiring high query speed.

Comparison with traversal-based methods. Due to the inevitable

need for graph traversal, the query speed of traversal-based meth-

ods (i.e., BFS, BiBFS, PLLB, and CTLB) is much slower than that

of extension-based methods. We take MLL as a representative to

compare extension-based methods with traversal-based methods.

(1) Comparison with BFS and BiBFS. The query time of BFS is, on

average, 3265.86 times longer than MLL and up to four orders of

magnitude longer than MLL. BiBFS uses bi-directional search to

reduce the overhead of graph traversal compared to BFS, but BiBFS

still takes a long time to process queries: BiBFS is on average 254

times and up to three orders of magnitude slower thanMLL.
(2) Comparison with PLLB. When processing a query, if the distance

between two vertices is short, PLLB can use the index to avoid

traversing the graph. However, PLLB cannot totally avoid graph

traversal, which leads to the query time of PLLB being 102.46 times

longer than that of MLL on average.

(3) Comparison with CTLB. CTLB narrows the search space of BFS

by distance queries, so CTLB is faster than BFS on some graphs; for

example, on DELI, the query time of CTLB is 0.14 times that of BFS.

But distance queries used by CTLB are not free; for example, on

UK07, CTLB takes 1.25 times longer than BFS. CTLB is also much

slower than MLL: MLL is on average 3027.45 times and at most

four orders of magnitude faster than CTLB.

Ex-2: Index Size Comparison. There are five methods that re-

quire the use of indexes (including PLLB, CTLB, PLLE, CTLE, and
MLL) for query processing. We compare the index size of these five

methods and present the results in Fig. 3(b).

Index Size of PLLE, CTLE, and MLL. Among extension-based meth-

ods, PLLE has the largest index, whileMLL has the smallest index.

(1) The total size of the indexes (including the CTL and the MLL
indexes) used by MLL is 6.9 times smaller than the size of indexes

used by PLLE. Because of the oversized indexes, PLLE cannot handle
large graphs such as FACE, TWIT, and UK07.

(2) BothMLL and CTLE are extended based on CTL to support path

queries. For CTLE, the extra space brought by the extension is 0.96

times that of the original CTL index, while the size of the extra

space (i.e., the MLL index) required by MLL is 0.2 times that of the

original CTL index. Also, due to the difference in the extra space

used, CTLE cannot handle graph UK07 while MLL can.

Index Size of PLLB. By limiting the distance in the labels, PLLB con-

structs a partial PLL index. Thus, the index size of PLLB is 0.82

times that of PLLE. However, the index size of PLLB is on average

8.05 times
6
that ofMLL, and PLLB cannot handle large graphs such

as FACE and UK07. This shows that even building a partial PLL
index still requires a much larger index size thanMLL.
Index Size of CTLB. Instead of extending the CTL index, CTLB uses

the original CTL index for distance queries to reduce the search

range of BFS. CTLB has a smaller index size than the extension-

based approaches. However, the total index size of MLL is only 1.2

times that of CTLB, indicating that MLL does not add significantly

extra space to the original CTL index.

Ex-3: Indexing Time Comparison. We compare the indexing

time of five methods (including PLLB,CTLB, PLLE,CTLE, andMLL)
that require the use of indexes for query processing. We show the

results in Fig. 3(c).

Indexing Time of PLLE, CTLE, andMLL. Among three extension-

based methods, MLL has the shortest indexing time: the total in-

dexing time ofMLL (including the time to build the CTL index and

the MLL index) is on average 4.06 times shorter than that of PLLE,
and also on average 2.15 times shorter than that of CTLE.
Indexing Time of PLLB. On the graphs that PLLE can index, PLLB
is 2.44 times faster than PLLE: PLLB only needs to build a partial

PLL index while PLLE needs a complete one. However, the indexing

time of PLLB is on average 1.72 times and 3.6 times longer than

that of CTLE andMLL, respectively.
Indexing Time of CTLB. CTLB only needs to build the CTL index,

while CTLE needs to add an extra attribute to each entry of the CTL
index, which causes the indexing time of CTLE to be 2.41 times

longer than that of CTLB. MLL also needs to create the CTL index

first. Still, the additional building of lightweight indexes results

in the indexing time of MLL being only 1.12 times that of CTLB,
indicating that MLL does not incur much additional indexing time

cost to support shortest-path queries.

Ex-4: Test of Query Time at Different Distance Ranges. We

test the performance of all methods in handling queries in different

distance ranges. We randomly generate five sets of queries 𝑄 =

6
There is no conflict with former results as PLLB can index FACE while PLLE cannot.
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Figure 4: The Test of the Query Time at Different Distance Ranges
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Figure 5: The Test of Scalability on the Query Time

{𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5}, where each set 𝑄𝑖 ∈ 𝑄 , 𝑖 ∈ [1, 5], consists of
1000 random queries. For each query QP (𝑠, 𝑡) ∈ 𝑄𝑖 , we control the

shortest distance between 𝑠 and 𝑡 located in the range between

𝐷
5
× (𝑖 − 1) and 𝐷

5
× 𝑖 , where 𝐷 is the diameter of the graph. We

report the average time for answering queries in each set 𝑄𝑖 . Since

various graphs have similar conclusions, we only show the results

for FRIE, STAC, LIVE, and SK05 in Fig. 4.

Effect of distance on query time. For all methods, the time to answer

queries in 𝑄1 tends to be shorter, while the time to answer queries

in 𝑄5 tends to be longer. For example, on graph FRIE, MLL takes

1.48 times longer to process queries in 𝑄5 than in 𝑄1; BFS takes

433.77 times longer to process queries in𝑄5 than in𝑄1. One reason

for this trend is that a longer path always means examining more

labels or visiting more graph vertices to find the path. It is worth

noting that the query time for PLLB increases dramatically as the

query distance increases. This is because PLLB can use indexes to

answer queries when the distance is less than a certain value (we

set it to 5), whereas graph traversal is required for larger distances.

Comparison of traversal-based and extension-based Methods. The

extension-based methods are faster than the traversal-based

methods in processing queries in any 𝑄𝑖 on all graphs. Taking

MLL as an example, MLL is on average 1511.34, 44.95, 44.95 and

91.75 times faster than BFS, BiBFS, PLLB and CTLB in processing

queries in 𝑄4 of LIVE.

Ex-5: Scalability Test on Query Time. We test the scalability of

all methods. To do this, we randomly divide the edges 𝐸 of graph
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Figure 6: The Test of Scalability on the Index Size
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Figure 7: The Test of Scalability on the Indexing Time

𝐺 (𝑉 , 𝐸) into five groups with equal size and then generate five test

graphs such that the 𝑖-th test graph contains the first 𝑖 groups of

edges. Thus, the five test graphs include 20%, 40%, 60%, 80%, 100%

of the edges in𝐺 , respectively. We conduct experiments on each of

the five test graphs.

We first evaluate the graph size against the query time of all

methods. Since various graphs have similar conclusions, we only

present the results for FRIE, STAC, LIVE, and SK05 in Fig. 5. We find

that, as the graph size increases, the query time of some methods

shows an increasing trend. For example, on STAC, for CTLB, the
query time on the test graphs containing 40%, 60%, 80% and 100%

edges is 2.2, 4.94, 5.33 and 16.77 times longer than the query time

on the test graph with 20% edges. Yet, there is not just an upward

trend observed; for example, on STAC, for MLL, the query time on

the test graph containing 60% edges is 1.76 times longer than that

on the test graph with 80% edges.

The reasons for the query time fluctuations are manifold. First,

most of the query complexity is related to the graph scale, and a

large graph generally implies an increase in complexity; however,

query processing is also related to other factors, such as graph

density and graph diameter. According to [24], the graph diameter

decreases as the number of edges increases. Thus, the query time

shows a fluctuating trend under the interaction of various factors.

Ex-6: Scalability Test on Index Size.We investigate the effect of

the graph size on the index size.We use the same experimental setup
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as Ex-5 and compare the index size of the five methods (including

PLLB, CTLB, PLLE, CTLE, and MLL) that use indexes for query

processing. The results are given in Fig. 5.

We find that the index size of all the five methods increases as

the graph size grows. For example, on FRIE, the index built byMLL
on the test graph containing 40% edges is 1.75 times larger than the

index built on the test graph containing 20% edges, while the index

built byMLL on the test graph with 100% edges is 3.23 times larger

than the index built on the test graph with 20% edges.

Ex-7: Scalability Test on Indexing Time. We next study the

effect of the graph size on the indexing time of the five methods

(including PLLB, CTLB, PLLE, CTLE, andMLL) that rely on indexes

for query processing. The experiments use the same settings as

Ex-5, and we report the results in Fig. 7.

It can be found from Fig. 7 that the indexing time of all the five

methods increases as the graph size increases. TakingMLL as an

example, on graph FRIE, the indexing time of MLL is 1.92, 2.77,

3.41, and 4.02 times longer on test graphs containing 40%, 60%, 80%,

and 100% edges, respectively, than on the test graph containing 20%

edges. Similar phenomena can be observed in other methods.
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Figure 8: The Performance of MLL on Directed Graphs

Ex-8: Test ofMLL onDirected Graphs. Section 5 introduces how
to extendMLL to directed graphs. To test the effectiveness of the

extension, we run experiments on four real datasets (DIGT, STAC,
LIVE, and SK05). Note that these graphs used are directed, while

in the previous experiments, we ignored edge directions to create

undirected graphs. The original MLL method is called MLLU since

it works with undirected graphs; the extendedMLLmethod is called

MLLD since it works with directed graphs. The results are in Fig. 8.

Query time. The query time ofMLLD is normally faster thanMLLU,
for example, on DIGT, the average query time of MLLD is 4.13

times shorter than that ofMLLU. One reason could be that when

querying on directed graphs, we only use the labels in one direction

(and ignore the labels in the opposite direction). However, due to

the randomness of queries and the larger index size, MLLD may be

slower thanMLLU in some cases; for example, on LIVE, the average
query time ofMLLD is 1.66 times longer thanMLLU.
Index size. The index size ofMLLD is generally larger than that of

MLLU: the average index size ofMLLD is 1.98 times larger than that

of MLLU. One possible explanation for this result is that forming a

path in a directed graph is more difficult (a path in a directed graph

must be a path in the corresponding version of an undirected graph,

and the reverse does not hold). When indexing a directed graph,

pruning the index using existing path information is more difficult,

resulting in a large index size.

Indexing time. The indexing time forMLLD is generally longer than

that forMLLU: on the four graphs used, the indexing time ofMLLD
is on average 2.87 times longer than that ofMLLU.

7 RELATEDWORK
Shortest-Path Queries. Traversal-based methods (e.g., BFS [7]

on unweighted graphs or Dijkstra [22] on weighted graphs) an-

swer shortest-path queries with a runtime linearly proportional

to the graph size. To speed up online traversal, numerous heuris-

tic or preprocessing techniques have been proposed, such as 𝐴∗

search [17, 19], Highway Hierarchies [36], and Contraction Hierar-

chies [16]. A survey of the speedup techniques can be found in [38].

However, the above techniques often rely on the properties of road

networks, rendering them inapplicable for complex networks. Some

studies concentrate on problems close to shortest-path queries, such

as shortest-path counting [44] and shortest-path-graph queries [39].

However, to our knowledge, there is no systematic work
7
yet on

how to effectively implement (and compare) methods for shortest-

path queries on complex networks, which is the focus of this work.

Shortest-Distance Queries. Shortest-distance queries, as an op-

eration closely related to shortest-path queries, have been well

studied. Many popular methods create offline indexes to accelerate

online query processing. However, since creating indexes with the

minimum size is NP-hard [12], subsequent work has focused on

designing practical algorithms. [14] created indexes with the help

of independent sets. When a graph cannot be loaded into memory,

[21] considered using external memory to create the index. PLLwas
designed to create indexes using the pruned BFS [3]. Li et al. [25]

used multi-threading to reduce the indexing time of PLL, while
CTL [26] was proposed to reduce the index size of PLL.
(Core-)Tree Decomposition. Tree decomposition was first stud-

ied in [18]. [6] proved that determining whether a graph’s treewidth

exceeds a given value is NP-complete. Several heuristics for tree de-

composition are listed in [42], including the widely used MDE

heuristic [8]. Tree decomposition was used to handle shortest-

path/shortest-distance queries on road networks, e.g., in [40]

and [29]. However, for complex networks, tree decomposition may

not be applicable due to the presence of large treewidth [2, 26].

Therefore, core-tree decomposition [4, 26, 28] is proposed. Core-tree

decomposition has been used to handle shortest-distance queries

in complex networks [4, 26]. However, how to efficiently handle

shortest-path queries with core-tree decomposition remains open.

8 CONCLUSION
This paper studies shortest-path queries on complex networks. The

distance query processing methods PLL and CTL are extended to

support shortest-path queries. To reduce the space cost required

for extensions,MLL is proposed.MLL is also adapted for directed

graphs. Extensive experiments are conducted to investigate the per-

formance of various methods in answering shortest-path queries.

The experimental results can help practitioners choose the appro-

priate method for a specific application.
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