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ABSTRACT
Graph Neural Networks (GNNs) are receiving a spotlight as a pow-
erful tool that can effectively serve various inference tasks on graph
structured data. As the size of real-world graphs continues to scale,
the GNN training system faces a scalability challenge. Distributed
training is a popular approach to address this challenge by scaling
out CPU nodes. However, not much attention has been paid to disk-
based GNN training, which can scale up the single-node system in
a more cost-effective manner by leveraging high-performance stor-
age devices like NVMe SSDs. We observe that the data movement
between the main memory and the disk is the primary bottleneck
in the SSD-based training system, and that the conventional GNN
training pipeline is sub-optimal without taking this overhead into
account. Thus, we propose Ginex, the first SSD-based GNN training
system that can process billion-scale graph datasets on a single ma-
chine. Inspired by the inspector-executor execution model in com-
piler optimization, Ginex restructures the GNN training pipeline
by separating sample and gather stages. This separation enables
Ginex to realize a provably optimal replacement algorithm, known
as Belady’s algorithm, for caching feature vectors in memory, which
account for the dominant portion of I/O accesses. According to our
evaluation with four billion-scale graph datasets and two GNNmod-
els, Ginex achieves 2.11× higher training throughput on average
(2.67× at maximum) than the SSD-extended PyTorch Geometric.
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1 INTRODUCTION
Recently, the success of Deep Neural Network (DNN) has extended
its scope of application to graphs beyond images and texts. As a new
class of DNN, Graph Neural Network (GNN) is now proving itself to
be a powerful tool [43, 48, 54] that can replace the traditional graph
analytic methods in various inference tasks on graph-structured
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data, such as node classification [21], recommendation [36, 45], and
link prediction [47]. Owing to its expressive power, GNN effectively
captures the rich relational information embedded among input
nodes, leading to decent generalization performance.

Meanwhile, the GNN training process features unique challenges
in its data preparation stage. In GNN, unlike in traditional DNNs
where data samples are independent of each other (e.g., images),
the nodes in a graph are closely connected with each other. To
perform a single iteration of mini-batch GNN training, we need
feature vectors of not only the nodes in the mini-batch but also
their neighbor nodes [8, 21]. This first requires finding neighbors
of the nodes in the mini-batch by traversing the graph, and then
collecting their sparsely located feature vectors in a contiguous
buffer for the next steps. These two operations, called sample and
gather, respectively, involve a large number of data accesses.

For this reason, existing popular GNN frameworks [10, 42] opt
to keep the whole graph dataset in the main memory throughout
the training process. Disk-based GNN training has not received
much attention so far due to concerns on its performance [23]. How-
ever, there is yet an imperative to explore disk-based GNN training
further because of the prevalence of gigantic graph datasets with
billions of nodes and edges. The size of real-world graph datasets
reaches hundreds of GB or even a few TB (and growing), which
may exceed the main memory capacity [44, 46]. Several works have
previously addressed the scalability issue of in-memory GNN train-
ing by having more CPU nodes [11, 46, 49, 51, 53, 55]. However, a
significant increase in system cost can limit the effectiveness of this
approach since they scale all hardware components by the same fac-
tor, even if some of them may be underutilized. Instead, disk-based
GNN training is a promising alternative as modern NVMe SSDs
can offer enough capacity to hold the entire input graph as well as
much higher read performance than the previous generations.

Thus, we propose Ginex (Graph inspector-executor), the first
GNN training system based on high-performance commodityNVMe
SSDs. While being cost-effective for capacity scaling, SSD-based
GNN training system is obviously challenging for an order of mag-
nitude lower bandwidth than DRAM and lack of byte-addressability.
Therefore, it is important to reduce the amount of I/O requests as
much as possible. To this end, Ginex introduces a technique to
effectively utilize the main memory space as in-memory cache. Es-
pecially, for gather which is the most I/O intensive job in GNN
training, Ginex realizes the optimal caching mechanism. Inspired
by the inspector-executor execution model [34, 40] in compiler
optimization, Ginex reorganizes the GNN training process into two
phases. In the first phase which corresponds to inspector, Ginex
performs sample for a large enough number of batches. It allows
preparation of the optimal caching mechanism for the following
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Figure 1: 2-layer GNN training on Node 1

gather operations by analyzing the sampling results. In the second
phase, which corresponds to executor, Ginex completes the remain-
ing jobs for the batches including gather with the cache managed
by the guidance derived in the first phase.

We prototype Ginex on PyTorch Geometric (PyG) [10], a popular
library for GNN. We evaluate Ginex on a server with an 8-core
Intel Xeon CPU with 64GB memory and a NVIDIA V100 GPU with
16GB memory, using four billion-scale graph datasets whose total
size ranges from 326GB to 569GB. Our evaluation shows that Ginex
reduces the training time by 2.11× on average (2.67× at maximum)
compared to PyG extended to support disk-based processing of
graph dataset with a reasonable additional storage overhead. In
addition, our case study on Google Cloud demonstrates that single-
node Ginex saves the training cost by 2.76× and 5.71× compared to
8-node DistDGL [51], a popular distributed GNN training system,
for Friendster and Twitter datasets, respectively.

The followings are the summary of our contributions:
• We profile SSD-based GNN training and make two main

observations regarding the sub-optimality of the OS page
cache and the conventional training pipeline.

• Based on our observations, we introduce a novel GNN train-
ing pipeline that enables realization of the optimal caching
mechanism for feature gathering, which cannot be realized
in the conventional training pipeline.

• We present an efficient algorithm to simulate the optimal
cache replacement policy and accelerate it with GPU.

• We prototype Ginex on PyG, a popular GNN library, and
demonstrate its effectiveness using four billion-scale datasets
that do not fit in memory.

2 BACKGROUND
2.1 Graph Neural Networks
GNN Training. A GNN operates on graph-structured data, where
each node has its own feature vector. GNNs aim to produce a quality
embedding for each node in the graph capturing its neighborhood
information on top of its own feature. These embeddings may be
used for various downstream tasks such as node classification and
link prediction. To obtain the embedding of a node, GNN takes the
feature vectors of not only the target node for embedding compu-
tation, which is called seed node, but also its k-hop in-neighbors as
input. Each layer in GNN is responsible for synthesizing feature
information of the nodes at each hop, which means that k-layer
GNN is able to reflect up to k-hop in-neighbors [8, 21].

Each layer of GNN consists of two main steps: Aggregate and
Combine. The embedding of node 𝑣 after the 𝑖th layer, denoted as

1

Figure 2: Sampling for a 2-layer GNN (sampling size = (3,2),
batch size = 1)

ℎ𝑖𝑣 , is computed as the following:

ℎ𝑖𝑣 = Combine(Aggregate(
{
ℎ𝑖−1𝑢 | 𝑢 ∈ 𝑁 (𝑣)

}
)) (1)

𝑁 (𝑣) denotes the neighbor set of node 𝑣 . In Aggregate step, the
features of the incoming nodes are aggregated into a single vector.
While popular options for aggregation functions are simple oper-
ations like mean, max and sum, more sophisticated aggregation
functions are also drawing attention [41]. The aggregated feature
then goes through Combine step which is essentially a fully con-
nected (FC) layer with a non-linear function. Figure 1 illustrates
this process with an example of a 2-layer GNN training on Node 1.
Neighborhood Sampling. The inter-node dependence of training
data poses a unique challenge to GNN training. Even if we use
small batch size, the training cost for each batch can still be quite
high because collecting 𝑘-hop in-neighbors leads to exponential
growth of memory footprint. Neighborhood sampling is a popular
technique for this neighborhood explosion problem. Instead of sam-
pling 𝑘-hop in-neighbors of seed nodes, sampling algorithms select
only a subset of them. One representative work is GraphSAGE [12],
which randomly samples only a predefined number of in-neighbors
at each aggregation step. Figure 2 shows an example with a 2-hop
computational graph for Node 1 being sampled. The sampling size
in this example is (3,2) which means that it selects (at most) three
among the neighbor nodes connected to the target node (Node 1)
and (at most) two are selected for each of the previously selected
nodes. Its variants differ in several aspects of sampling function
design like the granularity of sampling operation or the choice of
probability distribution for sampling [5–7, 45]. In practice, it is not
usual to go beyond three layers, and popular choices of sampling
size for GraphSAGE are (25, 10), (10, 10, 10), and (15, 10, 5) [33].

2.2 GNN Training System
The state-of-the-art DNN frameworks [10, 42] employ a mixed
CPU-GPU training system, where CPU stores the graph data and is
in charge of data preparation, whereas GPU executes the core GNN
operations, i.e., aggregate and combine. GPU memory capacity is
often fairly limited to store the graph data, while the massive par-
allelism of GPU is key to accelerating GNN computations. Figure 3
visualizes a typical process of mixed CPU-GPU training of GNN
which consists of four steps: (1) sample, (2) gather, (3) transfer,
and (4) compute. At every iteration, seed nodes for a single batch
as well as their neighbors are extracted by traversing the graph
structure (i.e., adjacency matrix) (sample). The adjacency matrix
is usually stored in the compressed sparse column (CSC) format
as it allows fast access to in-neighbors of each node. Then, the
sparsely located feature vectors of the sampled nodes are collected
into a contiguous buffer (gather), which is transferred to GPU over
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Figure 3: Overview of conventional GNN training system

PCIe interface (transfer). Lastly, GPU performs forward/back-
ward propagation to compute gradients and updates the parameters
(compute). Since sampling operation is often memory-intensive, it
is common to spawn multiple sub-processes to increase the sam-
pling throughput. Each sub-process performs a sampling job for a
batch, and puts the result into a shared queue. The main process
fetches the sampling result from the shared queue and executes the
remaining jobs, i.e., gather, transfer, and compute.

2.3 Disk-based GNN Training
Need for Disk-based GNN Training. Although the size of the
largest publicly available GNN dataset, ogbn-papers100M [14], is
around 100GB, companies reportedly operate on much larger inter-
nal datasets that have hundreds of millions or even billions of nodes
and tens of billions of edges [44, 46]. For these datasets, the size of
both node feature table and adjacency matrix may reach several
hundreds of GBs or even a few TBs, often exceeding the memory
capacity of a single node. Distributed training which partitions the
graph dataset into multiple nodes in a cluster is a popular solution.
However, scaling-out is not necessarily the most cost-effective solu-
tion to scale memory capacity [50]. In this case, instead of adhering
to in-memory processing, leveraging high-performance storage
devices like NVMe SSDs as memory extension can be a promising
direction owing to its large capacity and hence cost efficiency [23].
Bottleneck Analysis. However, it is still difficult to achieve high
throughput on an SSD-based GNN training system. SSD operates
as a block device where data is transferred in a 4KB chunk while
sample and gather usually consist of fine-grained random accesses
whose size ranges from tens to hundreds of bytes. Such a coarse ac-
cess granularity combined with its relatively low bandwidth results
in huge I/O penalty. In fact, we have profiled the execution time
of SSD-based GNN training. We have trained GraphSAGE with a
sampling size of (10,10,10) on a 8-core Intel Xeon CPU with 64GB
memory and an NVIDIA V100 GPU equipped with 16GB HBM2
memory. We pipelined the execution of not only sample but also
gatherwith the CUDA operations (transfer and compute) by cre-
ating a separate thread for gather. Two large-scale graph datasets
whose size of both adjacency matrix and feature table far exceed
the host memory capacity are synthetically generated by extending
the real world datasets (ogbn-papers100M, ogbn-products) [23]. We
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miss ratio of SSD-based GNN training system with memory-
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denote ogbn-papers100M and ogbn-products by papers and products,
respectively, in following figures. The graph dataset (i.e., adjacency
matrix and feature table) is memory-mapped by mmap syscall. The
details on the setup and the datasets are elaborated in Section 5.1.

Figure 4(a) shows the training time breakdown, and Figure 4(b)
the page cachemiss ratio of the GNN training program over time by
measuring a 30-iteration moving average. For both datasets, more
than 90% of training time is stalled by data preparation (i.e., sample
and gather). In addition, the page cache miss ratio is fairly high.
The miss ratio rapidly drops in the beginning as the page cache gets
filled, but it soon stabilizes at 85-90%. This implies that I/O is the
bottleneck, and thus it is important to reduce the number of I/Os in
sample and gather. Among the two, especially gather needs to be
optimized. This is because the number of I/Os is usually several-fold
higher in gather than in sample. Assuming a 3-layer model, all the
sampled 3-hop neighbors of the seed nodes should be gathered for
each iteration. Meanwhile, examining neighborhood information of
the 2-hop neighbors of the seed nodes is enough to sample the 3-hop
neighbors. In fact, in our experiments, the number of I/O requests
made in gather is reported to be 8.13× and 9.75× higher than in
sample for ogbn-papers100M and ogbn-products, respectively.
Challenge 1. Sub-optimal In-memory Cache.As OS page cache,
which simply keeps the recently accessed pages, is shown to be inef-
fective for GNN training, application-specific in-memory cache can
be a viable alternative. There have been proposals to cache part of
a graph dataset considering the access pattern of GNN training. Al-
though they usually assume different training scenarios and target
to optimize different types of data movement like communications
among cluster machines or between CPU and GPU, not disk I/O,
their spirits can be extended for the SSD-based training system. For
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example, PaGraph [27], a state-of-the-art cache design for feature
table, caches feature vectors of nodes with a descending order of
out-neighbor count. While being moderately effective, this design
is sub-optimal as it is static and relies on simple heuristics. Figure 5
demonstrates cache miss ratio of PaGraph in gather step for the
two datasets compared to the optimal cache miss ratio with differ-
ent cache sizes. The optimal cache policy is defined by Belady’s
cache replacement algorithm, which always evicts data that will not
be needed for the longest time in the future [3]. The gap from the
optimal indicates that there leaves much room for improvement.
Challenge 2. Sub-optimal Pipeline. While the two data prepara-
tion operations of GNN, sample and gather, are pipelined in the
conventional training system, they are not actually an ideal pair for
parallel execution especially for disk-based training. This is because
they are both I/O intensive operations whose parallel execution
can incur resource contention. Under ideal pipelined execution, the
time required for data preparation should be determined by the one
which takes more time. However, this is not the case as shown in
Figure 6. There exists a considerable gap between the stand-alone
execution time of the longer operation (gather) and the pipelined
execution time (dotted line). This indicates that the conventional
pipeline has very limited performance benefit.

3 GINEX DESIGN
Ginex is a system for efficient training of a very large GNN dataset
by using SSD as a memory extension. Specifically, Ginex targets
dataset whose adjacency matrix as well as feature table do not
fit in CPU memory. Ginex reduces I/O traffic from the two I/O
intensive operations, sample and gather, by effectively utilizing
the main memory space as application-specific in-memory cache.
Especially for gather, Ginex provides the provably optimal caching
mechanism. The rearrangement of the training pipeline, inspired
by the inspector-executor model [34, 40] in compiler optimization,
enables this optimal caching, which would otherwise be infeasible.

The rest of this section is organized as follows. In Section 3.1, we
overview the training pipeline of Ginex. Section 3.2 explains the
Ginex neighbor cache (i.e., cache for sample), while Section 3.3 and
Section 3.4 explain the Ginex feature cache (i.e., cache for gather).
Section 3.5 provides a guideline for configuring Ginex’s parameters.

3.1 Ginex Training Pipeline
Overview. Figure 7 depicts a high-level overview of Ginex’s train-
ing pipeline. After a short preprocessing procedure, Ginex starts
training by iterating the following four stages: superbatch sample,

Neighbor 
Cache

Construction
Changeset

Precomputation
Superbatch

Sample
Feature Cache

Initialization

Cache UpdateGather Transfer Compute

Main Loop

RuntimePreprocessing

Figure 7: Ginex training pipeline overview

changeset precomputation, feature cache initialization, and
main loop. In the superbatch sample stage, Ginex performs sam-
pling for a predefined number of batches, which we call superbatch,
all at once. With the sampling results, Ginex finds all the informa-
tion necessary tomanage the feature cache for the following gather
operations in the changeset precomputation stage. Specifically,
in this stage, Ginex determines (i) which feature vectors to prefetch
into the feature cache at initialization, and (ii) which feature vec-
tors to insert and which ones to evict from the feature cache (i.e.,
changeset) at each iteration. After a short transition stage for the
feature cache initialization, Ginex completes the remaining
tasks including gather in the main loop stage.
Inspector-Executor Execution Model. The inspector-executor
execution model is originally introduced to enable runtime paral-
lelization and scheduling optimization of loops [34, 40]. An inspec-
tor procedure runs ahead of the executor to collect information
that is available only at runtime, such as data dependencies among
array elements. The executor is an optimized version of the original
application that utilizes this runtime information to optimize data
layout, iteration schedule, and so on. Ginex embraces this execution
paradigm to improve the efficiency of in-memory caching for GNN
training. In particular, the first two runtime stages, superbatch
sample and changeset precomputation, correspond to the inspec-
tor, and the main loop stage to the executor. By running ahead the
sample operation for the entire superbatch, Ginex collects com-
plete information about the nodes to be accessed later in the gather
stage, thus enabling optimal management of the feature cache.
Neighbor Cache Construction. Figure 8(a) shows this process.
Unlike the feature cache which dynamically manages its data, Ginex
uses a static neighbor cache for the whole training process. There-
fore, Ginex constructs the neighbor cache with a given size during
offline preprocessing time. To make the neighbor cache, Ginex ex-
amines the graph structure (i.e., adjacency matrix) and picks out
important nodeswhose list of in-neighbors would be cached. The cri-
terion for selecting important nodes will be discussed in Section 3.2.
After finishing this construction, Ginex saves the neighbor cache
by dumping it to SSD, which would be loaded at the beginning
of each of the following superbatch sample stages. This avoids
the repeated cost of constructing the neighbor cache, which may
include a large number of random reads of which sizes are usually
only a few tens or hundreds of bytes.
Superbatch Sample. Figure 8(b) depicts the first stage of Ginex
runtime, superbatch sample. In this stage, Ginex first loads the
neighbor cache which has been constructed and stored in SSD dur-
ing preprocessing. Basically, all memory space except the working
buffer for sampling processes can be used for the neighbor cache.
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Figure 8: Illustration of Ginex training pipeline stages

After then, multiple sub-processes are launched and sampling is
started for as many batches as the superbatch size, 𝑆 . When access-
ing the neighbor information during the sampling process, Ginex
first looks up the cache and only reads the data from SSD when it is
not present in the cache. The sampling results of a superbatch are
then written to SSD. Usually, a sampling for each batch results in
two types of data. One is 𝑖𝑑𝑠 which is an 1-D list of all the sampled
nodes’ IDs. The other is 𝑎𝑑 𝑗 , a data structure that describes the
connectivity among the sampled nodes. Ginex stores these two
data in separate files annotated with the batch index. In total, 2 × 𝑆

files (𝑖𝑑𝑠_0, 𝑖𝑑𝑠_1, ... , 𝑖𝑑𝑠_(𝑆 − 1), 𝑎𝑑 𝑗_0, 𝑎𝑑 𝑗_1, ... , 𝑎𝑑 𝑗_(𝑆 − 1)) are
generated. The size of each file varies depending on the sampling
size, the batch size, and the characteristics of the dataset, but usually
ranges from several hundred KB to a few MB.
Changeset Precomputation. Figure 8(c) shows the third stage of
Ginex runtime, changeset precomputation. Instead of computing
a changeset (i.e., which features to insert into and evict from the fea-
ture cache) every time Ginex performs gather in main loop stage,
Ginex precomputes all the changesets beforehand by examining
the list of sampled nodes (𝑖𝑑𝑠 files). This is to accelerate the change-
set computation in batch on GPU. It is difficult to allocate enough
memory and computation resources of GPU for the changeset com-
putation in main loop stage as it involves GPU computation. As the
total size of 𝑖𝑑𝑠 files may exceed the GPU memory capacity, each
𝑖𝑑𝑠 file is first loaded on the CPU memory and then streamed into

superbatch
sample 0

Host
CPU

GPU changeset
precomp 0

feature 
$ init 0

main
loop 0

superbatch
sample 1

feature
$ init 1

main
loop 1

superbatch
sample 2

…
changeset 
precomp 1

time

Figure 9: Superbatch-level pipeline of Ginex

GPU when needed. The results of the changeset precomputation
are sent back to CPU, and are stored in SSD also by streaming.
Besides the changesets, a list of the feature vectors to prefetch into
the cache at initialization is also obtained at this stage. Specifically,
𝑆 + 1 files are generated in this step including one for cache initial-
ization (𝑖𝑛𝑖𝑡 ) and the others for cache update for every 𝑆 iterations
(𝑢𝑝𝑑𝑎𝑡𝑒_0, 𝑢𝑝𝑑𝑎𝑡𝑒_1, ... , 𝑢𝑝𝑑𝑎𝑡𝑒_(𝑆 − 1)).
Feature Cache Initialization. Figure 8(d) shows this process. In
this step, Ginex reads the previously created 𝑖𝑛𝑖𝑡 file from SSD and
constructs the feature cache. This process includes reading feature
vectors of the nodes specified in 𝑖𝑛𝑖𝑡 file as well as building an
address table that will be used for cache look-up.
Main Loop. Figure 8(e) illustrates this stage. This stage is where all
the remaining GNN training operations for each batch (gather,
transfer, and compute) are performed iteratively. In addition,
Ginex performs one more operation, cache update, in between.
At each iteration, Ginex reads a set of 𝑖𝑑𝑠 , 𝑎𝑑 𝑗 and𝑢𝑝𝑑𝑎𝑡𝑒 files from
SSD in the order of the batch index. Then, Ginex makes batch input
by gathering feature vectors according to the 𝑖𝑑𝑠 file from either
the cache or SSD, and updates the cache as indicated in the 𝑢𝑝𝑑𝑎𝑡𝑒
file. Lastly, the batch input and 𝑎𝑑 𝑗 are transferred to GPU in order
to perform forward and backward pass as well as model update in
the same way as the conventional GNN training system.
Superbatch-level Pipeline. While the four runtime stages for
the same superbatch should be serialized, the jobs from different
superbatches can be pipelined. Taking this opportunity, Ginex per-
forms the jobs for different superbatches in a pipelined manner in
order to improve end-to-end performance. Specifically, changeset
precomputation for each superbatch is executed in parallel with
the superbatch sample of the next superbatch. superbatch sample
runs on CPU, while changeset precomputationmainly consumes
GPU resources except the I/O overhead of streaming 𝑖𝑑𝑠 files and
the changeset precomputation results. This makes these two stages
apposite candidates of parallel execution. Figure 9 visualizes Ginex’s
superbatch-level pipeline. While the storage overhead of runtime
files is doubled as a result of pipelining, it successfully hides most
of the changeset precomputation overhead.
Implications on Training Quality. The new training schedule of
Ginex has no impact on training quality, as it only changes the exe-
cution order of operations which do not have any dependence with
each other. It does not require any change in sampling algorithm
or GNN model computation.

3.2 Neighbor Cache
Neighbor Cache Policy. By caching part of the adjacency ma-
trix in memory, Ginex reduces the number of storage I/Os during
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Figure 10: (a) Ginex neighbor cache structure and (b) pseu-
docode for its operation

sampling. In other words, Ginex keeps the direct in-neighbors of
some important nodes in its neighbor cache in superbatch sample

stage. To select important nodes, Ginex adopts a simple metric intro-
duced in Aligraph [44] which quantifies the trade-off between cost
and benefit of caching neighbors of each node in a heuristic way.
Specifically, the metric is defined as the ratio between the number
of out-neighbors and in-neighbors, as access frequency (benefit)
may be roughly proportional to the number of out-neighbors while
the cache space overhead (cost) is proportional to the number of
in-neighbors. Meanwhile, Aligraph uses the ratio between the num-
ber of 𝑘-hop in-neighbors and out-neighbors, as it caches 𝑘-hop
neighbors (𝑘 ≥ 2). However, as Ginex caches direct neighbors, the
ratio between the number of direct in-neighbors and out-neighbors
is used as the importance metric for Ginex.
Neighbor Cache Structure. Figure 10(a) shows the structure of
Ginex’s neighbor cache. Taking a node ID as input, the neighbor
cache should return a list of the target node’s neighbors if it is
cached, or a cache miss signal if not. For this purpose, Ginex’s
neighbor cache uses direct addressing. It has an 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 , an
1-D array which has as many elements as the total number of nodes.
Each element of the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 contains an index to look up
in the 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦. A 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 is an 1-D array that keeps the
neighbor information of the cached nodes for the corresponding
node for a cache hit, or an arbitrary negative number (e.g., -1) for
a cache miss. Such direct addressing makes its lookup very fast,
clearly an 𝑂 (1) operation, but may incur space overhead owing to
the redundancy in its 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 design. Still, it is affordable as
the space overhead of having only a single value for every node is
several orders of magnitude smaller than having the whole dataset.

Since each node has a different number of neighbors, the ele-
ments of the 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 pointed by the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 contain the
number of neighbors for the corresponding node, and the actual
IDs of the neighbors (listed from the next element). For example,
in Figure 10(a), the neighbor information of Node 1, 5 and 9 are
cached since their entries are non-negative. As 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 [1]
is 3, it means that the neighbor information of Node 1 starts from
𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 [3]. Since 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 [3] is 4, the number of neigh-
bors of Node 1 is 4, and the IDs of its neighbors are listed in 4
consecutive entries, i.e., 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 [4] through 𝑐𝑎𝑐ℎ𝑒_𝑎𝑟𝑟𝑎𝑦 [7].
Figure 10(b) presents a pseudocode that returns neighbors of a
given node using the neighbor cache. Three memory accesses (Line
2, 4, and 7) are needed to fetch the neighbor list from the cache.

3.3 Feature Cache
Feature Cache Policy. The feature cache in Ginex adopts the
provably optimal Belady’s algorithm [3]. Belady’s cache replace-
ment algorithm evicts data with the highest reuse distance at every
timestep. Reuse distance for the data is defined as the time until
the next access to it. This policy is basically an oracle policy which
requires the knowledge of future data accesses, so is infeasible
in most cases. In practical settings, only attempts to approximate
Belady’s cache replacement algorithm have been made [16, 28, 39].

However, it is possible for Ginex to implement this optimal
caching mechanism for feature vectors in the exact form as the
sampling results for the whole superbatch are available at the time
of gather. Therefore, Ginex’s feature cache dynamically updates its
data following Belady’s cache replacement algorithm. Specifically,
when updating the cache data at each iteration, the feature cache
prioritizes the feature vectors that would be accessed in earlier
iterations within the current superbatch. Initially, to minimize cold
misses, Ginex prefetches the feature vectors that appear at the first
few iterations into the feature cache until it gets full.
Feature Cache Structure. Ginex’s feature cache also uses the
same direct addressing as the neighbor cache. Meanwhile, the size
of the feature vector is same for all nodes, so the cache array of the
feature vector is a simple 2-D array whose row length equals the
feature vector size. In the case of a cache hit, the corresponding
element in the address table contains the row index of the cache
array to look up. In the case of a cache miss, identical to the case in
the neighbor cache, the corresponding element in the address table
contains an arbitrary negative value (e.g., -1).
Feature Cache Update. The changeset precomputation results
in three 1-D lists for each iteration which are 𝑖𝑛_𝑖𝑑𝑠 , 𝑜𝑢𝑡_𝑖𝑑𝑠 and
𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 . 𝑖𝑛_𝑖𝑑𝑠 and 𝑜𝑢𝑡_𝑖𝑑𝑠 specifiy the IDs of the nodes to be
inserted and evicted, respectively. 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 specifies positions
of the nodes in 𝑖𝑛_𝑖𝑑𝑠 within a batch input. The batch input refers
to the feature vectors collected in a contiguous buffer by gather

operation, which is to be transferred to GPU.
Figure 11 shows the process of cache update followed by gather

using an example. This example shows the change of feature cache
when moving on to Iteration (𝑖 + 1) from Iteration 𝑖 . In this example,
the total number of nodes are 10, and five of them are cached
(Node 0, 1, 4, 6, and 7). 𝑖𝑑𝑠 refers to the sampled node IDs, while
𝑖𝑛_𝑖𝑑𝑠 , 𝑜𝑢𝑡_𝑖𝑑𝑠 and 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 are cache update information for
the current iteration. For gather, Ginex first checks 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒
for the nodes in 𝑖𝑑𝑠 1 . The feature vectors of the nodes present
in the cache (Node 0 and Node 7) are fetched from the cache 2 ,
while the others are read from SSD 3 to make the batch input.
Note that the ordering of the feature vectors within the batch input
is the same as 𝑖𝑑𝑠 . After the batch input is made, Ginex performs
cache update by referring to 𝑖𝑛_𝑖𝑑𝑠 , 𝑜𝑢𝑡_𝑖𝑑𝑠 and 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 . In
the figure, 𝑖𝑛_𝑖𝑑𝑠 and 𝑜𝑢𝑡_𝑖𝑑𝑠 indicate that the feature vectors of
Node 2 and Node 5 should replace the cache lines occupied by the
feature vectors of Node 0 and 6. As the feature vectors of Node 2
and 5, which are newly loaded from SSD, are buffered in the batch
input, Ginex locates these two vectors with 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 . Then,
Ginex puts these vectors into the cache lines originally holding the
feature vectors of Node 0 and Node 6, whose address can be found
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Figure 11: Example of cache update followed by gather

by checking 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒 4 . Lastly, Ginex updates 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑡𝑎𝑏𝑙𝑒
as well 5 , and cache update for Iteration 𝑖 ends.

3.4 Changeset Precomputation Algorithm
Problem Formulation. Computing the changeset is no more than
simulating the cache state (i.e., node IDs present in the cache) of
every iteration as the changeset can be obtained by comparing
the difference between the two consecutive cache states. In other
words, it is to solve the following recurrence relation for 𝑖 from 0
to 𝑆 − 2, where 𝑆 is the superbatch size.

𝐶𝑖+1 = 𝑓𝐵𝑒𝑙𝑎𝑑𝑦 (𝑢𝑛𝑖𝑜𝑛(𝐶𝑖 , 𝑖𝑑𝑠_𝑖))

where𝐶𝑖 is the cache state at Iteration 𝑖 . The initial cache state (𝐶0)
and the lists of node IDs that would be accessed at each iteration of
superbatch (𝑖𝑑𝑠_0, 𝑖𝑑𝑠_1, ..., 𝑖𝑑𝑠_(𝑆 −2)) are given as inputs. 𝑓𝐵𝑒𝑙𝑎𝑑𝑦
is a function that selects the elements in the given list, prioritizing
those that are to be accessed earlier than others, as many as the
number of cache entries. As all the feature vectors of the nodes in
𝑖𝑑𝑠_𝑖 are loaded onto memory at Iteration 𝑖 , the union of 𝐶𝑖 and
𝑖𝑑𝑠_𝑖 are potential candidates to be included in 𝐶 (𝑖 + 1).

The main challenge in solving 𝑓𝐵𝑒𝑙𝑎𝑑𝑦 is to find out the next
accessed iterations of the given nodes in 𝑢𝑛𝑖𝑜𝑛(𝐶𝑖 , 𝑖𝑑𝑠_𝑖) at each
iteration. Here, we denote the iteration that the node is to be ac-
cessed next by the node’s next accessed iteration. A straightforward
approach is to examine all the future data access traces (𝑖𝑑𝑠_(𝑖 + 1),
𝑖𝑑𝑠_(𝑖 + 2), ...) in order to check in which iteration the feature vector
of each node in 𝑢𝑛𝑖𝑜𝑛(𝐶𝑖 , 𝑖𝑑𝑠_𝑖) would be accessed next time. Such
a naïve approach, however, results in the worst case complexity of
𝑂 (𝑆2) whose cost can be substantial as we increase the superbatch
size. To prevent the changeset precomputation stage from being
the major bottleneck, we propose an efficient algorithm with just
an 𝑂 (𝑆) complexity.
Sketch of Our Algorithm. Ginex solves the problem with only
three passes over the access traces. With the first two passes, Ginex
builds a data structure specially designed for the incremental track-
ing of each node’s next accessed iteration. With this data structure,
in the last pass, Ginex simulates a whole sequence of cache states.
The following paragraphs discuss how this data structure looks
like and operates as well as how the end-to-end algorithm works
in details.
Tracking Next Accessed Iteration. Figure 12(a) shows the data
structure that Ginex utilizes for tracking next accessed iterations

of nodes with a simple example, where both the number of nodes
and the superbatch size are five. We assume that two nodes are
sampled for each iteration, which means that the length of each 𝑖𝑑𝑠
is two. Conceptually, the access traces (𝑖𝑑𝑠_0, 𝑖𝑑𝑠_1, ..., 𝑖𝑑𝑠_4) can
be represented as a binary matrix where each row corresponds to
each node while each column corresponds to each iteration. (𝑖 , 𝑗 )
is set to 1 if Node 𝑖 appears at Iteration 𝑗 , or 0 otherwise. What
Ginex maintains for next accessed iteration tracking is a sort of
CSR-format of this matrix which consists of two arrays: iters and
ptr. iters lists accessed iterations of each node in sequence from
Node 0. Each node’s accessed iterations are kept in sorted order. ptr
array has elements as many as the number of nodes each of which
points to the start of the corresponding node’s accessed iterations
in iters. For example, ptr[3] is 4, which means that from iters[4], the
iterations in which Node 3 appears (0, 2, 4) are listed in order. The
most significant bit (MSB) of the elements in iters pointed by ptr
is set to 1 and a dummy entry whose value is set to the maximum
value for a given datatype is appended at the end of iters.

The construction of this data structure requires two passes over
the access traces. Figure 12(b) shows this process. In the first pass,
Ginex counts the number of appearances of each node 1 . Then,
Ginex performs cumulative sum over the count results and com-
pletes making ptr by inserting zero value in the front and deleting
the last element 2 . In the second pass, Ginex makes iters with a
guide of ptr 3 . At Iteration 0, Node 3 and Node 4 are accessed. So
Ginex sets 0 for the elements pointed by ptr[3] (4) and ptr[4] (7),
then increments ptr[3] and ptr[4] by one. This process is repeated
for the remaining iterations. At last, Ginex restores ptr by a simple
shift and completes iters construction by appending a dummy entry
and setting MSBs for elements pointed by ptr to 1 4 .

Using these two arrays, Ginex can track next accessed iteration
of the nodes with a single additional pass over the access traces,
which completes the cache state simulation. Ginex updates ptr for
each iteration in a way that it can always find out the next accessed
iterations of all nodes by looking at the elements in iters pointed by
ptr. Figure 12(c) shows this process with the same example as before.
In the figure, ptr and a subset of of iters pointed by ptr (iters[ptr]),
which would indicate the next accessed iteration of the nodes, are
shown at initialization and each iteration. Note that Ginex does not
maintain iters[ptr] in fact but only looks up a necessary part on
demand. We show the change of iters[ptr] along with ptr just for
demonstration. At initialization, iters[ptr] denotes the first accessed
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Figure 12: Example for next accessed iteration tracking of Ginex. (a) shows data structures for the tracking while (b) shows the
process of making it. (c) shows how Ginex tracks the next accessed iteration.

1 # num_entries: the number of cache entries
2 # ids_list: the list of data access traces ([ids_0, ids_1, ...,

ids_S-1]) stored in SSD
3
4 current_cache_state = initial_cache_state
5 for ids in ids_list:
6 incoming_ids = Load(ids)
7
8 ptr[incoming_ids] += 1
9 for id in incoming_ids where MSB(iters[ptr[id]]) is set:
10 ptr[id] = len(iters)-1
11
12 candidates = Union(current_cache_state, incoming_ids)
13 next_access_iters = iters[ptr[candidates]]
14
15 # select N elements in candidates with the smallest next

accessed iteration
16 new_cache_state = TopKSmallest(candidates, next_access_iters,

num_entries)
17
18 # find relative complement of new_cache_state &

current_cache_state with respect to each other
19 in_ids = new_cache_state - current_cache_state
20 out_ids = current_cache_state - new_cache_state
21 in_positions = IndexOf(in_ids, incoming_ids)
22
23 Save((in_ids, out_ids, in_positions))

Figure 13: Pseudocode for end-to-end changeset precompu-
tation process

iteration of the nodes. When simulating each iteration, ptr values
for the accessed nodes are incremented by 1. This is natural as the
next accessed iteration of the currently accessed nodes should be
updated. For example. at Iteration 0 in the figure, ptr[3] and ptr[4]
are incremented by 1. If the MSB of the iters element pointed by the
updated ptr value is 1, however, that ptr value is set to point the
last element of iters, which is the dummy entry. This is to regard
the next accessed iteration of such a node which would not appear

again in the future as a very large value. For example, at Iteration
1 in the figure, ptr[2] is set to 10, the index of the dummy entry
in iters, since the MSB of iters[4] is set to 1. The same process is
repeated until the end of the simulation.
End-to-end Algorithm. Figure 13 is a pseudocode that shows the
end-to-end process of the changeset precomputation which even-
tually produces the three lists (𝑖𝑛_𝑖𝑑𝑠 , 𝑜𝑢𝑡_𝑖𝑑𝑠 , and 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
for each iteration. For each iteration, the data access trace for each
iteration (incoming_ids) originally stored in SSD is loaded into GPU
in order (Line 6). The ptr is updated to remain up-to-date (Line 8-10).
With the updated ptr, the next accessed iterations are obtained for
the candidates which is the union between the IDs in the current
cache and incoming node IDs (Line 12-13). After that, the new cache
state is derived by selecting top-num_entries smallest among the
next accessed iterations of the candidates (Line 16). By computing
the set difference between the new cache state and the current
cache state, 𝑖𝑛_𝑖𝑑𝑠 and 𝑜𝑢𝑡_𝑖𝑑𝑠 can be obtained (Line 19-20), after
which 𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 is computed by figuring out the positions of
each node in 𝑖𝑛_𝑖𝑑𝑠 within incoming_ids. Finally, the three resulting
lists are sent back to the host and saved in SSD.

3.5 Configuring Ginex
Superbatch Size. For performance, it is always better to increase
the superbatch size. This is because a large superbatch can amor-
tize the cost of switching between superbatch sample and main

loop, which includes loading the neighbor cache and initializing
the feature cache. This switch cost depends on the cache size and
remains constant with respect to the superbatch size. However, it
is not possible to increase the superbatch size indefinitely for the
following reasons. First, GPU memory size imposes a hard limit
on the superbatch size. The amount of GPU memory required to
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perform the changeset precomputation increases with the super-
batch size. However, this is not often the case unless a very large
superbatch size (e.g., 10000) is used. Instead, the storage overhead
of runtime files may be a practical factor that limits the superbatch
size. One can increase the superbatch size as much as the storage
constraint permits. In our evaluation setting, 100GB of runtime
files are a good trade-off between the performance and storage
overhead (Section 5.3). Since the runtime file size per iteration is
relatively constant throughout the training process, one can readily
approximate the storage overhead via a short offline profiling.
Cache Size. The size of the neighbor cache and the feature cache
should be determined before the beginning of the training. Since
the peak memory usage at each iteration of superbatch sample

and main loop remains stable throughout the training process, we
can again determine the cache size by a short offline profiling. We
set the cache size by subtracting the peak memory usage at each
stage (superbatch sample for the neighbor cache and main loop

for the feature cache), and the size of additionally reserved region
for memory fluctuations from the total memory size.

4 IMPLEMENTATION
We have implemented Ginex by extending PyTorch Geometric
(PyG) [10], a popular open-source framework for GNN training
built upon PyTorch [37], as follows. First, we have created new
extensions for sampling and gathering to support the user-level
in-memory cache. Specifically for sampling, we have modified Py-
Torch Sparse C++ backend which PyG calls for sampling-related
operations. We use pread syscall with O_DIRECT flag to bypass OS
page cache when accessing to graph data stored in SSD. Second, we
have made an extension also for cache updates. To copy sparsely
located data in a tensor to the specified locations of another tensor,
PyTorch tensor indexing API requires to collect the data from the
source tensor in a contiguous buffer first and then scatter them
to the destination tensor, which incurs redundant memcpy. Our ex-
tension eliminates such waste by directly copying data from the
source to the destination. This process is parallelized by OpenMP.
Third, we have modified NeighborSampler class of PyG in a way
that it stores the sampling results to disk in order instead of putting
them into a shared queue. To load the saved files at each iteration of
the main loop stage, we use a custom lightweight multi-threaded
dataloader. Lastly, we take advantage of highly-optimized CUDA
kernels of PyTorch for changeset precomputation.

5 EVALUATION
5.1 Methodology
System Configurations. Table 1 summarizes our system config-
urations. We evaluate Ginex on a Gigabyte R281-3C2 server with
an 8-core CPU (16 logical cores with hyper-threading), an NVIDIA
V100 GPU, and a Samsung PM1725B NVMe SSD.
Model and Dataset. We use 3-layer GraphSAGE [12] and 2-layer
GCN [21] for evaluation. Both models have a hidden dimension
of 256. For GraphSage, we set a sampling size to (10,10,10). By
default, we set batch size to 1000. To evaluate Ginex on a billion-
scale graph, we scale four real-world datasets: ogbn-papers100M
(papers) [14], ogbn-products (products) [14], com-friendster (Friend-
ster) [25], and twitter-2010 (Twitter) [25] following the methodology

Table 1: System configurations

CPU Intel Xeon Gold 6244 CPU 8-core @ 3.60 GHz
GPU NVIDIA Tesla V100 16GB PCIe
Memory Samsung DDR4-2666 64GB (32GB × 2)
Storage Samsung PM1725b 8TB PCIe Gen3 8-lane
S/W Ubuntu 18.04.5 & CUDA 11.4 & Python 3.6.9 & PyTorch 1.9

Table 2: Graph datasets

Original Large-scale
Dataset nodes edges nodes edges size

ogbn-papers100M 111.06M 1.62B 444.24M 14.24B 569GB
ogbn-products 2.45M 61.86M 220.41M 20.24B 388GB
com-friendster 65.61M 1.81B 262.43M 15.48B 393GB
twitter-2010 41.65M 1.47B 208.26M 14.05B 326GB

in [23]. Specifically, we use a graph expansion technique [4], which
adapts Kronecker graph theory [24] to preserve innate distributions
of recipe graphs like power-law degree distribution and community
structure. We then randomly choose 10% of the nodes to serve as
a training set. Even with this split of the dataset, the working set
may contain the feature vectors of the whole dataset as GNN train-
ing takes the feature vectors of not only the nodes in the training
set but also their 𝑘-hop neighbors as input. By default, we set the
feature dimension of all datasets to 256. The whole datasets are
assumed to be stored in SSD during training except the pointer ar-
ray in a CSC-formatted adjacency matrix. While the pointer array
takes only about a few GBs, it is very frequently accessed during
the sample stage. Thus, we keep it in memory when performing
sample. Table 2 summarizes the key features of the datasets.
Comparison Baselines.We compare Ginex with two baselines:
PyG+, Ali+PG. PyG+ refers to the PyG framework modified to
support disk-based GNN training over a memory-mapped graph
dataset. It follows the conventional GNN training pipeline explained
in Section 2.2. We used memmap function of NumPy [13] to create a
memory-map to an array stored in a binary file and converted the
memory-mapped array into a PyTorch tensor. As an optimization
for PyG+, we disable the readahead feature, which only degrades
the performance of GNN training as it incurs a large number of
random disk accesses. In addition, we set the number of threads
to use for I/O intensive operations like gather, more than twice
the number of cores to better utilize the disk bandwidth instead of
using the default PyTorch setting which is the number of physical
cores. Ali+PG is PyG+ augmented by an application-specific in-
memory caching mechanism for sample and gather. Specifically,
an Aligraph-style cache [44] is used for the neighbor cache and a
PaGraph-style [27] cache is used for the feature cache. For Ali+PG,
we tune the sizing of the two caches by splitting the available
memory space on the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 for
the neighbor cache and the feature cache, and report the one that
yields the best performance. Ali+PG represents a strong baseline by
integrating two state-of-the-art caching techniques. For all schemes,
we overlap the CUDAoperations (transfer, compute) on GPUwith
the CPU operations to reduce data stalls. For each data point we
report the mean of three measurements with an error bar.
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Figure 14: Normalized training time breakdown of PyG+,
Ali+PG, and Ginex. Smaller is better.
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Figure 15: Normalized training time breakdown of Ginex-PG
and Ginex

5.2 Overall Performance
We first measure and break down the training time of PyG+, Ali+PG
and Ginex for the four datasets. For GraphSAGE, the superbatch
size of Ginex is set to 3300, 2100, 3600, and 6400 for papers, products,
Friendster, and Twitter. For GCN, we set the superbatch size of Ginex
to 2500, 300, 900, and 900, respectively. We derive these values via
the offline profiling-based heuristic in Section 3.5. The actual size
of runtime files falls very close to our target (100 GB) within 3%.

Figure 14 shows the results. The training time of PyG+ and
Ali+PG can be broken down into three components: data prepa-
ration, transfer, and compute. Data preparation time refers to the
amount of time that the CUDA operations are stalled either by
sample or gather. Meanwhile, the training time of Ginex has three
more components: inspect, switch, and cache update. Inspect time
refers to the time consumed for the pipelined execution of super-
batch sample and changeset precomputation. In all cases the time
for changeset precomputation completely hidden by superbatch
sample, and the inspect time is equal to the time for superbatch
sample. Switch time is the time spent for initializing the feature
cache. For Ginex, data preparation time includes not the time for
sample but that for gather and runtime file loading.

For all workloads Ginex demonstrates the superior performance.
For GraphSAGE the speedups of Ginex range 1.86-2.50× over PyG+
and 1.23-1.47× over Ali+PG. For GCN Ginex is 1.83-2.67× and 1.28-
1.57× faster than PyG+ and Ali+PG, respectively. This performance
gains are attributed to the optimal caching scheme for gather

outweighing the cost for it. The overhead of the serialization of
sample and gather is shown to be insignificant as expected. The
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Figure 16: Training time of Ginex normalized to the default
superbatch size (circled) on varying superbatch sizes

switch time and cache update time also account for a minor portion
(less than 10%). All these benefits come with a moderate storage
cost of about 145 GB (for runtime files and neighbor cache), which
is less than a half of the smallest dataset being used.

5.3 Impact of Optimal Feature Cache
In Figure 15, we evaluate Ginex with its cache policy replaced by
PaGraph (Ginex-PG) to measure the impact of Ginex’s optimal fea-
ture cache in isolation. We report the normalized training time and
the cache miss ratio. Ginex consistently demonstrates significantly
lower miss ratio, which leads to a proportional reduction in data
preparation time. The adoption of the optimal feature cache, how-
ever, results in a slightly longer inspect time. While the changeset
precomputation can be hidden under the superbatch sample, it may
slow down superbatch sample as it involves disk I/Os to stream
input and output of the changeset precomputation. However, the
increase of inspect time is limited to less than 20%, which is small
compared to the data preparation time reduction.

5.4 Sensitivity Study
We conduct a sensitivity study with varying four parameters that
may affect performance: superbatch size, feature dimension, mem-
ory size, and batch size. We only use GraphSAGE for this study.
Impact of Superbatch size. In Figure 16, we evaluate Ginex with
different superbatch sizes to quantify its performance impact. Specif-
ically, we adjust the target runtime file size from 25 GB to 200 GB
and report the training time normalized to that of the default set-
ting in which the target runtime file size is 100 GB. Generally, the
larger the superbatch size is, the better the performance tends to be.
This is mainly because the switch time, which remains constant,
is amortized. However, increasing the superbatch size eventually
gives diminishing returns beyond a certain point. For example, dou-
bling the runtime file size from 100 GB to 200 GB results in only
a marginal decrease of the training time (7.22%, 3.15%, 4.81%, and
3.16% for the four datasets). Thus, it is an effective heuristic to set
the target runtime file size (100GB in our setting) based on the
storage capacity constraint as discussed in Section 3.5.
Impact of Feature Dimension. In Figure 17, we evaluate the
impact of feature dimension on performance. Specifically, we run
experiments scaling the feature dimension to ×0.5, ×2 and ×3 of the
default setting (256). We report the speedup of Ginex and Ali+PG
over PyG+. While Ginex is consistently faster than PyG+ as well
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Figure 17: Speedup of Ali+PG and Ginex over PyG+ with
varying feature dimensions

as Ali+PG, the degree of its improvement varies with the feature
dimension. For the feature dimension of 128, 256 and 512, the higher
the feature dimension, the smaller the gap among the three schemes.
This can be explained by two factors. First, the relative miss penalty
of in-memory cache gets smaller as the feature dimension increases.
Regardless of whether the feature dimension is 128, 256, or 512, the
miss penalty is the same as a whole 4KB page should be read from
SSD. On the other hand, the hit time linearly increases with the fea-
ture dimension. Thus, the reduction of the number of cache misses
is more critical when the feature dimension is low, which makes
the impact of Ginex’s optimal caching more significant. Second, the
relative cache size compared to the whole feature table size gets
smaller with higher feature dimension. For example, when using
a feature dimension of 512 in papers dataset, only about 5% of the
whole feature data can be kept in Ginex’s feature cache. In such
case, there is usually no significant difference in terms of cache
miss ratio between different mechanisms.

Meanwhile, the experimental results with the feature dimension
of 768 do not follow the trend discussed above. The gap among
the three schemes becomes slightly greater. This is because of the
alignment issue. When the feature dimension is 768, the size of
each feature vector is 3KB assuming 32-bit floating point format.
In this case, a single feature vector may often span two 4KB pages,
which means that one should read 8KB in total from SSD to access
it. This does not happen when the feature dimension is 128, 256
and 512 as the page size is aligned with the feature vector size.
This issue amplifies the miss penalty, thereby making the impact
of in-memory caching mechanism more pronounced.
Impact of Memory Size. Figure 18 shows the impact of memory
size. We scale the memory size to 0.5× and 2× of the default size (64
GB). The performance gap between the two caching schemes tends
to get narrower as the memory size gets smaller. It is because only
about 10 GB of memory can be used for the cache after sparing
enough workspace at 32 GB. Too small cache leads to equally poor
caching performance for both schemes. Meanwhile, the Twitter
dataset demonstrates different trend. Due to the high inter-batch
locality, Ginex can achieve substantial performance gains even at
32 GB. However, both schemes are comparable at 128 GB. This is
because the caching performance of Ginex already gets saturated
with a very low cache miss ratio (<8%) at 64 GB (see Figure 15).
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Figure 19: Speedup of Ali+PG and Ginex over PyG+ with
varying batch size

Thus, allocation of an additional memory space gives very little
benefits to Ginex, whereas Ali+PG gets a substantial boost from it.
Impact of Batch Size. Figure 19 shows the impact of batch size.
Ginex is consistently faster than Ali+PG except when batch size is
very small (e.g., 250). This is because the changeset precomputation
overhead of Ginex can be a new bottleneck at a small batch size.
As the batch size decreases, the time for changeset computation
tends to reduce much more slowly than the other stages which
scale almost linearly. Thus, beyond a certain point, the changeset
precomputation time is no longer hidden by the superbatch sample
stage. However, this behavior manifests at a very low batch size
outside the typical range. It is common to use larger batch sizes (≥
1000) in GNN training [15] for both throughput and accuracy.

5.5 Cost Comparison with Distributed Training
This section presents a case study of comparing the cost efficiency
of Ginex with that of DistDGL [51], a popular distributed GNN
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Table 3: Machine configurations on Google Cloud

DistDGL
Node 0 Node 1-7

Host Processor 24 vCPU 24 vCPU
Host Memory 256 GB 156 GB for Friendster

128 GB for Twitter
Host Storage 2 TB pd-standard 100 GB pd-standard
GPU NVIDIA T4 × 2 NVIDIA T4 × 2
Network 16 Gbps outbound BW 16 Gbps outbound BW
Hourly Cost (8 Nodes) $18.83 for Friendster / $17.94 for Twitter

Ginex
Host Processor 12 vCPU
Host Memory 64 GB
Host Storage 375 GB NVMe SSD × 16

(Seq. write: 3.12 GB/s, Seq. Read: 6.24 GB/s)
GPU NVIDIA T4 × 1
Hourly Cost (1 Node) $1.36

Table 4: Cost comparison of Ginex and DistDGL

Dataset Hourly Cost
Reduction

Normalized
Performance

Normalized
Performance/$

Friendster 13.80× 0.20× 2.76×
Twitter 13.15× 0.43× 5.71×

training system. DistDGL partitions the graph dataset with the
min-cut partitioning algorithm [18] and keeps it in memory over a
distributed cluster. We set up both Ginex and DistDGL on Google
Cloud and report the cost efficiency in terms of performance per
dollar on GraphSAGE. We use two datasets, Friendster and Twitter.

Table 3 shows the configurations for DistDGL and Ginex. For
DistDGL, we use an 8-node cluster. Each node has two NVIDIA T4
GPUs. This yields a slightly better cost-efficiency than a single-GPU
setting. Since Node 0 serves as amaster node and thus requires more
memory than the others, we equip this node with a larger memory.
We have carefully tuned the memory size for the master and worker
nodes. Note that the aggregated memory size of the cluster is larger
than the dataset size in Table 2. This is because some parts of the
graph data are duplicated over multiple nodes for performance,
and managing a distributed store consumes additional memory. For
Ginex, we use a single node with 64 GB memory, one NVIDIA T4
GPU, and 16 375 GB NVMe SSDs configured with RAID-0.

Table 4 reports the cost efficiency. Ginex achieves 2.76× and
5.71× higher cost efficiency than DistDGL in terms of performance
per dollar for Friendster and Twitter, respectively. Although the raw
training throughput of Ginex is lower than DistDGL, the hourly
cost of Ginex is over 13× lower than DistDGL to make it much more
cost effective. The overhead of data distribution over multiple nodes
in DistDGL incurs a significant cost when scaling GNN training.

6 RELATEDWORK
Scalable Graph Neural Networks. To the best of our knowledge,
Ginex is the first to leverage commodity SSDs to scale GNN train-
ing. GLIST [26] also utilizes SSDs to scale GNN but focuses on
inference and requires specialized hardware. Instead, most propos-
als for large-scale GNN training have taken scale-out approaches.
ROC [17] and NeuGraph [29] propose multi-GPU training system
for GNN. However, they adopt full-batch training which makes
them eventually face the GPU memory capacity wall when train-
ing on very large graphs. Meanwhie, distributed systems utilizing

multiple CPU nodes for graph storage present more scalable op-
tions [11, 46, 49, 51, 53, 55]. Although details vary, they partition
the graph dataset and keep it in memory on a cluster. However, a
surge of system cost limits cost-effectiveness of this approach.
CachingMechanism for Graph Processing. There are proposals
for caching mechanisms specially designed for graph processing.
GRASP [9] classifies nodes into three categories according to their
degrees and manages nodes in different categories with different
caching policies. Graphfire [31] manages cached data in a fine-
grained manner by learning access patterns online with a locality
predictor. However, their caching performance is sub-optimal, and
it takes substantial effort to implement them in software. P-OPT [2]
uses the transpose of a graph’s adjacency matrix to closely mimic
the optimal caching policy. However, it assumes deterministic graph
traversal patterns, and hence is not applicable to GNN training,
where the seed nodes for each mini-batch are randomly selected
and the sampling process might also require some randomization.
Scaling-up of Other Graph Workloads. There have been many
proposals to optimize disk-based large-scale graph processing on a
single node [19, 22, 30, 35, 38, 52, 56]. GraphChi [22] makes various
graph workloads available on a PC by a parallel sliding windows
method. X-stream [38] reduces the disk accesses by an edge-centric
approach. FlashGraph [52] and MOSAIC [30] adopt a custom data
structure for graph. Marius [35] optimizes graph embedding learn-
ing by partition caching and buffer-aware data orderings. While
these works share the same spirit with Ginex to replace or aug-
ment a cluster-based approach with storage devices, they target
non-GNN workloads, which have different characteristics.
Scaling DNN Training with SSD. Several proposals use SSD to
scale training of a large-scale DNN other than GNN [1, 20, 32].
Dragon [32] and FlashNeuron [1] leverage direct storage access
as a backing store that augments GPU memory. Behemoth [20]
introduces DNN training accelerator which replaces HBM DRAM
with flash memory. While their goal is to overcome GPU memory
capacity wall which stems from the excessive size of model or
intermediate data, Ginex focuses on the CPU memory capacity wall
in GNN training, which is required to process much larger datasets.

7 CONCLUSION
Training GNNs are often challenging as real-world graph datasets
are usually very large exceeding the main memory capacity. Dis-
tributed training is an option, but may not be cost-effective. Thus,
we propose Ginex, an SSD-based GNN training system that supports
billion-scale graph datasets on a single machine. By reconstructing
the training pipeline, Ginex realizes the optimal caching system for
feature vectors thus alleviating the I/O bottleneck.With the reduced
I/O overhead, Ginex can scale GNN training to datasets an order-
of-magnitude larger than a single machine’s CPU memory capacity,
while achieving substantial speedups over the state-of-the-art.
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