
NeuChain: A Fast Permissioned Blockchain System with
Deterministic Ordering

Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu, Yuxiao Gao, Xiaohua Li, Ge Yu
Northeastern University, China

{pengzs, qianxu, liuhaixu, gaoyuxiao}@stumail.neu.edu.cn, {zhangyf, lixiaohua, yuge}@mail.neu.edu.cn

ABSTRACT

Blockchain serves as a replicated transactional processing system

in a trustless distributed environment. Existing blockchain systems

all rely on an explicit ordering step to determine the global order

of transactions that are collected from multiple peers. The order-

ing consensus can be the bottleneck since it must be Byzantine-

fault tolerant and can scarcely benefit from parallel execution. In

this paper, we propose an ordering-free architecture that makes

ordering implicit through deterministic execution. Based on this

novel architecture, we develop a permissioned blockchain system

NeuChain. A number of key optimizations such as asynchronous

block generation and pipelining are leveraged for high throughput

and low latency. Several security mechanisms are also designed to

make our system robust to malicious attacks. Our geo-distributed

experimental results show that NeuChain can achieve 47.2-64.1×

throughput improvement over HyperLedger Fabric and 1.6-12.2×

throughput improvement over the state-of-the-art high perfor-

mance blockchains.

PVLDB Reference Format:

Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu, Yuxiao Gao, Xiaohua Li,

Ge Yu. NeuChain: A Fast Permissioned Blockchain System with

Deterministic Ordering. PVLDB, 15(11): 2585 - 2598, 2022.

doi:10.14778/3551793.3551816

1 INTRODUCTION

Blockchain has evolved into a technology conducting transactions

in a secure and verifiable manner without the need for a trusted

third party. To enhance its viability in practice, blockchain systems

must support transaction rates comparable to those supported by

existing database management systems, which can provide the

same transactional guarantees. Great efforts have been put on de-

veloping blockchain systems to support high-throughput trusted

transactions [14, 30, 52, 55].

In a trustless distributed environment, the keys to meet trans-

actional requirements lie in how to validate the correctness of

transaction contents and how to achieve consensus on the order of

transactions. Permissionless (public) blockchains, such as Bitcoin

and Ethereum, follow an order-execute-validate (OEV) architec-

ture [14], running a proof-of-work (PoW) consensus to determine

an order of transactions. All peers are involved in solving a puzzle

which must be hard enough to prevent Byzantine attacks. The order

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551816

is determined by a lucky peer that offers the solution first. The pos-

sibility of solving puzzles depends on the computing power of that

peer. This order is broadcast to all peers, and each peer executes

these transactions in the same order and validates their contents.

PoW provides eventual consistency and could take a long time for

each peer to reach a consensus.

On the other hand, permissioned (consortium or private) block-

chains, such as Hyperledger Fabric [14], running among a set of

known, identified participants, follow an execute-order-validate

(EOV) architecture. First, transactions from different clients are exe-

cuted concurrently by a set of endorsement peers. The effects of

execution in terms of multiple read-write sets are sent to an order-

ing service which may consist of a cluster of ordering peers. By

relying on the identities of the peers, the traditional Byzantine-fault

tolerant (BFT) consensus can be used to produce a totally ordered

sequence of the endorsed transactions grouped in blocks. Then, the

block is broadcast to all validation peers. Each validation peer vali-

dates the state changes from the endorsed transactions with respect

to the endorsement policy and serializability. The EOV architecture

can greatly increase system throughput [30] by introducing paral-

lelism in the execution phase. However, this is still much slower

than traditional databases and far from meeting the demand of

high throughput applications, such as financial applications [57],

internet of things [53, 61], and industrial supply chain [25].

The reason of performance degradation is attributed to the ex-

pensive ordering phase that requires all peers to make a consensus

on the serial order of transactions. Determining the serial order can

scarcely benefit from parallel computation and usually becomes per-

formance bottleneck. Figure 1a shows the OEV architecture where

the serial order is determined by a single peer through expensive

PoW process. Figure 1b illustrates the EOV architecture where the se-

rial order is determined by an independent ordering service, which

requires a single orderer or multiple orderers to reach consensus

on the serial order. The single node that proposes a complete block

of ordered transactions could be the bottleneck, limited by its up-

stream bandwidth or computation resources. Nathan et al. [40]

propose an order-execute-parallel-validate (OEPV) architecture

(as shown in Figure 1c) that hides the ordering cost by parallelizing

the execution phase and the ordering phase. After the consensus on

the global order is reached, the executed transactions that conflict

with the order will be aborted and the state is rolled back. Though

various concurrency control techniques [12, 19, 33, 62] have been

exploited to improve throughput, all of these architectures involve

an expensive ordering step that must be executed sequentially.

Essentially, blockchain is a multi-master replicated ledger system

that provides the consensus on transaction contents, transaction

order, and block boundaries. The execution process generates the

2585

https://doi.org/10.14778/3551793.3551816
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551816


Order Execute Validate

Tx

Tx

Tx

Tx

Tx

Tx

(a) OEV (Bitcoin [39], Etherum [65])

Execute ValidateOrder

Tx

Tx

Tx

Tx

Tx

Tx

(b) EOV (Fabric [14], Fabric# [52])

Order

Execute

Validate

Tx

Tx

Tx

Tx

Tx

Tx

(c) OEPV (Fabric SSI [40], BIDL [45])

Execute Validate

Tx

Tx

Tx

Tx

Tx

Tx

with deterministic ordering

(d) EV (ours)

Figure 1: Blockchain architectures.

updated state of database (i.e., read-write sets). The validation pro-

cess is performed on all peers to ensure the validity and legality

of transaction contents. Since any peer can accept write requests

independently, the ordering step is necessary to determine a global

order of transactions, i.e., determine the block boundaries (inter-

block transaction order) and the transaction order within each

block (intra-block transaction order). However, it is not necessary

to launch the ordering step explicitly with consensus cost.

In this paper, we leverage deterministic ordering [11, 35, 48, 58]

to define the intra-block transaction order and leverage epoch to

define the inter-block transaction order, so that the explicit or-

dering step with single point bottleneck is eliminated to realize an

ordering-free execute-validate (EV) architecture. Each transaction

is assigned with an epoch number that helps divide transactions

into block, which is assigned by a single trusted epoch server or

a cluster of epoch servers that reach a consensus through PBFT.

Different from existing architectures where a single node (or the

single leader during consensus) proposes a complete set of ordered

transactions to other nodes, in EV architecture each node can pro-

pose a subset of transactions independently, and multiple nodes

are running concurrently for proposing transactions of the same

epoch. Thus, the consensus on parts of transactions and the block

generation can be parallelized. With a complete set of unordered

transactions as input, by deterministic ordering all peer nodes will

produce the same results without coordination. The inconsistency

of orders or contents of a block will be detected and avoided dur-

ing the validation phase which makes EV architecture robust to

Byzantine attacks.

Based on the EV architecture, we develop a blockchain system

NeuChain. The system does not only include clients and block

servers but also introduces new components such as client proxies

and epoch servers. NeuChain further improves throughput through

asynchronous block generation and reduces latency through pipelin-

ing. NeuChain also provides comprehensive security support to deal

with malicious attacks from user clients, block servers, client prox-

ies, and epoch servers.

In summary, we have made the following contributions.

• Ordering-Free EV Architecture. We introduce the determinis-

tic ordering technique to blockchain and propose the EV archi-

tecture. This design brings the flexibility in ordering intra-block

transactions and further reduces the number of transaction con-

flicts through transaction reordering.

• NeuChain System. We design and implement a permissioned

blockchain NeuChain based on the EV architecture. A number of

key optimizations such as asynchronous block generation and

pipelining are leveraged for high throughput and low latency.

• Mechanisms to Defend Malicious Attacks. As a novel ar-

chitecture, NeuChain introduces several new components (e.g.,

epoch server and client proxy) which could bring potential se-

curity risks. We provide comprehensive defence mechanisms to

tackle malicious activities conducted by various Byzantine nodes.

We perform experiments on a geo-distributed 8-node Aliyun

cluster by comparing with Hyperledger Fabric [14], FastFabric [30],

a high-performance transactional blockchain ResilientDB [32], a

sharded consortium blockchain Meepo [32], and a recently pro-

posed BFT key-value store Basil [56]. We also conduct comparisons

with a series of NeuChain variants (with OEV, EOV, and OEPV) to

study the efficiency of our EV architecture under the same imple-

mentation framework. The results on YCSB and SmallBank work-

loads show that NeuChain can achieve 47.2-64.1× throughput im-

provement over Fabric and 1.6-12.2× throughput improvement over

ResilientDB, Meepo, and Basil. It also shows superiority over other

NeuChain variants with different architectures, say 11.2-16.7× over

OEV, 7.4-19.0× over EOV, and 3.7-4.8× over OEPV.

2 BACKGROUND OF BLOCKCHAINS

In this section, we review the existing blockchain systems from

different dimensions. We first study the mainstream architectures

adopted by existing blockchains, including OEV, EOV, and OEPV. Then

we discuss how these blockchains reach consensus. Lastly, we sum-

marize the concurrent transaction processing techniques adopted

by these systems to improve their transaction throughput.

2.1 Architectures

2.1.1 OEV Architecture. The OEV architecture uses the following

process to generate blocks. i) In the ordering phase, each node

selects a set of transactions, orders and pre-executes them to ensure

their validity in that order; ii) After a node computes a valid PoW,

it generates a block and broadcasts it to all the other nodes; iii) In

the validation phase, after receiving a block, all other nodes need to

ensure that all transactions in that block are valid by re-executing

the transactions.

The OEV architecture put emphasis on the ordering consensus,

which often relies on PoW to achieve consensus (e.g., Bitcoin [39]

and Ethereum [65]), and therefore widely used in permissionless

blockchains with a wide range of untrusted peer nodes. Under a

permissioned environment, recent systems such as Quorum [7]

rely on a relatively less expensive consensus protocol (e.g., PBFT

[17] or Raft [42]) to achieve the order agreement. However, the OEV

architecture suffers from the drawback of sequential execution due

to the order-first architecture. That is, it requires all participant

nodes to execute the same set of transactions based on the serial

order that is agreed by all peers, where no concurrency is allowed.

2586



Table 1: Summary of Blockchain Systems

Systems Architecture Type Consensus Transaction Processing

Content Protocol Participant Conflict type Concurrency control

Bitcoin [39] OEV permissionless block PoW all nodes intra-block -

Ethereum [65] OEV permissionless block PoW PoS all nodes intra-block -

Quorum [7] OEV permissioned block PBFT Raft all nodes intra-block -

ResilientDB [32] OEV permissioned Tx batch GEOBFT all nodes intra-block -

PoE [31] OEV permissioned Tx batch PoE all nodes intra-block -

Monoxide [64] shard+OEV permissionless block PoW group of nodes cross-shard eventual atomicity

ByShard [34] shard+OEV permissioned block PBFT group of nodes cross-shard cross-shard 2PC

SharPer [13] shard+OEV permissioned block PBFT group of nodes cross-shard cross-shard commit protocol

Rivet [22] shard+OEV permissioned block HotStuff reference shard cross-shard optimistic

Fabric [14] EOV permissioned Tx batch PBFT Raft order nodes inter&intra-block MVOCC

FastFabric [30] EOV permissioned Tx header PBFT Raft order nodes inter&intra-block MVOCC

Fabric++ [55] EOV permissioned Tx batch PBFT Raft order nodes inter&intra-block MVOCC+reorder

Fabric# [52] EOV permissioned Tx batch PBFT Raft order nodes inter&intra-block OCC+SSI+reorder

SlimChain [69] EOV both block PoW Raft consensus nodes inter&intra-block OCC+SSI

Basil [56] EOV permissioned KVs PBFT clients inter&intra-block MVTSO

Fabric SSI [40] OEPV permissioned block PBFT Raft order nodes intra-block SSI

BIDL [45] OEPV permissioned block PBFT Raft order nodes intra-block -

NeuChain (ours) EV permissioned block number PBFT Raft epoch servers intra-block deterministic

Tx batch client proxies

To alleviate the consensus overhead and to increase the scalabil-

ity, researchers introduce the sharding technique from distributed

database into OEV blockchains. The sharded blockchain groups par-

ticipant nodes into clusters and lets each cluster of nodes maintain

a subset of transactions initiated from its own cluster. However,

the sharding solutions bring new challenges. i) It is essential to use

a cross-shard commit protocol to ensure the atomicity of transac-

tions, causing additional round-trip communication overhead. ii)

The node-to-cluster assignment should be carefully taken to ensure

security (i.e., solving the problem of computing power being diluted

after partitioning). For example, the sharded blockchains, such as

Monoxide [64], ByShard [34], Sharper [13], and Rivet [22], propose

different techniques to address these two challenges.

2.1.2 EOV Architecture. The EOV architecture is proposed to adapt

to permissioned blockchains with a set of identified participants. It

has significantly improved the transaction throughput by introduc-

ing parallel execution and optimistic concurrency control (OCC)

technology. The process of the EOV architecture is described as

follows. i) In the execution phase, a client sends a transaction to

a group of endorsing peers for simulation and producing an en-

dorsement. It then collects and forwards the results to the ordering

service. ii) In the ordering phase, the ordering service that may

be consist of multiple ordering peers uses a consensus protocol

to determine the order of transactions in a block. After generat-

ing a block, peers pull blocks from the ordering service. iii) In the

validation phase, all peers receive the same block and perform a

read-write conflict check on each transaction and send committed

or aborted notifications back to clients.

Since the execution phase is performed first and no longer de-

pends on the ordering result, the input transactions can be executed

in parallel, even though there do exist dependencies among trans-

actions. The OCC method is used to detect conflicts based on the

ordering result. In this way, the performance of the EOV system can

be greatly improved. Hyperledger Fabric [14] is the first blockchain

system that adopts EOV architecture and has been used in many

real applications. A series of blockchains that improve Fabric are re-

cently proposed, such as FastFabric [30], Fabric++ [55], and Fabric#

[52]. These works improve the parallelism of EOV architecture by re-

lying on various concurrency control techniques. SlimChain follows

the EOV architecture, which performs off-chain execution under

trusted execution environment and stateless on-chain transaction

ordering and validation. Basil [56] also follows EOV architecture

which uses local clock to order transactions and relies on NTP’s

clock to verify the order. For EOV systems, they may suffer from

high abort rates due to many inter&intra-block conflicts and as a

result low throughput, especially under high contention workload.

2.1.3 OEPV Architecture. To further increase the throughput, the

OEPV architecture parallelizes the ordering phase and the execution

phase. The OEPV architecture abides by the following process to

generate blocks. i) A client sends a transaction to the ordering

service and to the execution nodes simultaneously, i.e., the ordering

and the execution are running in parallel. ii) Based on the order

sequence and execution results, the validation node determines

the successfully committed or aborted transactions and responds

to client. iii) Multiple execution nodes exchange the signatures of

execution results to ensure that the third party can verify the block

without additional information.

The authors in [40] propose the OEPV architecture and use Serial-

izable Snapshot Isolation (SSI) [16] to resolve transaction conflicts.

We name this system as Fabric SSI. BIDL [45] employs specula-

tive execution that is essentially the same as OEPV to provide fast

transaction processing service. Parallelizing the ordering and the

execution can hide the consensus cost of distributed BFT order-

ing. However, the OEPV architecture still needs an explicit ordering

phase that slows down the transaction processing speed.

2587



2.2 Consensus

The consensus on transaction contents and transaction order in

a block should be reached in blockchain systems. In permission-

less blockchains, due to the massive number of untrusted nodes, a

Proof-of-Resources based consensus protocol (e.g., Proof-of-Work

and Proof-of-Stake [5]) is needed to ensure the security, e.g., Bitcoin

[39], Ethereum [65], and Monoxide [64]. Due to the high cost of

PoW consensus, it is better to reduce the number of consensus calls.

Hence, the consensus unit in permissionless blockchains is usually a

whole block. While in permissioned blockchains (e.g., Quorum [7])

where only a limited number of participant nodes are involved in

consensus, a PBFT or Raft protocol is more suitable for distributed

consensus. To adjust to geo-distributed environment, ResilientDB

[32] employs a hierarchical consensus protocol GEOBFT. It first

divides participant nodes into multiple clusters according to their

locations. Each cluster first makes PBFT consensus on a batch of

local transactions and then exchanges data with other clusters to

make a global consensus. To hide the consensus cost, the PoE proto-

col [31] starts execution before reaching consensus (i.e., speculative

execution) which reduces the response latency.

The cost of consensus process is proportional to the number of

participant nodes. As the number of participating nodes increases,

the system performance will drop sharply. In sharded blockchains,

the participant nodes are partitioned into clusters/shards. The con-

sensus is established within each cluster, so it is less expensive

and can help improve the scalability. However, there could exist

cross-shard transactions. It is necessary to exploit a cross-shard

consensus protocol or a cross-shard commit protocol to ensure the

atomicity. For example, Monoxide [64] proposes eventual atom-

icity. ByShard [34] applies two-phase commit (2PC) protocol to

ensure the atomicity of cross-shard transactions. In Rivet [22], a

reference shard is selected to make consensus using HotStuff [71]

protocol. These sharded blockchains reduce the network overhead

of a single consensus protocol at the cost of increasing the number

of consensus rounds for cross-shard transactions.

With EOV architecture, the consensus on transaction order needs

to be reached after the parallel execution phase, and the consensus

only involves a set of ordering nodes. As EOV architecture is mainly

adopted in permissioned blockchains, PBFT and Raft protocols are

usually used. Separating ordering nodes from execution nodes and

only requiring a small number of ordering nodes to participate

in consensus help improve the performance and scalability. The

consensus unit is a batch of transactions in Fabric [14], Fabric++

[55], and Fabric# [52]. To reduce the size of consensus message,

FastFabric [30] only makes a consensus on the transaction headers.

SlimChain [69] establishes a consensus on the order of transac-

tions among all on-chain consensus nodes (Raft consensus in the

permissioned setting while PoW consensus in the permissionless

setting). Basil [56] is a BFT key-value store so its consensus unit

is a set of key-value pairs. Similar to EOV architecture, Fabric SSI

[40] and BIDL [45] that are with OEPV architectures both establish

consensus on the transaction order, and at the same time launch

transaction processing in parallel.

2.3 Concurrent Transaction Processing

The early OEV blockchain systems only support serial execution

of transactions because transaction processing is often not the

bottleneck [26]. For example, Bitcoin’s PoW dominates the block

generation process which is more time consuming than transaction

processing. On the other hand considering the complexity of paral-

lel execution, serial execution will not lead to anomalous behaviors

when the transaction execution is replicated over many nodes, so it

is more preferable in early blockchains. However, concurrent trans-

action processing is supported by more and more recently proposed

blockchains to improve transaction processing throughput.

With sharded OEV architecture, the concurrent transactions ini-

tiated from different shards may read or write the same records,

which leads to conflicts for cross-shard transactions. It is necessary

to exploit cross-shard commit protocol to ensure atomicity. ByShard

[34] proposes an orchestrate-execute model supporting multiple

2PC variants and multiple isolation levels to commit cross-shard

transactions. Sharper [13] establishes a BFT commit protocol for

ordering cross-shard transactions among the involved shards. Rivet

[22] proposes to use a more optimistic cross-shard commit protocol.

Monoxide [64] proposes the idea of asynchronous consensus zone

to achieve eventual atomicity, i.e., for a cross-shard transaction ini-

tiated from a shard, it will eventually be processed in other shards

without real-time guarantee.

With EOV and OEPV architectures, the order of transactions is

determined after parallel execution. The parallel execution on dif-

ferent nodes might lead to transaction conflicts (if there exist read-

write dependencies among transactions). The key of concurrent

transaction processing is to tackle such conflicts efficiently. There

are two types of transaction conflicts in blockchains: intra-block

and inter-block conflicts. Concurrent transaction execution might

form inter-block transaction conflicts, which occurs only in the

EOV architecture that performs execution first based on different

blocks. The blockchains with EOV and OEPV architectures adopt

OCC and various techniques to achieve concurrency control. For

example, Fabric# [52] and SilmChain [69] resolve conflicts in the or-

dering phase. Fabric [14], Fabric++ [55], and Fabric SSI [40] assign a

sequence number to each transaction in the ordering phase and re-

solve conflicts in the validation phase, where they use Multi-Version

OCC or SSI to ensure the consistency of transactions. Fabric++ and

Fabric# further apply a transaction reordering technique to reduce

abort rates. Basil [56] relies on Multi-Version TimeStamp Ordering

(MVTSO) to support concurrency control.

Insight. A blockchain system is essentially a fully replicated stor-

age system for storing ledgers. The key in blockchains is to ensure

consistency among these replicas under a trustless environment. Be-

sides the encryption cost, the most expensive step is the consensus

on the transaction order, which is essential in all architecture vari-

ants (OEV, EOV, and OEPV). An effective optimization technique to

improve the throughput performance is the concurrent transaction

processing with limited abort rate, where an essential contradiction

exists between the serial execution order (for correctness) and the

concurrent execution (for performance). Therefore, the elimination

of explicit ordering phase is desirable to achieve high performance.

3 SYSTEM DESIGN

In this section, we propose an ordering-free EV architecture and a

permissioned blockchain prototype NeuChain. We first overview

the system design and introduce the key components in Section

2588



Client Proxy 1

Client Proxy 2

Client Proxy 3

Block Server 1

Block Server 2

Block Server 3

S
ig

n
a

tu
re

 E
x
ch

a
n

g
e

Epoch Server 

Client Proxies Cluster

P
a

ra
lle

l In
d

e
p

e
n

d
e

n
t C

o
n

se
n

su
s

Figure 2: Overall system structure.

3.1 and describe the execution flow details in Section 3.2. Then,

we present how the deterministic transaction processing works in

Section 3.3. Lastly, we provide some key optimization techniques

in our implementation in Section 3.4.

3.1 Overview and Key Components

NeuChain is designed to achieve ordering-free EV architecture as

shown in Figure 1d. The explicit ordering consensus phase is elimi-

nated by employing the implicit deterministic ordering. The basic

idea can be summarized as follows. All participant nodes accept

transaction requests in parallel. These sets of transactions received

from multiple nodes are exchanged among nodes through all-to-

all communication. After a node collects all transactions from all

remote nodes, it executes these transactions in a pre-defined deter-

ministic order and generates a block. The deterministic order can be

defined according to the globally unique transaction ID that is gen-

erated on each node based on a deterministic andmalicious-resilient

rule. Due to this deterministic execution, the generated blocks by

different nodes will be consistent (i.e., consensus is reached) if no

malicious behavior occurs (the trust and security issues will be

discussed in Section 4). Following the basic idea, we design a new

blockchain system as shown in Figure 2. Different from existing

blockchains, several new components are introduced to realize

deterministic block generation.

Epoch Server. A blockchain records transactions by dividing them

into blocks. A latter block is generated based on the former block’s

hash for tamper resistance. The blockchain nodes must reach con-

sensus on the following two issues: i) which block a transaction

belongs to and ii) in which order the transactions execute within a

block. With deterministic execution, the execution order is fixed,

but it is still necessary to make consensus on the block boundaries.

To tackle this problem, we design an epoch server to determine

which block a transaction belongs to. A batch of transactions are

sent to the epoch server, where a monotonically increased epoch

number (based on local clock) is assigned to each transaction that

corresponds to its belonging block. To avoid Byzantine attacks,

multiple epoch servers can be deployed, and they need to make

consensus when the epoch number increases.

Client Proxy. In our system, multiple client proxies are deployed.

Client proxy has two functionalities. i) A client proxy is responsible

for accepting user client’s transaction requests and groups them

into batches. It then applies an epoch number from the epoch server

for a batch of transactions. A client proxy may generate several

transaction batches in an epoch. ii) After the epoch is over, the

client proxy packages the transactions within the same epoch and

broadcasts them to all other client proxies. Because all client proxies

need to ensure the integrity and consistency of the transactions,

User Peer 1 Peer 2 Peer 3 Epoch server

1

2

2 2

3

3 3

5

6 6 6

1

2

3

5

6

Assign epoch for a batch

Validate received batch

Deterministic execution

Response to user

Signature exchange

Client proxy 

process

Block server 

process

4

4 4 4 Block generation

Figure 3: Execution flow of a single transaction in NeuChain.

It consists of three phases: preparation phase (step 1-2), exe-

cution phase (step 3-5), and validation phase (step 6).

PBFT or Raft can be used as the broadcast protocol. Unlike other

blockchain systems that perform centralized consensus, multiple

broadcast processes initialized from different client proxies can

be performed independently and concurrently, which facilitates

parallelism and will not hurt performance.

Block Server. The block server keeps the complete ledger and is

associated with a state database, e.g., using LevelDB [3] or an in-

memory hash table. The block server is responsible for transaction

execution, block generation and validation, and updating the state

database. It consists of a group of worker threads for executing

transactions concurrently, and relies on a reserve table to detect

concurrency conflicts, which will be discussed in Section 3.3. Each

block server corresponds a client proxy for receiving transactions.

The block server and the client proxy can be allocated on the same

physical node for the sake of sharing transaction data through

a pipeline. To provide protection from malicious behaviours, the

block server broadcasts the block signature after generating a block.

Only when the number of received and verified block signatures

reaches a threshold, the validation succeeds. In case a BFT model

with 3𝑓 + 1 nodes, this threshold value is set as 𝑓 + 1.

3.2 Execution Flow

Figure 3 shows the execution flow, which consists of three phases:

preparation phase, execution phase, and validation phase.

3.2.1 Preparation Phase. The transaction request sent from user

client is accepted by a client proxy on a local peer node, where each

transaction is associated with an epoch number and a transaction

ID (𝑡𝑖𝑑) before sending to the block server for processing. After a

client proxy collects a batch of local transactions, it calculates a

hash value for this batch of transactions and sends the hash value

to the epoch server for applying an epoch number with a signature

(i.e., this batch of transactions share the same epoch number). The

signature is generated by the epoch server based on i) its private

key, ii) the hash of the transaction batch, iii) the epoch number, and

iv) a nonce. The epoch servers only need to make consensus on the

increments of epoch numbers. After receiving an increased epoch

number, each client proxy broadcasts the signed transactions of

the last epoch to all other client proxies. It is worth noting that an

epoch server instantly returns the current epoch number to client

proxy without waiting for the completion of consensus.

Each client proxy uses a consensus protocol (PBFT or Raft) to

ensure atomic broadcast. Suppose there are 𝑛 peers in our system,

2589



each peer initiates an independent consensus instance for broad-

casting its collected transactions set, and there are total 𝑛 consensus

instances running concurrently. In other words, each peer is also

participating in 𝑛 consensus instances. It works as a leader in one

consensus instance, and works as followers in the other𝑛−1 consen-

sus instances. In order to ensure that all peers received a complete

set of transactions of epoch 𝑖 , each peer is required to receive the

transactions set of epoch 𝑖 proposed by all the other 𝑛 − 1 peers

(recall that each peer initiating an independent consensus instance).

If a peer does not receive the message from a certain peer for a

period of time (timeout), it will initiate a łview-changež request

to other peers and make consensus on whether stop waiting for

the message (due to leader failure) or replicate the message from

other peers (due to link failure between it and the leader). Note

that, the consensus among epoch servers and that among client

proxies are running independently. They do not depend on each

other. The consensus on the increments of epoch numbers will not

stop producing blocks.

After receiving the remote transactions, each client proxy veri-

fies their validity and generates 𝑡𝑖𝑑s for them. The client proxies

generate 𝑡𝑖𝑑s independently without causing extra communication.

In the deterministic execution algorithm, the 𝑡𝑖𝑑 determines the

transaction execution order. To ensure fairness, the randomness of

𝑡𝑖𝑑 is of vital importance, so we use hash value as 𝑡𝑖𝑑 . Specially, the

𝑡𝑖𝑑 is generated based on i) the content of the transaction and ii) the

content of the whole transaction batch. In a trusted environment,

only using the transaction to generate hash value is sufficient. How-

ever, since our deterministic execution tends to schedule smaller 𝑡𝑖𝑑

first, it will prompt malicious clients to fake transaction contents for

gaining a smaller 𝑡𝑖𝑑 (as a result prevent other transactions’ commit-

ment). Therefore, we generate 𝑡𝑖𝑑 based on not only the transaction

itself but also the entire batch containing other transactions. The

security issues will be discussed in Section 4.

3.2.2 Execution Phase. In the execution phase, the block server

first calls chaincode to execute a transaction and generate a read-

write set. The read-write set is represented as a set of key-value

pairs, which record a set of read or write operations. All the trans-

actions of the same epoch are executed by multiple worker threads

in parallel. To support concurrency control, a shared reserve table

that reserves write operations in <𝑘𝑒𝑦, 𝑡𝑖𝑑> format is designed. As

multiple threads concurrently update the same row (with the same

𝑘𝑒𝑦), the reserve table will be updated according to a determin-

istic rule that will be used in the deterministic commit protocol.

The details of deterministic transaction processing will be further

presented in Section 3.3.

Next, the successfully committed transactions with the same

epoch number are used to update the state database, and both the

committed and aborted transactions are used to generate a new

block. The committed/aborted status of each individual transaction

is immediately returned to users. Similar to other blockchain sys-

tems, a block consists of three parts: header, body, and metadata.

The block header contains some verifiable data such as the previous

block hash value and the hash of the root of the Merkle tree of

this block’s transactions. The body contains all submitted trans-

actions and users’ signatures. The metadata contains the commit-

ted/aborted status of each transaction and a set of block signatures

Abort T2 (stale read)
W(x) R(x)

Abort T2 (lost update)
W(x) W(x)

Commit T1 and T2
R(x) W(x)

TimeR(x) R(x)
Commit T1 and T2

T1 T2 

T1 T2 

Block i Block i+1

T1 T2 

T2 T1 

Epoch

Figure 4: Possible read-write transaction orders and possible

conflicts.𝑇 1 and𝑇 2 are two transactions (with read/write op-

erations) ordered deterministically according to their 𝑡𝑖𝑑s.

collected from other block servers in the validation phase. We ac-

celerate the block generation by an asynchronous block generation

technique that will be presented in Section 3.4.1.

3.2.3 Validation Phase. The validation phase is launched to val-

idate the generated block and provide the block self-verification

property. That is, a user client can verify a block’s integrity and

correctness based on a set of signatures provided by the local block

server. After generating a block, each block server is required to

generate a signature based on its private key and the hash value of

the generated block. These signatures generated by different block

servers are exchanged among each other. If there is no malicious

behavior, the calculated block hash values should be identical. After

𝑓 + 1 signatures of the current block are collected and verified to

be identical, the block server marks the block as verified.

3.3 Deterministic Transaction Processing

Blockchain is essentially a replicated transactional processing sys-

tem. Deterministic database [11, 37, 41, 60] is also a typical multi-

master replicated data system that synchronously replicates batches

of transactions to multiple replica servers. Each replica runs the

same set of ordered transactions deterministically and converts the

database from the same initial state to the same final state. Inspired

by deterministic database, NeuChain is designed to eliminate the

explicit ordering phase by deterministic transaction processing.

In NeuChain, after the preparation phase is finished, a complete

set of transactions of epoch 𝑖 from all remote client proxies are

collected. The set of transactions might be received in different

orders, but each transaction is associated with a globally unique 𝑡𝑖𝑑 ,

which can be used to determine the execution order. With the same

set of input transactions and a pre-defined deterministic order, the

same output is warranted. Nevertheless, multi-thread processing

is usually implemented to improve the transaction processing per-

formance, resulting in that two replicas may process the input in

different serial orders due to different thread scheduling. To address

this problem, we define a deterministic conflict resolution rule.

Algorithm 1 describes the deterministic transaction processing.

For each epoch, a reserve table𝑇𝑎𝑏𝑙𝑒 and a committed transactions

set 𝑆𝑐𝑚𝑡 are initialized (Line 1-2). These transactions are executed

by multiple worker threads in parallel (Line 3-4). A worker thread

executes a transaction based on last epoch’s database snapshot and

produces the transaction’s read set 𝑇 .𝑅𝑆 and write set 𝑇 .𝑊𝑆 (Line

11). If it is a read-only transaction that has empty write set, it will

not conflict with other transactions, so it is directly added to the

committed set (Line 12-13). Otherwise, we update the reserve table’s

corresponding row to be the smallest 𝑡𝑖𝑑 that has ever met (Line

14-15). In other words, only the write operation with the smallest

𝑡𝑖𝑑 is recorded for conflict resolution.

2590



After all transactions have been executed (Line 5), the possible

conflicts are detected in parallel. As a blockchain system, the snap-

shot isolation naturally adapts to our transaction processing. That

is, all transactions should read and write based on the last block

as a database snapshot. Between two snapshots, these transactions

collected in an epoch are concurrently executed in a deterministic

way. Under such environment, the possible read-write transaction

orders and possible conflicts are illustrated in Figure 4. i) If 𝑇1

and 𝑇2 are both read operations, there is no conflict, so both of

them can be committed. ii) If 𝑇1 reads an item 𝑥 and 𝑇2 updates

𝑥 (i.e., WAR dependency), both of them can be committed. 𝑇 1 first

reads the snapshot before 𝑇 2 updates it, which does not impact the

correctness. iii) If 𝑇1 updates an item 𝑥 and 𝑇2 reads 𝑥 (i.e., RAW

dependency),𝑇 2 should be aborted. This is because that𝑇 2 will read

the data in the snapshot which is updated by an early scheduled

transaction 𝑇1, which leads to stale read anomalies. iv) If 𝑇1 and

𝑇2 both update an item 𝑥 (i.e., WAW dependency), 𝑇2 should be

aborted, since concurrent update may lead to anomalies, such as

lost update. In Algorithm 1, we realize the conflict resolution by

relying on the reserve table. If a transaction 𝑇 ’s write operation

is overwritten by another transaction (WAW), 𝑇 is aborted (Line

17-19). If 𝑇 ’s read data is updated by another transaction (RAW), 𝑇

is aborted (Line 20-22). The remaining transactions are committed

and used to generate a new block and update database (Line 8-9).

It is worth noting that NeuChain does not allow to update a value

multiple times in a block, which may lead to higher abort rate under

high-contention workload. However, as NeuChain is very fast (only

30-75 ms to produce a block), this limitation will not impact user

experience too much by resubmitting the aborted transactions.

Determinstic Reordering. Given an RAW conflict that may lead

to stale read (as shown in Figure 4), we have the opportunity to

commit the transaction by deterministic reordering. Inspired by

[37], we can deterministically change the order from𝑇 1−𝑇 2 (RAW

dependency) to𝑇 2−𝑇 1 (WAR dependency), such that both of them

can commit. However, for a transaction that contains both WAR

and RAW dependencies, the reordering algorithm cannot guarantee

no loop after the reordering, so the transaction must be discarded.

In short, when the dependency graph has a circle, it is not possible

to commit all transactions by changing commit order, but it can

ensure serializability by aborting a transaction to break the loop.

3.4 Implementation

We implement a prototype of NeuChain with ~20,000 lines C++

code. It uses pluggable LevelDB or in-memory key-value store as

the state database and stores blocks in files. We present two key

optimization techniques in the following.

3.4.1 Asynchronous Block Generation. In NeuChain, the prepara-

tion phase does not depend on any previous result, so it can start

as soon as the next epoch starts according to physical time. Un-

der high contention, it is possible that the block of the previous

epoch has not been generated yet before the next epoch starts. Thus,

the preparation phase may be overlapped with previous epoch’s

execution phase in vanilla implementation as shown in Figure 5a.

In existing blockchain systems, a block is usually generated

during the ordering phase (e.g., by a single node in Ethereum [65] or

by the ordering service in Fabric [14]). The generation of next block

does not start before the previous block is generated. In NeuChain,

Algorithm 1: Deterministic Transaction Processing

Input: A set of transactions𝑇𝑆 of epoch 𝑖 , and state database

snapshot 𝐷𝐵 [𝑖 − 1]

Output: A new block 𝐵 [𝑖 ] and updated database snapshot 𝐷𝐵 [𝑖 ]

1 Initialize reserve table𝑇𝑎𝑏𝑙𝑒 ;

2 Initialize committed transactions set 𝑆𝑐𝑚𝑡 ;

3 foreach𝑇 in𝑇𝑆 parallel do

4 ExecuteTx(𝑇); // execute transactions in parallel

5 Synchronize with all worker threads;

6 foreach𝑇 in𝑇𝑆 parallel do

7 DetectConflict(𝑇); // detect conflicts in parallel

8 Update state database to a new snapshot 𝐷𝐵 [𝑖 ] based on 𝑆𝑐𝑚𝑡 ;

9 Generate new block 𝐵 [𝑖 ] based on𝑇𝑆 and execution result;

10 Function ExecuteTx (𝑇 ):

11 {𝑇 .𝑅𝑆,𝑇 .𝑊𝑆 } ← execute transaction𝑇 based on 𝐷𝐵 [𝑖 − 1];

12 if 𝑇 .𝑊𝑆 == ∅ then

13 Add𝑇 to 𝑆𝑐𝑚𝑡 and return; // read-only transaction

14 foreach 𝑟𝑒𝑐 in𝑇 .𝑊𝑆 do

15 𝑇𝑎𝑏𝑙𝑒 [𝑟𝑒𝑐.𝑘𝑒𝑦 ] =𝑚𝑖𝑛 (𝑇𝑎𝑏𝑙𝑒 [𝑟𝑒𝑐.𝑘𝑒𝑦 ],𝑇 .𝑡𝑖𝑑) ;

16 Function DetectConflict (𝑇 ):

17 for each 𝑟𝑒𝑐 in𝑇 .𝑊𝑆 do

18 if 𝑇𝑎𝑏𝑙𝑒 [𝑟𝑒𝑐.𝑘𝑒𝑦 ] < 𝑇 .𝑡𝑖𝑑 then

19 Abort𝑇 and return; //𝑇 ’s write is overwritten

20 for each 𝑟𝑒𝑐 in𝑇 .𝑅𝑆 do

21 if 𝑇𝑎𝑏𝑙𝑒 [𝑟𝑒𝑐.𝑘𝑒𝑦 ] < 𝑇 .𝑡𝑖𝑑 then

22 Abort𝑇 and return; //𝑇 ’s read data is updated

23 Add𝑇 to 𝑆𝑐𝑚𝑡 and return;

Epoch 1

Epoch 2

Preparation

Time

Tx Execution Block Generation

Epoch 1

Epoch 2
Time

Epoch 3

Epoch 3

(a) Vanilla implementation

(b) Asynchronous block generation

Validation

Epoch 1

Epoch 2
Time

Epoch 3

(c) Pipelining preparation and transaction execution

Figure 5: Asynchronous block generation and pipelining.

the block generation is themost time consuming step (see Figure 9b).

We optimize it with asynchronous block generation. The next block

generation can start before the previous block generation finishes.

This process is visually illustrated in Figure 5b. Multiple block

generation threads of different epochs are running concurrently if

high contention persists. The block headers (containing previous

block’s hash) are generated serially to support tamper resistance.

3.4.2 Pipelining Preparation and Execution. Recall that the client

proxies exchange their collected local transactions and send them

to block server for further execution. There is a synchronization

point that requires to receive the transactions of the same epoch

from all client proxies before entering to the transaction execution

phase. However, since deterministic execution is leveraged, within

the same epoch the execution result is deterministic despite the

2591



transactions arrive in arbitrary order. This nice property brings us

new opportunities to improve performance. Specifically, as shown

in Figure 5c, we pipeline the preparation phase and the transaction

execution phase by feeding mini-batches for transaction execution.

The early arrived transactions are immediately used to update the

reserve table (Line 3-4 in Algorithm 1). In this way, the preparation

phase and the execution phase can be overlapped. Note that there

is still a synchronization point at Line 5 in Algorithm 1 to receive

all remote transactions before performing conflict detection.

4 TRUST AND SECURITY

NeuChain introduces several new components such as epoch server

and client proxy, which could bring potential security risks. This

section discusses the possible security risks caused by malicious

threats and how to make it robust to these threats. Before discussing

specific risks, we first introduce our trust model and assumptions.

Trust Model and Assumptions. NeuChain can be deployed in

multiple organizations, each running one or more physical servers.

A client proxy and a block server can be setup on a single physical

server for performance or on separate physical servers for isolation.

In each organization, the client proxies serve the transaction re-

quests from local users, and the block servers maintain all blocks. A

server is selected by all organizations as the single epoch server, or

else multiple servers contributed by multiple organizations form a

cluster epoch servers, where the consensus on the epoch number in-

crement among all epoch servers is achieved through PBFT or Raft

protocol. Under such deployment, our trust model assumptions can

be summarized as follows. i) The number of client proxies/epoch

servers is more than 3𝑓 + 1 where 𝑓 is the number of Byzantine

client proxies/epoch servers. ii) Servers are connected with partial

asynchronous networks. iii) Servers within the same organization

can trust each other, while servers in other organizations have

possibilities to carry out malicious intents.

4.1 Malicious Client Proxy

A malicious client proxy can prevent other client proxies from

collecting the complete set of transactions in the following ways:

• No response to some of other client proxies;

• No response to all other client proxies;

• Send different sets of transactions to different client proxies;

• Tamper with epoch server’s reply and user’s transaction content.

The first three malicious behaviours can be prevented by atomic

broadcast [24], i.e., forcing all correct nodes to receive the same set

of messages, which can be achieved by PBFT consensus protocol

[17]. In NeuChain, each client proxy broadcasts transaction batches

in an independent PBFT cluster, and multiple overlapped PBFT

clusters led by different client proxies run concurrently (see Section

3.2.1). If a client proxy that broadcasts transactions working as

leader fails or acts as a malicious node, it would send inconsistent

transaction batches, which will be detected by honest followers.

This will trigger view change in this PBFT cluster. Regarding the

fourth problem, it can be prevented by associating each transaction

with the signature of the user that initiates the transaction.

4.2 Malicious Epoch Server

Setting up a single epoch server is fragile. The epoch server may

perform the following malicious activities.

• No response to client proxy;

• Hinder growth of global epoch;

• Respond client proxy a future epoch number;

• Respond client proxy a stale epoch number.

To make the epoch service robust to crash failures and Byzantine

attacks (i.e., the first two issues), we use multiple epoch servers to

construct a cluster that runs PBFT protocol [17]. The PBFT protocol

prevents the Byzantine nodes from hindering the growth of the

global epoch. However, malicious nodes can still provide arbitrary

epoch number to a client proxy (the third and fourth malicious activ-

ities). Under normal circumstances, the epoch number returned by

the same epoch server should be increased monotonically. Suppose

a client proxy receives an epoch number 𝑒 from an epoch server,

any successive responses received from that epoch server will never

be smaller than 𝑒 . Thus, the key is to guarantee the monotonically

increased epoch number on all client proxies. We force each client

proxy to collect at least 𝑓 + 1 identical epoch numbers. For a client

proxy, if the received 𝑓 + 1 identical epoch numbers are smaller

than its last one (this may happen when the PBFT consensus is

in progress but not completed), it keeps acquiring the up-to-date

epoch numbers from epoch servers until collecting 𝑓 + 1 identical

increased epoch numbers.

4.3 Malicious User

A malicious user may conduct the following malicious activities.

• Replay attack;

• Tampering with transaction ID.

To prevent replay attack, we require user client to add a nonce

for each transaction message, which restricts user client to send

the same transaction only once [39]. In addition, our deterministic

conflict resolution algorithm aborts a transaction with a larger

𝑡𝑖𝑑 if it reads or writes an item that is updated by a transaction

with a smaller 𝑡𝑖𝑑 . This will prompt users to apply a smaller 𝑡𝑖𝑑 .

We let client proxy generate 𝑡𝑖𝑑s and add randomness to the 𝑡𝑖𝑑

generation as follows. A 𝑡𝑖𝑑 is generated as the content hash value

of not only this transaction but also the corresponding transaction

batch (which is unpredictable). The integrity of the transaction

and the corresponding batch are ensured by user’s signature and

epoch server’s signature, respectively. In this way, the client cannot

predict the hash value 𝑡𝑖𝑑 (large or small), as a result there is no

motivation to tamper with transaction IDs.

4.4 Malicious Block Server

Since the client proxy has already established a consensus on the

input transactions (that are not executed yet and will be contained

in a block), the block server cannot tamper with the transaction

contents of the transactions. However, the execution result gener-

ated by a single block server is untrusted as it might be a Byzantine

node. The execution results consist of the read-write sets and the

committed or aborted status. A malicious block server may conduct

the following activities.

• Tampering with state database;

• Tampering with block contents;

• Return fake committed/aborted notifications to users.

To ensure the correctness and verifiability of the execution re-

sults, we introduce the blockchain self-verification feature [15], i.e.,

acquiring from a single node is enough to obtain information that

2592



can prove the validity of block and restore the whole state database.

All honest nodes exchange signatures on a specific block to make

it self-verifiable. If a malicious node generates an invalid block by

tampering with the state database or block contents, other nodes

cannot verify the signature of this block, and the block server can-

not collect 𝑓 + 1 valid signatures to achieve self-verification. In

addition, a user client sends requests to multiple block servers and

must receive at least 𝑓 +1 identical committed or aborted responses

to ensure the trusted result.

5 EXPERIMENTAL RESULTS

In this section, we evaluate NeuChain from different dimensions.

The experiment setup is briefly described as follows.

Physical Environment. We build a geo-distributed cluster and

a local cluster on Aliyun. Our geo-distributed cluster contains 8

nodes, including 2 nodes in Zhangjiakou city (north China), 2 nodes

in Chengdu city (west China), 2 nodes in Hangzhou city (east China),

and 2 nodes in Shenzhen city (south China). For Fabric and Fast-

Fabric, one node in each region works as orderer, and the other one

works as peer node. While in NeuChain and its variants, one node

in each region works as epoch server, and the other runs client

proxy/block server. Our local cluster contains 12 locally connected

nodes. In Fabric and its variants, 4 nodes work as orderers, and

the other 8 work as peers. In NeuChain and its variants, 4 nodes

work as epoch servers, and the other 8 work as client proxies/block

servers. In both clusters, each node (ecs.hfc6.4xlarge instance) is

equipped with 16 vCPUs, 32GB DRAM, running Ubuntu 20.04 LTS.

The network bandwidth among cross-region nodes is about 100

Mbps, and that among local nodes is about 5 Gbps.

Competitors and Configurations. NeuChain is compared with

four state-of-the-art blockchain systems, including Hyperledger

Fabric v2.2 [14], FastFabric [30], Meepo [75] (a sharded consortium

blockchain), ResilientDB [32] (a highly scalable blockchain with

OEV architecture), and Basil [56] (a leaderless BFT key-value store

that relies on EOV architecture). The consensus protocols used in

NeuChain, Fabric, and FastFabric are all Raft. Meepo relies on Proof

of authority (PoA) [23] consensus protocol. FastFabric, ResilientDB

and Basil are optimized for high-throughput transactions. They

use in-memory hash table to maintain database state. Fabric and

NeuChain both rely on LevelDB as state database, while Meepo

uses RocksDB [10]. Note that, Basil does not generate blocks which

is not a blockchain. The other systems all generate blocks and store

them on disk. To ensure fairness, all these systems are configured

with memory storage to maintain database and blocks. For other

settings, we use their default configurations.

NeuChain Variants. To study the performance difference of vari-

ous architectures without being affected by implementation differ-

ences, we also implement an OEV architecture, an EOV architecture,

and an OEPV architecture under the same implementation frame-

work of NeuChain, which originally supports EV architecture. The

default epoch length in NeuChain is 50ms for local cluster experi-

ments and 75ms for geo-distributed experiments.

Workload. We use two popular benchmarks, YCSB [20] and Small-

Bank [8]. For YCSB workload, we use one table with 10 columns

and 1,000,000 rows, with each column size as 100 bytes. We choose

YCSB-A (50% read and 50% write), YCSB-B (95% read and 5% write),

and YCSB-C (100% read) in our experiments. All YCSB requests

from clients are subject to Zipf distribution with a skew factor of

0.99. SmallBank simulates basic bank transfer operations. We con-

figure the SmallBank benchmark with 100,000 accounts. The access

pattern to these accounts follows a uniform distribution. We use

Blockbench [26] as the test tool.

5.1 Overall Performance
We compare NeuChain with the competitor systems and our sys-

tem’s variants under YCSB-A, YCSB-B, YCSB-C, and SmallBank

workload. We measure their peak throughput results and corre-

sponding latencies. All experiments are performed three times on

our geo-distributed cluster and local cluster.

Figure 6 and Figure 7 report the performance results (w.r.t. thr-

oughput, latency, and abort rate) with error bars on geo-distributed

cluster and local cluster, respectively. We can see that NeuChain

exhibits the highest throughput than the others under all workloads.

The main reason for good performance can be attributed to the

elimination of the ordering phase. The ordering phase, no matter in

OEV, EOV or OEPV architectures, requires a single node to propose

a block of ordered transactions to other followers, which could

be a bottleneck due to its limited upstream bandwidth. While in

the EV architecture, each node initiates an independent consensus

instance for its own transactions subset, and multiple consensus

instances are running concurrently, so the throughput of EV is not

limited by the upstream bandwidth of a single node. In addition,

NeuChain only transfers the original transaction requests without

the generated read/write set and the corresponding signatures in

the œ and the EOV architectures. This reduces the message size,

which also helps improve the throughput. These two factors make

NeuChain faster under these workloads.

In Figure 6, NeuChain shows a bit higher latency than Fabric,

e.g., 230 ms vs. 202 ms under SmallBank workload. In NeuChain, a

client proxy asks multiple remote epoch servers for epoch numbers.

This means that it requires one more round-trip time (RTT). This

is the reason why NeuChain shows higher latency than Fabric and

its variants. Meepo shows high latency due to the high latency

for processing the cross-shard transactions. OEV shows the highest

latency because it generates blocks synchronously and sequentially.

Basil exhibits the lowest latency because it does not generate blocks

and does not maintain the ledger’s history.

NeuChain shows higher abort rate than others, especially under

write-intensive workloads. This can be attributed to the determinis-

tic transaction processing method. The transactions with RAW and

WAW conflicts are aborted for parallel execution, which is another

reason for high performance. While in Fabric, the transactions are

validated sequentially, so the abort rate is low. The NeuChain vari-

ants use the same concurrency control algorithm as NeuChain, so

they show higher abort rates than the competitors. In addition,

NeuChain shows higher abort rate under YCSB than SmallBank, be-

cause YCSB follows Zipf distribution (resulting in higher probability

of conflicts) and SmallBank follows uniform distribution.

5.2 Bottleneck Analysis
To study the reason of significant performance improvement over

the widely used Fabric, we perform bottleneck analysis in this ex-

periment. As our analysis in Section 1, the ordering phase requires

a single node to propose a block of ordered transactions, which

2593



0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Committed Aborted Latency

(a) YCSB-A

0

0.2

0.4

0.6

0.8

1

0

15

30

45

60

75

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Committed Aborted Latency

(b) YCSB-B

0

0.2

0.4

0.6

0.8

1

0

15

30

45

60

75

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Committed Aborted Latency

(c) YCSB-C

0

0.2

0.4

0.6

0.8

1

0

15

30

45

60

75

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Committed Aborted Latency

(d) SmallBank

Figure 6: Performance comparison of different blockchains (on geo-distributed cluster).

0

0.15

0.3

0.45

0.6

0.75

0

15

30

45

60

75
L

a
te

n
c

y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Committed Aborted Latency

(a) YCSB-A throughput

0

0.15

0.3

0.45

0.6

0.75

0

30

60

90

120

150

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Committed Aborted Latency

(b) YCSB-B throughput

0

0.15

0.3

0.45

0.6

0.75

0

30

60

90

120

150

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Committed Aborted Latency

(c) YCSB-C throughput

0

0.15

0.3

0.45

0.6

0.75

0

20

40

60

80

100

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Committed Aborted Latency

(d) SmallBank throughput

Figure 7: Performance comparison of different blockchains (on local cluster).

36.6 
28.6 

36.5 36.4 

96.0 95.7 95.9 95.9 

9.6 

109.7 

9.6 10.1 

95.9 95.7 96.0 95.8 

0

25

50

75

100

125

B
a

n
d

w
id

th
 (

M
b

p
s

)

In Out

Figure 8: Bandwidth consumption in Fabric and NeuChain on

geo-distributed cluster (SmallBank).

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800

T
im

e
 (

s
)

Block number

Execution
Ordering
Validation

(a) Fabric

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800

T
im

e
 (

s
)

Block number

Fetch epoch
Exchange Txns
Execution
Block generation
Validation

(b) NeuChain

Figure 9: Runtime Breakdown on local cluster (SmallBank).

could be the bottleneck. We conduct experiments to measure the

bandwidth in NeuChain and Fabric on our geo-distributed cluster.

Figure 8 shows the (in and out) bandwidth of each client proxy in

NeuChain and each orderer in Fabric. In the consensus group of

orderers, a single orderer (orderer #2) proposes a block of ordered

transactions to other follower orderers. The system throughput is

limited by the maximum out bandwidth (100 Mbps) of the leader

(i.e., orderer #2) as shown in Figure 8. While in NeuChain, each

client proxy accepts its own local transactions and independently

proposes them to other client proxies. Multiple client proxies pro-

pose transactions and receive them at the same time concurrently.

The workload is evenly distributed among client proxies.

Another reason is also attributed to the elimination of the ex-

plicit ordering phase. The arbitrary order defined by the orderer

could limit the parallelism. For example in Fabric, given a block

of executed transactions and the order defined by the ordering

service, each peer should validate these transactions in terms of

the serial order. It is non-trivial to validate them in terms of the

serial order in a parallel manner and at the same time guarantee

the consistency among nodes. Fabric validates these transactions

0

20

40

60

80

100

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Transaction sending rate (Ktps)

Fabric OEV EOV OEPV NeuChain

(a) Throughput

0

0.3

0.6

0.9

1.2

1.5

1.8

0 20 40 60 80 100

L
a
te

n
c
y
 (

s
)

Transaction sending rate (Ktps)

Fabric OEV EOV OEPV NeuChain

(b) Latency

Figure 10: Throughput and latency when varying transac-

tion arrival rate (SmallBank).

in a sequential manner, which could be a bottleneck under high-

contention workload. We verify this through a runtime breakdown

experiment on the local cluster where network bandwidth is high

enough. As shown in Figure 9a, as blocks are generated contin-

uously, the execution and the ordering time are stable, but the

validation time is longer and longer. The sequential validation be-

comes the bottleneck limiting throughput. In NeuChain, We rely on

a deterministic transaction processing rule to execute the out-of-

order transactions, which also guarantees consistency. To allow for

parallel execution, the deterministic execution rule (that is followed

by all block servers) aborts some transactions (with RAW andWAW

dependencies). As shown in Figure 9b, the runtime results of all

phases in NeuChain are stable without obvious bottlenecks.

5.3 Varying Transaction Arrival Rate
In this experiment, we vary the transaction arrival rate and see how

the throughput and latency change accordingly. The arrival rate

can be adjusted by configuring the client nodes. We test NeuChain

and its variants to measure how much is gained from our novel

architecture excluding the implementation effects. ResilientDB,

Basil, and Meepo do not support adjusting the arrival rate. We also

test Fabric as a baseline.

Figure 10a shows the throughput results of SmallBank. With an

increase in transaction arrival rate, the throughput of any system

increases linearly as expected till it flattens out or drops, which is

the peak throughput (system utilization close to 100%).

Fabric first reaches its peak throughput at around 1.99 Ktps.

Among NeuChain variants, OEV first reaches its peak throughput at

around 13.6 Ktps for SmallBank due to the high redundant execu-

tion cost. The throughput of EOV drops more sharply than others

2594



0

0.3

0.6

0.9

1.2

1.5

0

20

40

60

80

100

5 10 30 50 100 300 500

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Epoch length (ms)

committed aborted latency

(a) YCSB-A

0

0.3

0.6

0.9

1.2

1.5

0

20

40

60

80

100

5 10 30 50 100 300 500

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Epoch length (ms)

committed aborted latency

(b) SmallBank

Figure 11: Performance when varying epoch length.
when the arrival rate is above the peak throughput 53.67 Ktps. The

reason is that the OCC in EOV tends to abort more transactions

under high contention. OEPV gains peak throughput at around 44.91

Ktps. We observe the highest peak throughput when running EV. It

flattens out at 88.31 Ktps. Figure 10b shows the latency results of

SmallBank, respectively. When the arrival rate is below the peak

throughput, the latency increases gently since it takes longer time

to processing more and more transactions in a block. When the

arrival rate is above the peak throughput, the latency increases

significantly, because the transactions are overstocked and waiting

for being served in the queue. In addition, before the latency goes

abnormally high, most of the variants show similar latency around

0.15 second, but the latency of OEV is a little bit higher.

5.4 Varying Epoch Length

NeuChain uses epochs to divide the transactions into transaction

batches. Each epoch of transactions are used to generate a block.

In other words, the epoch length corresponds to the block size,

which is critical to the system throughput and latency. The epoch

length can be adjusted by the epoch servers. In this experiment,

we fix the transaction arrival rate and vary the epoch length from

5 ms to 500 ms to see the effect of epoch length. Figure 11 shows

the committed and aborted throughput and latency results under

YCSB-A and SmallBank workloads with different epoch lengths.

With a short epoch (5 ms), the latency is the highest. The reason is

that the frequent data exchanges (due to short epoch) are expen-

sive and prolong the overall runtime. The abort rate is the lowest

since the transactions in a small block (due to short epoch) is less

likely to conflict with others. With the longest epoch (500 ms), the

latency is still very high. Because the cost of Merkle tree generation

is exponentially increased with the increase of block size, which

prolongs the block generation time and latency. In addition, the

abort rate is high with long epoch due to more intra-block conflicts.

5.5 Effect of Optimizations

As shown in Figure 9b, the block generation is the most time con-

suming step. It takes even longer time for write-intensive workload

(e.g., YCSB-A workload). This can slow down the processing speed

and may accumulate more and more blocked transactions with

high arrival rate. To address this problem, we propose asynchro-

nous block generation to speedup this process in Section 3.4.1.

We also propose the pipelining technique to overlap the prepara-

tion phase and the transaction execution phase in Section 3.4.2,

which can further help decrease the latency. Figure 12a shows

the throughput results with or without optimizations during the

running process. The asynchronous block generation has greatly

improved the throughput of vanilla implementation without opti-

mizations, say about 2 times on SmallBank, but the pipelining does

not improve the throughput. Figure 12b shows the latency results.

Without asynchronous block generation, the latency is increased

significantly as time passes (note that y-axis is log plot) since the

server node is overloaded under high contention. By asynchronous

0

50

100

1 3 5 7 9 11 13 15 17 19

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Elapsed time (s)

vanilla async.block async.block+pipeline

(a) Throughput

0.1

1

10

1 3 5 7 9 11 13 15 17 19

L
a

te
n
c
y
 (

s
)

Elapsed time (s)

vanilla

async.block

async.block+pipeline

(b) Latency (log-scaled)

Figure 12: Effect of optimizations (SmallBank).

0

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100

4 8 12 16

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(K

tp
s

)

Number of nodes

committed aborted latency

(a) YCSB-A

0

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100

4 8 12 16

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(K

tp
s

)

Number of nodes

committed aborted latency

(b) SmallBank

Figure 13: Scaling performance.

block generation, the latency can be made stable with the same

transaction arrival rate. Furthermore, the latency can be reduced

with pipelining.

5.6 Scalability

The blockchain systems suffer from the drawback of scalability.

Due to its replicated property and verifiable requirement, the re-

dundant storage and execution overhead can be inevitable. Another

key step that limits scalability is the consensus on transaction or-

der. Though sharding can improve the scalability by reducing the

consensus cost, it also results in additional coordination overhead

among shards. NeuChain eliminates the explicit ordering phase

where a single orderer to propose a block of ordered transactions

and relies on deterministic transaction processing to avoid the sin-

gle orderer bottoleneck, which helps improve scaling performance.

In this experiment, we increase the number consensus nodes from 4

to 16 and see scaling performance. Figure 13a and Figure 13b show

the throughput and latency results under YCSB-A and SmallBank,

respectively. For YCSB-A workload, when node number scales from

4 to 16, the throughput decreases from 74.2 Ktps to 71.7 Ktps. For

SmallBank workload, the throughput keeps stable at around 88.3

Ktps. Similarly, the latency results do not change much.

5.7 Performance under Failure Cases

We conduct experiments with Byzantine and crash failures, and

compare the performance with ResilientDB under failure cases.

NeuChain provides both Byzantine failure tolerance (NeuChain-

BFT) and crash failure tolerance (NeuChain-CFT), while ResilientDB

provides non-leader Byzantine failure tolerance (ResilientDB-BFT).

We kill a client proxy to simulate crash failure and let a client proxy

send fake messages to simulate Byzantine failure. The performance

results (with respect to throughput and latency) under SmallBank

workload are reported in Figure 14a. We observe that under these

failure cases, NeuChain still outperforms ResilientDB.

Figure 14b shows the change of throughput and latency under

a malicious attack (tampering with the content of a transaction)

which is manually injected by a client proxy after 10 seconds. After

the other peers receive this message, they will identify the fake

transaction by checking the user’s signature, followed by starting

a view-change process to abandon the consensus group leaded by

the Byzantine client proxy. Since then, the Byzantine client proxy

is forbidden to submit transactions, so the overall throughput is

2595



0

0.1

0.2

0.3

0.4

0.5

0

15

30

45

60

75

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Throughput Latency

(a) Failure comparison

0

0.1

0.2

0.3

0.4

0.5

0

15

30

45

60

75

1 6 11 16 21 26 31

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Duration (s)

Throughput Latency

(b) Client proxy BFT

0

0.1

0.2

0.3

0.4

0.5

0

15

30

45

60

75

1 6 11 16 21 26 31

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s

)

Duration (s)

Throughput Latency

(c) Block server BFT

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

1 6 11 16 21 26 31

L
a
te

n
c
y
 (

s
)

T
h

ro
u

g
h

p
u

t 
(k

tp
s
)

Duration (s)

Throughput Latency

(d) Client proxy CFT

Figure 14: Performance under failure cases (SmallBank).
lower. Figure 14c shows the results under attacks by a Byzantine

block server, which provides other block servers with a fake block

signature. The other block servers will reject the following verifica-

tion requests from the Byzantine block server. This will not impact

the throughput and latency since the notification of commit/abort

has already been responded to before the validation phase. Figure

14d shows the results under a crash failure (a node is manually shut

down) occurred at 10 second. The other peers wait for the messages

from the failed node for a time period (timeout). Then they make

agreement on removing this failed node. The timeout mechanism

leads to the drop of throughput and the increase of latency. But

the other consensus groups are still running. The transactions are

cached locally without commitment. Once they agree on removing

the failure node, the cached transactions are processed immedi-

ately, which leads to a sharp increase of the throughput. Later, the

throughput is a little lower than before and keeps stable because

one server node that accepts user requests is removed.

6 RELATED WORK
Database for Blockchain. Blockchain, as a replicated ledger data-

base, has attracted much attention in database community. The

transaction processing techniques from traditional database have

been borrowed to improve the throughput and latency performance

of blockchains. Besides the works mentioned in Section 2, there are

other representative works in this field, such as XOXFabric [29] and

AHL [21]. The authors in [40] present a comprehensive dichotomy

between blockchains and distributed databases. On the other hand,

as authenticated query processing has been extensively studied in

the database community [18, 66, 67], researchers recently put great

efforts on designing new authenticated data structures (ADS) to

support verifiable queries on blockchains. Representative works

include LineageChain [50, 51], vChain [63, 68], FalconDB [43], P2B-

Trace [44], authenticated keyword search [73], and authenticated

data structure GEM2-Tree for range queries [74].

Blockchain-based Database. The blockchain essentially has no

querying abilities when compared to traditional database. A num-

ber of studies add blockchain features to a traditional database to

construct a blockchain-based database, including BigChainDB [38],

ModexBCDB [4], Postchain [6], BigChainDB [38], Postchain [6],

LedgerDB [70], BRD [1], CovenantSQL [2], and ChainifyDB [54].

These systems rely on their built-in databases for concurrency con-

trol support and underlying storage. Thus, they are featured with

high throughput and low latency. Furthermore, these systems sup-

port both the UTXO and account-based models and support storing

various types of objects in database systems. However, since these

systems rely on traditional database, they cannot protect their local

state with authenticated data structure (ADS) like Merkle trees.

Deterministic Execution. In a deterministic database [27, 28, 37,

46, 47, 59, 60], each replica runs the same set of ordered transactions

deterministically, and converts the database from the same initial

state to the same final state. The incoming transactions are assigned

with unique values before passing to replicas, and the executions

on different replicas are based on the serial order of the unique

values. In this way, replicas do not need to coordinate with each

other to remain consistent. To exploit parallelism when processing

each replica, deterministic concurrency control protocol that em-

ploys deterministic ordered locks [59, 60] or dependency graphs

[27, 28, 37] can be employed. This paper leverages deterministic

execution to propose an ordering-free blockchain. Canopus [49] is

a hierarchical consensus protocol that also lets each node collect

local transactions and exchange them with other nodes. NeuChain,

as a transactional blockchain system, can borrow the hierarchical

consensus structure of Canopus to improve scalability (but at the

expense of latency). Furthermore, NeuChain relies on epoch servers

to decide block boundaries, and relies on deterministic transaction

processing to resolve conflicts with consistent states.

Sharding Blockchains. The sharding technique has been adopted

in many blockchain systems, such as Monoxide [64], OmniLedger

[36], RapidChain [72], ByShard [34], QuarkChain [9], and [21]. They

partition nodes into multiple groups (a.k.a. shards), with each group

of nodes running their own consensus instances. The atomicity of

cross-shard transactions should be ensured through 2PC or BFT-

based replication. Sharding is mostly used in public blockchains for

improving scalability. However, since the security of blockchains

depends on the assumption that the number of failures is below

a certain threshold, the shard formation protocol must ensure the

security of each shard. NeuChain improves the performance by run-

ning multiple consensus instances concurrently, each on a subset

of transactions. To sum up, in sharding blockchains the consensus

is parallelized among different groups of nodes, while in NeuChain

the consensus is parallelized among different data.

7 CONCLUSIONS AND FUTUREWORK
This paper presents an order-free execute-validate blockchain archi-

tecture by leveraging deterministic execution. By eliminating the

explicit ordering consensus, the system throughput and latency can

be greatly improved. Based on the EV architecture, we further design

and implement a system prototype NeuChain. The cost of determin-

istic execution and block generation is alleviated by pipelining and

asynchronous block generation. In addition, a series of mechanisms

are integrated to NeuChain to provide trust and security guarantee.

Our geo-distributed experimental results show that NeuChain out-

performs Fabric by a factor of 47.2-64.1X, ResilientDB by a factor of

1.6-2.7X, and Basil by a factor of 7.6-12.2X. As part of our ongoing

work, we are extending NeuChain to support authenticated query

processing in an untrusted environment.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation

of China (62072082, U1811261, 62072086), the Key R&D Program of

Liaoning Province (2020JH2/10100037), the National Science and

Technology Major Project (J2019-IV-0002-0069), the National Social

Science Foundation of China (21&ZD124), and the Fundamental

Research Funds for the Central Universities (N2216015). Yanfeng

Zhang is the corresponding author.

2596



REFERENCES
[1] 2021. BRD: bitcoin wallet. https://brd.com/
[2] 2021. CovenantSQL: The Blockchain SQL Database. https://covenantsql.io/
[3] 2021. LevelDB: a fast key-value storage library. https://github.com/google/

leveldb
[4] 2021. Modex Blockchain Database (BCDB). https://modex.tech/
[5] 2021. Peercoin: The Pioneer of Proof of Stake. https://www.peercoin.net/
[6] 2021. Postchain. https://postchain-docs.readthedocs.io/en/latest/
[7] 2021. Quorum: A permissioned implementation of Ethereum supporting data

privacy. https://github.com/ConsenSys/quorum
[8] 2021. SmallBank Benchmark. http://hstore.cs.brown.edu/documentation/

deployment/benchmarks/smallbank/
[9] 2022. QuarkChain: A flexible, scalable, and user-oriented blockchain. https:

//quarkchain.io/
[10] 2022. RocksDB: A persistent key-value store for fast storage environments.

http://rocksdb.org/
[11] Daniel J. Abadi and Jose M. Faleiro. 2018. An Overview of Deterministic Database

Systems. Commun. ACM 61, 9 (2018), 78ś88.
[12] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-

blockchain: Leveraging transaction parallelism in permissioned blockchain sys-
tems. In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS 2019). 1337ś1347.

[13] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD 2021). 76ś88.

[14] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (EuroSys 2018). Article 30.

[15] Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and Fernando
Pedone. 2020. From Byzantine Replication to Blockchain: Consensus is Only the
Beginning. (2020), 424ś436.

[16] Michael J Cahill, Uwe Röhm, and Alan D Fekete. 2009. Serializable isolation for
snapshot databases. ACM Transactions on Database Systems (TODS) 34, 4 (2009),
1ś42.

[17] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),
398ś461.

[18] Qian Chen, Haibo Hu, and Jianliang Xu. 2015. Authenticated online data integra-
tion services. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2015). 167ś181.

[19] Zhihao Chen, Haizhen Zhuo, Quanqing Xu, Xiaodong Qi, Chengyu Zhu, Zhao
Zhang, Cheqing Jin, Aoying Zhou, Ying Yan, and Hui Zhang. 2021. SChain: a
scalable consortium blockchain exploiting intra-and inter-block concurrency.
Proceedings of the VLDB Endowment 14, 12 (2021), 2799ś2802.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC 2010). 143ś154.

[21] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management of data (SIGMOD
2019). 123ś140.

[22] Sourav Das, Vinith Krishnan, and Ling Ren. 2020. Efficient Cross-Shard Transac-
tion Execution in Sharded Blockchains. ArXiv abs/2007.14521 (2020).

[23] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs proof-of-authority:
Applying the CAP theorem to permissioned blockchain. (2018).

[24] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372ś421.

[25] Assunta Di Vaio and Luisa Varriale. 2020. Blockchain technology in supply chain
management for sustainable performance: Evidence from the airport industry.
International Journal of Information Management 52 (2020), 102014.

[26] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD 2017). 1085ś1100.

[27] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiver-
sion Concurrency Control. Proceedings of the VLDB Endowment 8, 11 (2015),
1190ś1201.

[28] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High Perfor-
mance Transactions via EarlyWrite Visibility. Proceedings of the VLDB Endowment
10, 5 (2017), 613ś624.

[29] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric: A
hybrid approach to blockchain transaction execution. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC 2020). 1ś9.

[30] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2020. Fast-
Fabric: Scaling hyperledger fabric to 20 000 transactions per second. International
Journal of Network Management 30, 5 (2020), e2099.

[31] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation.
ArXiv abs/1911.00838 (2021).

[32] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proceedings of the VLDB
Endowment 13, 6 (2020), 868ś883.

[33] Suyash Gupta and Mohammad Sadoghi. 2021. Blockchain transaction processing.
arXiv preprint arXiv:2107.11592 (2021).

[34] Jelle Hellings and Mohammad Sadoghi. 2021. ByShard: Sharding in a Byzantine
Environment. Proc. VLDB Endow. 14, 11 (2021), 2230ś2243.

[35] Ricardo Jiménez-Peris, Marta Patino-Martinez, and Sergio Arévalo. 2000. Deter-
ministic scheduling for transactional multithreaded replicas. In Proceedings 19th
IEEE Symposium on Reliable Distributed Systems (SRDS 2000). 164ś173.

[36] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger
via sharding. In 2018 IEEE Symposium on Security and Privacy (SP 2018). 583ś598.

[37] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proceedings of the VLDB Endowment 13, 12 (2020),
2047ś2060.

[38] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. 2016. Bigchaindb: a scalable blockchain database. white paper,
BigChainDB (2016).

[39] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[40] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain Meets Database: Design and Implementation
of a Blockchain Relational Database. Proceedings of the VLDB Endowment 12, 11
(2019), 1539ś1552.

[41] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2015). 677ś689.

[42] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
2014). 305ś319.

[43] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. 2020. Fal-
conDB: Blockchain-based collaborative database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2020). 637ś
652.

[44] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing
to Combat Pandemics. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD 2021). 2389ś2393.

[45] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen, Shixiong
Zhao, Sen Wang, Gong Zhang, Li Chen, Man Ho Au, and Heming Cui. 2021.
Bidl: A High-Throughput, Low-Latency Permissioned Blockchain Framework
for Datacenter Networks. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP 2021). 18ś34.

[46] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
Management with Deterministic Concurrency Control. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP 2021). 180ś194.

[47] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,
geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019),
1747ś1761.

[48] Kun Ren, Alexander Thomson, and Daniel J Abadi. 2014. An evaluation of the
advantages and disadvantages of deterministic database systems. Proceedings of
the VLDB Endowment 7, 10 (2014), 821ś832.

[49] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. 2017. Canopus: A scalable
and massively parallel consensus protocol. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies (CoNext 2017).
426ś438.

[50] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi,
and Meihui Zhang. 2019. Fine-grained, secure and efficient data provenance on
blockchain systems. Proceedings of the VLDB Endowment 12, 9 (2019), 975ś988.

[51] Pingcheng Ruan, Tien Tuan Anh Dinh, Qian Lin, Meihui Zhang, Gang Chen, and
Beng Chin Ooi. 2021. LineageChain: a fine-grained, secure and efficient data
provenance system for blockchains. The VLDB Journal 30, 1 (2021), 3ś24.

[52] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2020). 543ś557.

2597

https://brd.com/
https://covenantsql.io/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://modex.tech/
https://www.peercoin.net/
https://postchain-docs.readthedocs.io/en/latest/
https://github.com/ConsenSys/quorum
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://quarkchain.io/
https://quarkchain.io/
http://rocksdb.org/


[53] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla, Karan Grover, Muthian
Sivathanu, Nishanth Chandran, Divya Gupta, and Satya Lokam. 2020. Blockene: A
High-throughput Blockchain Over Mobile Devices. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20). 567ś582.

[54] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich, and Divya Agrawal.
2021. chainifyDB: How to get rid of your Blockchain and use your DBMS instead..
In CIDR.

[55] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the Lines between Blockchains and Database Systems: The Case
of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD 2019). 105ś122.

[56] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi,
and Natacha Crooks. 2021. Basil: Breaking up BFT with ACID (Transactions). In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP 2021). 1ś17.

[57] Alex Tapscott and Don Tapscott. 2017. How blockchain is changing finance.
Harvard Business Review 1, 9 (2017), 2ś5.

[58] Alexander Thomson and Daniel J Abadi. 2010. The case for determinism in
database systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 70ś80.

[59] Alexander Thomson and Daniel J. Abadi. 2010. The Case for Determinism in
Database Systems. Proceedings of the VLDB Endowment 3, 1ś2 (2010), 70ś80.

[60] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned data-
base systems. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2012). 1ś12.

[61] Gregor Ulm, Simon Smith, Adrian Nilsson, Emil Gustavsson, and Mats Jirstrand.
2021. OODIDA: on-board/off-board distributed real-time data analytics for con-
nected vehicles. Data Science and Engineering 6, 1 (2021), 102ś117.

[62] Hoang TamVo, Ashish Kundu, andMukesh KMohania. 2018. Research Directions
in Blockchain Data Management and Analytics.. In EDBT. 445ś448.

[63] HaixinWang, Cheng Xu, Ce Zhang, and Jianliang Xu. 2020. vChain: A Blockchain
System Ensuring Query Integrity. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD 2020). 2693ś2696.

[64] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out Blockchain with Asyn-
chronous Consensus Zones. In Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation (NSDI 2019). 95ś112.

[65] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1ś32.

[66] Cheng Xu, Qian Chen, Haibo Hu, Jianliang Xu, and Xiaojun Hei. 2017. Au-
thenticating aggregate queries over set-valued data with confidentiality. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 30, 4 (2017), 630ś644.

[67] Cheng Xu, Jianliang Xu, Haibo Hu, and Man Ho Au. 2018. When query au-
thentication meets fine-grained access control: A zero-knowledge approach. In
Proceedings of the 2018 International Conference on Management of Data (SIGMOD
2018). 147ś162.

[68] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases. In Proceedings of the 2019 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2019). 141ś158.

[69] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: Scaling
Blockchain Transactions through off-Chain Storage and Parallel Processing.
(2021).

[70] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: a centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138ś3151.

[71] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC
2019). 347ś356.

[72] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2018). 931ś948.

[73] Ce Zhang, Cheng Xu, Haixin Wang, Jianliang Xu, and Byron Choi. 2021. Authen-
ticated Keyword Search in Scalable Hybrid-Storage Blockchains. In 2021 IEEE
37th International Conference on Data Engineering (ICDE 2021). 996ś1007.

[74] Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi. 2019. GEM2-
Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain.
In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE
2019). 842ś853.

[75] Peilin Zheng, Quanqing Xu, Zibin Zheng, Zhiyuan Zhou, Ying Yan, and Hui
Zhang. 2021. Meepo: Sharded consortium blockchain. In 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE). 1847ś1852.

2598


