G-Tran: A High Performance Distributed Graph Database with a
Decentralized Architecture

Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng Fang, James Cheng,

Jian Zhang
{hzchen, cjli, cgzheng, chhuang, jcfangé, jcheng, jzhang}@cse.cuhk.edu.hk
Department of Computer Science and Engineering, The Chinese University of Hong Kong

ABSTRACT

Graph transaction processing poses unique challenges such as ran-
dom data access due to the irregularity of graph structures, low
throughput and high abort rate due to the relatively large read/write
sets in graph transactions. To address these challenges, we present
G-Tran, a remote direct memory access (RDMA)-enabled distributed
in-memory graph database with serializable and snapshot isolation
support. First, we propose a graph-native data store to achieve
good data locality and fast data access for transactional updates
and queries. Second, G-Tran adopts a fully decentralized architec-
ture that leverages RDMA to process distributed transactions with
the massively parallel processing (MPP) model, which can achieve
high performance by utilizing all computing resources. In addition,
we propose a new multi-version optimistic concurrency control
(MV-OCC) protocol with two optimizations to address the issue of
large read/write sets in graph transactions. Extensive experiments
show that G-Tran achieves competitive performance compared
with other popular graph databases on benchmark workloads.

PVLDB Reference Format:

Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang,
Juncheng Fang, James Cheng, Jian Zhang. G-Tran: A High Performance
Distributed Graph Database with a Decentralized Architecture. PVLDB,
15(11): 2545 - 2558, 2022.

doi:10.14778/3551793.3551813

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yaobaiwei/GTran.

1 INTRODUCTION

Graph data are abundant today in both industrial applications and
academic research. In order to support efficient graph data storage
and management, graph databases have become an essential infras-
tructure. However, most existing graph databases [1, 2, 4, 8, 9, 13, 26,
31, 35, 43] have shortcomings in their designs or functionalities that
lead to performance bottlenecks in the processing of graph queries
and transactions. For example, JanusGraph [2] uses BigTable [16]
model, OrientDB [9] and ArangoDB [4] use Multi-Model store, and
A1 [15] uses key-value store, to represent graphs respectively. That
will lead to significant read/write amplifications during the graph

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551813

2545

queries and updates. Neo4] [8] and TigerGraph [26] call themselves
native graph stores, as to distinguish from the non-native stores
(e.g., relational, columnar and key-value stores). We cannot find the
details of TigerGraph’s native graph store design as it is not open-
source. Neo4j represents the edges and properties of every vertex
using double linked lists, which is efficient for graph updates such
as edge addition/deletion, but it also incurs overheads for random
access when a graph query needs to visit the edges and properties
of a vertex.

In addition to handling graph-specific read/write, transaction iso-
lation is another important functionality in DBMSs, which controls
how transaction integrity is visible to concurrent users in order
to maintain the correctness of transaction processing. Transaction
isolation (ideally strict serializability) is challenging when dealing
with large-scale graph data. Read-only graph transactions tend to
have large read sets since a large number of vertices and edges can
be easily involved after just two to three hops of traversal starting
from a vertex, as most real-world graphs exhibit a power-law de-
gree distribution. Similarly, read-write transactions may also have
large write sets (see Figure 10). These large read/write sets lead to
high contention in concurrent transaction processing. As graph
transactions have relatively long processing time, consequently the
contention becomes more serious, which in turn leads to high abort
rate and low throughput.

These unique challenges in graph transaction processing moti-
vate us to design a new distributed graph database system, called
G-Tran, for high-performance transaction processing on property
graphs [10]. To the best of our knowledge, G-Tran is the first RDMA-
enabled graph database that provides strong consistency, i.e., se-
rializability (SR) and snapshot isolation (SI), low latency and high
throughput for graph transaction processing. We highlight some
unique designs of G-Tran as follows:

e We design a graph-native data store with efficient data and
memory layouts, which offers good data locality and fast data
access for read/write graph transactions under frequent updates.

e We propose a fully decentralized system architecture by lever-
aging the benefits of RDMA to avoid the bottleneck from cen-
tralized transaction coordinating, and each worker executes
distributed transactions under the MPP (i.e., massively parallel
processing) model.

e G-Tran presents a multi-version-based optimistic concurrency
control (MV-OCC) protocol, which is specifically designed to
reduce the abort rate and CPU overheads in concurrent graph
transaction processing.

We demonstrate the effectiveness of our system designs and the
overall performance by comparing G-Tran with the SOTA graph
databases [2, 4, 8, 26] using benchmark workloads [32, 44]. The

https://doi.org/10.14778/3551793.3551813
https://github.com/yaobaiwei/GTran
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551813
https://www.acm.org/publications/policies/artifact-review-and-badging-current

name:josh
age:32

created {4

name:marko name:| Iop
age:29 Iang java
created
<

>
person /9 weight:0.4 person

welght 0.4

10

weight:0.5 created welghtOZ created| |weight:0.1

name:vadas name:peter name:ripple
age:27 person age:32 lang:java

Figure 1: An example property graph

results show that G-Tran can achieve up to orders of magnitude
improvements over the existing graph databases and obtain high
throughput at both SR and SI isolation levels.

2 BACKGROUND

Property Graph. G-Tran adopts the property graph (PG) model [10]
to represent graph data because of the expressiveness of PG. In
a PG, vertices represent entities in an application and (directed)
edges model the relationships between two entities. Both entities
and relationships may have a set of properties to describe their
attributes (e.g., names, gender, etc.) in the form of key-value pairs.
We illustrate PG using an example in Figure 1. Each vertex/edge
has a label to represent its role (e.g., person, software, knows, cre-
ated) along with a set of properties, e.g., (name, “marko”), (age, 29).
Many existing graph databases, such as Titan [1], JanusGraph [2],
OrientDB [9] and Neo4]J [8], use PG to model their graph data.
Gremlin. Several graph query languages have been proposed in-
cluding Gremlin [7], GQL [6], Cypher [5] and PGQL [60]. Among
them, Gremlin has developed into a de facto standard for PG queries
and supported by many graph databases due to its succinctness
and expressiveness. Gremlin is a functional data-flow language
proposed by Apache TinkerPop [3], which allows programmers to
succinctly express a query as a sequence of steps. Each query step
performs an atomic operation on vertices or edges. The details of
Gremlin query steps can be found in [7]. G-Tran also uses Gremlin
(the latest 3.0 standard) as its query language, and we summarize
all Gremlin steps currently supported by G-Tran in Table 1.
Concurrency Control Protocols. Concurrency control ensures
atomicity and isolation for database transactions. G-Tran supports
both serializability (SR) and snapshot isolation (SI). SR has the
strictest constraint that all concurrent transactions should execute
their operations logically as if they are executed in sequence. SI
relaxes the constraint to require that only all reads in a transaction
should see a consistent snapshot of the database. There are three
kinds of concurrency control protocols that are widely used in
databases to implement different isolation levels: two-phase locking
(2PL) [34], optimistic concurrency control (OCC) [42], and multiple
version concurrency control (MVCC) [52]. 2PL is the most common
and simplest protocol, which uses locks to avoid conflicts among
concurrent transactions. OCC does not use lock, but it avoids con-
flicts by validation after a transaction completes its execution. Gen-
erally, OCC handles transactions in three steps: process, validate,
and commit/abort. In comparison, MVCC provides point-in-time
consistent views for multiple transactions at the same time by main-
taining multi-versions of each object with timestamps, which incurs
a higher storage overhead.

2546

One-sided(WRITE)
-6~ One-sided(ATOMIC)

—4— One-sided (READ) —+— One-sided(WRITE)
Two-sided

IS
S
(M reqs/s)

© =S

wﬁ

-
hroughput

3

Latency (in us)

r .

N
§
8k

8 16 32 64 128 256 512 1K 2K 4K 8K (8 16 32 64 128 256 512 1K 2K 4K

Payload size(bytes) Payload size(bytes)
Figure 2: Latency and throughput of one-sided and two-
sided RDMA primitives on different payloads

InfiniBand and RDMA. InfiniBand has become quite commonly
in use and led to the development of many new distributed sys-
tems [33, 38, 41, 70]. InfiniBand offers two network communication
stacks: IP over InfiniBand (IPoIB) and remote direct memory access
(RDMA). TPoIB implements a TCP/IP stack over InfiniBand to allow
current socket-based applications to be executable without modifi-
cation. In contrast, RDMA provides a verbs API, which enables zero-
copy data transmission through the RNIC without involving the
OS. RDMA has two verb operations: two-sided send/recv verbs and
one-sided read/write verbs. Two-sided verbs provide a socket-like
message exchange mechanism, which still incurs CPU overheads
on remote machines. One-sided verbs can directly bypass both the
kernel and CPU of a remote machine to achieve low latency.

3 CHALLENGES AND DESIGN CHOICES

We have briefly discussed the characteristics of graph transaction
processing and the limitations of existing graph databases in §1.
In this section, we analyze the important factors that should be
considered in the design of a high-performance distributed graph
database. We summarize the challenges of distributed graph trans-
action processing as follows.

(C1) Graph data can easily result in poor locality for reads and
writes in databases after continuous updates due to its irregular-
ity [56].

(C2) Due to the power-law distribution on vertex degree and the
small world phenomenon of most real-world graphs, the cost of
traversal-based queries can be very high after multi-hops (e.g., > 2)
fan-out [54].

(C3) As a result of C2, graph transaction can involve larger
read/write sets. In addition, the connectedness of graph data may
lead to higher contention/abort rate and lower throughput in trans-
action processing. Thus, the transaction processing time also be-
comes longer compared with other transaction workloads such as
in RDBMS and KVS.

(C4) Latency and scalability is another critical issue for dis-
tributed graph transactions. The network bandwidth, contention
likelihood, and CPU overheads are the main bottlenecks [69]. Tradi-
tional centralized system architecture (i.e., assigning a master node
as the global coordinator) may limit the scalability for OLTP.

We conduct experiments in §6 to verify the above issues. Here,
we only discuss the design choices to address these challenges.

We first consider (C4). A significant overhead for distributed
transaction processing is the large number of round-trip messages
that are needed to ensure ACID. In recent years, many systems [12,
23, 29, 39, 49, 55, 62, 69] have been proposed to improve the perfor-
mance of distributed transaction processing by leveraging RDMA

[mT————— S T ettt
Machine1 - OLTP | Local Mem | remote R/'W I RDMA allocated Mem :
i | > .
lizequest OLTP : Trxs MetaData | | : MailBox Buf :
outer | I sd
Data Store GCThreads | L——= | Worker Threads : recy |
; | | Indexes | | I
TCP/P RDMA :' ;; : . : I Timestamp Buf :
: | | RN
i . 1B Switch | |
. @ ...) | Trx Status Table :
; ...
RDMA — I local R/'W L_________|
Client OLTP Data Store Topo Info (Hybrid) Property KVS
Data Store ;| with multi- :
- % version schema :
Machine N

Figure 3: The architecture overview of G-Tran (best viewed in color)

as it can remove the overheads on network and CPU, although these
works mainly focus on RDBMS or KVS instead of graph databases.
Using RDMA for graph transaction processing can also improve the
performance in terms of throughput, latency and scalability. How-
ever, the design of an RDMA-based distributed in-memory database
is non-trivial. Specifically, the data store of G-Tran changes from
a pure shared-nothing or shared memory architecture to a hybrid
memory layout via RDMA connection. We leverage hybrid RDMA
primitives (i.e., both one-sided and two-sided) in the OLTP layer to
minimize the cost (i.e., network round trips and memory contention)
of distributed transaction by combining the memory storage layout
(described in §4). This requires us to take an overall redesign of the
system from the storage layer to the OLTP layer in order to tightly
integrate the system components. To better understand the perfor-
mance behaviors of different RDMA primitives and to guide our
design choices accordingly, we conducted an experimental anal-
ysis on the latency and throughput of one-sided and two-sided
primitives as shown in Figure 2, using one machine as the client
for sending and one machine as the server for receiving (machine
configuration is given in §6). Generally, one-sided primitives (read
and write) achieve lower latency and higher throughput than two-
sided primitives. But when the message payload is larger than 1K,
two-sided primitives can perform better in terms of throughput.
Another observation is that, although one-sided atomic is relatively
slower, it can still achieve 3.12M requests/sec on each machine,
which is higher than the requirements of many workloads (e.g.,
LDBC). Thus, remote atomic will not be the bottleneck on the per-
formance of transaction execution (as evaluated in the transaction
workload in §6).

To address (C1) and (C2), we propose a new storage layout for
property graphs to achieve both good data locality and efficient data
access. It stores graph data under a graph-native schema, but orga-
nizes the (arbitrary-length) adjacency-lists of vertices into fixed-size
rows and separately maintains vertex/edge properties into a key-
value store. The storage layer of G-Tran splits the memory space of
each machine into two parts. One part follows the shared-nothing
architecture to store one piece of graph partition locally, and the
other part follows the shared-memory architecture to compose an
RDMA-based distributed memory space for remote property data
access. Such design is based on the facts that: (1) implementing
efficient RDMA-based data structures (e.g., map, tree) is non-trivial

because the address space of each object should be recorded explic-
itly and this requires more memory footprint [75]; (2) not all data
are necessary to be shared and to manage different regions of data
in different memory spaces compactly can further improve the data
access efficiency for local search and scan (§4.2).

For (C3), 2PL would incur high overhead due to locking on large
portions of data. OCC is a good choice for read-intensive workloads,
but we can further reduce the overhead of isolation maintenance in
concurrent transactions by integrating OCC with multi-versioning.
We adopt a multi-version OCC (MVOCC) protocol to coordinate
concurrent transaction processing. MV-OCC has the following ad-
vantages. First, a multi-versioning mechanism allows read-only
transactions to access old versions of objects without imposing any
consistency overhead on read-write transactions. Second, OCC ap-
plies validation to check if there is any conflicting updates without
locks. We propose our own optimistic optimizations in the MVOCC
protocol to reduce the abort rate (§4.3).

Moreover, G-Tran adopts a decentralized architecture to process
transaction execution (§4.4). Existing distributed databases [29, 31]
follow a centralized approach to process tasks such as transactional
metadata management and timestamp ordering on a master node.
The master is likely a bottleneck of the entire cluster and affects
the overall performance [69]. Instead, in our decentralized archi-
tecture, all servers share the load of each transaction according
to the locality of its read/write sets and each server can handle
multiple sub-queries simultaneously with multi-threads (i.e., MPP)
for speed-up. In addition, RDMA can significantly reduce the costs
of essential operations such as clock synchronization, timestamp
ordering, transaction status synchronization in the decentralized
architecture, which also helps improve the scalability.

4 SYSTEM DESIGN

4.1 Overview

Figure 3 shows the architecture of G-Tran. G-Tran supports multiple
client connections via a regular Ethernet network. A request router
is responsible for the assignment of incoming transactions from
clients to the servers. G-Tran’s server nodes are connected via
InfiniBand, where each server has two layers, i.e., the storage layer
and the OLTP layer.

2547

Edge RowList

Vertex D (64 bi L. Header Edge Cell
Label [i) -
Begin Time [64 bit] eox2 P R l Edge Cell | | Direction finfout] [8 bit] MV-Tuple Region
End Time [64 bit] L .] : Conn_VTX_ID [64 bit]
Edge RowList * H Edge Header * 4>‘ BT | ET NEXT
Property(VP) RowList *
B [7 [NexT]
VP/EP Cell [er]
Edge Head Edge Tabl VP/EP ID [64 bit] __Value Region
e Header e Table ' - i ist *
g g H EP RowList Multi-Version_List * _| [:] D [:I ‘7‘ . D
Edge ID [64 bil]
Label 8 bi] ‘ S H [epcel | [EPcen [Epcen | [NEXT I i 00
Begin Time [64 bit] | EEEESSsaGE Y} —/ @ @ /
End Time [64 bit] l EPCell | ! EPCell {.w - i EPCell | ‘ NULL
moee, | —e [IEED - [EED 000000

Figure 4: The data store of G-Tran (best viewed in color)

The storage layer keeps a property graph in two parts: topology
data and property data. Topology data refer to the graph topology,
i.e., vertices and edges in the format of adjacency lists. Property
data are the keys and values of the vertex/edge properties. We
partition a graph into N shards among N server nodes by an edge-
cut partitioning strategy using hashing, where each shard stores one
shard of vertices along with their in/out edges. G-Tran constructs a
consistent global address space over all deployed nodes, so that the
location of any object in the data store can be retrieved by its ID.
The data store has a multi-version schema to support consistent
view for concurrent transactions (§4.2).

The OLTP layer of each server node sets a group of worker threads
to process incoming transactions. Worker threads interact with the
data store to process data reads/writes. To allow remote data access
and fast communication via RDMA, each server node registers a
chunk of memory at NIC during the initialization stage, which
divides the memory space of a server node into two regions, RDMA
allocated memory and local memory, as depicted in Figure 3. We
place different system components in different memory regions ac-
cording to their functionalities, in order to enjoy the benefits of both
local memory management (i.e., efficient maintenance and access
of data structures such as tree, map, lock, etc.) and RDMA (i.e., low
CPU overhead, fast remote data access and atomicity guarantee)
for concurrent transaction processing. A cross-server transaction
is executed simultaneously in the places where its data (i.e., the
read/write sets) are located and each transactional operation can be
processed in parallel based on its load. As a trade-off, MPP incurs
more message round-trips for transaction coordination and consis-
tency control, while we reduce such cost by leveraging RDMA with
hybrid primitives (§4.4). We construct an RDMA-enabled mailbox
(i-e., the green box in Figure 3) to process thread-level message
sending/receiving, using one-sided and two-sided RDMA primi-
tives. Besides the mailbox, in the RDMA allocated memory, G-Tran
also maintains other system components (i.e., timestamp bufs, trans-
action status table) for global transactional metadata access, which
is needed in the MV-OCC protocol (§4.3). For the transactions’ pri-
vate metadata (e.g., begin time, commit time, read/write set) and
other structures (e.g., indexes), which do not need to be shared with
other servers, are stored in the local memory.

4.2 Data Store

As shown in Figure 4, the data store in each server is composed of
three components: Vertex Table (in red color), Edge Table (in blue
color), and Multi-Version Key-Value Store (MV-KVS, in orange).

2548

Edge Cell

EdgeiCell Direction: out

Direction: ffi Conn_VTX_ID: 3ULH
Conn_VTX_ID: 20L Edge Header *

Edge Header *
Edge7 Header >

Edge9 Header

Edge ID: GULE
NilHeader Edge ID: 70 Label: 255 created

Vertex ID: AUEE Label: {IESIKnoWs Begin Time: XXX EP Cell

Label: fiESTperson Begin Time: XXX End Time: XXX £P ID: [iSWEigHY

Begin Time: XXX End Time: XXX Property(EP) RowList * i

i ion_List *
End Time: XXX P) RowList * =
Edge RowList * L
Property(VP)RowList* "> VP Cell (> VPCell EP Cell MV-KVS
VP ID: [iEname] VP ID: [2iage] EP ID: [iWeight BTET.0.4
Mult Multi

Multi _List * List * ion_List *

BT.ET:marko BTET29 < BTET:0.5 ;

Figure 5: The example storage format of vertex 1 along with
its edges 7&9 of Figure 1 in the data store

All vertex objects are stored in the Vertex Table. Every vertex
object has a fixed-size vertex header to record the information (e.g.,
ID and label) of a vertex. The begin time and end time in the vertex
header indicate the visible time period of the vertex, i.e., the period
that the vertex is accessible to all active transactions. Usually, the
begin/end time of a vertex is exactly the commit time of the transac-
tion that creates/deletes this vertex. In addition, the vertex header
also links to two row-lists, which record the connected edges (i.e.,
Edge RowList *) and properties (i.e., VP RowList) of the vertex,
respectively. To store the adjacency list of a vertex, we use an Edge
Cell (in green) to represent each adjacent vertex, and then arrange
all the Edge Cells in an adjacency list into rows in ascending order
of the vertex IDs. Note that each row has a fixed number of cells. If
one row is filled up, a new row will be allocated from the memory
pool until the entire adjacency list is stored.

Each edge cell is mapped to one edge object stored in the Edge
Table. Since an edge e =(v1,v2) connects two vertices, there are
two edge cells (of v and v2) pointing to the same edge object of
e. If e is directed, then the edge cell of v1/v; also keeps a direction
sign to indicate that e is an out/in-edge of v1/v;. Each edge object
also has an edge header, which records its ID, label, begin time, end
time, and a link to the row-list, i.e., EP RowList *, that stores the
properties of the edge. Both VP RowList and EP RowList have the
same layout as that of Edge RowList. Each VP/EP Cell in the VP/EP
RowList records the ID of a property object and a pointer that links
to its multi-version property values in the MV-KVS.

The MV-KVS is divided into two regions as shown in Figure 4:
MV-tuple region and value region. The MV-tuple region stores a
set of pre-allocated, fixed-size MV-tuples, where each MV-tuple
records the begin and end time of a version of the corresponding
property. All MV-tuples (i.e., the different versions) of a property

Execution Phase

Local/Remote m

Local/Remote {gaysiys

Validation Phase

Local/Remote

Recent Committed Table

Trx2 Write Set (ADD V105)

Commit/Abort Phase

[0 [inf Tvac]]

| S

Local/Remote
Commit Abort)
[0 Jcn [vaL [@] [10 [inf [vaL [@]
[nf Tvac T | [nf [nf Tvac]]

Trx Layer Build Read/Write Set

i
1
1
I
1
1
1
i
i
[0 [JvaJe] ! Trx4 Wite Set (UPEP305 10315)
1
i
i
1
1
!
i
1
1
1
1
1

Figure 6: The MV-OCC protocol of G-Tran

object are ordered by their begin/end time for version searching
during data access. Each MV-tuple keeps a pointer that links to
where the value of this version is stored in the value region. We
will discuss how to operate on the multi-versions of a property
object in §4.3. Figure 5 uses vertex 1 (along with its edges) in the
graph of Figure 1 as an example, to illustrate how G-Tran stores
vertices, edges and their properties in the above data layout with
the multi-version mechanism.

Design Principle. The key design of our data store is that all
components have fixed sizes (except property values with variable
lengths) and are aligned compactly in memory space wherever
possible. This provides good data locality and is critical for effi-
cient read and write (e.g., insert a new edge). As dynamic memory
allocation is a costly operation, G-Tran uses memory pooling to
pre-allocate memory buffers for all type of components (i.e., head-
ers, cells, row-lists, tuples). This data layout enables that graph
traversals will be executed as a combination of row-based scan-
ning and object-based filtering (on MV-KVS) via zero-CPU-overhead
one-sided RDMA read/write. In addition, it also benefits the multi-
threaded execution of concurrent transactions (§4.4).

4.3 The MV-OCC Protocol

To guarantee a transaction T is serializable, we should hold two
features: Read stability and Phantom avoidance. Usually, they can be
implmented by locks or re-scan on the read-set, but obviously this
approach has a high cost. We propose our own MV-OCC protocol
with specific optimizations to avoid re-scan and coarse-grained
locks. Our MV-OCC follows a general procedure of OCC but com-
bines with our multi-version-based commit/abort rules. Before we
discuss the details, we first define the basic components and some
necessary concepts.

Transaction Status Table (TST) is a distributed table maintained
in the RDMA-allocated memory of each server node. TST records
the real-time status (i.e., execution, validation, commit, abort) of each
active transaction T. Once T starts the processing of a new phase, its
worker thread will update T’s status in TST through RDMA atomic
write. When another worker thread wants to check T’s status for
its own transaction processing, it can apply one-sided RDMA read
to fetch the value with microseconds latency.

Recent Committed Table (RCT) is another distributed table but
stored in the local memory of server nodes. RCT records the meta-
data of all active read-write transactions including their IDs, commit
times and write sets, in order to enable relatively cheap and fine-
grained validation mechanism. The read-set of a transaction T will

2549

also be recorded during the execution and we free it after the val-
idation phase. The RCT is indexed by a B-Tree using the commit
time of each T as the index key.
Multi-Versioning Read/Write Rules. Figure 6 shows the work-
flow of a transaction in G-Tran. When a transaction T reads a
property object, it finds the visible version of the property value,
i.e., the MV-tuple whose begin time (BT) and end time (ET) overlaps
with the BT of T. If T wants to update the property object, it creates
a new version, i.e., a new MV-tuple, and inserts its transaction ID
(i.e., TxID) into the ET field of the current version and the BT field
of the new version, as shown by the two MV-tuples in the Execution
Phase in Figure 6. This indicates that the current property object is
in the process of being updated, where the current version has been
“locked” and the new version has not been committed yet. Then, if
T commits successfully later on, these two fields will be replaced by
the commit time (CT) of T, i.e., ct(T) in the Commit/Abort Phase of
Figure 6. This indicates that the current version has ended at ct(T)
and a new version beginning at ct(T) is created. But if T aborts,
then the BT field of the new version will be set as -Inf to indicate
that this version has become invisible forever. All the old versions
whose ET is before the earliest BT of all active transactions, as well
as the versions with -Inf BT, will be cleaned and recycled back to
the memory pool by garbage collection (§5).

We now describe the details of the specific three phases of the
transaction workflow in Figure 6.
In the execution phase, a transaction T first obtains its BT, i.e., the
timestamp when its processing starts, for version visibility check-
ing. Then, T is executed while its read/write set is constructed by
accessing the Vertex/Edge Tables and the MV-KVS in data store,
following the multi-versioning read/write rules. We propose an
optimistic pre-read mechanism in the execution phase to reduce
the abort rate. We illustrate the idea by the example given in the
Execution Phase in Figure 6, where a transaction T is doing the
read-scanning on MV-tuples. Assume that T’s BT > 10, then T will
read the version (let it be V1) whose BT is 10 and ET is TxID (mean-
ing that another transaction TxID is in the process of updating the
corresponding property object). In this case, instead of aborting
directly, optimistic pre-read assumes that TxID will commit suc-
cessfully later and executes T according to the status of TxID as
follows. There are four possible cases:

e TxID is in execution: the version (let it be V2) next to V1 is a new
version created by TxID and V2 has not been committed yet. In
this case, T reads V1 and validates the read-set consistency (i.e.,
a new version is indeed not committed) in its validation phase.

Iij"
l]_. ore s — 3 H

Transaction
H

Figure 7: Distributed transaction processing in G-Tran

Two-sided
S/R

coordinator

| Worker Thread Pool |
I | I I | I
| Core | Core | Core | Core | Core | Core |

21015 eieq

o TxID is in validation: we optimistically assume that TxID will
commit, and thus T directly pre-reads V2 now but validates the
commit dependency (i.e., if TxID is indeed committed) in T’s
validation phase. Note that reading V1 causes read instability
and leads to abort.

e TxID is in commit: T directly reads V2 as TxID has committed
and the CT of TxID is definitely earlier than the CT of T.

e TxID is in abort: T ignores the new version V2, and reads the
current version V1.

In the case of T is a read-write transaction, if T sees TxID in

the visible MV-tuples when T is inserting a new version, it should
abort itself immediately (except T = TxID), since this case belongs
to a write-write conflict.
In the validation phase, a read-write transaction T first obtains
its CT, which is the timestamp when the validation begins (i.e., when
the transaction logically commits). Then, T checks read stability and
phantom avoidance through conflict checking. Specifically, based
on the BT and CT of T, i.e., bt(T) and ct(T), we search from RCT for
the active read-write transactions, W-Trxs, whose commit time falls
in the period [b#(T), ct(T)], because their write sets may change
the read set of T. If no overlapping element exists between the read
set of T and the write sets of W-Trxs, T can commit successfully.
Otherwise, T should abort. The above conflict checking is executed
as two set comparison on all server nodes simultaneously in a MPP
manner (§4.4). We also propose an optimistic validation strategy
to improve the success rate of commit. During the validation of
T, if we find that T is in conflict with another transaction TxID,
where TxID is in the validation phase too, we do not abort TxID
immediately. Instead, we optimistically assume that TxID will abort
later and continue the validation process of T after recording such
a dependency between T and TxID (i.e., T should commit only if
TxID does abort).

At the end of the validation phase of T, we perform status check-
ing for all the dependent transactions (if any). T can commit itself
only if the following two conditions are met: (1) all its dependent
transactions due to optimistic pre-read have committed, and (2) all
its dependent transactions due to optimistic validation have aborted.
Note that if T is a read-only transaction, its validation phase only
needs to check those dependent transactions due to optimistic pre-
read, because T has no write set.

In the commit/abort phase, a read/write transaction T physically
effects its write set if T commits, or discards if T aborts, where the
corresponding MV-tuples are updated accordingly based on the
multi-versioning read/write rules.

Design Principle. Following our MV-OCC protocol, there is no
coarse-grained read/write locks or re-scanning during the entire

2550

| One-sided Write One-sided Read One-sided Atomic ~ Two-sided

Execution Validation Commit
c —’-?—-— TST TST
"start - A_J

i
i

Update

q----=""""

abort
Figure 8: A phase-by-phase overview of transaction process-

ing with MV-OCC (C and P stand for the coordinator and
participants)

transaction processing, which improves both the throughput and
latency of transaction processing. The rationality of adopting the
two optimistic optimizations in the execution and validation phases
is that graph transaction workloads are mostly read-heavy as men-
tioned in §3. Moreover, to achieve snapshot isolation, our protocol
only needs to skip the optimistic pre-read in the execution phase
and the entire validation phase, then to perform the regular commit
(or abort when write-write conflict happens).

4.4 Distributed Transaction Processing

With the use of RDMA, the design goal of G-Tran’s execution
engine is to effectively parallelize transaction processing among
servers while removing the computation bottlenecks (e.g., cen-
tralized coordinator, stragglers, locks). Existing RDMA-enabled
databases [23, 62, 69] usually apply RDMA atomic primitives, i.e.,
compare-and-swap (CAS) and fetch-and-add (FAA), to lock and
fetch records from remote machines to a local machine, and then
perform the local transactional updates before writing them back
to remote machines. However, such an approach is not efficient for
graph transactions due to their large read/write sets. It is expensive
to apply CAS & FAA and locks on large amounts of data at a time,
and they will incur high CPU overheads and impair throughput.

Instead of simply fetching data remotely as in [23, 62], G-Tran
uses different RDMA primitives in different execution phases to
obtain the best performance gain. Guided by the performance of
one-sided and two-sided primitives shown in Figure 2 in §3, we
scale out the execution across servers through message passing by
one-sided primitives to achieve low latency, and we use two-sided
primitives in the validation phase as this phase has a large payload
because of the large write/read sets of graph transactions. Atomic
primitives are only considered on bit-level remote operations.

Figure 7 shows the decentralized architecture of G-Tran, where
all servers have the same layout and play the same roles. Figure 8
illustrates how our protocol performs in each phase of transac-
tion processing. Without loss of generality, we only discuss the
processing of one particular transaction T as follows.

When a server receives T’s request (assigned by the request
router), it becomes the unique coordinator of T and takes charge of
(1) transactional meta management, i.e., to update T’s status in the
local shard of TST, and (2) query management, i.e., to aggregate in-
termediate/final results if needed (e.g., for operators COUNT, MAX,
etc.). Both TST and RCT are read/write-enabled, shared data struc-
tures via RDMA. In order to maintain the atomicity and consistency

of TST/RCT, we adopt different RDMA primitives accordingly based
on their workloads. Each update in TST is executed by an RDMA
atomic write to the coordinator in order to avoid unsafe updates
from other servers. Applying atomic operation here is acceptable
as a transaction status occupies only 2 bits. However, inserting an
entire write set into RCT has a high payload and executing it on the
RDMA allocated memory may raise lock contention and scalability
issue. That is the reason why we maintain RCT in the local memory
of each server, while using two-sided RDMA send/recv to query
and update the RCT entries with read/write consistency guarantee.
In addition, we also maintain a timestamp buf (TSB) in the RDMA
allocated memory of each server to synchronize the earliest BT
among the active transactions on all servers using one-sided atomic.
Then, we can fetch the global earliest BT locally, which is used by
RCT to garbage-collect the expired entries (i.e., transactions and
their write sets).

The whole processing of transaction T is triggered by its coordi-
nator via one-sided write and the processing load will be distributed
to multiple servers based on the actual data locality of the read/write
set of T (e.g., 2 participant servers are used in Figure 8). According
to the protocol, when T needs to update its status, for example, a
server has to abort T due to a local conflict, it will synchronize T’s
updated status to the shard of TST on the coordinator via one-sided
atomic. Thus, at the beginning of each operation in T’s processing,
the first step G-Tran has to do is status checking. If T’s status has
been changed, then we need to switch the processing of T to the cor-
responding phase. In the above example, T will abort and terminate
on all servers once they observe T’s new status. Thus, TST works
as a global flag for each active transaction, and all servers can fast
access/update it through RDMA. In contrast, the read/write sets of
T constructed in the execution phase of MV-OCC are recorded in
each server locally. And in the validation phase of T, it first fetches
all potential conflicting transactions from each shard of RCT, and
then does conflict checking for their read/write sets on the servers
locally as shown in Figure 8. Finally, if T can commit successfully,
the coordinator will aggregate the partial query results from each
participant and send the aggregated result back to the participants.

The MPP model helps speed up query processing and address the
issue of skewed workloads. If one query step has a higher load, G-
Tran will assign more threads to process this query step in parallel.
As a high-performance system, we also take into consideration the
side-effects brought from NUMA architecture [30, 50]. As shown in
Figure 7, each thread in G-Tran’s worker thread pool is bound with
one CPU core to achieve better cache locality and memory locality
on CPUs in cross-NUMA nodes. We omit the details here as this
optimization is not the focus of our paper.

5 SYSTEM IMPLEMENTATION

G-Tran was implemented in C++, currently with 46K+ lines of code.
We used librdma libaray to construct the mailbox for thread-level
one-sided and two-sided RDMA primitives. In addition, we also
provide a general TCP-based version, i.e., G-Tran without RDMA,
which uses ZeroMQ TCP sockets to achieve point-to-point commu-
nication and uses MPI to coordinate the inter-process communica-
tion over Ethernet. Here we briefly discuss some implementation

2551

Table 1: The Gremlin Steps currently supported in G-Tran

Type Query Steps

Init gV(), g.E()

Traversal in, out, both, inE, outE, bothE, inV, outV, bothV
Update addE, addV, property, drop

Filter has, hasNot, hasKey, hasValue, hasLabel
GetValue key, label, properties, values

Range range, limit, skip, tail

Math sum, max, min, mean, count

Aggregation order, dedup, aggregate, group, groupCount
MapkFilter where, select, as, is, cap

BranchFilter and, or, not, union, repeat

details of the system, while the source code and related tutorials
are available in our codebase.

Gremlin Steps. G-Tran supports 48 Gremlin query steps currently
based on the Gremlin v3.4.0 [7] standard. These steps are sufficient
to be used for expressing a wide range of graph queries from real
world. We list all of them in Table 1 and classify them into 10 types
according to their functionalities.

Timestamp Ordering. Unified timestamp (together with MV-OCC)
allows concurrent transactions to read a consistent snapshot of the
database, while the timestamp order should match with the real
time order. We follow the solution in [55] for global time synchro-
nization using Marzullo’s algorithm [48], where any server in the
cluster can play the role of clock master and other servers periodi-
cally synchronize their clocks via RDMA writes.

Garbage Collection (GC). MVCC-based protocol usually has a
high overhead on the storage. Thus, as an in-memory graph data-
base, GC is critical for G-Tran to avoid the growth of memory
consumption when servers run continuously. G-Tran’s GC was
implemented through one scanning thread and two GC threads as
default, but users may configure the exact number of GC threads
based on their workloads. However, recycling the memory slots
occupied by obsolete objects requires write locks to guarantee data
consistency for active read/write transactions, which leads to a
degradation in transaction throughput and latency. In order to
reduce the impact of GC, we separate the scanning process and
execute GC jobs batch-by-batch. The scanning process collects the
obsolete objects, which include all old versions whose visible time
periods have expired, all invalid versions that are generated due
to the aborted transactions, and all empty Edge/VP/EP rows that
have been deleted. We pack different types of obsolete objects into
different types of GC tasks based on their costs, where each type
of tasks handles only one type of obsolete objects and a specific
threshold is set to control the batch size. The scanning thread peri-
odically scans and collects obsolete objects. Once a batch has been
collected, the GC threads will be activated to garbage-collect these
objects. We show the importance of GC by experiments in §6.4.1.
Indexes. Indexes are critical to achieve efficient query operations
such as HAS and WHERE. G-Tran supports standard indexes (e.g.,
hashtables, B+ trees) on text and numerical values for fast look-up
or range search on vertex/edge labels and property values. Users can
specify the type of indexes to be constructed and the specific target
keys (e.g., a certain property) for indexing via a client console. Then,
G-Tran servers coordinate with each other to build a distributed
index map in memory. The indexes can be updated accordingly
once the related read-write transaction has committed, in order to
keep the data consistent.

Table 2: Property graph datasets

Dataset 4 |E| [VP| |EP]|
LDBC-S 23,850,377 139,854,135 153,761,078 37,769,010
DBPedia 29,130,775 22,623,812 79,600,170 22,623,763
LDBC-L 81,585,767 495,119,129 441,220,072 142,182,014
Amazon 37,671,279 338,255,928 127,123,473 493,345,892

Fault Tolerance. Currently, G-Tran as a research prototype system,
has not yet implemented fault tolerance. We plan to support fault
tolerance as follows. We will use a standalone storage engine (e.g.,
RocksDB) to store all data entities (i.e., Headers, Rows and the
multi-versioning value objects in the MV-KVS) in the data store.
The original in-memory data store will be treated as a cache layer to
cache all accessed entities for incoming queries. We can apply the
LRU/LFU cache strategy to swap cache entities back from memory
to disk when the memory consumption is high. For a read-write
transaction T, we need to not only update the values in the cache
but also generate a write-ahead log (WAL) as the redo log for each
entity in T. Then, this WAL should be flushed to the persistent store
with an encoded key for data durability. To follow the transactional
protocol, we consider that a transaction T is successful only after all
its WAL related operations are completed. When failure occurs, we
load involved entities from the persistent store to the in-memory
cache, and also fetch all WALs belonging to the entities (if any)
using the encoded keys, and apply them to the entities for recovering
the latest values.

6 EXPERIMENTAL EVALUATION

We compared G-Tran with four popular graph databases, Janus-
Graph v.0.3.0 [2], ArangoDB v.3.6.2 [4], Neo4] v.3.5.1 [8] and Tiger-
Graph Developer Edition [26]. The experiments were run on a
cluster of 10 machines, each equipped with two 8-core Intel Xeon E5-
2620v4 2.1GHz processors, 128GB memory and Mellanox ConnectX-
3 40Gbps Infiniband HCA, running on CentOS 6.9 with OFED 3.2
Infiniband driver. For fair comparison, we always used 20 comput-
ing threads in each machine (unless otherwise specified) for all the
systems, and tuned the configurations of each system to give its
best performance as we could. All query latency reported are the
average of five runs and all throughput values are averaged over
300 seconds.

Datasets. We used four datasets: one small and one large synthetic
property graphs created by LDBC-SNB! data generator, and two
real-world property graphs crawled from DBpedia? (including two
parts, citation data and citation links) and Amazon Product® (includ-
ing product reviews and metadata). The small/large datasets were
used for the system evaluation on the single-machine/distributed
environment respectively. Table 2 lists the statistics of each dataset.
Query Benchmarks. Lissandrini et al. [44] proposed a benchmark
(denoted as LBV) for graph database evaluation, which includes
five categories of queries: Creation(C), Read(R), Update(U), Dele-
tion(D) and Traversal(T). R and T belong to READ transactions,
while C, U and D belong to WRITE transactions. We selected, with
equal probability, most of the queries (i.e., [C:Q2-Q7], [R:Q11-Q15],
[U:Q16-Q17], [D:Q18-Q21], [T:Q22-Q27]) in the benchmark (ex-
cept few that are not for transactions, e.g., Q8-Q9 for counting all

!http://ldbcouncil.org/developer/snb
https://wiki.dbpedia.org/downloads-2016-10
3http://jmcauley.ucsd.edu/data/amazon/

2552

EEm SI 3 SR

EE SI 3 SR

Abort Rate %

Throughput(K Tran/s)

(a) LDBC-L

20.06

Throughput(K Tran/s)

G-Tran IPoIB No-Opt Cent, G-Tran IPoIB No-Opt Cent
(b) Amazon
Figure 9: The effects of individual system design

V/E) for throughput evaluation. Also, we selected 8 heavy queries
(i.e., IC1-IC4 and IS1-IS4) from LDBC SNB benchmark [32] for
single-query latency evaluation. Note that we did not use the LDBC
benchmark for comprehensive evaluation as it does not support
UPDATE/DELETE workloads and the queries are only applicable
on its own synthetic datasets. We list the templates of above bench-
mark queries in the wiki page ¢ of our codebase, where the specific
query values (e.g., VID, VPIDs, EPIDs, etc.) in the query templates
were randomly sampled from the respective datasets.

6.1 Evaluation of System Designs

We first evaluate the effectiveness of the various system designs,
including the data store, the decentralized architecture, the op-
timizations in MV-OCC (i.e., optimistic pre-read and optimistic
validation), and the speed-up due to RDMA-related designs.

6.1.1 Evaluation of Individual System Designs. To examine
the effect of each individual design on the system performance, we
created three variants of G-Tran: G-Tran without RDMA but using
IPoIB (denoted as IPoIB), G-Tran without the two optimizations in
MV-OCC (denoted as No-Opt), and a centralized version (denoted
as Cent) with a global master (i.e., transaction coordinator). We
tested them on two large graphs, LDBC-L and Amazon, using 8
machines. We used a mixed workload formed by READ and WRITE
queries in the LBV benchmark. Half of the queries are WRITE,
which create a relatively high-contention scenario.

Figure 9 reports the transaction throughput and the abort rate
of G-Tran and its three variants, at both SI and SR isolation lev-
els. Compared with G-Tran, the throughput of its IPoIB variant is
reduced around 30% - 50%, which is due to the higher latency of
normal network connection and the extra CPU overhead between
NIC and the OS kernel. However, the IPoIB variant still significantly
outperforms existing systems as reported in §6.2, which shows that
other system designs also play important roles in G-Tran’s high
performance.

“https://github.com/yaobaiwei/GTran/wiki

10000

of Transactions
of Transactions

k|

The Sizes of Read-Sets (# of V/E/VP/EP)

The Sizes of Write-Sets (# of V/E/VP/EP)

Figure 10: The distribution of the sizes of the read/write-sets
of the LBV graph transactions on Amazon

Table 3: The latency (in msec) of the LDBC queries

LDBC-S IC1 1C2 1C3 1C4 1S1 1S2 1S3 1S4
G-Tran 7,085 189 4,986 347 0.5 13.1 4.6 0.4
Neo4] 8,962 824 9.6E4 1,249 1.1 25.4 6.8 1.6
JG. 19E5 14E4 13E6 13E5 1.2 20.6 2.7 0.9

ArangoDB 14E5 1,420 9.1E4 3,149 1.1 58.9 33.6 0.8
T.G.(install 45E4 4.1E4 44E4 45E4 38E4 39E4 3.6E4 3.5E4
+ run) +63.5 +19.1 +370 +213 +8.2 +15.2 +8.9 +6.7

Disabling optimistic pre-read and optimistic validation in the
MV-OCC protocol also leads to a degradation of the throughput,
especially at SR isolation. As shown in Figure 9(a), on the LDBC-L
dataset, No-Opt’s throughput (5.59K tps) at SR drops 25.9% com-
pared with G-Tran’s throughput (7.55K tps). No-Opt’s throughput
at S is only slightly dropped as our multi-version-based solution
can already eliminate much of the contention at SI isolation. How-
ever, the abort rate of the No-Opt variant is significantly higher.
The increase in the abort rate is more obvious on the Amazon
dataset as it is a real-world graph with a power-law distribution
on vertex degree, leading to higher contention and abort rate. The
result shows that our optimizations in the MV-OCC protocol can
effectively improve the processing of concurrent graph transac-
tions, which have large read/write-sets. We report the distribution
of the sizes of the read/write-sets of the transactions in Figure 10,
showing that although more transactions have relatively smaller
read/write-sets, there are also a large number of transactions having
large read/write-sets. This also explains the relatively high abort
rate of G-Tran at SR compared with that at SI.

To demonstrate the advantage of the decentralized architecture
over RDMA for distributed transaction processing, we further com-
pare G-Tran with its Cent version. At SR isolation, Cent has the
lowest throughput for both datasets (i.e, 4K tps and 7.66K tps).
Because in Cent’s setting, the master plays the role of a global co-
ordinator which handles the coordinating tasks of all concurrent
transactions. These tasks create significant CPU and network over-
heads on a single node, which becomes the bottleneck and limits
the general processing power of the entire distributed system. We
also observe an increase in the abort rate of the Cent version, be-
cause the averagely higher latency per transaction leads to higher
contention and in turn increases the overall abort rate.

6.1.2 Evaluation of Data Store. Next, we evaluate how the de-
sign of the data store effects G-Tran’s performance. Since we cannot
disable the data store in G-Tran individually as we did for the other
features, we conducted the experiments on a single-machine setting
to exclude the influence of G-Tran’s RDMA-aware components and
decentralized architecture. In addition, before we started to run the
workloads, we first warmed up each system by running the mixed
LBV workload in §6.1.1 for an extended period of time, to simulate

2553

Table 4: The latency (in msec) of k-hop traversal queries

DBpedia Q1 Q2 Q3 Q4
G-Tran 0.9 9.7 966 8,084
Neo4] 1.8 20.5 1,128 19,217
ArangoDB 24.4 93.5 17,659 287,012
LDBC-S Q1 Q2 Q3 Q4
G-Tran 0.3 349 5,338 42,452
Neo4] 1.4 758 9,911 128,762
J.G. 1.3 661 42,916 1,211,714
ArangoDB 0.6 2,006 36,715 > 4h
T.G.(install 40,518 59,968 92,770 132,766
+ run) +8.82 +389 +3,788 +62,053

the real scenario that graph data locality has been broken after
continuous updates. It leads to more random access on the entities
of the graph, which can thus be used to indicate the effectiveness
of the data layout.

We used the 8 heavy queries mentioned above to evaluate the
performance. Consider that the LDBC benchmark queries can only
function on the LDBC synthetic dataset, we also involved a typical
multi-hop query template into the evaluation with the format:

gV().has([primary_key]). (both())k (1)

The both() operator returns both the in-neighbors and out-neighbors
of a source vertex. Here, both() repeats k = 1,2, 3, 4 times to rep-
resent a k-hop traversal from a starting vertex located by has()
operator with a given primary key (e.g., name).

We compared G-Tran with JanusGraph, ArangoDB, Neo4] and
TigerGraph, where all the systems ran on a single machine. Table 3
reports the latency of the LDBC benchmark queries on the LDBC-S
dataset °, and Table 4 reports the latency of the k-hop traversal
queries on both the LDBC-S and DBpedia datasets. G-Tran achieves
the shortest latency on almost all LDBC queries (except compared
with JanusGraph on IS3). In particular, for the complex queries,
i.e., IC1-IC4, G-Tran’s latency is two orders of magnitude smaller
than that of JanusGraph and ArangoDB. The gap between G-Tran
and Neo4] is smaller but also 2-3 times in most cases. TigerGraph
achieves competitive performance in its “run” stage, but every
query needs an “install” stage before running and this “install”
stage is costly. For the k-hop traversal queries, Table 4 shows the
query latency on all systems increases exponentially as k increases,
because the size of the read-set grows exponentially for each hop
of traversal. But after traversing more than 2 hops, G-Tran starts to
show orders of magnitude advantage over the other systems.

We explain the results by analyzing the storage design of each
system as follows. Neo4] stores all edges of the entire graph into
a global sequential table. Consequently, a graph traversal will suf-
fer from jump addressing in physical storage space on Neo4], be-
cause each newly inserted edge is appended directly to the tail
of the sequential table without locality guarantee. As for Tiger-
Graph, although it is not open source, considering that it requires
users to indicate the edge type (e.g., friendship) during a traversal,
we conjecture TigerGraph stores edges separately based on their
types. Then, this layout will require an extra aggregation to merge
those separate edge sets when a traversal involves multi-type edges,
which explains why TigerGraph has poor performance on the k-
hop traversal queries. Both JanusGraph and ArangoDB store edges

SJanusGraph failed to load DBPedia in 24 hours, and TigerGraph could not load
DBPedia as it requires a fixed schema input while DBPedia has no schema.

o~ G-Tran —AIPolB

JanusGraph -5~ ArangoDB
32K 40K

g
=

20 K

20K

10K

Throughput(Tran /s)

10K
5K
1K L

1 8 12 16
Number of Threads (8 Machines)

Figure 11: Scale-up and scale-out throughput on Read-Only
workload over the LDBC-L dataset

2K

k|

!
10

i
L
1

=

6 8
Number of Machines (20 threads/M)

- G-Tran___—a-1PolB - G-Tran___—A-1IPoIB
JanusGraph = ArangoDB JanusGraph - ArangoDB

20 K

12K

Throughput(Tran/s)

E
Throughput(Tran /s)
mm oA o= o= o= =

2K
08K
0“* 05K
0K
4

4

\)

3 12 16 20 4 6 8 10
Number of Threads (8 Machines) Number of Machines (20 threads/M)

Figure 12: Scale-up and scale-out throughput on Read-
Intensive workload over the LDBC-L dataset

- G-Tran__ —AIPolB “o-G-Tran _—&IPolB
JanusGraph -5~ ArangoDB JanusGraph - ArangoDB
9K 10K
= & 8K
£ 6K E)
=] = 6K
2 3k 2 ax
@]
ERRES o 2 2K <
E 03K TS IPEN]
02K | |
02K [
01K «‘ 01K ‘{
4 8 12 16 20 4 6 8 10
Number of Threads (8 Machines) Number of Machines (20 threads/M)

Figure 13: Scale-up and scale-out throughput on Write-
Intensive workload over the LDBC-L dataset

as individual cells or collections. Specifically, JanusGraph stores
edge cells of one vertex together with its property cells in one row,
which incurs extra overhead for locating edges from properties.
ArangoDB stores edges as collections of documents. Thus, the exe-
cution of multi-hop traversal needs to locate the connected edges
of each vertex by searching on edge collections. In comparison,
G-Tran divides arbitrary-length adjacency-lists into fixed-size rows,
which provides more efficient edge insertion and deletion through
allocating new rows or compacting under filled rows. Note that we
allocate a new row only after filling up all blanks in the existing row
and the sparse row compaction is processed periodically. As a result,
traversals in G-Tran can access the edges of a vertex sequentially
and the data locality will not be broken even after frequent updates.

6.2 Throughput Analysis

Now, we compared G-Tran with other systems for throughput
analysis in both distributed and single-machine settings. We applied
three workloads for evaluation: (1) Read-Only (RO), formed by
READ queries in the LBV benchmark, (2) Read-Intensive (RI), which
consists of 80% READ and 20% WRITE queries, (3) Write-Intensive
(WI), which consists of 20% READ and 80% WRITE queries.

6.2.1 Distributed Processing. We first compared G-Tran and
its IPoIB variant (G-Tran-IPoIB) with JanusGraph (using HBase as
the storage backend) and ArangoDB. For Neo4] and TigerGraph,

we only can download their Developer Edition which does not
support distributed processing. We set isolation at SI because both
ArangoDB and JanusGraph do not support SR.

Figures 11, 12, 13 report the throughput scalability of each sys-
tem on the three workloads respectively over the LDBC-L dataset.
Specifically, for scale-up evaluation, we depolyed all systems on 8
machines but varying the number of threads per machine from 4 to
20. For scale-out evaluation, we ran them on 4 to 10 machines with
20 threads/machine. G-Tran achieves significantly higher through-
put than other systems over all three workloads. Although the
performance of G-Tran-IPoIB is degraded when RDMA features are
disabled, it still outperforms both JanusGraph and ArangoDB in
all cases. This indicates that the use of RDMA in G-Tran is not the
only reason for its high performance, but other system components
are also important as discussed in §6.1. As we increase the number
of machines from 4 to 10, the results show that using RDMA indeed
brings an advantage to distributed processing because G-Tran has
higher rate of increase in throughput than G-Tran-IPoIB. Over-
all, when more machines are used, G-Tran’s throughput increases
more on RI and WI workloads. This phenomenon can also be ob-
served in scale-up performance. In contrast, the throughput of both
JanusGraph and ArangoDB are relatively low and scales poorly.
Besides caused by their data storage as we discussed in §6.1.2, this is
also related to how the execution engine of each system processes
the concurrent transactions. G-Tran’s MPP model enables higher
parallelism to process each transaction when more resources are
available. Thus, these transactions can commit earlier and there is
less contention when accessing data. However, both JanusGraph
and ArangoDB follow the one-thread-one-transaction mechanism.
When more threads are available, more transactions will join in
the system and being processed simultaneously. This increases the
contention among all concurrent transactions and incurs more over-
heads. Moreover, when more machines are involved, the graph will
be partitioned into more shards, which breaks the locality of the
graph and leads to extra overhead on communication.

6.2.2 Single-Machine Processing. We compared G-Tran with
4 other systems for transaction throughput evaluation on single-
machine at both SI and SR. We used BerkeleyDB as the backend of
JanusGraph for its evaluation at SR, as only BerkeleyDB (a stand-
alone engine) supports SR. Neo4] and TigerGraph do not support SI,
while ArangoDB does not support SR. TigerGraph and JanusGraph
(using HBase at SI) failed to load DBPedia as explained in §6.1.2.
As reported in Figure 14 and Figure 15, G-Tran achieves signif-
icantly higher throughput than other systems on all workloads
at both SR and SI. Note that in single-machine setting, the per-
formance advantages of G-Tran do not come from RDMA and its
decentralized architecture, but mainly from its data store design
and MV-OCC protocol. JanusGraph has worse performance than
others because G-Tran, TigerGraph and Neo4] have native graph
stores with tailored designs for transaction processing, while Janus-
Graph is built upon a general NoSQL-based store. G-Tran’s good
performance comes mainly from (1) its multi-version based storage,
which enables lock-free snapshot reads; (2) the optimizations in
MV-OCC protocol, which reduces contention among the concurrent
transactions with less abort and retry; (3) its MPP execution en-
gine, which enables parallel processing inside each transaction. By

2554

E=3 G-Tran [JanusGraph [0 Neod] E=3 G-Tran =1 JanusGraph [Neod) = TigerGraph

20

10

Throughput(K Tran/s)

Throughput(K Tran/s)

Read-Only Read-Intensive \\nn»lmmnw* Read-Only Ihnul—Im\nn ‘Write-Intensive
(a) DBPedia (b) LDBC-S
Figure 14: Single-machine throughput at SR

‘E G-Tran [JanusGraph [7] ArangoDB

11.9

put(K Tran/s)

151 44

115 1
H 0.29 % 10-0.25

ead-Only Read-Intensive Write-Intensive Read-Only
(a) DBPedia (b) LDBC-S
Figure 15: Single-machine throughput at SI

Throughput(K Tran /s)

Read-Intensive ~ Write-Intensive

Table 5: Memory footprint (GB) of each system at SI & SR

Workload | G-Tran Neo4] J.G. ArangoDB T.G.
RO 117.30 3.44 4.46 - 6.34

SR RI 117.53 7.35 22.32 - 6.47
WI 117.92 11.46 24.25 - 6.60
RO 117.84 - 2.43 424 -

SI RI 117.89 - 20.1 4.98 -
WI 117.96 - 22.62 11.09 -

contrast, Neo4]J’s transaction engine does not support SR natively
but requires explicit locks on query language level to achieve SR.
TigerGraph’s low throughput is related to its costly “install” stage,
which is used to pre-translate and optimize queries before their
real execution. G-Tran requires neither explicit lock nor “install”
stage to process transactions. In addition, ArangoDB can achieve
higher throughput than JanusGraph due to its MVCC-based storage.
But it has inefficient data layout on graph store, thus ArangoDB’s
throughput is still lower than that of G-Tran.

Memory Footprint. We also measured the memory footprint of
G-Tran compared with the other systems for processing three work-
loads at SR and SI on LDBC-S. Table 5 shows that G-Tran uses signifi-
cantly more memory than the other systems. However, we note that
G-Tran uses the memory pooling technique to pre-allocate memory
at one time during system initialization (mentioned in §4.2), which
is why the memory usage of G-Tran is almost unchanged for differ-
ent workloads, while the memory consumption of other systems
increases as the workload increases. Specifically, G-Tran allocates
6.5GB/3.8GB/2.4GB for Edge/VP/EP RowList, 3.2GB/40.8GB for Ver-
tex/Edge Table, 39.8GB/9.8GB for the VP/EP MVCC-Pool, 120MB
for Mailbox, respectively, while the remaining memory usage is for
runtime allocation (e.g., index, RCT, etc.).

6.3 Stress Test

To further analyze the system bottleneck at runtime, we conducted
a stress test for G-Tran on both RI and WI workloads using the
LDBC-S dataset, as these two workloads are more intensive. We
first increased the number of threads in a single server from 2 to 24
(i.e., vertical scaling), and then we increased the number of servers

2555

=8 RI O3 WI =1

Vertical | Horizontal

10 i
Vertical 1 Horizontal

Mem Footprint(GB)

Throughput(K Tran/s)

6 24 48 96 192

2 1 s 16 24 48 96 192
Number of threads

Number of threads
(a) Throughput (b) Memory Footprint

Figure 16: Scalability performance under stress test.

from 1 to 8 (i.e., horizontal scaling). For each setting, we issued an
abundant number of transactions from multiple clients to the G-
Tran servers until the whole system becomes saturated. Figure 16
reports the throughput and memory footprint of G-Tran under
different settings. When the system is under stress, we observe the
following bottlenecks. First, the throughput starts to drop on WI
workload when the system expands from 16 cores to 24 cores. When
we increase the number of cores to 24, the number of transactions
issued also increases to saturate the system. However, processing
too many transactions concurrently will result in higher abort
rate and lower throughput because there are more write-write
conflicts. The WI workload also has higher overhead and each
transaction needs more time to be processed on average, which
leads to more serious thread contention. Second, G-Tran shows good
horizontal scalability for both RI and WI workloads, except when
the number of servers is increased to 8. This is because the quality of
graph partitioning decreases rapidly when more machines are used
and hence the network communication cost also increases rapidly.
Although RDMA significantly reduces the network communication
cost, its effectiveness also decreases when the quality of graph
partitioning is worsen. On the other hand, no increase in memory
footprint is observed when the system scales vertically, while the
memory footprint increases sub-linearly in the case of horizontal
scaling. Thus, the result suggests that the in-memory data store is
not a bottleneck.

6.4 Effects of Others

6.4.1 Garbage Collection. We evaluated the effectiveness of
Garbage Collection (GC) by enabling and disabling it during trans-
action processing. We conducted the experiment using 8 machines
on the LDBC-L dataset and executed the same workload at SR isola-
tion as we did in §6.1.1. Figure 17 and Figure 18 reports the real-time
throughput and memory utilization of G-Tran for a period of 600
seconds from the beginning, i.e., as soon as G-Tran finishes the
data loading. The throughput is higher at the beginning as there
is not many GC jobs to do, and the system becomes stabilized at
around 200 seconds. The result shows that, when GC is disabled, the
memory consumption of G-Tran increases linearly with time. But
when GC is enabled, the memory consumption remains relatively
stable. We observe some obvious drops at 200s, 295s, 380s and 500s
in Figure 18, which are due to the periodical garbage collection that
releases the occupied memory and returns it back to the memory
pool. During the whole process, the negative side-effects of GC
execution on transaction throughput is minor. We can compare

GC enabled — GC disabled

i

I
100

W’M’WW“WW,W‘WWW’M’W’nﬂwwﬁw«wwm

Throughput (K Tran/s)

Il Il Il I}
300 400 500 600
Running Time(s)

Figure 17: Throughput with GC enabled/disabled

|
00 200

GC enabled — GC disabled

64.4
64.3
64.2
64.1
64
63.9
63.8

Mem Util (%)

500

| | |
300 400 600
Running Time(s)

Figure 18: Memory consumption with GC enabled/disabled

I I
0 100 200

Table 6: Index construction time and query latency (in msec)

IC1 1C2 IC3 IC4 1S1 182 1S3 1S4
w/o index 22814 21699 26935 34895 22883 25287 22524 23938
w/ index 1559.6 69.27 2553.9 14518 1.54 4.63 2.22 0.724
index build +134327 (msec)
index mem +5.39GB /machine avg.

the two curves in Figure 17, the throughput of G-Tran in the GC-
enabled case follows very closely to the case when GC is disabled,
showing that our GC mechanism has low overhead. Actually, at
the later period, in the GC-enabled case, G-Tran’s throughput even
has a tiny increase. This is because at this time, the system storage
has been accumulated by many invalid/expired versions of various
objects, to clean them up timely can de-fragment those sparse rows
in the vertex/edge tables and accordingly improve the entire mem-
ory locality, which helps improve the efficiency of data scan and
search. We can also observe a significant drop on the throughput
in the GC-disabled curve at round 140s in Figure 17. While at the
same time point, the GC-disabled curve for memory utilization in
Figure 18 shows a non-continuous increase. We guess that at this
moment, there were a large number of write transactions coming
into the system, and system itself suffered from their processing
and commits/aborts in short-term.

6.4.2 Index. Finally, we analyzed the effects of index for query
acceleration and also measured the overhead of index construction
in terms of time and memory. We conducted the experiment on the
LDBC benchmark queries using 8 machines to build index on the
vertex ID for LDBC-L. As reported in Table 6, index can significantly
reduce query latency with a relatively low cost, as index building
takes only around 2 minutes and 5.4GB memory. Index works better
for simple queries (i.e., IS1-IS4) because the complex queries (i.e.,
IC1-IC4) have more traversal steps (e.g., or(), union(), etc.) and more
computation logics (e.g., order(), groupCount(), etc.), which cannot
be accelerated by index only.

7 RELATED WORK

Graph Databases. Existing graph databases as we have discussed
above like Neo4] [8], Titan [1], JanusGraph [2], ArangoDB [4]

2556

and OrientDB [9], have no modern MPP-based system architec-
ture for distributed transaction processing and most of them sup-
port only low isolation level (e.g., snapshot, read committed). Both
Grasper [18, 21] and TigerGraph [26] target at massive graph
queries (i.e., MPP) with native graph store, but Grasper focuses only
on OLAP workload instead of OLTP and TigerGraph is not designed
for high performance. LiveGraph [74] is a single-machine graph
database, which proposes a graph-aware data structure, named
Transactional Edge Log (TEL), to enable purely sequential scans
over the adjacency lists. A1 [15] is also an RDMA-based in-memory
graph database built upon FaRM [28, 29], which applies Opacity
and Multiversioning to achieve serializable transactions. The under-
lying data layout of A1 is a key-value store, which directly uses the
FaRM'’s store. We cannot compare with A1 as it is not open source.
The granularity of multi-versioning in G-Tran’s data layout is a
Cell, no vertex object or data object with a new version are created
if we insert/delete an edge or update a property value. Such a layout
design makes G-Tran more efficient for updates and data storage
(i.e., requiring less memory space to maintain multi-versions).

Graph Processing Systems. Many graph processing systems have
been proposed [11, 22, 36, 37, 53, 63, 66, 68, 72, 73] based on Pregel
model [45] or other computation models [58, 67, 71]. But they focus
on offline graph workloads such as PageRank, Connected Compo-
nent and SSSP. There are also other systems that aim at complex
graph analytics and mining [19, 20, 64, 65], or streaming graph
processing [17, 46, 47, 61]. The system designs required for batch
or streaming graph processing are quite different from those of a
graph transaction database, which needs to address the side effects
brought from transactional issues (e.g., locks, timestamps, valida-
tion, commit/abort, etc.), index construction, garbage collection
and others for processing OLTP workloads.

Distributed Transaction Processing. Also, many general trans-
action processing systems have been proposed in recent, e.g., Google’s
Spanner [24], Granola [25], FaSST [40] and others [27, 51, 57, 59].
Some of them leverage new hardwares such as RDMA, HTM and
NVM to achieve high performance (e.g., FaRM [28, 29] and DrTM [23,
62]). FaRM proposed an RDMA-friendly protocol to enable strict
serializiable transactions with high throughput, low latency, and
high availability. DrTM proposed an OCC protocol combining both
HTM [14] and RDMA to ensure the strong consistency and atomic-
ity. However, these systems are not specially designed for graph,
which has its own unique challenges (§1 and §3).

8 CONCLUSIONS

We presented G-Tran, a high-performance distributed graph data-
base built upon the decentralized architecture. To tackle the unique
challenges of graph transaction processing, we used RDMA one-
sided/two-sided primitives respectively in different system compo-
nents to reduce system overheads from network and CPUs, com-
bining with a graph-native data store and an optimized MV-OCC
transaction protocol. G-Tran achieved an overall good performance
in terms of both latency and throughput.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments and sug-
gestions that have helped improve the quality of the paper.

REFERENCES

2015. TITAN. http://titan.thinkaurelius.com/.

2019. JanusGraph. http://janusgraph.org/.

2022. Apache TinkerPop. http://tinkerpop.apache.org/.

2022. ArangoDB. https://www.arangodb.com/.

2022. Cypher - the Neodj query Language. http://www.neo4;j.org/learn/cypher.
2022. GQL. https://www.gqlstandards.org/.

2022. Gremlin. https://tinkerpop.apache.org/gremlin.html.

2022. Neo4]. https://neo4j.com/.

2022. OrientDB. https://orientdb.com/.

Renzo Angles. 2018. The Property Graph Database Model. In Proceedings of the
12th Alberto Mendelzon International Workshop on Foundations of Data Manage-
ment, Cali, Colombia, May 21-25, 2018 (CEUR Workshop Proceedings), Dan Olteanu
and Barbara Poblete (Eds.), Vol. 2100. CEUR-WS.org. http://ceur-ws.org/Vol-
2100/paper26.pdf

Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on
hadoop. Proceedings of the Hadoop Summit. Santa Clara 11 (2011).

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. PVLDB 9, 7 (2016),
528-539. https://doi.org/10.14778/2904483.2904485

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran
Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social
Graph. In 2013 USENIX Annual Technical Conference, San Jose, CA, USA, June
26-28, 2013. 49-60. https://www.usenix.org/conference/atc13/technical-sessions/
presentation/bronson

Trevor Brown and Hillel Avni. 2016. PHyTM: Persistent Hybrid Transactional
Memory. PVLDB 10, 4 (2016), 409-420. https://doi.org/10.14778/3025111.3025122
Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan, and Shuheng Zheng.
2020. Al: A Distributed In-Memory Graph Database. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.).
ACM, 329-344. https://doi.org/10.1145/3318464.3386135

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data (Awarded Best Paper!).
In 7th Symposium on Operating Systems Design and Implementation (OSDI "06),
November 6-8, Seattle, WA, USA, Brian N. Bershad and Jeffrey C. Mogul (Eds.).
USENIX Association, 205-218. http://www.usenix.org/events/osdi06/tech/chang.
html

Cheng Chen, Hejun Wu, Dyce Jing Zhao, Da Yan, and James Cheng. 2016. SGraph:
A Distributed Streaming System for Processing Big Graphs. In Big Data Com-
puting and Communications - Second International Conference, BigCom 2016,
Shenyang, China, July 29-31, 2016. Proceedings (Lecture Notes in Computer Science),
Yu Wang, Ge Yu, Yanyong Zhang, Zhu Han, and Guoren Wang (Eds.), Vol. 9784.
Springer, 285-294. https://doi.org/10.1007/978-3-319-42553-5_24

Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian
Zhang, Yifan Hou, and Xiao Yan. 2019. Grasper: A High Performance Distributed
System for OLAP on Property Graphs. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM,
87-100. https://doi.org/10.1145/3357223.3362715

Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
2018. G-Miner: an efficient task-oriented graph mining system. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018.
32:1-32:12. https://doi.org/10.1145/3190508.3190545

Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang, Yifan Hou,
Changji Li, and James Cheng. 2019. Large Scale Graph Mining with G-Miner. In
Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. 1881-1884.
https://doi.org/10.1145/3299869.3320219

Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang, Changji Li, Yichao
Li, and James Cheng. 2020. High Performance Distributed OLAP on Property
Graphs with Grasper. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2705-2708. https:
//doi.org/10.1145/3318464.3384685

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-
entiated graph computation and partitioning on skewed graphs. In Proceedings
of the Tenth European Conference on Computer Systems, EuroSys 2015, Bordeaux,
France, April 21-24, 2015. 1:1-1:15. https://doi.org/10.1145/2741948.2741970
Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and general distributed transactions using RDMA and HTM. In Proceedings of the

2557

Eleventh European Conference on Computer Systems, EuroSys 2016, London, United
Kingdom, April 18-21, 2016. 26:1-26:17. https://doi.org/10.1145/2901318.2901349

[24] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3 (2013), 8:1-8:22. https://dl.acm.org/
citation.cfm?id=2491245

[25] James A. Cowling and Barbara Liskov. 2012. Granola: Low-Overhead Distributed

Transaction Coordination. In 2012 USENIX Annual Technical Conference, Boston,
MA, USA, June 13-15, 2012. 223-235. https://www.usenix.org/conference/atcl2/
technical-sessions/presentation/cowling

Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. TigerGraph: A Native
MPP Graph Database. CoRR abs/1901.08248 (2019). arXiv:1901.08248 http:
//arxiv.org/abs/1901.08248

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013. 1243-1254. https://doi.org/10.1145/2463676.2463710

Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2014, Seattle, WA, USA,
April 2-4, 2014. 401-414. https://www.usenix.org/conference/nsdil4/technical-
sessions/dragojevi%C4%87

Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015. 54-70. https://doi.org/10.1145/2815400.
2815425

Andi Drebes, Antoniu Pop, Karine Heydemann, Nathalie Drach, and Albert
Cohen. 2016. NUMA-aware scheduling and memory allocation for data-flow
task-parallel applications. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12-16, 2016. 44:1-44:2. https://doi.org/10.1145/2851141.2851193

Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Giin Sirer. 2016. Weaver:
A High-Performance, Transactional Graph Database Based on Refinable Times-
tamps. PVLDB 9, 11 (2016), 852-863. https://doi.org/10.14778/2983200.2983202
Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. 619-630. https://doi.org/10.1145/2723372.2742786
Jesus Escudero-Sahuquillo, Pedro Javier Garcia, Francisco J. Quiles, German
Maglione Mathey, and José Duato Marin. 2018. Feasible enhancements to con-
gestion control in InfiniBand-based networks. J. Parallel Distrib. Comput. 112
(2018), 35-52. https://doi.org/10.1016/j.jpdc.2017.09.008

Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. 1976. The
Notions of Consistency and Predicate Locks in a Database System. Commun.
ACM 19, 11 (1976), 624-633. https://doi.org/10.1145/360363.360369

Zhisong Fu, Zhengwei Wu, Houyi Li, Yize Li, Min Wu, Xiaojie Chen, Xiaomeng
Ye, Benquan Yu, and Xi Hu. 2017. GeaBase: A High-Performance Distributed
Graph Database for Industry-Scale Applications. In Fifth International Conference
on Advanced Cloud and Big Data, CBD 2017, Shanghai, China, August 13-16, 2017.
170-175. https://doi.org/10.1109/CBD.2017.37

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Paralle]l Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 17-30. https://www.usenix.
org/conference/osdil2/technical-sessions/presentation/gonzalez

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In 11th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 14, Broomfield, CO, USA, October 6-8, 2014. 599—
613. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
gonzalez

Nusrat S. Islam, Md. Wasi-ur-Rahman, Jithin Jose, Raghunath Rajachandrasekar,
Hao Wang, Hari Subramoni, Chet Murthy, and Dhabaleswar K. Panda. 2012. High
performance RDMA-based design of HDFS over InfiniBand. In SC Conference on
High Performance Computing Networking, Storage and Analysis, SC ’12, Salt Lake
City, UT, USA - November 11 - 15, 2012. 35. https://doi.org/10.1109/SC.2012.65
Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA effi-
ciently for key-value services. In ACM SIGCOMM 2014 Conference, SSGCOMM’14,
Chicago, IL, USA, August 17-22, 2014. 295-306. https://doi.org/10.1145/2619239.

http://titan.thinkaurelius.com/
http://janusgraph.org/
http://tinkerpop.apache.org/
https://www.arangodb.com/
http://www.neo4j.org/learn/cypher
https://www.gqlstandards.org/
https://tinkerpop.apache.org/gremlin.html
https://neo4j.com/
https://orientdb.com/
http://ceur-ws.org/Vol-2100/paper26.pdf
http://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.14778/2904483.2904485
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.14778/3025111.3025122
https://doi.org/10.1145/3318464.3386135
http://www.usenix.org/events/osdi06/tech/chang.html
http://www.usenix.org/events/osdi06/tech/chang.html
https://doi.org/10.1007/978-3-319-42553-5_24
https://doi.org/10.1145/3357223.3362715
https://doi.org/10.1145/3190508.3190545
https://doi.org/10.1145/3299869.3320219
https://doi.org/10.1145/3318464.3384685
https://doi.org/10.1145/3318464.3384685
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2901318.2901349
https://dl.acm.org/citation.cfm?id=2491245
https://dl.acm.org/citation.cfm?id=2491245
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://doi.org/10.1145/2463676.2463710
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2851141.2851193
https://doi.org/10.14778/2983200.2983202
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1016/j.jpdc.2017.09.008
https://doi.org/10.1145/360363.360369
https://doi.org/10.1109/CBD.2017.37
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://doi.org/10.1109/SC.2012.65
https://doi.org/10.1145/2619239.2626299

[40]

[41]

[42]

[43

[44

[45]

[46]

[47]

[48]

[49

[51]

[52]

[53

[54

[55]

[56]

[57]

2626299

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs. In
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016. 185-201. https://www.usenix.org/
conference/osdil6/technical- sessions/presentation/kalia

Supun Kamburugamuve, Karthik Ramasamy, Martin Swany, and Geoffrey C.
Fox. 2017. Low Latency Stream Processing: Apache Heron with Infiniband &
Intel Omni-Path. In Proceedings of the 10th International Conference on Utility
and Cloud Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017. 101-110.
https://doi.org/10.1145/3147213.3147232

H. T. Kung and John T. Robinson. 1979. On Optimistic Methods for Concurrency
Control. In Fifth International Conference on Very Large Data Bases, October 3-5,
1979, Rio de Janeiro, Brazil, Proceedings. 351.

Aapo Kyrola and Carlos Guestrin. 2014. GraphChi-DB: Simple Design for a
Scalable Graph Database System - on Just a PC. CoRR abs/1403.0701 (2014).
arXiv:1403.0701 http://arxiv.org/abs/1403.0701

Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond
Macrobenchmarks: Microbenchmark-based Graph Database Evaluation. PVLDB
12, 4 (2018), 390-403. http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf
Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135-146.

Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: sparsity-aware
incremental processing of streaming graphs. In EuroSys ’21: Sixteenth European
Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021,
Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.).
ACM, 83-98. https://doi.org/10.1145/3447786.3456230

Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven
Synchronous Processing of Streaming Graphs. In Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019, George Can-
dea, Robbert van Renesse, and Christof Fetzer (Eds.). ACM, 25:1-25:16. https:
//doi.org/10.1145/3302424.3303974

Keith Marzullo and Susan S. Owicki. 1985. Maintaining the Time in a Distributed
System. Operating Systems Review 19, 3 (1985), 44-54. https://doi.org/10.1145/
850776.850780

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX
Annual Technical Conference, San Jose, CA, USA, June 26-28, 2013. 103-114. https:
//www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. 2014. Scale-out NUMA. In Architectural Support for Programming Languages
and Operating Systems, ASPLOS °14, Salt Lake City, UT, USA, March 1-5, 2014. 3-18.
https://doi.org/10.1145/2541940.2541965

Danica Porobic, Erietta Liarou, Pinar Téziin, and Anastasia Ailamaki. 2014. ATra-
Pos: Adaptive transaction processing on hardware Islands. In IEEE 30th Interna-
tional Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 -
April 4, 2014. 688-699. https://doi.org/10.1109/ICDE.2014.6816692

David P. Reed. 1978. Naming and synchronization in a decentralized computer
system. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA, USA. http://hdl.handle.net/1721.1/16279

Semih Salihoglu and Jennifer Widom. 2013. Gps: A graph processing system.
In Proceedings of the 25th International Conference on Scientific and Statistical
Database Management. 22.

Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, Aaron
Adcock, Herald Kllapi, and Michael Stumm. 2016. Social Hash: An Assignment
Framework for Optimizing Distributed Systems Operations on Social Networks.
In 13th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016, Katerina J. Argyraki and
Rebecca Isaacs (Eds.). USENIX Association, 455-468. https://www.usenix.org/
conference/nsdil6/technical-sessions/presentation/shalita

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos,
Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. 2019. Fast
General Distributed Transactions with Opacity. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019. 433-448. https://doi.org/10.1145/3299869.
3300069

Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang
Hu, and Guo Tong Xie. 2015. SQLGraph: An Efficient Relational-Based Property
Graph Store. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015.
1887-1901. https://doi.org/10.1145/2723372.2723732

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012. 1-12.
https://doi.org/10.1145/2213836.2213838

2558

(58]

[59

[60

o
=

[62

(3]

=
=

[65]

[66]

[67]

o
&,

[69]

[70

[71

(72

[73

<
=t

[75

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193-204.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP 13, Farmington, PA, USA,
November 3-6, 2013. 18-32. https://doi.org/10.1145/2517349.2522713

Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems,
Redwood Shores, CA, USA, June 24 - 24, 2016, Peter A. Boncz and Josep Lluis
Larriba-Pey (Eds.). ACM, 7. https://doi.org/10.1145/2960414.2960421

Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate
Computations on Streaming Graphs via Trimmed Approximations. In Proceed-
ings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017, Yunji Chen, Olivier Temam, and John Carter (Eds.). ACM, 237-251.
https://doi.org/10.1145/3037697.3037748

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015. 87-104. https://doi.org/10.1145/2815400.2815419

Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang
Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium on Cloud Computing. 408—
421.

Da Yan, Hongzhi Chen, James Cheng, Zhenkun Cai, and Bin Shao. 2018. Scalable
De Novo Genome Assembly Using Pregel. In 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer
Society, 1216-1219. https://doi.org/10.1109/ICDE.2018.00114

Da Yan, Hongzhi Chen, James Cheng, M. Tamer Ozsu, Qizhen Zhang, and John
C. S. Lui. 2017. G-thinker: Big Graph Mining Made Easier and Faster. CoRR
abs/1709.03110 (2017). arXiv:1709.03110 http://arxiv.org/abs/1709.03110

Da Yan, James Cheng, Hongzhi Chen, Cheng Long, and Purushotham Bangalore.
2019. Lightweight Fault Tolerance in Pregel-Like Systems. In Proceedings of
the 48th International Conference on Parallel Processing, ICPP 2019, Kyoto, Japan,
August 05-08, 2019. ACM, 69:1-69:10. https://doi.org/10.1145/3337821.3337823
Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981-1992.

Da Yan, Yuzhen Huang, Miao Liu, Hongzhi Chen, James Cheng, Huanhuan Wu,
and Chengcui Zhang. 2018. GraphD: Distributed Vertex-Centric Graph Processing
Beyond the Memory Limit. IEEE Trans. Parallel Distributed Syst. 29, 1 (2018),
99-114. https://doi.org/10.1109/TPDS.2017.2743708

Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2016. The End
of a Myth: Distributed Transactions Can Scale. CoRR abs/1607.00655 (2016).
arXiv:1607.00655 http://arxiv.org/abs/1607.00655

Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. Panda. 2017. High-Performance
Virtual Machine Migration Framework for MPI Applications on SR-IOV Enabled
InfiniBand Clusters. In 2017 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017. 143-152. https:
//doi.org/10.1109/IPDPS.2017.43

Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vincent
Liu, and Boon Thau Loo. 2019. Optimizing Declarative Graph Queries at Large
Scale. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 1411-1428. https://doi.org/10.1145/3299869.3300064
Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, and Pu-
rushotham Bangalore. 2017. Architectural implications on the performance and
cost of graph analytics systems. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017. ACM, 40-51.
https://doi.org/10.1145/3127479.3128606

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Sa-
vannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe
(Eds.). USENIX Association, 301-316. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/zhu

Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,
and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System
with Purely Sequential Adjacency List Scans. Proc. VLDB Endow. 13, 7 (2020),
1020-1034. https://doi.org/10.14778/3384345.3384351

Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-based Index Structures for Fast
RDMA-capable Networks. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. 741-758. https://doi.org/10.1145/3299869.3300081

https://doi.org/10.1145/2619239.2626299
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://doi.org/10.1145/3147213.3147232
https://arxiv.org/abs/1403.0701
http://arxiv.org/abs/1403.0701
http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf
https://doi.org/10.1145/3447786.3456230
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/850776.850780
https://doi.org/10.1145/850776.850780
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1109/ICDE.2014.6816692
http://hdl.handle.net/1721.1/16279
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1109/ICDE.2018.00114
https://arxiv.org/abs/1709.03110
http://arxiv.org/abs/1709.03110
https://doi.org/10.1145/3337821.3337823
https://doi.org/10.1109/TPDS.2017.2743708
https://arxiv.org/abs/1607.00655
http://arxiv.org/abs/1607.00655
https://doi.org/10.1109/IPDPS.2017.43
https://doi.org/10.1109/IPDPS.2017.43
https://doi.org/10.1145/3299869.3300064
https://doi.org/10.1145/3127479.3128606
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://doi.org/10.14778/3384345.3384351
https://doi.org/10.1145/3299869.3300081

