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ABSTRACT
In this information-accumulating world, each of us must learn
continuously. To participate in a new field, or even a sub-field, one
must be aware of the terminology including the acronyms that
specialists know so well, but newcomers do not.

Building on state-of-the art acronym tools, our end-to-end acro-
nym expander system called AcX takes a document, identifies its
acronyms, and suggests expansions that are either found in the
document or appropriate given the subject matter of the document.
As far as we know, AcX is the first open source and extensible
system for acronym expansion that allows mixing and matching
of different inference modules. As of now, AcX works for English,
French, and Portuguese with other languages in progress.

This paper describes the design and implementation of AcX,
proposes three new acronym expansion benchmarks, compares state-
of-the-art techniques on them, and proposes ensemble techniques
that improve on any single technique.

Finally, the paper evaluates the performance of AcX and related
work MadDog system in end-to-end experiments on a new human-
annotated dataset of Wikipedia documents. Our experiments show
that AcX outperforms MadDog but that human performance is
still substantially better than the best automated approaches. Thus,
achieving Acronym Expansion at a human level is still a rich and
open challenge.
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1 INTRODUCTION

Take a great historical literary figure of any culture and put
him or her in the present. That person might barely understand a
newspaper headline partly because of the acronyms that have no
expansion. For example, a headline of the Washington Post on May
6, 2022 reads: "FDA limits use of J&J vaccine over rare blood clots".

Contemporary scholars encounter similar challenges when en-
tering a new field or a sister field. A typical document about wireless
communication is practically unintelligible to a computer scientist
with its talk of 3gPP, 5G. BS etc. Documents written for specialists
often neglect even to define the acronyms they use [6].

Further, the proper expansion of an acronym depends on context.
For example, "ISBN" can mean International Standard Book Number
in a publishing context, Integrated Satellite Business Network in
a satellite communication context, and International Society for
Behavioral Neuroscience in a cognitive scientific context. Thus, any
system that hopes to help readers understand the intended meaning
of an undefined acronym in a document must expand that acronym
using its context.

1.1 High Level Architecture of an Acronym
Expansion System

An end-to-end acronym expander system comprises the following
two components: (i) Recognition (also known as extraction and
identification) of each acronym and (when present) its expansion
within a text. For example, if a given text has "ISBN (Integrated
Satellite Business Network)" then "ISBN" would be the acronym and
"Integrated Satellite Business Network" would be the expansion.
We call this in-expansion because this can be done for a particular
document based solely on its own text. (ii) In the case that an
acronym is not expanded in the text of a document, out-expansion
chooses an expansion from a large parsed corpus (training corpus)
of other documents (e.g., Wikipedia).

This paper makes the following system and data contributions:

• The end-to-end Acronym eXpander (AcX) system ac-
cepts a text document as input and outputs a list of acronym-
expansion pairs for the acronyms found in the document,
whether or not the expansions are in the document. As
far as we know, AcX is the first open source and extensible
system for acronym expansion that allows both the mixing
and the combination of different inference modules.
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• A benchmark of in-expansion techniques (in-expan-
sion benchmark).Wemake use of four biomedical datasets
previously proposed in the literature (i.e., Medstract [29],
BIOADI [29], Schwartz and Hearst [29], and Ab3p [29])
and one of the biggest sentence based datasets from the
scientific domain (i.e., SciAI [80]). Additionally, we have
created a new dataset composed of Wikipedia documents
from the Computing category.

• A benchmark of out-expansion techniques (out-expan-
sion benchmark). We evaluate out-expansion techniques
on three datasets from different domains previously used
in related work that contain documents (i.e., MSH [62], Sci-
WISE [62], and CSWiki [77]) and one that is constructed
from independent sentences from the scientific domain (i.e.,
SciAD [79] revised by Egan and Bohannon [20]).

• A benchmark of end-to-end acronym expander sys-
tems (end-to-end benchmark). We create the first end-to-
end dataset of human-annotated documents that includes
both in- and out-expansions. We have built a human-anno-
tated end-to-end benchmark because (i) previous anno-
tated in-expansion datasets do not include acronyms with
out-expansions and (ii) previous out-expansion datasets
use automatic mechanisms to identify acronyms, but those
mechanisms are neither accurate nor complete. Thus, hu-
man annotation offers a kind of gold standard.

This paper is organized as follows: Section 2 presents related
work, particularly for acronym expansion, but including references
to entity linking. Section 3 describes the AcX system. The next three
sections (Sections 4, 5, and 6) describe the proposed benchmarks
and analyze the benchmark experimental results. Section 7 contains
an error analysis of acronym expansion. Finally, Section 8 presents
the main conclusions and ideas for future work.

2 RELATEDWORK
This section describes the work that is closely relevant to acronym
expansion, including in-expansion only (Section 2.1), out-expansion
only (Section 2.2), and end-to-end systems (Section 2.3).

2.1 In-expansion
Pustejovsky et al. [63] present a technique that parses the input text
in order to reduce the context within which to search for a candidate
expansion. Schwartz and Hearst (SH) [67] describe a technique that
considers two possible placements of expansions and acronyms in
text (before or after), and chooses the correct expansion bymatching
acronym characters with potential expansion characters.

The MadDog [78] in-expander introduces variations of SH tech-
nique [67] which refine the candidate expansions using a sequence
of rules. Nabeesath and Nazeer [66] suggest new pattern heuristics
as well as space reduction heuristics. Azimi et al. [5] use the same
patterns as Schwartz and Hearst (SH) [67] but relax the heuristics
for acronym-expansion extraction: an acronym simply needs to
be a token composed of capital letters of some length 𝑛 and an
expansion should be composed of 𝑛 tokens.

Yarygina and Vassilieva [89] incorporate user feedback and
two decision tree classifiers in order to filter candidate acronym-
expansion pairs. Glass et al. [24] propose a technique that focuses on

several languages other than English, and scores candidate pairs by
using word embeddings in order to measure the similarity between
candidate acronyms and expansions.

Liu et al. [45] and Veyseh et al. [80] formalize the task of finding
expansions for an acronym as a sequence labeling problem solvable
by Conditional Random Fields (CRFs) [39] based techniques. The
SciDr [72] in-expander and Zhu et al. [91] also interpret acronym-
expansion extraction as a sequence labeling task and make use of
pre-trained BERT-based models coupled with ensemble techniques
to achieve higher model performance than previous techniques.
SciBERT is a languagemodel based on Transformers and pre-trained
on research papers from Semantic Scholar1. SciBERT is fine-tuned
in SciDr [72] with training data for the sequence labeling task.
The SciDr [72] in-expander uses an ensemble (blending) process
[71]. It splits the training data into train and validation sets. Five
different SciBERT models (e.g., number of epochs and learning rate
values) are constructed based on the training set. The expansions
of the SciBERT models and of the rule-based baseline technique of
the SDU@AAAI competition2 based on Schwartz and Hearst [67],
and additional syntactic features extracted from the word-to-tag
mapping are used to train five Conditional Random Fields (CRFs)
[39] in a 5-fold cross-validation setting. The ensemble technique
for these CRF models is based on hard voting.

Chopard and Spasić [14] also make use of word embeddings
and calculate theWord Mover’s Distance [38] in order to select the
correct expansion from the candidate expansions of an acronym.
Jacobs et al. [30] makes use of a Support Vector Machine (SVM) to
select the correct expansion from several candidate expansions for
an acronym. Similarly, to select the correct expansion for biomedical
documents, Kuo et al. [37] use an SVM as well as Logistic Regression
and Naïve Bayes models.

Another line of work extracts acronyms not from text but from
Web Data like query click logs [31, 76].

The fields of Named Entity Recognition and Coreference Reso-
lution address similar tasks. Named Entity Recognition [85] finds
entities mentioned in texts and labels them with high level cate-
gories like person and organization; or, for special applications, as
molecular biology entities covered in BioNLP tasks [17, 25] like cells
and proteins. Coreference Resolution [41, 47, 55] is the task of finding
all expressions that refer to the same entity in a text3. Thus, references
like I, my, she or even this person may refer to a given person entity.
Coreference Resolution can be applied to in-expansion where the
expansion and the acronym are references to the same entity.

2.2 Out-expansion
Classic Context Vector [2, 42, 62] is a typical baseline for out-
expansion. It represents the context of an acronym/expansion 𝑥

by the frequencies of the words in all documents containing 𝑥 .
Li et al. [42] propose two techniques based on word embeddings
from Word2Vec [49] to address the out-expansion problem. Their
best technique, called Surrounding Based Embedding, combines the
Word2Vec embeddings of thewords surrounding the acronym or the
expansion. Similarly to Surrounding Based Embedding, Ciosici et al.
1https://www.semanticscholar.org/
2https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/blob/master/code/
character_match.py
3https://nlp.stanford.edu/projects/coref.shtml
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[16] propose Unsupervised Acronym Disambiguation that replaces
each expansion occurrence in a collection of text documents by a
normalized token and retrains the Word2Vec google news model
[49] on that collection. The resulting model produces an embedding
for each normalized token, i.e., an expansion embedding.

Thakker et al. [77] creates document vector embeddings, using
Doc2Vec, for each document. For each set of documents 𝐷 contain-
ing an expansion for an acronym 𝐴, the system trains a Doc2Vec
model on 𝐷 which is used to infer the embedding for an input
document 𝑖 containing an undefined acronym 𝐴.

Charbonnier and Wartena [12] proposed an out-expansion tech-
nique based onWord2Vec embeddingsweighted by Term Frequency-
Inverse Document Frequency scores to find out-expansions for
acronyms in scientific document captions.

MadDog [78] proposes a sequential model to encode context
in sentences followed by a feedforward network to classify the
input sentence with an expansion. Competitors of the SDU@AAAI
competition [79] mainly use pre-trained language models based
on Transformer neural networks like BERT [19] and SciBERT [7].
SciDr [72] formulates the out-expansion problem as a substring pre-
diction task. Given a list of expansions concatenated with a sentence
as input, it uses the pre-trained language model SciBERT [7] and
retrains that model in 5 cross-validations of the sentences dataset to
predict the substring, i.e., start and end word indices corresponding
to the predicted expansion. The authors also assemble additional
SciBERT models trained on external data.

A related line of work explored the expansion of acronyms in
enterprise texts [22, 43]. For instance, in Li et al. [43], enterprise
textual documents as well as Wikipedia documents are used as
training data. Other works explored acronym out-expansion in
biomedical domains [44, 50, 51, 56, 63, 75, 83, 84, 90]. In our work,
we explore the general acronym expansion problemwhere the input
document domain or source is not previously known.

Entity Disambiguation (ED) (often referred to as Entity Link-
ing) is the task that links an entity found in text by Named Entity
Recognition (NER) to a knowledge base, usually Wikipedia pages
[53, 69, 70]. This field is analogous to out-expansion because an ex-
pansion can be seen as (and in some cases is) a Wikipedia page title.
Several techniques have been proposed to address this task. The sur-
vey [69] identifies the work of [87] that is part of the LUKE project4
as the best or one of the best on several datasets, some based on
Wikipedia. LUKE (Language Understanding with Knowledge-based
Embeddings) [86] is a pre-trained language model that learns to
predict masked words and entities. LUKE also employs a global
model that, given a set of entities in a document, assigns a ranking
among these entities based on confidence. Other works on Entity
Disambiguation explore the task in the face of limited resources
[23, 48, 58, 81, 82, 88] corresponding to zero-shot learning settings
where the labels (i.e., entities) in the test set are unknown at training
time. Such circumstances occur in acronym out-expansion because
some expansions have a very low frequency in document collec-
tions, sometimes appearing just once.

Moreover, Entity Disambiguation works have explored Natu-
ral Language Techniques that we also used in order to represent

4https://github.com/studio-ousia/luke

documents like Term Frequency–Inverse Document Frequency (TF-
IDF) [34] in [13], Latent Dirichlet Allocation (LDA) [9] in [61], and
Doc2Vec [40] in [68, 92].

At BioNLP Open Shared Tasks 2019, Bacteria Biotope [10] con-
siders the goal of linking microbial taxa, habitats, and phenotype
to biological knowledge bases. To enrich the input, the authors
provided the in-expansions for the acronyms found in their dataset
using Ab3p [73]. The winner [35] matched the Word2Vec embed-
dings of entities in the text with the concepts in the knowledge
base. However, an acronym as an entity mention would have the
same Word2Vec embeddings regardless of the document.

The Cross-Document Coreference Resolution task [46] matches
entities in one document to entities in other documents. Thus,
acronym out-expansion is a special case of Cross-Document Coref-
erence Resolution. However, out-expansion is easier, because the
various documents containing a particular expansion can be com-
pared collectively with the input document to determine whether
the expansion is appropriate for the acronym in the input document.

Less directly related, but insightful, is the literature on Word
Sense Disambiguation (WSD) [52, 54] because that work also must
make use of the context around a token (in our case, an acronym;
in the word sense literature, a word). Raganato et al. [64] proposed
a benchmark for word sense disambiguation.

2.3 End-to-end Acronym Expanders
To our knowledge, systems that expand acronyms use a pre-defined
dictionary of acronym-expansions [1, 26] as opposed to trying to
discover the proper expansion based on context.

Only two end-to-end systems use context for out-expansion.
First, Ciosici and Assent [15] propose an end-to-end abbrevia-
tion/acronym expansion system architecture that performs out-
expansion. Unfortunately, their demo paper provides few technical
details and their code is proprietary.

The MadDog system [78] contains a rule-based in-expander
technique that improves on [67] and an out-expander based on
neural networks: a sequential model to encode context followed
by a feedforward network to classify the input with an expansion.
They also trained their models on a large corpus of sentences.

Neither of these systems provides a framework with easy plug-
in for different in and out-expansions techniques nor uses other
data sources. Moreover, neither was evaluated on an end-to-end
acronym expander benchmark.

3 ACX: AN END-TO-END ACRONYM
EXPANDER SYSTEM

The AcX system (see Figure 1) consists of: (i) A Database Cre-
ation process which generates an Expansion Database5 that contains
documents, acronyms and their corresponding in-expansions. The
Expansion Database also associates each <acronym, in-expansion>
pair with a representation of the document where that acronym
and in-expansion were found. The representation characterizes
the content of the document. To support other domains and lan-
guages, we pass documents in the desired domains/languages to

5When benchmarking, the expansion database will provide us with both a training set
and a test set.
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Figure 1: Acronym eXpander (AcX) system. The top stream denotes the creation of the Expansion Database that associates each
<acronym, in-expansion> pair with some representation of the document(s) where that pair was found. The bottom stream
shows the processing of an input document 𝑑 by combining acronym in-expansion when possible and a representation of 𝑑 . For
an acronym 𝐴 with no expansion in 𝑑 , the representation of 𝑑 is compared with the representations in the Expansion Database
of documents containing 𝐴 to find the context-appropriate expansion.

the Database Creation process. (ii) The Acronym Expander Server
that accepts one document at a time from a user and outputs a list
of acronyms found in the input document and the corresponding
expansions found by the system (whether as in-expansions or as
out-expansions).

For each document with in-expansions, the Database Creation
process runs the following pipeline:

(1) an Acronym and In-Expansion Extractor obtains the <acro-
nym, expansion> pairs from the document using onlywithin-
document evidence.

(2) a Representator (there are many possible representators e.g.,
Latent Dirichlet Allocation that output topics) maps the doc-
ument to a document representation that holds document
contextual information.

(3) the Expansion Database stores the in-expansions, acronyms,
and document representations on disk, currently SQLite
[28].

Given a new input document 𝑑 supplied by a user, the Acronym
Expander Server executes the following pipeline:

(1) applies the Acronym and In-Expansion Extractor used to
build the Expansion Database to extract all the acronyms
having expansions in the input document 𝑑 .

(2) utilizes the same Representator (say, topics from Latent
Dirichlet Allocation) used to characterize each document
in the Expansion Database to map 𝑑 to a document repre-
sentation.

(3) for each acronym𝐴 having no in-expansion in 𝑑 , the server
runs the Out-Expansion Predictor to choose a context-appro-
priate out-expansion. Formally, an expansion 𝐸 is selected
for an acronym 𝐴 in 𝑑 if the representations of the docu-
ments 𝑑𝑜𝑐 (𝐴, 𝐸) with expansion 𝐸 share more character-
istics with the representation of 𝑑 by some criteria (e.g.,

closest cosine similarities or labeled by some machine learn-
ing classifier for 𝐴) than the documents in 𝑑𝑜𝑐 (𝐴, 𝐸 ′) for
every alternative expansion 𝐸 ′. Thus, for example, if the
context of 𝑑 is publishing, then "PDF" should likely expand
to "Portable Document Format" but if the context of 𝑑 is
probability or statistics, then "PDF" should expand to "prob-
ability distribution function."

For a language other than English, the in- and out-expansion
techniques should be tuned to the new language. They may benefit
from changing preprocessing steps such as tokenization for the
new language or from adopting a language model trained on the
new language or even adopting a multilanguage model.

3.1 Acronym and In-Expansion Extraction
Acronym and in-expansion extraction can use rule-based or ma-
chine learning techniques. In our rule-based implementations (i.e.
Schwartz and Hearst [67] and MadDog [78]), we used roughly the
following three-step process as described in [57]:

(1) Acronym extraction: identifies acronyms in a document, e.g.,
PDF in Figure 1. We modified Schwartz and Hearst [67] to
find candidate acronyms even when there is no expansion
found in a given document. The technique excludes tokens
in which all alphabetic characters except the first character
are lower case. We also reject acronyms of two characters
where the first is a letter and the second is a dot "." to avoid
person names.

(2) Candidate expansion extraction: builds candidate pairs of
acronyms and possible in-expansions <acronym, expan-
sion> from information in the document, e.g., <PDF, formats
including the portable document format> from Document 1 in
Figure 1.

(3) Candidate refinement: evaluates each candidate pair using
a variety of heuristics (e.g., find the shortest expansion that
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matches the acronym) to obtain a final in-expansion for
each acronym that has at least one candidate in-expansion
within the document, e.g., portable document format from
<PDF, formats including the portable document format>.

For the in-expanders of SciBERT and SciDr, the extraction of
acronyms and expansions is formalized as a sequence tagging prob-
lem where each token can have one of three tags: (i) a token in an
acronym (e.g., CD in CD-ROM), (ii) a token in an expansion, or (iii)
other token. For example, from Document 1 in Figure 1, PDF would
be tagged as an acronym token, each token portable, document, and
format would be tagged as a token in an expansion. The remaining
tokens in Document 1 would have the "other token" tag. AcX builds
a machine learning model on the tagged data. The output of such
machine learning models is then converted to acronym-expansion
pairs by matching the acronym characters against expansions.

Our system supports ensemble in-expansion through SciDr. That
ensemble technique can be easily extended to include additional
in-expansion techniques.

3.2 Representator
Representors in the AcX system summarize documents in order to
capture knowledge about their semantics. Although AcX supports
sentence-level out-expansion techniques, using the whole docu-
ment is more effective than using just parts of the text because the
whole document captures the overall context better.

Some representators assign a set of topic terms to a document. If
two documents have many topic terms in common, then they are
considered to be semantically related.

Other representators use embeddings [40] to characterize a doc-
ument. An embedding is a vector of real numbers in a high dimen-
sional space. Embedding techniques map an object encoded in a
one-hot representation, a very sparse and high dimensional vector
of binary values, into a very dense and lower dimensional vector of
real values (i.e., embedding). A small distance between embedding
vectors suggests document similarity.

AcX encloses several techniques that can semantically represent
an entire set of documents that contain the same expansion for
a given acronym. Specifically, let 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) denote the set of full
document texts in which a given acronym 𝐴 is defined by a single
expansion 𝐸 (e.g., all documents in which acronym PDF is explicitly
expanded as portable document format):

Here are some representations of such a collection of documents:
• Classic Context Vector (CCV) [2], represents an expansion 𝐸

by the set of words in 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) along with their counts.
• Document Context Vector (DCV) (our variation of context

vector), builds on context vector, however it represents
each document 𝑑 ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) individually by the set of
word occurrences in 𝑑 . For example, the word occurrences
corresponding to Document 2 in Figure 1 would contain,
among others, the values {of: 3}, {the: 2}, {derive: 1}, {analytic:
1}, {form: 1}.

• Term Frequency–Inverse Document Frequency (TF-IDF) [34],
gives a large weight to a term 𝑡 in each document 𝑑 ∈
𝑑𝑜𝑐𝑠 (𝐴, 𝐸) if 𝑡 is found frequently in 𝑑 and infrequently in
the entire document corpus. Each document is then char-
acterized by its highly weighted terms. For example, the

TF-IDF score for the word the in Document 2 in Figure 1
is 2

27 · 𝑙𝑜𝑔( 22 ) = 0 because this word appears in both docu-
ments.

• Latent Dirichlet Allocation (LDA) [9] assigns topics to doc-
uments using a Dirichlet probabilistic model. For exam-
ple, Document 2 in Figure 1 could be represented by the
following topics: topic1={{analytics: 0.7}, {series: 0.3}} and
topic2={{functional: 0.8}, {form: 0.2}}.

• Doc2Vec [40] is a document embedding technique based
on Word2Vec [49] which assigns vectors to words in such
a way that words that appear in the same context have a
high cosine similarity. For example, the words functional
and conditional would be assigned similar vectors. Thus,
using the principles of Word2Vec, Doc2Vec assigns vectors
to entire documents. For example, documents 1 and 2 in
Figure 1 would be assigned mutually distant vectors.

• Sentence Bidirectional Encoder Representations from Trans-
formers (SBERT) [65] constructs sentence embeddings that
can be compared to determine sentence similarity. AcX
splits the input document text to fit into the SBERT input
limit (e.g., 384 tokens), and then we average the resulting
embedding vectors to get a document representation.

3.3 Out-Expansion Predictor
To choose an out-expansion for an acronym 𝐴 in an input docu-
ment 𝑑 having no expansion for 𝐴, the Out-Expansion Predictor
component considers each candidate out-expansion 𝐸 for 𝐴 and
compares 𝑑 to some representation of 𝑑𝑜𝑐𝑠 (𝐴, 𝐸).

In the case of Classic Context Vector (CCV), we compare 𝑑

with the vector representation of 𝑑𝑜𝑐𝑠 (𝐴, 𝐸). For the remaining
techniques, we compare 𝑑 with each document representation of
𝑑 ′ ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸).

Using cosine similarity, the Out-Expansion Predictor will choose
an out-expansion 𝐸 over a different expansion 𝐸 ′ if any document
𝑑 ′ ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) is more similar to 𝑑 than all 𝑑 ′′ ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸 ′).

The AcX system also supports classification-based approaches
that work as follows. Consider all the documents, denoted 𝑎𝑙𝑙𝑑𝑜𝑐𝑠
(𝐴) containing in-expansions of acronym 𝐴. Some documents in
𝑎𝑙𝑙𝑑𝑜𝑐𝑠 (𝐴) have an in-expansion of 𝐸1 for 𝐴, some have 𝐸2 for 𝐴
and so on. Given the representations of documents in 𝑎𝑙𝑙𝑑𝑜𝑐𝑠 (𝐴) as
features and the expansions (𝐸1, 𝐸2, etc) as labels, the out-expansion
problem becomes a machine learning classification problem. When
a new document 𝑑 is given to AcX, the representation of 𝑑 is input
to the classifier which labels 𝑑 with an expansion.

The classifiers AcX support so far are: (i) Support Vector Ma-
chines (SVMs) [18], Logistic Regression (LR) [32], and Random
Forests (RF) [11]. For Support Vector Machines and Logistic Re-
gression, AcX uses the LibLinear [21] implementations included in
sckit-learn toolkit [60]. For Random Forests, it uses the scikit-learn
[60] implementation.

In addition to these classifiers, for evaluation purposes or for any-
one who wants to try other techniques, AcX supports the following
additional techniques: Surrounding Based Embedding (SBE) [42],
Thakker et al. [77], Unsupervised Abbreviation Disambiguation
(UAD) [16], the SciDr out-expander (SciDr-out) [72], the MadDog
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out-expander (MadDog-out) [78], and LUKE [87], a state-of-the-
art technique for Entity Disambiguation. For UAD, SciDr-out and
MadDog-out, AcX performs sentence segmentation and, given the
results from each sentence, decides which expansion to assign to
the text. For UAD, we select the most frequent predicted expansion
among the sentences in the document.

We have extended SciDr-out to consider all the sentences con-
taining the acronym𝐴 instead of just one sentence as in SciDr-out’s
original implementation. SciDr-out associates an acronym with its
possible expansions concatenated together. The system then finds
the substring of that concatenated string with the highest probabil-
ity and outputs that as the expansion. For example, the concatenated
expansion of "PDF" might be "probability density function portable
document format". SciDr-out will choose some substring of that
concatenated expansion.

We have extended MadDog-out to enable it to train in any new
documents, instead of using only their original machine learning
models. MadDog-out processes the last sentence of any document
containing acronym 𝐴 to determine the most likely expansion.

For LUKE, we had to modify the internals to work with acronyms
and expansions. We use their pre-trained model and perform fine-
tuning in our training data using the procedure described by the
authors in [87], except that we allow the entity embeddings (now
expansion embeddings) to be updated during training. This modifi-
cation allows the generation of embeddings for expansions out of
the original model vocabulary.

4 IN-EXPANSION BENCHMARK, EVALUATION
AND RESULTS

We describe our benchmark of in-expansion techniques in Sec-
tion 4.1 and evaluate state-of-the-art techniques on this benchmark
in Section 4.2.

4.1 A Benchmark of In-expansion Techniques
This section describes the benchmark we developed to evaluate in-
expansion techniques. Section 4.1.1 details the datasets used in this
benchmark. Section 4.1.2 lists the in-expansion techniques that we
implemented for this benchmark. Section 4.1.3 defines the metrics
that we used to evaluate the in-expansion extraction techniques.

4.1.1 Datasets. The datasets included in this in-expansion bench-
mark are:

Medstract: This dataset is composed of 199 randomly se-
lected MEDLINE6 abstracts from the results of a query
on the term "gene". The abstracts were manually annotated
and then the annotations were corrected and improved by
Schwartz and Hearst [67], Ao and Takagi [3], Pustejovsky
et al. [63], Yarygina and Vassilieva [89] and Doğan et al.
[29]. We use the last revised version of Doğan et al. [29]
that contains 159 acronym-expansion pairs.

Schwartz and Hearst: This dataset consists of 1,000 randomly
selected MEDLINE abstracts from the results of a query on
the term "yeast". The abstracts were manually annotated
by Schwartz and Hearst [67] and revised by Doğan et al.

6https://www.nlm.nih.gov/bsd/medline.html

[29]. The revised version that we use contains 979 acronym-
expansion pairs.

BIOADI: This dataset contains 1,201 abstracts from the Bio-
Creative II gene normalization dataset. The dataset was
original annotated by Kuo et al. [37] and revised by Doğan
et al. [29]. It contains 1,720 acronym-expansion pairs.

Ab3P: This dataset results from the random selection of MED-
LINE 1,250 abstracts. The dataset was manually annotated
by Sohn et al. [73]. We use the revised version of Doğan et
al. [29] that contains 1 223 acronym-expansion pairs.

SciAI: This dataset results from processing 6,786 English
arXiv7 papers. Those papers were split into sentences and
sent to Amazon Mechanical Turk (MTurk) to be annotated
by humans, resulting in 9,775 acronym-expansion pairs.
This dataset was annotated for both acronyms and acronym-
expansion pairs. The final dataset has 17,506 sentences,
where 1% do not contain acronyms and 24% do not con-
tain expansions. We use the SDU@AAAI competition [79]
version8 that was initially proposed by Veyseh et al. [80].

End-to-end: We developed a dataset that consists of 163 Eng-
lishWikipedia documents randomly selected from the Com-
puting category9 in Wikipedia. It contains 1,139 acronym-
expansion pairs. For this in-expansion benchmark, we con-
sider only the acronym-expansion pairs with expansion in
text. (Later, in Section 6.1, we use the whole set of acronym-
expansions pairs to evaluate end-to-end systems.) Each
document was annotated by two students among our 50 or
so volunteers. We collected as many annotations as possible
during approximately four weeks. Each student annotated
at least two documents. During the annotation process,
each student identified each acronym in the document and
mapped it to an expansion. Each acronym-expansion pair
was labeled by the annotators, indicating whether the ex-
pansion was present in text. Any conflict between anno-
tators was manually resolved by the authors. The Inter-
Annotator Agreement (IAA) among each annotators (ex-
cluding the third annotator, the reviewer) using Krippen-
dorff’s alpha [36] with the MASI distance metric [59] is 0.68
for in-expansion pairs and 0.33 for out-expansion pairs. In
a hypothetical scenario, if both annotators had given the
same acronym-expansions, then the score would be 1. In
this case, the human annotators disagree on out-expansions
more often than on in-expansions. This is unsurprising be-
cause out-expansion requires consulting text sources other
than the document at hand.

4.1.2 In-expansion techniques. This benchmark includes the fol-
lowing in-expansion techniques (that are supported by our AcX
system described in Section 3):

Rule-based: Schwartz and Hearst (SH) [67] technique and
the MadDog [78] in-expansion (MadDog-in) technique
which builds on the Schwartz and Hearst algorithm.

Machine Learning: SciBERT based technique used in [72]
and the SciDr [72] in-expansion (SciDr-in) techniquewhich

7https://arxiv.org/
8https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
9https://en.wikipedia.org/wiki/Category:Computing
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ensembles SciBERT models and a rule-based technique
based on SHwith Conditional Random Fields. Moreover, we
consider models used by these machine learning techniques
that are trained with external data besides the individual
training sets of each dataset. The external data is composed
of Medstract, Schwartz and Hearst, BIOADI, and Ab3P train
sets if the test set is biomedical. For SciAI and End-to-end
test sets, the external data consists of all train sets (i.e.,
biomedical datasets, SciAI, and End-to-end).

4.1.3 Performance metrics. Our benchmark uses the following met-
rics. The metrics apply to acronyms alone as well as to acronym-
expansion pairs. The acronyms can be either in singular or plural
form to be considered equal, and the expansions are equal if their
lower case versions without dashes have an edit distance less than
3 or if the first 4 characters of each word are equal. If the same
acronym or pair appears several times in the same document, it is
counted only once:

Acronym Pair Precision: the number of correctly extracted
acro- nym pairs divided by the number of acronym pairs
extracted by that technique over all documents.

Acronym Pair Recall: the number of correctly extracted acronym
pairs divided by the number of distinct acronym pairs
present over all documents.

Acronym Pair F1-measure: the harmonic mean of the pre-
cision and recall of the system.

Training time: CPU or GPU time in seconds to train the
machine-learning models that are used by the in-expansion
technique.

Execution time: CPU or GPU time in seconds that the in-
expan- sion technique takes to extract acronym-expansion
pairs from a document in the dataset.

4.2 In-expansion Experimental Evaluation
In this section, we evaluate the in-expansion techniques using the
benchmark presented in Section 4.1.
Setup. The in-expansion experiments were performed on a ma-
chine with an Intel® Core™ i5-4690K CPU with 4 cores, and 16
GB of RAM and an NVIDIA GeForce GTX 1070. Only SciBERT and
SciDr-in used the GPU.
Results. We report the Precision, Recall, and F1-measure values
for the average of the biomedical datasets (i.e., Medstract, Schwartz
and Hearst, BIOADI and Ab3P), SciAI and End-to-end datasets in
Table 1. The additional external data used to train SciBERT and
SciDr-in for the biomedical application includes the data of all
biomedical datasets excluding the test set (30%). For SciAI and
End-to-end datasets, the external data used to train SciBERT and
SciDr-in includes all documents in the other datasets (i.e., Medstract,
Schwartz and Hearst, BIOADI, Ab3p, SciAI, and End-to-end). We
report the fine-grained results per biomedical dataset and execution
times per dataset in the extended version of this paper 10.
Interpretation: In this in-expansion benchmark, rule-based tech-
niques SH and MadDog-in generally perform best for all datasets.
The one exception is on the SciAI dataset where machine learning
techniques from SciDr-in and SciBERT work better.
10https://github.com/joaolmpereira/acx-acronym-expander/tree/vldb22/docs/acx_
extended.pdf

Rule-based systems work well for in-expansion, because acro-
nyms follow human-understood rules, viz. roughly, acronyms should
be in upper-case, each letter should represent a word, and the ex-
pansion should either precede or follow the first use. So it is natural
that a rule-based system would do well. Machine learning work
better when given more examples (SciAI dataset), however even
ensembled with a rule-based technique (SciDr) the results were
generally inferior to using the rule-based technique by itself.

While the expansions found by the rule-based techniques are not
a superset of those found by the machine learning techniques, SciDr
often fails because it adds extra words to the expansion string. On
the other hand, SciDr can find unusual cases where not all acronym
chars belong in the expansion, e.g., expansion PIN-FORMED of pin1.
Execution time analysis. Regarding execution time, we observed
from our experiments that the rule-based techniques are much
faster than the machine learning techniques. SH is the fastest tech-
nique on every single dataset taking less than 0.06 seconds on
average to extract acronym-expansion pairs from a document.
In summary: Use a rule-based system for in-expansion, either SH
orMadDog-in.

5 OUT-EXPANSION BENCHMARK,
EVALUATION AND RESULTS

We describe our benchmark of out-expansion techniques in Sec-
tion 5.1 and evaluate state-of-the-art techniques on this benchmark
in Section 5.2.

5.1 A Benchmark of Out-expansion Techniques
Section 5.1.1 describes the datasets used in this benchmark. Sec-
tion 5.1.2 explains the steps used to prepare those datasets. Sec-
tion 5.1.3 lists the out-expansion techniques included in the bench-
mark, grouped by type. Finally, Section 5.1.4 describes the metrics
to evaluate those out-expansion techniques.

5.1.1 Datasets. The datasets included in our out-expansion bench-
mark are:

MSH dataset [33] contains biomedical document abstracts
from the MEDLINE (Medical Literature Analysis and Re-
trieval System Online) corpus used in Li et al. [42], Proko-
fyev et al. [62]. This dataset was automatically annotated
using citations from MEDLINE and the ambiguous terms
with MeSH headings identified in the Metathesaurus11. We
use the original texts and the revised labels from Li et al.
[42];

SciWISE dataset consists of document abstracts of the Physics
dataset used in Li et al. [42] and Prokofyev et al. [62]. This
dataset was annotated by human experts, and it includes
expansions either containing at least 2 words or a single
word with at least 14 characters.

CSWiki (Computer Science Wikipedia) dataset created in
Thakker et al. [77] contains documents from different fields
that contain acronyms used in computer science. Expan-
sions were extracted by parsing the content of English
Wikipedia disambiguation pages of acronyms used in com-
puter science, for example:

11https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
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Table 1: In-expansion techniques Precision, Recall, and F1-measures for acronym and pair extraction and for the average of the
biomedical datasets, SciAI dataset, and User Generated dataset.

Acronym and
In-expansion
Technique

Biomedical Datasets – Avg. SciAI End-to-end
Acronym Pair Acronym Pair Acronym Pair

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
SH 99.31% 81.88% 89.72% 96.33% 79.52% 87.07% 96.02% 82.36% 88.67% 92.85% 79.64% 85.74% 91.00% 70.54% 79.47% 86.00% 66.67% 75.10%
MadDog-in 98.45% 58.65% 73.35% 92.34% 54.97% 68.82% 98.63% 86.72% 92.30% 96.91% 85.21% 90.68% 92.78% 69.76% 79.64% 88.65% 66.67% 76.10%
SciBERT 85.22% 68.22% 75.71% 70.01% 56.01% 62.15% 95.69% 94.05% 94.86% 92.21% 90.64% 91.42% 65.62% 48.83% 55.99% 58.34% 43.41% 49.77%
SciBERT with
External data 88.27% 75.98% 81.65% 75.97% 65.38% 70.27% 96.18% 94.05% 95.11% 92.50% 90.45% 91.46% 49.67% 58.91% 53.90% 45.09% 53.48% 48.93%

SciDr-in 90.56% 63.40% 74.53% 78.13% 54.76% 64.34% 97.47% 92.47% 94.90% 94.47% 89.63% 91.98% 77.08% 57.36% 65.77% 68.75% 51.16% 58.66%
SciDr-in with
External data 91.91% 76.12% 83.26% 85.55% 70.86% 77.50% 97.58% 91.78% 94.59% 93.81% 88.24% 90.94% 86.36% 58.91% 70.04% 81.81% 55.81% 66.35%

https://en.wikipedia.org/wiki/PDF_(disambiguation).
SciAD This dataset was prepared for the out-expansion SDU@

AAAI-21 competition [79]. It is based on the SciAI in-expan-
sion dataset, described in Section 4.1.1. We use the revised
version12 created by Egan and Bohannon [20] who removed
duplicate sentences from the original training and valida-
tion sets.

5.1.2 Data Preparation. The data preparation steps are roughly
the same for each out-expansion technique:

(1) Dataset Splitting: We split each dataset into train and
test sets (respectively 70% and 30% of the documents of the
original dataset). We then apply 5-fold cross validation on
the train dataset in order to tune the hyperparameters of
each out-expansion technique. The hyperparameter-tuned
technique is then tested on the yet unseen 30% of the data.

(2) ExpansionConsolidation: For the expansions of acronym
𝐴 in each dataset, we apply an approximate duplicate detec-
tion process that groups expansion strings that correspond
to the same expansion meaning. For example, portable doc-
ument format and Portable-Document-Formats are two dis-
tinct strings that refer to the same real expansion. As crite-
ria, we consider two expansions to be equal if their lower
case versions without dashes have an edit-distance less
than 3 or if the first 4 characters of each word are equal.
Equal expansions are consolidated by mapping them all to
the most frequent expansion.

(3) Expansion Removal:When testing the accuracy of out-
expansion techniques on some document 𝑑 , we associate
any acronym 𝐴 in the document with its in-expansion
𝐼𝑛(𝐴), if present. Then, we replace all occurrences of the
in-expansion 𝐼𝑛(𝐴) in text by 𝐴 alone.

(4) Tokenization:We apply the word tokenization from the
Natural Language Toolkit (NLTK) [8] to obtain only al-
phanumeric tokens. Additionally, we remove stop words
using NLTK and numeric tokens;

(5) Token Normalization: We transform each token into its
stem, e.g., probable, probability, and probabilities all map to
probabl. We use the Porter Stemmer algorithm from NLTK.

The preparation of the MSH and SciWISE datasets follows the
preprocessing reported in Li et al. [42], so we apply all the prepa-
ration steps above except token normalization. The five steps are
consistent with the pre-processing steps used in Thakker et al. [77]

12https://github.com/PrimerAI/sdu-data

for the CSWiki dataset. For SciDr-out and MadDog-out, we apply
only the first three steps, because these techniques replace the last
two steps with steps that depend on the language models of the
neural networks they use.

5.1.3 Out-expansion Techniques. This benchmark includes the fol-
lowing groups of out-expansion techniques:

Classical Techniques: Weuse two baselines:Random that
randomly assigns a possible expansion to an acronym; and
Most Frequent which always selects the most frequent
expansion found in our training data as measured by the
number of occurrences in distinct documents. We use the
Cosine similarity (Cossim) with the Classic Context Vector
(CCV) [42], Document Context Vector (DCV) - variant of
Classic for each document, Surrounding Based Embedding
(SBE) [42], and Thakker et al. [77].

Sentence-oriented Techniques: We include related work
techniques that expect a sentence as input (instead of a doc-
ument) and adapt them as described in the AcX overview
(Section 3.3). These include Unsupervised Abbreviation
Disambiguation (UAD) [16], MadDog [78] out-expander
(MadDog-out), and SciDr [72] out-expander (SciDr-out).
We also use SciDr-out with External Data consisting of
the Wikipedia pages that contain an expansion found in
the training data.

Representator Techniques: We include Cossim with the
document representation techniques described in Section
3.2, that we have adapted from natural language processing:
Term Frequency-Inverse Document Frequency (TF-IDF),
Latent Dirchlet Allocation (LDA), Doc2Vec , and Sentence
Bidirectional Encoder Representations from Transform-
ers (SBERT). We used SBERT model all-mpnet-base-v2,
the top performing model in Sentence Similarity tasks (14
datasets)13. all-pnet-base-v214 is based on MPNet model
[74] that outperforms BERT and RoBERTA in both quality
and speed. all-mpnet-base-v2 was trained on one billion
sentences pairs from a diverse set of data sources.

Classification Techniques: We created a complete new cat-
egory of out-expansion techniques that use the outputs of a
representator as features for a Machine Learning classifier,
specifically, Random Forests (RF), Logistic Regression (LR),
and Support Vector Machines (SVM). Each acronym has its

13https://www.sbert.net/docs/pretrained_models.html#model-overview
14https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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own classifier trained with the features of the documents
that contain an expansion for the acronym (e.g., acronym
PDF will have a random forest RandFor(PDF) based on doc-
uments that contain an in-expansion for PDF). Based on
the features of a target document, the classifier will choose
the appropriate expansion as explained in Section 3.3.

Combination of Representator Techniques: The final set
of out-expansion techniques that we assembled consists of
combining two representators’ outputs, namely theDoc2Vec
with a Context Vector (either Classic or Document), as in-
put to predictors: CCV + Doc2Vec and DCV + Doc2Vec.
Combinations are constructed by concatenating the outputs
together into a single feature vector.

Ensembler Techniques: We support two ensembler tech-
niques: Hard voting where each technique votes for its
preferred expansion regardless of its confidence; and Soft
voting that takes the averages of confidences per expan-
sion. The confidences are normalized at the individual tech-
nique level in such a way that their sum is 1. For the ex-
periments, we assembled the following 7 out-expansion
techniques: Cossim with CCV, Cossim with TF-IDF, Cos-
sim with Do2Vec, SVM with Doc2Vec, Cossim with SBERT,
SVM with SBERT, and SciDr-out.

5.1.4 Performance Metrics. Our benchmark uses the following
metrics:

Out-expansion accuracy: is the accuracy of predicting the
right expansion for a given acronym in a textual document.
Intuitively, this is the fraction of acronym-expansions that
are correctly predicted. Accuracy is also used in previous
out-expansion works [16, 42, 77] and analogous bench-
marks, e.g., for Word-Sense-Disambiguation [64]. Note that
an acronym may appear many times in the same document
and many times across documents. In our measure, if 𝐴 is
in 𝑘 documents, it is counted 𝑘 times, but if 𝐴 is present 𝑗
times in the same document, it is counted only once in that
document.

Out-Expansion macro averages: Recently, Veyseh et al. [78,
80] started using a different set of metrics that we have im-
plemented and measured for completeness. Those metrics
are macro-averages of Precision, Recall and F1-measures
for acronym-expansions pairs. So, we calculate precision,
recall, and F1-measure independently for each acronym-
expansion in the training data.

Representator execution time: is the execution time to cre-
ate representations of training documents.

Average execution time per document: is the average ex-
ecution time to predict expansions for acronyms in a docu-
ment.

5.2 Out-expansion Experimental Results
Setup. For out-expansion on the benchmark presented in Sec-
tion 5.1, we ran the experiments on a GoogleCloud platform15

machine with the following specifications: Intel Broadwell CPU

15https://cloud.google.com/

platform with 8 cores, 30GB to 80GB of RAM (Random Access Mem-
ory). For SBERT, MadDog-out, SciDr-out, and LUKE half of a Tesla
K80 GPU board was used.

To reduce the duration of experiments, we first find the represen-
tator’s hyperparameters using cosine similarity (a parameter-less
metric). Next, we find the best out-expansion predictor model hy-
perparameters.
Results. Table 2 reports the out-expansion accuracy and macro
F1-measure to predict the expansions of acronyms in a document
for each dataset; and the average document processing times. The
Technique Group column identifies the out-expansion group that
the technique belongs to, as organized in Section 5.1.3 (e.g., Classi-
cal). The Predictors column identifies the out-expansion predictor
technique (e.g., Cossim or an ML classifier) that takes a given doc-
ument representation to predict an expansion (e.g., Cossim). The
Representators column indicates the technique used to generate a
document representation (e.g., Doc2Vec). We did not run SciDr-out
with External Data on CSWiki dataset because the external data
(i.e., Wikipedia data) would overlap with CSWiki itself. The exe-
cution time of each ensemble technique is just the additional time
required to decide on an expansion given the input predictions and
confidence measures.

In these out-expansion experiments, we measure the accuracy
andmacro F1 only on the acronym-expansions pairs whose acronym
is ambiguous (i.e., have at least two expansions in the training data)
and whose in-expansions are in the training data.

The best individual techniques (average above 89% of accuracy)
in descending order are: Cossim with SBERT, SVM with SBERT,
SciDr-out, Cossim with CCV, Cossim with TF-IDF, Cossim with
DCV, Cossim with Doc2Vec alone or with DCV, and SVM with
Doc2Vec. Regarding statistical significance, Cossim with SBERT
is the best for SciWISE. For MSH, SVM with Doc2vec combined
with either CCV or DCV score higher accuracy. However, they are
not statistically significantly better than: SVM with either Doc2Vec
or SBERT, Cossim with SBERT, and LR with Doc2Vec. SciDr-out
achieves higher accuracy for CSWiki, but is not statistically better
than SVM with SBERT. Finally, for SciAD, SciDr-out with external
data scores higher accuracy but not statistically significantly better
than: SciDr-out and Cossim with SBERT.
Interpretation: An important question in interpreting these nu-
merical results is to understand why some techniques are better
than others.

For out-expansion, the best approaches SciDr-out and Cossim/
SVM with SBERT are based on language models trained on large
data collections, but that does not tell the whole story. SciDr-out
uses the particularly effective strategy of predicting the expan-
sion span from the list of possible expansions passed as input.
Further, SciDr-out is an ensemble of models trained in a 5-fold
cross-validation setting. SBERT augments transformer language
models to sentence similarity tasks using a siamese architecture
that generates embeddings for each sentence and is trained to max-
imize similarity. Those embeddings turn out to be very informative
regarding the context for documents: both Cossim or SVM com-
bined with SBERT obtained on average the highest accuracy among
individual techniques.

While LUKE’s transformer language model enables the creation
of entity embeddings, the results are not the best for acronyms,
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Table 2: Out-expansion accuracy (Acc) and macro F1-measure (MaF1). Values marked as bold indicate the best Acc obtained by
an individual technique and by an ensembler, respectively in that dataset. A technique T1 is considered better than T2 if a
non-parametric significance test (based on shuffling[27]) indicates that the difference in their means has a p-value < 0.05. Thus,
even though each column has a highest mean value for some technique 𝐻 which will be bolded, the value of a technique 𝑇 will
also be bolded if 𝐻 is no better than 𝑇 based on the p-value criterion. We apply the same p-value criteria to bold ensemblers
on all datasets, except on ScienceWISE where we apply the statistical test to each ensembler against Cossim SBERT (the best
technique on ScienceWISE).

Out-expansion Technique ScienceWISE MSH CSWiki SciAD Average
Technique
Group Predictors Repre-

sentators Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1 Exec
Times

Classical

Random 47.72% 46.10% 47.04% 45.49% 14.54% 14.21% 33.06% 32.22% 35.59% 34.51% 0.00
Most Frequent 70.52% 49.31% 50.30% 32.32% 47.76% 20.37% 69.08% 37.64% 59.41% 34.91% 0.00

Cossim
CCV 91.34% 80.72% 97.62% 97.65% 77.96% 65.01% 92.28% 89.03% 89.80% 83.10% 0.07
DCV 89.51% 78.69% 96.18% 96.07% 78.59% 65.86% 93.67% 87.08% 89.49% 81.92% 0.15
SBE 88.07% 75.89% 95.84% 95.24% 74.60% 63.30% 86.50% 80.76% 86.25% 78.80% 0.05

Thakker 87.77% 77.38% 92.53% 91.68% 73.16% 63.86% 84.36% 73.21% 84.46% 76.53% 3.79
Entity Disam. LUKE 83.42% 57.33% 67.47% 58.95% 52.65% 46.60% 50.68% 42.53% 63.55% 51.35% 17.07

Sentence-
-Oriented

UAD 43.69% 46.73% 93.92% 92.55% 12.94% 11.60% 34.98% 45.75% 46.38% 49.16% 0.01
MadDog-out 89.13% 68.84% 94.09% 93.16% 57.03% 47.71% 87.38% 73.23% 81.91% 70.73% 0.37
SciDr-out 88.22% 77.45% 97.23% 96.76% 84.19% 72.67% 94.48% 88.94% 91.03% 83.96% 1.28
SciDr-out with
External Data 89.89% 77.86% 97.58% 97.22% N/A N/A 94.71% 89.42% N/A N/A N/A

Repre-
sentator Cossim

TF-IDF 91.26% 81.82% 97.62% 97.57% 77.80% 65.36% 91.79% 83.48% 89.62% 82.06% 2.53
LDA 85.56% 73.94% 93.81% 93.28% 71.89% 60.49% 84.56% 73.39% 83.95% 75.28% 0.02
Doc2Vec 92.86% 83.14% 98.33% 98.07% 77.16% 65.25% 92.05% 82.96% 90.10% 82.35% 0.10
SBERT 94.83% 85.32% 98.78% 98.80% 81.47% 67.67% 94.19% 89.76% 92.32% 85.39% 0.30

Classi-
fication

RF
TFIDF 70.82% 52.03% 84.53% 76.78% 32.11% 23.14% 87.64% 68.90% 68.77% 55.21% 23.79
LDA 70.75% 54.13% 95.64% 92.84% 67.57% 50.78% 82.32% 61.33% 79.07% 64.77% 1.20
Doc2Vec 79.18% 61.34% 96.58% 95.37% 66.29% 41.55% 84.39% 62.43% 81.61% 65.17% 1.36

LR
TFIDF 71.05% 54.47% 93.41% 88.29% 71.89% 45.59% 80.63% 55.06% 79.24% 60.85% 11.84
LDA 71.13% 51.49% 88.66% 80.02% 71.73% 48.77% 80.08% 55.16% 77.90% 58.86% 0.02
Doc2Vec 88.83% 78.35% 98.87% 98.72% 76.68% 57.97% 90.75% 77.95% 88.78% 78.25% 0.11

SVM

TFIDF 81.84% 62.13% 94.71% 91.27% 77.16% 53.54% 91.01% 78.24% 86.18% 71.29% 3.23
LDA 78.88% 59.80% 93.64% 91.16% 71.89% 51.11% 85.59% 70.63% 82.50% 68.18% 0.02
Doc2Vec 89.67% 79.31% 98.93% 98.79% 77.00% 58.70% 91.56% 80.88% 89.29% 79.42% 0.10
SBERT 93.01% 83.91% 98.87% 98.84% 82.43% 64.44% 92.34% 86.53% 91.66% 83.43% 0.29

Combi-
nation
of

Repre-
sentators

Cossim

CCV +
Doc2Vec 90.27% 79.04% 98.19% 97.95% 77.16% 65.25% 86.92% 82.82% 88.14% 81.27% 0.33

DCV +
Doc2Vec 90.27% 79.01% 98.33% 98.10% 77.16% 65.19% 92.05% 82.96% 89.45% 81.32% 1.65

SVM

CCV +
Doc2Vec 89.97% 80.44% 98.95% 98.84% 77.00% 58.70% 80.73% 76.06% 86.66% 78.51% 0.39

DCV +
Doc2Vec 89.67% 79.35% 98.95% 98.83% 77.00% 58.70% 90.20% 75.90% 88.95% 78.20% 1.68

Ensemblers Hard 94.15% 86.95% 99.60% 99.58% 84.19% 78.32% 96.59% 91.88% 93.63% 89.18% 0.00
Soft 93.62% 85.00% 99.38% 99.41% 86.26% 79.33% 95.94% 91.04% 93.80% 88.70% 0.00

even with fine-tuning. One reason is that each entity is referenced
frequently (over 600 times on the average [87]). Acronym/expansion
pairs are referenced less than twice on the average.

Independently of which technique is best, we should note that
each of the top techniques, except SciDr-out, gives a confidence
score. For some of the best techniques SBERT, Doc2Vec, TFIDF, and
CCV, the confidence score has a positive correlation with accuracy,
though the correlation is modest (under 0.5). This low positive cor-
relation is reflected in our results for ensemble techniques. The soft
ensemble technique (in which each underlying technique’s weight
is monotonic with its confidence) does well thanks to the positive
correlation. On the other hand, hard voting ensemble techniques (in
which each underlying technique votes for its preferred expansion

regardless of confidence) perform even better, suggesting that the
"wisdom of crowds" effect is stronger than using confidences. A
deeper look at ensemble techniques for acronym expansion is a
subject for future work.
Representators and document processing execution times.
The CCV and DCV representators take the least time (average 2s)
closely followed by TF-IDF (average 18s). The most expensive
models are SciDr-out (14ks-66ks) followed by LUKE (1Ks-13ks)
and MadDog-out (566s-10ks) which use either language models
or neural networks.

Among these best techniques, Cossim with CCV is the fastest
for all datasets, able to process input documents in less than 0.07
seconds on dataset average. However, SVM with Doc2Vec is the
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fastest for MSH and SciWISE. The slowest among the best is Cossim
with TF-IDF (average 2.5s), followed by SciDr-out (1.3s for base
and 2.3s with external data). These differences are statistically
significant.

The extended paper contains fine-grained execution time values
per dataset, the correlation between confidence and accuracy, and
further qualitative analysis16.
In summary:

• If neither training time nor document processing time is of
major concern and especially if GPU processing is available,
then use either aHard ensembler (best but slowest), SciDr-
out (best with more domain data) or Cossim/SVM with
SBERT (fastest and close to best).

• Otherwise, use Cossim with CCV, which requires almost
no training time (less than 5s) and is the fastest in testing
time among the best set of techniques.

6 END-TO-END BENCHMARK AND
EVALUATION

The end-to-end benchmark described in Section 6.1 is a set of docu-
ments together with human-annotated acronyms, whether those
acronyms correspond to in-expansions or out-expansions.

6.1 Benchmark Datasets, Algorithms, and
Performane Metrics

6.1.1 Datasets. The end-to-end benchmark uses (i) a training dataset
consisting of documents from Wikipedia (ii) a testing dataset con-
sisting of a disjoint set of Wikipedia articles (briefly described in
Section 4.1.1). Those documents came from the Wikipedia dump of
March 1, 202017. These were converted to pure text using WikiEx-
tractor [4].

We preprocessed all the documents using all the steps described
in Section 5.1.2 for all out-expansion techniques exceptMadDog-out
which uses its own preprocessing techniques.

6.1.2 End-to-end systems. We use: (i) the end-to-end MadDog Sys-
tem (MadDog-sys) and (ii) various pipelines of AcX consisting of
an in-expansion technique followed by an out-expansion technique
possibly with machine learning (see Figure 1). An example of a
pipeline would be the SH in-expander, Doc2Vec, and SVMs. The
pipelines we test consist of combinations of the most practical (accu-
rate and fastest) techniques for in-expansion and out-expansion as
determined by the benchmarks in Sections 4.2 and 5.2. Specifically,
AcX pipelines use either theMadDog-in or the SH technique as in-
expanders to identify acronyms and expansions in input documents.
For out-expansion, AcX pipelines include one of the following com-
binations of out-expansion techniques, i.e., a predictor (Section 3.3)
with a representator (Section 3.2): (i) Cossim with SBERT; (ii)
SVMwith SBERT; (iii)CossimwithCCV; (iv) SVMwithDoc2vec.

6.1.3 Performance Metrics. Similarly to Section 4.1.3, we evaluate
MadDog-sys, different pipelines of AcX, and human annotators

16Located at: https://github.com/joaolmpereira/acx-acronym-expander/tree/vldb22/
docs/acx_extended.pdf
17https://dumps.wikimedia.org/enwiki

Table 3: End-to-end systemqualitymetrics and average execu-
tion times to process a document in seconds. Values marked
as bold indicate the best obtained in that metric. A technique
T1 is considered better than T2 if a non-parametric signifi-
cance test (based on shuffling[27]) indicates that the differ-
ence in their means has a p-value < 0.05. Thus, even though
each column has a highest mean value for some technique
𝐻 , the value of a technique 𝑇 will be bolded if 𝐻 is no better
than 𝑇 based on the p-value criterion.

AcX (pipelines)

In-exp Out-exp
Predictor

Repre-
sentators P R F1 Exec

Times

SH Cossim CCV 51.43% 45.62% 48.35% 21.31
SBERT 53.10% 47.10% 49.92% 0.15

SVM SBERT 57.27% 50.80% 53.84% 2.37

Mad-
Dog-in

Cossim CCV 53.12% 43.15% 47.62% 17.45
SBERT 55.17% 44.81% 49.46% 0.33

SVM Doc2Vec 59.12% 48.02% 53.00% 1.12
SBERT 61.32% 49.81% 54.97% 2.29

MadDog-sys 37.85% 29.14% 32.93% 1084.92
Student annotators 88.36% 76.41% 81.95% N/A

listed in Section 6.1.2 in terms of Precision (P), Recall (R) and F1-
Measure (F1). In contrast to Section 4.1.3, we evaluate all acronym-
expansions pairs, whether they come from in-expansions or out-
expansions.

We also measure training and per test document execution times.

6.2 Results on End-to-end Experiments
Setup. For these experiments, we used a virtual machine with the
following specifications: AMD EPYC Processor with 16 cores and
256GB of RAM (Random Access Memory). For SBERT, the virtual
machine specifications were: 5 cores of an Intel Xeon Gold 6126
Processor, 40GB of RAM and a NVIDIA GeForce RTX 2080 Ti.
Results. Table 3 presents the results for the AcX system running
each one of the different pipelines mentioned in Section 6.1.2, the
MadDog-sys18, and the results for the student annotators. The AcX
pipeline composed by MadDog-in, SVM with SBERT obtains the
best results with precision (61.32%) and F1-measure (54.97%). How-
ever, based on the F1-measure, this is not statistically significantly
better (i.e., P-value above 0.05) than SH and SVM with SBERT. The
best system pipeline takes 2s on average to process a document.
Our best AcX pipeline obtains better results for all measures than
the MadDog-sys (+20% of F1) and is faster (2s to 1084s).
Best AcX pipeline analysis. AcX precision is low, mostly be-
cause it incorrectly extracts words as acronyms (329 in total). Some
are small words like "and" and "not" or codes like ZAB and ZAU
(airports). Conversely, it fails to extract measurement units (e.g., m
for meter, g for gram) and some common language abbreviations
(e.g., Micro, "etc"). By contrast, AcX provides the correct expansion
for the acronyms that newcomers to a field may not know, e.g., CAS
- Computer Algebra System and SLS - SoftLanding Linux system.
Comparisonwith human performance. Compared with human
annotators, our best AcX pipeline (MadDog-in and SVMs with
SBERT) is around 27% lower in Precision, Recall, and F1-Measure.
18https://archive.org/details/MadDog-models
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So, there is a lot of room for improvement. On the other hand, AcX
is rapid (2s) and can help a newcomer in a field.
An example application of AcX. Consider one of the docu-
ments out of the 163 at random whose original page is here https:
//en.wikipedia.org/wiki/CC_(complexity). Our best AcX pipeline
identified the following acronym-expansion pairs: CC - comparator
circuits; CCVP - comparator circuit value problem; AC - alternating
current; NC - nick’s class; and NL - national league. However, it
failed to identify CC-complete, and P. We can see that CC, CCVP,
NC, and AL are correct and NL is incorrect. With a different Pipeline
consisting of Doc2Vec instead of SBERT, AL is incorrect, but NL is
correct.
In summary: The best AcX pipeline consists ofMadDog-in, with
SVM and SBERT.

7 ERROR ANALYSIS
We studied how out-expansion errors for known expansions (i.e.,
expansions in documents of the training set) relate to the following
properties: (i) the number of appearances of a particular acronym
𝐴, (ii) the length of acronym 𝐴, (iii) the fraction of appearances of
a given expansion 𝑒 of 𝐴 and (iv) the total number of occurrences
of expansion 𝑒 for acronym 𝐴.

The data sources are the out-expansion and end-to-end bench-
marks. For out-expansion, we also considered the dataset domain.
We collect these results in a set of decision trees19. Each leaf of
each decision tree holds the F1 score value for acronym-expansions
having the properties indicated by the path to that leaf. Here is a
summary of the patterns found in the decision trees:

• If the expansion 𝑒 is very infrequent for 𝐴 (below 2% of
acronym occurrences) and the number of occurrences of
𝐴 is low, the F1 score is low or very low (well under 0.2).
There is, however, a boost of the F1 score for the SVM with
SBERT technique when the acronym length is at least 3.

• When expansion 𝑒 appears at least half of the time for
acronym 𝐴, but acronym 𝐴 occurs less than a dozen times,
then the F1 score is decent (around 0.5).

• Finally, if the expansion count of 𝑒 for acronym 𝐴 is high
and expansion 𝑒 is a majority expansion for 𝐴, then F1 is
very high (often more than 0.9).

Those patterns are generalizable to the best out-expansion tech-
niques. The F1 score is largely independent of the dataset domain.

8 CONCLUSIONS AND FUTUREWORK
The AcX system synthesizes and extends the best of previous work
on acronym expansion. We have found:

• In-expansion rule-based techniques (SH and MadDog-in)
usually work best and require little execution time.

• For out-expansion, SciDr-out and Cossim or SVMs with
SBERT usually work best , followed by Cossim and SVMs
with either CCV or Doc2Vec.

There are five data and software products of our work that future
researchers can either extend or use as a basis of comparison.

19https://github.com/joaolmpereira/acx-acronym-expander/tree/vldb22/results/
decision_trees

(1) The first human-annotated dataset for end-to-end acronym
expander systems.

(2) Three benchmarks to evaluate: (i) in-expansion techniques,
(ii) out-expansion techniques, (iii) the combination in an
end-to-end setting.

(3) The end-to-end AcX system is available publicly and can
be applied to arbitrary languages, and can incorporate new
in- and out-expansion techniques.

Future Work
Because the automated techniques in the state-of-the-art fall

well below human-level accuracy levels, there is a large margin for
improvement. Some promising avenues for improvements include:
(i) more accurate in-expansion (e.g., additional acronym-expansion
extraction patterns), (ii) new context representation techniques,
and (iii) an extensive study of ensemble techniques.

With respect to the AcX system, we will add an Application
Programming Interface (API) so text analytics systems (e.g., entity
disambiguation or sentiment analysis) can benefit from acronym
expansion. Finally, because our platform easily extends to other
languages (e.g., our Portuguese extension was done by a high school
student), we plan to create AcX pipelines, benchmarks, and perform
end-to-end experiments for a variety of natural languages.
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