
Interactive Mining with Ordered and Unordered Attributes
Weicheng Wang, Raymond Chi-Wing Wong

Hong Kong University of Science and Technology

wwangby@connect.ust.hk,raywong@cse.ust.hk

ABSTRACT
There are various queries proposed to assist users in finding their

favorite tuples from a dataset with the help of user interaction.

Specifically, they interact with a user by asking questions. Each

question presents two tuples, which are selected from the dataset

based on the user’s answers to the previous questions, and asks

the user to select the one s/he prefers. Following the user feedback,

the user preference is learned implicitly, and the best tuple w.r.t.

the learned preference is returned. However, existing queries only

consider datasets with ordered attributes (e.g., price), where there

exists a trivial order on the attribute values. In practice, a dataset

can also be described by unordered attributes, where there is no

consensus about the order of the attribute values. For example, the

size of a laptop is an unordered attribute. One user might favor a

large size because s/he could enjoy a large screen, while another

user may prefer a small size for portability. In this paper, we study

how to find a user’s favorite tuple from the dataset that has both

ordered and unordered attributes by interacting with the user.

We study our problem progressively. First, we look into a special

case in which the dataset is described by one ordered and one un-

ordered attributes. We present algorithm DI that is asymptotically

optimal in terms of the number of questions asked. Then, we dig

into the general case in which the dataset has several ordered and

unordered attributes. We propose two algorithms BS and EDI that
have provable performance guarantees and perform well empiri-

cally. Experiments were conducted on synthetic and real datasets,

showing that our algorithms outperform existing algorithms in the

number of questions asked and the execution time. Under typical

settings, our algorithms ask up to 10 times fewer questions and

take several orders of magnitude less time than existing algorithms.

PVLDB Reference Format:
Weicheng Wang, Raymond Chi-Wing Wong. Interactive Mining with

Ordered and Unordered Attributes. PVLDB, 15(11): 2504 - 2516, 2022.

doi:10.14778/3551793.3551810

1 INTRODUCTION
Given a dataset described by several attributes, the attributes could

be either ordered or unordered, where “ordered” means that there

is a trivial order on the attribute values without considering the

impact of other attributes, while “unordered” implies that users

have various preferences on the attribute values. For example, in a

car dataset, each car could be described by two attributes price and

the number of seats. Price is an ordered attribute. If it is considered

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551810

alone, users are always willing to spend as little money as possible.

The number of seats is an unordered attribute. A user with a family

might prefer a car with multiple seats to carry the entire family, or

a single user may favor a car with a few seats to save fuel consump-

tion. Thus, the user’s expected number of seats could vary. Note

that a trivial order is based on our common cognition or obtained

from pre-knowledge. It is possible that a trivial order is not suitable

for a particular user. For example, it is generally considered that a

car’s maximum speed should be as high as possible. However, some

users may think that it is necessary to keep a car at a safe speed and

do not pursue a high maximum speed. Thus, when needed, users

can specify whether an attribute is ordered or unordered so that

the type of attributes must exactly match the user preference.

Many operators have been proposed to assist users in find-

ing their favorite tuples from a dataset with both ordered and

unordered attributes. Such operators, regarded as multi-criteria
decision-making tool, can be applied in various scenarios, including

purchasing a car, buying a house, and picking a red wine. For exam-

ple, Alice wants to buy a car. She might have an expected car in her

mind, e.g., a cheap car with multiple seats. Based on her expected

car, the operators search the dataset and recommend cars to Alice.

There are two representative operators: the relative skyline query
[9] and the 𝑘 nearest neighbors query (kNN) [29]. The relative (or
dynamic) skyline query returns all tuples that are not dominated
by other tuples, i.e., all the possible nearest tuples. A tuple 𝑝 dom-
inates another tuple 𝑞 if 𝑝 in each attribute is no farther from the

user’s expected tuple than 𝑞, and strictly closer in at least one at-

tribute. Unfortunately, the output size of the relative skyline query

is uncontrollable, and it often overwhelms users with excessive

results [20]. The 𝑘 nearest neighbors query (kNN) measures the

user preference on tuples by the Euclidean distance of each tuple to

the user’s expected tuple. A smaller distance means that the tuple is

more favored by the user. kNN returns the 𝑘 tuples, called 𝑘 nearest

tuples, that have the smallest distance to the user’s expected tuple.

Unlike the relative skyline query, kNN fixes the output size to a

number 𝑘 . However, most users have difficulties in specifying their

expected tuples explicitly [20, 35]. If the user’s expected tuple is

not known, kNN cannot be applied in practice.

Motivated by the limitation, we study how user interactionwould
help to learn the user’s expected tuple. Formally, we propose a prob-

lem called Interactive Mining with Ordered and Unordered Attributes
(Problem IOU), which learns the user’s expected tuple with the

help of user interaction and finds the user’s favorite tuple (i.e., the

tuple with the smallest distance to the learned expected tuple).

Specifically, we interact with a user by asking questions. Following

[23, 32, 35], each question presents two tuples and asks the user to

pick the one s/he prefers. The presented tuples are selected based

on the user’s answers to the previous questions. According to the

user feedback, the user’s expected tuple is implicitly learned, and

the user’s favorite tuple is returned.

2504

https://doi.org/10.14778/3551793.3551810
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551810

Problem IOU involves many questions asked to a user. In liter-

ature, there are two types of questions that are widely used: the

attribute-level question and the tuple-level question. The former type

displays part of the attributes of tuples in each question. For in-

stance, it may present the price or the number of seats of several

cars in one question (instead of all the attributes together). This

could help users focus on a few attributes centrally. However, since

a user only sees a subspace of attributes instead of the entire space,

it is easy to miss the connection between attributes. For example,

consider the scenario where Alice purchases a car. The price that

Alice accepts is closely related to several attributes, e.g., the horse-

power, the size, and the number of seats. It is necessary to learn

the trade-off between price and the other attributes. If we only

present part of the attributes, e.g., the price and the horsepower, we

cannot discover the combined effect of all the other attributes on

price and thus, inaccurately predict user preference. Moreover, the

attribute-level question suffers the untruthful issue [20, 35]. Users
may be disappointed since they cannot see the full picture of tuples.

Therefore, we utilize the tuple-level question that displays tuples

(i.e., all the attributes) to users [13, 23, 32]. Note that we only present

two tuples in each question since a small number can make the

selection of the presented tuples more targeted. If the required num-

ber of presented tuples increases, there might be tuples that are not

so qualified to be presented. In cognitive psychology, Thurstone’s

Law of Comparative Judgement indicates that pairwise comparison

is a more effective way to learn the user preference than other

methods [1, 23]. The user study in [23] also verified that pairwise

comparison could effectively capture how real users assess multi-

attributes tuples. Although presenting multiple tuples may lower

the number of questions asked since it could learn more informa-

tion of the user preference in each question, it does not reduce user

effort essentially because picking the favorite one among multiple

tuples is equal to conducting the pairwise comparison several times.

Besides, showing two tuples prevents users from considering mul-

tiple tuples simultaneously and thus, makes the questions easier to

be answered. This type of question naturally appears in our daily

life. An agent gives Alice two houses to select. A seller presents

two red wines and asks Alice: which wine more suits your taste?

In the literature of the marketing research [17, 25], it is pivotal to

keep the questions tally low. Otherwise, users may lose the plot and

become excessively disappointed, affecting the interaction results.

In this paper, we follow the relative skyline query to find the nearest

tuple instead of the kNN that finds 𝑘 nearest tuples, since the latter

case requires asking too many questions. Intuitively, the latter case

needs to collect more information about the user’s expected tuple

to distinguish its 𝑘 (instead of 1) nearest points. The experimental

results of [32] verified that recommending multiple tuples (e.g., 20

tuples) requires obtaining more information from users. It asked

4-10 times more questions than recommending one tuple. The user

study of [32] also showed that users are willing to answer fewer

questions rather than obtaining more recommended tuples. There-

fore, we reduce the number of questions asked by just focusing on

returning the user’s favorite tuple, which is sufficient in many ap-

plications, to strike a balance between the user effort and the output

size. Consider a scenario where Alice goes on a business trip and

plans to rent a car for a week. Since it is a short-term need, it is not

necessary for her to spend a lot of effort cherry-picking. She could

be frustrated due to the long selection process even if finally, several

candidate cars are returned. Note that our proposed algorithms can

be easily extended to returning 𝑘 nearest tuples. Due to the lack of

space, the extension is presented in the technical report [31].

To the best of our knowledge, we are the first to study prob-

lem IOU. There are some closely related studies [13, 20, 32, 35]

involving user interaction, but they are distinct to ours by only

covering ordered attributes. Our problem IOU takes both ordered

and unordered attributes into account. In this sense, it can be seen

as a more general case of existing studies. For the existing studies,

they are hard to be adapted to solve our problem IOU satisfactorily.

They either ask many questions or execute for a long time, which

is quite troublesome. For example, as shown in Section 6, on the

dataset with 4 ordered attributes and 6 unordered attributes, the

existing algorithms either ask 2-10 times more questions than our

algorithms ([13, 20, 32]) or execute 10-20 times longer ([13, 35]).

Contributions. Our contributions are described as follows.

• To the best of our knowledge, we are the first to propose the

problem of finding the user’s favorite tuple with ordered

and unordered attributes by interacting with the user.

• We show a lower bound Ω(log
2
𝑛) on the number of ques-

tions asked, where 𝑛 is the dataset size.

• We propose algorithm DI for the special case of IOU, where
the dataset is described by one ordered attribute and one

unordered attribute. DI asks 𝑂 (log
2
𝑛) questions, which is

asymptotically optimal w.r.t. the number of questions asked.

• We propose two algorithms BS and EDI for the general

case of IOU, where the dataset can be described by an arbi-

trary number of ordered attributes and unordered attributes.

Algorithms BS and EDI have provable guarantees on the

number of questions asked and perform well empirically.

• We conducted experiments to demonstrate the superiority

of our algorithms. Under typical settings, our algorithms

can ask up to 10 times fewer questions and spend several

orders of magnitude less time than existing algorithms.

We discuss the related work in Section 2. The formal problem

definition and relevant preliminaries are shown in Section 3. Sec-

tion 4 describes algorithm DI for the special case of IOU. Section 5

presents algorithms BS and EDI for the general case of IOU. Experi-
ments are shown in Section 6. Section 7 concludes our paper.

2 RELATEDWORK
There are various queries proposed to assist the multi-criteria

decision-making. The preference-based queries return tuples based

on the expected tuple given by a user and the interactive queries
involve user interaction during the query processing.

Preference-based Queries. The skyline query returns all tuples

that are not dominated by other tuples [5, 9]. A tuple 𝑝 is domi-
nated by another tuple 𝑞 if 𝑝 is not better than 𝑞 in each attribute

and strictly worse in at least one attribute. The skyline query can

be either absolute or relative. The absolute skyline query is based

on the attribute values of tuples. If an attribute value of tuple 𝑝

is smaller than that of tuple 𝑞, 𝑝 is better than 𝑞 in that attribute.

Such formulation limits the absolute skyline query to dealing only

with ordered attributes since the values of unordered attributes are

2505

not the smaller, the better. The relative (or dynamic) skyline query

can handle both ordered and unordered attributes. It measures the

coordinate-wise distance between tuples and considers the user’s

expected tuple. Specifically, 𝑝 is better than 𝑞 in an attribute if 𝑝 is

closer to the user’s expected tuple in that attribute than 𝑞. The defi-

ciency of the skyline query is that its output size is uncontrollable. It

is possible that the whole dataset is returned as the answer [21, 37].

The 𝑘 nearest neighbors query (kNN) [29] avoids this problem. It

uses the Euclidean distance function to measure the distance from

each tuple in the dataset to the user’s expected tuple, and returns

the 𝑘 tuples with the smallest distance to the user’s expected tuple.

Another relevant query is the similarity query [28]. It defines a

more complicated distance function and finds tuples close to the

user’s expected tuple w.r.t. the distance function. However, both the

kNN and the similarity query rely on the assumption that the user’s

expected tuple is known in advance [3]. In practice, the expected

tuple is not always known by a user. Even if it is known, the user

needs to spend additional effort specifying it.

Interactive Queries. The interactive queries involve user inter-
action [1–4, 14, 20, 27, 35, 39]. They learn the user preference by

asking the user questions and return tuples based on the learned

preference. [1, 2, 14] propose the interactive skyline query that tries

to reduce the output size of the skyline query. Specifically, it learns

the user preference on the attribute values (e.g., a user prefers red to

yellow in the color attribute), and then determines whether a tuple

is dominated by the other tuples. However, the output size could

be still arbitrarily large even if the user preference on all attribute

values is obtained, [21]. Consider two cars: a cheap car 𝑝 in yellow

and an expensive car 𝑞 in red. Suppose a user prefers red to yellow.

𝑝 does not dominate 𝑞 and vice versa, since 𝑝 is better than 𝑞 in

the price attribute and worse than 𝑞 in the color attribute. Thus,

although the user preference on all attribute values is known, 𝑝

and 𝑞 are returned in the output [21, 37].

[20] proposes the interactive regretminimizing query. It returns a

fixed set of tuples with a small regret ratio which evaluates returned

tuples and represents how regretful a user is when s/he sees the

returned tuples instead of the whole dataset. However, it displays

fake tuples, which are artificially constructed (not selected from

the dataset), in each question to interact with a user. This might

produce unrealistic tuples (e.g., a car with $10 and 1000 seats) and

the user can be disappointed if the displayed tuples with which s/he

is satisfied do not exist [35]. To overcome the defect, [35] proposes

the strongly truthful regret minimizing query, which displays real
tuples (selected from the dataset) during the interaction. However, it

asks users too many questions, which causes the effectiveness issue

in practice. To reduce the number of questions asked, [39] changes

the way of asking questions. It asks users to sort the displayed

tuples based on their preferences. However, this does not reduce

the user effort essentially since sorting is equivalent to picking the

favorite tuple several times.

There are alternative approaches [23, 32] which also involve user

interaction. [23] approximates the user preference. Nevertheless, it

aims at learning the user preference rather than returning tuples,

which results in asking the user many questions [35]. For example,

if Alice prefers car 𝑝1 to both 𝑝2 and 𝑝3, her preference between 𝑝2
and 𝑝3 is less interesting in our case, but this additional comparison

might be useful in [23]. [32] returns one of the top-𝑘 tuples. It

models user preference as a utility function. With the help of user

interaction, it learns the utility function and returns one of the

𝑘 tuples that have the highest function value among all tuples.

However, its defined utility function cannot be applied to the dataset

with both ordered and unordered attributes.

[3, 4, 27] propose the interactive similarity query. It returns

tuples close to a query tuple w.r.t. a distance function, where the

query tuple and the distance function are learned by interacting

with a user. However, during the interaction, it requires a user

to assign relevance scores for hundreds or thousands of tuples to
learn how close the tuples are to the query tuple. From the user’s

perspective, requiring the user to give accurate scores a lot of times

is too demanding in practice. Besides, it estimates the query tuple at

the beginning of the interaction and continually modifies it during

the interaction based on the relevance scores given by the user. It is

challenging to initialize the query tuple which significantly affects

the final output. In comparison, we ask easy questions with little

user effort and do not rely on an initial query tuple.

In the literature of machine learning, the problem of learning
to rank [10, 13, 16, 18] also involves user interaction. It learns the

ranking of tuples by interacting with a user. However, most of the

existing methods [10, 16, 18] only consider the relations between

tuples (where a relation means that a tuple is preferable to another

tuple) and neglect their inter-relations (where attribute “price” is an

example of an inter-relation showing that $200 is better than $500

since $200 is cheaper). Thus, they require more feedback from users

[32, 35]. Algorithm ActiveRanking [13] considers the inter-relations
between tuples and learns the ranking of tuples by interacting

with the user. However, it assumes that all tuples are in the general
position [26], which could not be applied in many cases. Besides, it

focuses on deriving the order of all pairs of tuples, which requires

asking many questions due to the similar reason stated for [23].

Our work focuses on returning the user’s favorite tuple with the

help of user interaction on the dataset described by ordered and

unordered attributes. It avoids the weaknesses of existing studies.

(1) We do not require an exact expected tuple provided by a user

(required by the kNN) or estimate a query tuple (required by the

interactive similarity query). (2) We return the user’s favorite tuple

(but the skyline query has an uncontrollable output size). (3) We

only use real tuples during the interaction (unlike [20] which uti-

lizes fake tuples). (4) We can handle the dataset with both ordered

and unordered attributes (while the existing interactive queries

cannot deal with unordered attributes). (5) We only involve a few

easy questions. Firstly, existing studies ask many questions since

they require learning either a total ranking [10, 16, 18] or an exact

user preference [23], while we only return the user’s favorite tuple.

Secondly, [10, 16, 18] do not utilize the inter-relation between tuples

and thus, involve some unnecessary interaction. Thirdly, compared

with [3, 27, 39], our designed questions are easier to answer and

more effective in collecting the information of user preference.

3 PROBLEM DEFINITION
3.1 Terminologies
We consider that tuples are represented as 𝑑-dimensional points

𝑝 = (𝑝 [1], 𝑝 [2], ..., 𝑝 [𝑑]) in a dataset 𝐷 . The first 𝑑𝑜 dimensions,

2506

called ordered dimensions, correspond to the ordered attributes of

tuples and the last 𝑑𝑢 (𝑑𝑢 = 𝑑 − 𝑑𝑜) dimensions, called unordered

dimensions, correspond to the unordered attributes of tuples. In

the rest of the paper, we use “point/tuple” and “dimension/attribute”

interchangeably. For the ordered dimensions, we make the con-

vention that the larger values, the better, yet our findings could be

easily adapted to the attributes that are to be minimized. Note that

we assume that all the attributes are numerical. The categorical

attributes (e.g., string and text) can be mapped to numerical values

using the standard SVM convention, which is widely used in the

machine learning area [19, 23].

Following [7, 12, 24, 30, 33], we model the user preference in the

form of a function 𝑓 (𝑝) = (∑𝑑
𝑖=1 (𝑝 [𝑖] − 𝑒 [𝑖])2)

1

2 , namely distance
function, denoted by 𝑓 (𝑝) = | |𝑝 − 𝑒 | | for simplicity. Point 𝑒 , called

expected point, represents the user’s expected tuple. For each or-

dered dimension 𝑖 ∈ [1, 𝑑𝑜], since the larger value the better, we
assume that 𝑒 [𝑖] = max𝑝∈𝐷 𝑝 [𝑖]. For each unordered dimension

𝑗 ∈ [𝑑𝑜 + 1, 𝑑], since there does not exist a trivial order on its

values, we assume that 𝑒 [𝑗] ∈ [min𝑝∈𝐷 𝑝 [𝑗],max𝑝∈𝐷 𝑝 [𝑗]]. The
domain of 𝑒 is called the expected space, denoted by E, which is a

hyper-rectangle [8] in a 𝑑-dimensional geometric space. For exam-

ple, when 𝑑𝑜 = 1 and 𝑑𝑢 = 1, as shown in Figure 1, the expected

space is a line segment (represented as a bold vertical line segment).

𝑓 (𝑝) denotes the distance between 𝑝 and 𝑒 . It represents how much

a user favors point 𝑝 . A smaller distance means that the point is

more preferred by the user. Given an expected point 𝑒 ∈ E, a point
𝑝 is the nearest point of 𝑒 among 𝐷 if 𝑝 = argmin𝑞∈𝐷 𝑓 (𝑝). We also

call point 𝑝 the user’s favorite point in the whole dataset.

One may notice that the importance of different dimensions to a

user may vary [36, 38] (i.e., different attributes may have different

priorities) and thus, each dimension contributes to the distance

variously. To involve this potential indicator, we could learn the im-

portance of dimensions with the help of existing methods and scale

up or down each dimension accordingly [6, 15, 23, 35]. The more im-

portant dimension is scaled upmore so that it could contribute more

to the distance. In this paper, we do not focus on the way to learn

the importance. For the ease of illustration, we assume that all the

dimensions are equally important and they are normalized to [0, 1].

Example 3.1. Consider Table 1. Assume that 𝑑𝑜 = 1 and 𝑑𝑢 = 1.

Let 𝑓 (𝑝) = ((𝑝 [1] − 1)2 + (𝑝 [2] − 0.5)2)1/2 (i.e., 𝑒 = (1, 0.5)). The
distance from 𝑝2 to 𝑒 is 𝑓 (𝑝2) = ((0.8− 1)2 + (0.4− 0.5)2)1/2 = 0.22.

The distance of other points to 𝑒 can be computed similarly. Since

𝑓 (𝑝2) is the smallest, 𝑝2 is the user’s favorite point.

3.2 Problem IOU
Our interactive framework follows [32, 35] andworks on the dataset

with ordered and unordered dimensions. Specifically, we interact

with a user for rounds until we can find the user’s favorite point.

In each round, we process as follows. (1) (Point selection) Based
on the user’s answers to the previous questions, we present two

points to the user and ask him/her to pick the one s/he prefers. The

points are selected carefully, hoping to collect as much information

about the user preference as possible. (2) (Information mainte-
nance) According to the user feedback, we update the maintained

information for learning the user’s expected point. (3) (Stopping
condition) If the stopping condition is satisfied, we terminate the

interaction and return the result. Otherwise, we start another inter-

active round. Formally, we are interested in the following problem.

Due to the lack of space, the proofs of some theorems/lemmas in

this paper can be found in the technical report [31].

Problem 1. (InteractiveMiningwithOrdered andUnordered
Attributes (IOU)) Given a point set 𝐷 that is described by ordered
dimensions and unordered dimensions, we are to ask a user as few
questions as possible to determine the user’s favorite point in 𝐷 .

Theorem 3.2. For any dimensionality 𝑑 , there is a dataset of 𝑛
𝑑-dimensional points such that any algorithm needs to ask Ω(log𝑛)
questions to determine the user’s favorite point.

Proof Sketch. Consider a dataset𝐷 such that each 𝑝 ∈ 𝐷 could

be the user’s favorite point. Any algorithm that utilizes pairwise

comparison must identify points in the form of a binary tree. Each

leaf corresponds to a point and each internal node corresponds to

a question asked to a user. Since there are 𝑛 leaves, the height of

the tree is Ω(log
2
𝑛). Thus, any algorithm needs to ask Ω(log

2
𝑛)

questions to determine the user’s favorite point. □

3.3 Problem Characteristics
In a 𝑑-dimensional geometric space R𝑑 , for any pair of points 𝑝, 𝑞 ∈
𝐷 , we could build a hyper-plane (also called bisect) ℎ𝑝,𝑞 : (𝑒 − 𝑝+𝑞

2
) ·

(𝑝 − 𝑞) = 0, which passes through the middle point of 𝑝 and 𝑞 with

its unit norm in the same direction as 𝑝 −𝑞 [8]. ℎ𝑝,𝑞 divides R𝑑 into

two half-spaces. The half-space above (resp. below) ℎ𝑝,𝑞 , denoted

by ℎ+𝑝,𝑞 (resp. ℎ−𝑝,𝑞), contains all the expected points 𝑒 such that

(𝑒− 𝑝+𝑞
2
) · (𝑝−𝑞) > 0, i.e., 𝑓 (𝑝) < 𝑓 (𝑞) (resp. (𝑒− 𝑝+𝑞

2
) · (𝑝−𝑞) < 0,

i.e., 𝑓 (𝑝) > 𝑓 (𝑞)). In geometry, a polyhedron P is the intersection

of a set of half-spaces. The hyper-planes that bound P are called

the boundaries of P. The corner points in P are called the extreme

points of P. The following lemmas give our intuition of learning

the user’s expected point and determining the user’s favorite point.

Lemma 3.3. Given E and two points 𝑝 and 𝑞 presented to a user, if
the user prefers 𝑝 to 𝑞, the user’s expected point must be in ℎ+𝑝,𝑞 ∩ E.

Proof. If a user prefers 𝑝 to 𝑞, 𝑝 must be closer to the user’s

expected point 𝑒 than 𝑞. We have 𝑓 (𝑝) < 𝑓 (𝑞), i.e., (𝑒 − 𝑝+𝑞
2
) · (𝑝 −

𝑞) > 0, which implies that 𝑒 ∈ ℎ+𝑝,𝑞 or 𝑒 ∈ ℎ−𝑞,𝑝 . □

Based on Lemma 3.3, we could narrow down the range in which

the user’s expected point is located. Let us denote the range by R,
which is an intersection of a set of half-spaces ℎ+𝑝,𝑞 (or ℎ−𝑞,𝑝) and
E. Based on R, some points in 𝐷 can be determined not to be the

user’s favorite point and put out of consideration.

Lemma 3.4. Given R, point 𝑝 can be put out of consideration, if
∀𝑒 ∈ R, ∃𝑞 ∈ 𝐷 such that | |𝑝 − 𝑒 | | > | |𝑞 − 𝑒 | |, i.e., 𝑓 (𝑝) > 𝑓 (𝑞).

Intuitively, the points that cannot be the nearest point of any

𝑒 ∈ R are left out of account. The verification of a point 𝑝 sat-

isfying Lemma 3.4 can be achieved by the Linear Programming

(LP) algorithm. We define a variable 𝑥 and set the objective func-

tion to be max𝑥 . For each 𝑞 ∈ 𝐷 \ {𝑝}, we build a constraint

(𝑒 − 𝑝+𝑞
2
) · (𝑝 − 𝑞) > 𝑥 (which is equal to | |𝑝 − 𝑒 | | + 𝑥 < | |𝑞 − 𝑒 | |),

where 𝑒 ∈ R. If the result 𝑥 < 0, it implies that ∀𝑒 ∈ R, ∃𝑞 ∈ 𝐷 \{𝑝}

2507

Table 1: Dataset
(𝑒 = (1, 0.5))

𝑝 𝑝 [1] 𝑝 [2] 𝑓 (𝑝)
𝑝1 1 0 0.50

𝑝2 0.8 0.4 0.22

𝑝3 0.6 0.6 0.41

𝑝4 0.7 0.8 0.42

𝑝5 0.2 1 0.94

10 𝑒[1]

𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

ℎ!!,#" Θ!!"#
Θ!!

Θ!!$#
∧#"#$,#"

∧#",#"%$

∧!!,#"

…

…

1𝑒[2]

Figure 1: Scan Case 1

10 𝑒[1]

𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

ℎ!!,#"

Θ!!"#
Θ!!

Θ!!$#

∧#"#$,#"

∧#",#"%$
∧!!,#"

…

…

1𝑒[2]

Figure 2: Scan Case 2

1

1

0

𝑝!

𝑒[1]

𝑝"
𝑝#

𝑒[2]

𝑝$
ℎ!!,!"

ℎ!",!# Θ%!

Θ%"

Θ%#

∧!!,!"

∧!",!#
𝑝&

Figure 3: Division of 𝑆3

1

1

0

𝑝!

𝑒[1]

𝑝"
𝑝#

𝑒[2]

𝑝$
∧!!,!"

∧!",!#
𝑝%

Θ&!

Θ′&"

Θ&#

ℎ!$,!"

ℎ!$,!#
∧!$,!"∧!$,!#

Figure 4: Division of 𝑆4

such that | |𝑝 − 𝑒 | | > | |𝑞 − 𝑒 | |. Due to the lack of space, the detailed

LP formulation is shown in the technical report [31]. Since there are

𝑛 points in space R𝑑 , there are𝑂 (𝑛) constraints and𝑂 (𝑑) variables
in LP. An LP solver (e.g., Simplex [5]) needs𝑂 (𝑑𝑛2) time in practice.

It might be time-consuming to proceed an LP calculation if there

are many points. The following lemma gives a sufficient condition

to reduce the number of points requiring an LP calculation.

Lemma 3.5. Given R, point 𝑝 can be put out of consideration, if
∃𝑞 ∈ 𝐷 such that ∀𝑒 ∈ R, | |𝑝 − 𝑒 | | > | |𝑞 − 𝑒 | |, i.e., 𝑓 (𝑝) > 𝑓 (𝑞).

Lemma 3.5 compares 𝑝 with each point𝑞 ∈ 𝐷\{𝑝} to see whether
𝑞 is closer to any 𝑒 ∈ R than 𝑝 . Suppose there are v extreme points

𝑒𝑣 in R. Each comparison takes 𝑂 (v) time to check whether all the

extreme points satisfy | |𝑝 − 𝑒𝑣 | | > | |𝑞 − 𝑒𝑣 | |.
Note that Lemma 3.4 may find a set of points. Each point is closer

to some 𝑒 ∈ R than 𝑝 . Nevertheless, Lemma 3.5 searches for only

one point that is closer to all 𝑒 ∈ R than 𝑝 .

4 SPECIAL CASE OF IOU
We begin with a special case of IOU. Each point has one ordered

and one unordered dimensions. We propose algorithm DI that is
asymptotically optimal in terms of the number of questions asked.

Without loss of generality, assume that the first dimension is

ordered and the second dimension is unordered. In a 2-dimensional

geometric space R2, as shown in Figure 1, the expected space is

a vertical line segment, where 𝑒 [1] = max𝑝∈𝐷 𝑝 [1] and 𝑒 [2] ∈
[min𝑝∈𝐷 𝑝 [2],max𝑝∈𝐷 𝑝 [2]]. Our algorithm DI consists of two
parts: dividing the expected space and interacting with a user. In-

tuitively, we first divide the expected space into several disjoint

smaller line segments, called partitions and denoted by Θ. Each
partition Θ corresponds to a point in 𝐷 , which is the nearest point

of any 𝑒 ∈ Θ. Then, we interact with a user to locate the partition

that contains the user’s expected point. The point that corresponds

to the located partition is returned to the user as the answer. The

pseudocode of algorithm DI is shown in Algorithm 1.

4.1 Dividing the Expected Space
Since the fewer partitions, the easier to locate which partition the

user’s expected point is in, our method divides the expected space

into the fewest partitions. At a high-level, we build the division of

the expected space E progressively. Every set of points 𝑆 ⊆ 𝐷 de-

cides a division of E. Our idea is to put the points into consideration
one by one and then update the division of E.

In space R2, as discussed in Section 3.3, for any pair 𝑝, 𝑞 ∈ 𝐷 , we

can build a hyper-plane ℎ𝑝,𝑞 (i.e., a line in R2). If ℎ𝑝,𝑞 intersects E,
we denote the intersection by ∧𝑝,𝑞 . The line segment connecting

any two intersections ∧1 and ∧2 is represented by [∧1,∧2]. For
example, consider Figure 1. The black dot is the intersection ∧𝑝𝑖 ,𝑞 𝑗

ofℎ𝑝𝑖 ,𝑞 𝑗
and E. The line segment that connects∧𝑞 𝑗−1,𝑞 𝑗

and∧𝑞 𝑗 ,𝑞 𝑗+1
(the two white dots) is denoted by [∧𝑞 𝑗−1,𝑞 𝑗

,∧𝑞 𝑗 ,𝑞 𝑗+1].
We sort all the points based on their second dimension in non-

decreasing order. Let < 𝑝1, 𝑝2, ..., 𝑝𝑛 > denote the sorted list. Every

set of points 𝑆𝑖−1 =< 𝑝1, 𝑝2, ..., 𝑝𝑖−1 > decides a division of E, where
𝑖 ∈ [2, 𝑛]. Note that not every point in 𝑆𝑖−1 necessarily corresponds
to a partition in the division. Assume that < 𝑞1, 𝑞2, ..., 𝑞𝑘 > are the

points in 𝑆𝑖−1 that correspond to partitions < Θ𝑞1 ,Θ𝑞2 , ...,Θ𝑞𝑘 >

from bottom to top. Point 𝑞 𝑗 is the nearest point of any 𝑒 ∈ Θ𝑞 𝑗

among 𝑆𝑖−1, where 𝑗 ∈ [1, 𝑘] andΘ𝑞 𝑗
= [∧𝑞 𝑗−1,𝑞 𝑗

,∧𝑞 𝑗 ,𝑞 𝑗+1] (∧𝑞0,𝑞1 =
(1, 0) and ∧𝑞𝑘 ,𝑞𝑘+1 = (1, 1)). We add 𝑝𝑖 and update the division of

E by scanning points from 𝑞𝑘 to 𝑞1 until we reach a point 𝑞𝑙 in <

𝑞1, 𝑞2, ..., 𝑞𝑘 > such that∧𝑝𝑖 ,𝑞𝑙 is above∧𝑞𝑙−1,𝑞𝑙 as shown in Figure 2.
Lemma 4.1. The nearest point of any 𝑒 ∈ [∧𝑞0,𝑞1 ,∧𝑝𝑖 ,𝑞𝑙] among

𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑝𝑖 } is the same as that among 𝑆𝑖−1. Point 𝑝𝑖 is nearest
point of any 𝑒 ∈ [∧𝑝𝑖 ,𝑞𝑙 ,∧𝑞𝑘 ,𝑞𝑘+1]) among 𝑆𝑖 .

Proof Sketch. For the ease of illustration, let ∧1 ≺ ∧2 repre-
sent that ∧1 is below ∧2. According to our scanning strategy, ∀𝑗 ∈
[𝑙 + 1, 𝑘], ∧𝑝𝑖 ,𝑞 𝑗

≺ ∧𝑞 𝑗−1,𝑞 𝑗
. We have Θ𝑞 𝑗

⊆ ℎ+𝑝𝑖 ,𝑞 𝑗
as shown in Fig-

ure 1. Based on the definition of ℎ+𝑝𝑖 ,𝑞 𝑗
, 𝑝𝑖 must be the nearest point

of any 𝑒 ∈ ⋃𝑘
𝑗=𝑙+1 Θ𝑗 (i.e., any 𝑒 ∈ [∧𝑞𝑙 ,𝑞𝑙+1 ,∧𝑞𝑘 ,𝑞𝑘+1]) among 𝑆𝑖 .

The above conclusion indicates that ∧𝑝𝑖 ,𝑞𝑙 ≺ ∧𝑞𝑙 ,𝑞𝑙+1 . More-

over, since ∧𝑞𝑙−1,𝑞𝑙 ≺ ∧𝑝𝑖 ,𝑞𝑙 , we have ∧𝑝𝑖 ,𝑞𝑙 ∈ [∧𝑞𝑙−1,𝑞𝑙 ,∧𝑞𝑙 ,𝑞𝑙+1]
as shown in Figure 2. Since [∧𝑝𝑖 ,𝑞𝑙 ,∧𝑞𝑙 ,𝑞𝑙+1] ⊆ ℎ+𝑝𝑖 ,𝑞𝑙 , 𝑝𝑖 must be

the nearest point of any 𝑒 ∈ [∧𝑝𝑖 ,𝑞𝑙 ,∧𝑞𝑙 ,𝑞𝑙+1] among 𝑆𝑖 . Because

[∧𝑞0,𝑞1 ,∧𝑝𝑖 ,𝑞𝑙] ⊆ ℎ−𝑝𝑖 ,𝑞𝑙 , point 𝑞𝑙 is closer to any 𝑒 ∈ [∧𝑞0,𝑞1 ,∧𝑝𝑖 ,𝑞𝑙]
than 𝑝𝑖 . The nearest point of any 𝑒 ∈ [∧𝑞0,𝑞1 ,∧𝑝𝑖 ,𝑞𝑙] among 𝑆𝑖 is

the same as that among 𝑆𝑖−1. □

Based on Lemma 4.1, when we reach point 𝑞𝑙 , the division of the

expected space E is updated as follows. (1) < 𝑞1, 𝑞2, ..., 𝑞𝑙 , 𝑞𝑙+1, ...,
𝑞𝑘 > is updated to be< 𝑞1, 𝑞2, ..., 𝑞𝑙 , 𝑝𝑖 >. (2)< Θ𝑞1 , ...,Θ𝑞𝑙−1 ,Θ𝑞𝑙 , ...,

Θ𝑞𝑘 > is updated to be < Θ𝑞1 , ...,Θ𝑞𝑙−1 ,Θ
′
𝑞𝑙
,Θ𝑝𝑖 >, where Θ′𝑞𝑙 =

[∧𝑞𝑙−1,𝑞𝑙 ,∧𝑝𝑖 ,𝑞𝑙] and Θ𝑝𝑖 = [∧𝑝𝑖 ,𝑞𝑙 ,∧𝑞𝑘 ,𝑞𝑘+1].
Example 4.2. Assume that 𝑆3 =< 𝑝1, 𝑝2, 𝑝3 > decides a division

of the expected space < Θ𝑝1 ,Θ𝑝2 ,Θ𝑝3 > as shown in Figure 3. Let

us add point 𝑝4 by scanning points from 𝑝3 to 𝑝1 in Figure 4. Since

∧𝑝4,𝑝3 is below ∧𝑝2,𝑝3 and ∧𝑝4,𝑝2 is above ∧𝑝1,𝑝2 , we update the

division as follows. (1) < 𝑝1, 𝑝2, 𝑝3 > is updated to be < 𝑝1, 𝑝2, 𝑝4 >;

(2) < Θ𝑝1 ,Θ𝑝2 ,Θ𝑝3 > is updated to be < Θ𝑝1 ,Θ
′
𝑝2
,Θ𝑝4 >, where

Θ′𝑝2 = [∧𝑝1,𝑝2 ,∧𝑝4,𝑝2] and Θ𝑝4 = [∧𝑝4,𝑝2 , (1, 1)].
Theorem 4.3. The expected space can be divided into the fewest

partitions in 𝑂 (𝑛 log𝑛) time.

2508

Proof Sketch. Suppose there are𝑚 partitions in the optimal

case (i.e., the fewest partitions case). Use Θ′
𝑖
= [∧′𝑞𝑖−1,𝑞𝑖 ,∧

′
𝑞𝑖 ,𝑞𝑖+1]

and Θ𝑖 = [∧𝑞𝑖−1,𝑞𝑖 ,∧𝑞𝑖 ,𝑞𝑖+1] to denote the 𝑖-th partition of the

optimal case and the 𝑖-th partition obtained by our algorithm,

respectively (𝑖 ∈ [1,𝑚]). Let ∧𝑞𝑖 ,𝑞𝑖+1 ⪰ ∧′𝑞𝑖 ,𝑞𝑖+1 represents that

∧𝑞𝑖 ,𝑞𝑖+1 is not below ∧′𝑞𝑖 ,𝑞𝑖+1 . We prove that ∀𝑖 ∈ [1,𝑚], ∧𝑞𝑖 ,𝑞𝑖+1 ⪰
∧′𝑞𝑖 ,𝑞𝑖+1 with the help of mathematical induction. Since ∧𝑞𝑚,𝑞𝑚+1 ⪰
∧′𝑞𝑚,𝑞𝑚+1 = (1, 1), the number of partitions obtained by our algo-

rithm will not be more than that of the optimal case. As for the

time complexity, we need 𝑂 (𝑛 log𝑛) time to sort all the points. To

update the division of the expected space, we conclude that each

point needs 𝑂 (1) time. Since there are 𝑛 points, we require 𝑂 (𝑛)
time. Thus, the total time complexity is 𝑂 (𝑛 log𝑛). □

4.2 Interacting with A User
Section 4.1 obtains a division of E decided by 𝐷 . Denote the set of

partitions by < Θ𝑞1 ,Θ𝑞2 , ...,Θ𝑞𝑚 > from bottom to top with their

corresponding points < 𝑞1, 𝑞2, ..., 𝑞𝑚 >. For any pair of points 𝑞 𝑗
and 𝑞 𝑗+1, where 𝑗 ∈ [1,𝑚 − 1], hyper-plane ℎ𝑞 𝑗 ,𝑞 𝑗+1 intersects the

expected space at ∧𝑞 𝑗 ,𝑞 𝑗+1 and separates the partitions into two sets

S1 =< Θ𝑞1 , ...,Θ𝑞 𝑗
> and S2 =< Θ𝑞 𝑗+1 , ...,Θ𝑞𝑚 >. S1 (resp. S2)

contains all the partitions such that for any expected point 𝑒 in the

partition, | |𝑞 𝑗−𝑒 | | < | |𝑞 𝑗+1−𝑒 | | (resp. | |𝑞 𝑗−𝑒 | | > | |𝑞 𝑗+1−𝑒 | |). If a user
prefers 𝑞 𝑗 to 𝑞 𝑗+1 (resp. 𝑞 𝑗+1 to 𝑞 𝑗), the user’s expected point must

be located in the partitions in S1 (resp. S2) and the user’s favorite

point must be in < 𝑞1, 𝑞2, ..., 𝑞 𝑗 > (resp. < 𝑞 𝑗+1, 𝑞 𝑗+2, ..., 𝑞𝑚 >).

Our algorithmmaintains a point setC initialized to be< 𝑞1, 𝑞2, ...,

𝑞𝑚 > and interacts with a user for rounds to find the user’s favorite

point in a binary search manner. Specifically, in each round, our

algorithm asks a question by presenting the user with the middle

points 𝑞 𝑗 and 𝑞 𝑗+1 in C. If a user prefers 𝑞 𝑗 to 𝑞 𝑗+1, C is updated to

be the first half of C. Otherwise, C is updated to be the remaining

half of C. The process continues until |C| = 1 and the point finally

left in C is returned to the user as the answer.

Example 4.4. Following Example 4.2, point set C is initialized to

be < 𝑝1, 𝑝2, 𝑝4 >. We present a user with the middle points 𝑝1 and

𝑝2. If the user prefers 𝑝1 to 𝑝2, C is updated to be < 𝑝1 >. Since

|C| = 1, the interaction process stops and point 𝑝1 is returned.

Theorem 4.5. Algorithm DI determines the user’s favorite point
by asking the user 𝑂 (log𝑛) questions.

Proof Sketch. We prove that candidate set C could be initial-

ized to contain 𝑛 points in the worst case. Since we reduce C by

half in each round, |C| can be reduced to 1 in 𝑂 (log𝑛) rounds. □

Corollary 4.6. Algorithm DI is asymptotically optimal in terms
of the number of questions asked.

5 GENERAL CASE OF IOU
We are ready to describe our algorithms BS and EDI for the general
case of IOU. In the following, we show how we address each of the

three components of the interactive framework in the algorithms.

5.1 Algorithm BS
In this section, we present algorithm BS that performs the best in

the experiments w.r.t. the number of questions asked. Intuitively,

Algorithm 1: Algorithm DI
Input: A point set 𝐷

Output: The user’s favorite point
1 Sort all points based on their second dimension

2 𝚯←< Θ𝑝1 >, C ←< 𝑝1 >

3 for 𝑖 ← 2 to 𝑛 do
4 for 𝑗 ← 𝑘 to 1 do
5 if ∧𝑝𝑖 ,𝑞 𝑗

is above ∧𝑞 𝑗−1,𝑞 𝑗
then

6 𝑙 ← 𝑗 , C ←< 𝑞1, 𝑞2, ..., 𝑞𝑙 , 𝑝𝑖 >

7 𝚯←< Θ𝑞1 , ...,Θ𝑞𝑙−1 ,Θ
′
𝑞𝑙
,Θ𝑝𝑖 >

8 break

9 𝑙𝑒 𝑓 𝑡 ← 1, 𝑟𝑖𝑔ℎ𝑡 ←𝑚

10 while |C| > 1 do
11 Present the middle points 𝑞 𝑗 and 𝑞 𝑗+1 in C to the user

12 if 𝑞 𝑗 is preferable to 𝑞 𝑗+1 then
13 𝑟𝑖𝑔ℎ𝑡 ← 𝑗

14 else
15 𝑙𝑒 𝑓 𝑡 ← 𝑗 + 1
16 C ←< 𝑞𝑙𝑒 𝑓 𝑡 , ..., 𝑞𝑟𝑖𝑔ℎ𝑡 >

17 return The point finally left in C

we intend to follow the idea in Section 4. To divide the expected

space, a simple approach is to compute the Voronoi Diagram [8]. For

each 𝑝 ∈ 𝐷 , its Voronoi cell 𝑐𝑝 contains all the points in space R𝑑

such that 𝑝 is their nearest point. If 𝑐𝑝 intersects with the expected

space E, 𝑝 must be the nearest point of any 𝑒 ∈ 𝑐𝑝 ∩ E and thus,

𝑐𝑝 ∩ E must be the partition that corresponds to 𝑝 . However, the

computation of (1) the Voronoi Diagram and (2) the intersection of

𝑐𝑝 and E are costly. Besides, the partitions are not simply located

linearly when 𝑑𝑢 ≥ 2. To interact with a user, although we can

still find as a question the two points whose corresponding parti-

tions are neighboring, it would be difficult to conduct in a binary

search manner. Based on these challenges, we propose algorithm

BS (Binary Search) which efficiently divides the expected space and

selects points as questions following the idea of binary search.

5.1.1 Information Maintenance & Stopping Condition. Algorithm
BSmaintains 3 data structures (1) a polyhedronR ⊆ E that contains

the user’s expected point; (2) a point set C that stores the user’s

favorite point; and (3) a hyper-plane setH used for point selection.

Initially, R is set to be the whole expected space E. C contains all

the points in 𝐷 , each of which is the nearest point of at least one

expected point in E.H is constructed based on C (which will be

discussed later). Then, we interact with a user for rounds. In each

round, we select a hyper-plane ℎ𝑝,𝑞 ∈ H and present the points 𝑝

and 𝑞 to the user as a question (shown in Section 5.1.2). Based on

the user feedback, we update R to be R∩ℎ+𝑝,𝑞 or R∩ℎ−𝑝,𝑞 , and delete
the points in C that cannot be the user’s favorite point (shown in

Section 3.3). The interaction process stops when |C| = 1. The point

finally left in C is returned to the user as the answer.

A naive idea to initialize C is to find the nearest point of each

𝑒 ∈ E. However, it is unachievable in practice due to the infinite

expected points. Thus, we try to divide E and utilize the connection

2509

between points in 𝐷 . Consider a point 𝑝 ∈ 𝐷 . Let E𝑝 denote the

maximal polyhedron in E such that 𝑝 is the nearest point of any

𝑒 ∈ E𝑝 . The maximummeans that there does not exist a polyhedron

E ′𝑝 ⊆ E, where E𝑝 ⊂ E ′𝑝 and 𝑝 is the nearest point of any 𝑒 ∈ E ′𝑝 .
Note that there is at most one E𝑝 ⊆ E for each point 𝑝 ∈ 𝐷 and it

is possible that E𝑝 = ∅, i.e., 𝑝 is not the nearest point of any 𝑒 ∈ E.
Lemma 5.1. There does not exist twomaximal polyhedrons E ′𝑝 , E ′′𝑝 ⊆

E such that (1) E ′𝑝 ∩ E ′′𝑝 = ∅ and (2) 𝑝 is the nearest point of any
𝑒 ∈ E ′𝑝 ∪ E ′′𝑝 .

Proof Sketch. The polyhedron E ′𝑝 or E ′′𝑝 must be the intersec-

tion of half-spaces, i.e.,

⋂
𝑞∈𝐷\{𝑝 } ℎ

+
𝑝,𝑞 . In geometry, the intersec-

tion of half-spaces is a polyhedron or an empty space [8]. □

Lemma 5.2. If E𝑝 ≠ ∅ and ℎ𝑝,𝑞 is a boundary of E𝑝 , 𝑞 must be
the nearest point of at least one expected point in E, i.e., E𝑞 ≠ ∅.

Proof. Since E𝑝 ≠ ∅ and ℎ𝑝,𝑞 is one of the boundaries of E𝑝 ,
ℎ𝑝,𝑞 ∩E𝑝 ≠ ∅. Let 𝑒𝑝,𝑞 be an expected point in ℎ𝑝,𝑞 ∩E𝑝 . Since 𝑝 is

the nearest point of any 𝑒 ∈ E𝑝 , 𝑝 must be the nearest point of 𝑒𝑝,𝑞 .

According to the definition of ℎ𝑝,𝑞 , 𝑝 and 𝑞 have the same distance

to any 𝑒 ∈ ℎ𝑝,𝑞 . Thus, 𝑞 must be the nearest point of 𝑒𝑝,𝑞 . □

Our method initializes C as well asH based on Lemma 5.2. Intu-

itively, when finding a qualified point 𝑝 , we can know some other

qualified points 𝑞 based on the boundaries of E𝑝 . Then we can also

find others based on the boundaries of E𝑞 . Specifically, we maintain

a queue 𝑄 storing the points that will be inserted into C. In the

beginning, we randomly select an expected point 𝑒 ∈ E and put the

nearest point of 𝑒 into 𝑄 . Then, we continually pop out points in 𝑄

until 𝑄 is empty. For each popped out point 𝑝 , we insert it into C
and find the maximal polyhedron E𝑝 ⊆ E such that 𝑝 is the nearest

point of any 𝑒 ∈ E𝑝 . For each boundary ℎ𝑝,𝑞 of E𝑝 , ℎ𝑝,𝑞 is inserted

intoH if ℎ𝑝,𝑞 ∉ H and point 𝑞 is put into 𝑄 if 𝑞 ∉ C ∪𝑄 .
We find the polyhedron E𝑝 ⊆ E with the help of the Linear

Programming algorithm (LP). The techniques are the same as the

LP formulation for Lemma 3.4 except that R is set to be the whole

expected space, i.e., R = E. If constraint (𝑒 − 𝑝+𝑞
2
) · (𝑝 − 𝑞) > 𝑥

bounds the feasible region of the LP, ℎ𝑝,𝑞 is a boundary of E𝑝 .
Example 5.3. Consider Table 1. Assume that each point is de-

scribed by two unordered dimensions. Suppose that 𝑝3 is popped out

from 𝑄 . We insert 𝑝3 into C and find the maximal polyhedron E𝑝3
which is a shaded area shown in Figure 5. Since hyper-planes ℎ𝑝2,𝑝3 ,

ℎ𝑝3,𝑝4 and ℎ𝑝3,𝑝5 are the boundaries of E𝑝3 , we insert ℎ𝑝2,𝑝3 , ℎ𝑝3,𝑝4
and ℎ𝑝3,𝑝5 intoH , and put 𝑝2, 𝑝4 and 𝑝5 into 𝑄 .

5.1.2 Point Selection. Our strategy is to select hyper-planes inH
that can reduce the size of C rapidly. In a high-level, let𝑈 = {R𝑝 |𝑝 ∈
C}, where R𝑝 ⊆ R is the maximal polyhedron such that 𝑝 is the

nearest point of any 𝑒 ∈ R𝑝 . Similarly, the maximum means that

there does not exist a polyhedron R ′𝑝 ⊆ R, where R𝑝 ⊂ R ′𝑝 and 𝑝 is

the nearest point of any 𝑒 ∈ R ′𝑝 . Assume that we could find a hyper-

plane ℎ𝑝,𝑞 ∈ H that divides 𝑈 into two equal subsets, i.e., ℎ+𝑝,𝑞 and

ℎ−𝑝,𝑞 contain half of the polyhedrons in𝑈 , respectively. Based on the

user preference on 𝑝 and 𝑞, R is updated to be R ∩ℎ+𝑝,𝑞 or R ∩ℎ−𝑝,𝑞 .
Then, half of the polyhedrons in 𝑈 that are not in the updated R
can be put out of consideration and thus, half of the points 𝑝 in C
that correspond to the neglected polyhedrons R𝑝 can be pruned.

Algorithm 2: Algorithm BS
Input: A point set 𝐷

Output: The user’s favorite point
1 R ← E, C = {𝑝 ∈ 𝐷 |∃𝑒 ∈ E, 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜 𝑓 𝑒}
2 H contains all the boundaries of all E𝑝
3 while |C| > 1 do
4 Select hyper-plane ℎ𝑝,𝑞 ∈ H with the highest priority

5 Present points 𝑝 and 𝑞 to the user

6 Update R and C based on the user’s feedback

7 return The point finally left in C

Following this idea, we select the hyper-plane ℎ𝑝,𝑞 ∈ H that

divides the most equally the set of polyhedrons R𝑝 in 𝑈 , and

present point 𝑝 and 𝑞 to the user as a question. However, it is

time-consuming to check the geometric relation between a poly-

hedron and a hyper-plane. We present a heuristic approach for

relation checking that performs well empirically in the following.

Consider a point 𝑝 ∈ C and its polyhedron R𝑝 . Denote by 𝑟𝑝 the

middle point of all the extreme points ofR𝑝 . Let us first estimate the

distance from 𝑟𝑝 to the boundary of R𝑝 . Before the user provides
any information, R = E and C is initialized. Suppose that all the

points in C are uniformly distributed, i.e., the polyhedron of each

point in C can be approximated to be an equal size hyper-square.

UseV(·) to represent the volume of a polyhedron. The volume of

each hyper-square isV(R)/|𝐶 |. Thus, the length of each side of a

hyper-square is ℓ = (V(R)/|𝐶 |)
1

𝑑𝑢 . In this way, the distance from

𝑟𝑝 to the boundary of R𝑝 can be estimated to be𝑑𝑁𝑁 = ℓ/2. For any
hyper-plane ℎ ∈ H , let 𝑑𝑖𝑠𝑡 (𝑟𝑝 , ℎ) denote the distance from 𝑟𝑝 to ℎ.

If 𝑟𝑝 ∈ ℎ+ (resp. 𝑟𝑝 ∈ ℎ−) and 𝑑𝑖𝑠𝑡 (𝑟𝑝 , ℎ) ≥ 𝑑𝑁𝑁 , we consider that

R𝑝 ⊆ ℎ+ (resp. R𝑝 ⊆ ℎ−). Based on the relation checking approach,

we define the priority of a hyper-plane. It evaluates how equally

the hyper-plane divides the set of polyhedrons R𝑝 in𝑈 .

Definition 5.4 (Priority). Given a hyper-plane ℎ and a set 𝑈 of

polyhedrons R𝑝 , the priority of ℎ is defined to be min{𝑁+, 𝑁−} +
𝛽 min{𝑁𝑁+, 𝑁𝑁−}, where 𝛽 > 1 is a balancing parameter.

Notation 𝑁+ (resp. 𝑁−) denotes the number of R𝑝 such that

𝑟𝑝 ∈ ℎ+ (resp. 𝑟𝑝 ∈ ℎ−) and 𝑑𝑖𝑠𝑡 (𝑟𝑝 , ℎ) < 𝑑𝑁𝑁 . Notation 𝑁𝑁+ (resp.
𝑁𝑁−) denotes the number of R𝑝 such that 𝑟𝑝 ∈ ℎ+ (resp. 𝑟𝑝 ∈ ℎ−)
and 𝑑𝑖𝑠𝑡 (𝑟𝑝 , ℎ) ≥ 𝑑𝑁𝑁 . Intuitively, a higher priority means that the

hyper-plane divides the set of polyhedrons more equally. The first

term min{𝑁+, 𝑁−} considers R𝑝 that may be on one side of ℎ. The

second term 𝛽 min{𝑁𝑁+, 𝑁𝑁−} gives an award for R𝑝 that are in

large possibility on one side ofℎ. Note that ifR𝑝 interacts withℎ,R𝑝
cannot be pruned nomatter whetherR is updated to be eitherR∩ℎ+
or R ∩ ℎ−. Thus, we expect both sides of ℎ contain as many R𝑝 as

possible. In each interactive round, we present the user with points

𝑝 and 𝑞, where hyper-plane ℎ𝑝,𝑞 ∈ H has the highest priority.

Example 5.5. Figure 6 shows𝑈 = {R𝑝1 ,R𝑝2 ,R𝑝3 ,R𝑝4 ,R𝑝5 }. Con-
sider ℎ𝑝2,𝑝3 and let 𝛽 = 2. If the distance from the middle points of

R𝑝1 , R𝑝2 , R𝑝3 and R𝑝5 to ℎ𝑝2,𝑝3 are larger than 𝑑𝑁𝑁 , the priority

of ℎ𝑝2,𝑝3 is min{0, 1} + 𝛽 min{2, 2} = 4.

5.1.3 Summary. We summarize BS by involving all the techniques

illustrated previously. The pseudocode is presented in Algorithm 2.

2510

1

1

0

𝑝!

𝑒[1]

𝑝"
𝑝#

𝑒[2]

𝑝$

𝑝%

ℎ!!,!"

ℎ!#,!!

ℎ!!,!$
ℰ&!

Figure 5: Polyhedron E𝑝3

1

1

0

𝑝!

𝑒[1]

𝑝"
𝑝#

𝑒[2]

𝑝$

𝑝%
ℎ!!,!"ℛ!#

ℛ!"
ℛ!!

ℛ!$

ℛ!%

ℎ!!,!"
#

ℎ!!,!"
$

Figure 6: Polyhedrons

1

1

0 𝑒[1]

𝑒[2]

∧!!"#,!!

Θ#
Θ#$%

∧&$,!! ℎ&$,!!𝑒%

𝑒'

Figure 7: Case 1

1

1

0 𝑒[1]

𝑒[2]

∧!!"#,!!

Θ#
Θ#$% ∧&$,!!

ℎ&$,!!𝑒%

𝑒'

Figure 8: Case 2

At the beginning, R, C and H are initialized (lines 1-2). In each

interactive round, BS selects the hyper-plane ℎ𝑝,𝑞 inH that has the

highest priority (line 4). Points 𝑝 and 𝑞 are presented as a question

asked to a user (line 5). Based on the user feedback, R becomes

a smaller polyhedron R ∩ ℎ+𝑝,𝑞 or R ∩ ℎ−𝑝,𝑞 and there are points

pruned from C (line 6). If there is only one point 𝑝 in C (line 3), we

stop the interaction and return 𝑝 as the answer (line 7).

Theorem 5.6. Algorithm BS solves IOU in 𝑂 (𝑛) rounds.

Proof Sketch. In each interactive round, we can prune at least

one point from C (one of the presented points). Since there are 𝑛

points, there will be only one point left in C after𝑂 (𝑛) rounds. □

In practice, BS can prune multiple points from C in each round

and thus, its performance is much better than 𝑂 (𝑛). Suppose there
are at least 𝛼% points reduced in each round. BS needs to ask

𝑂 (log 1

1−𝛼%

𝑛) questions so that |C| = 1. In our experiments (Sec-

tion 6), we explored that 𝛼 ≥ 25 and in most cases, it is up to 40−50.

5.2 Algorithm EDI
We present algorithm EDI, an extension of algorithm DI for the
general case of IOU. Intuitively, when 𝑑𝑢 ≥ 2, the expected space E
is not a line segment. Algorithm EDI processes several iterations. In
each iteration, we find a line segment in E and proceed similar to DI.
The process stops whenwe cannot find a qualified line segment in E.

5.2.1 InformationMaintenance & Stopping Condition. Wemaintain

3 data structures: (1) a polyhedron R ⊆ E that contains the user’s

expected point; (2) a point set C that stores the user’s favorite

point; and (3) a point set P that stores the candidate points for

point selection. Initially, R = E and C contains all the points in 𝐷 ,

each of which is the nearest point of at least one expected point in

E. P starts with some of the points in C. During the interaction, we
select two points in P and present them to the user as a question

(shown in Section 5.2.2). Based on the user feedback, R and C are

updated accordingly (shown in Section 3.3). Meanwhile, P is also

updated. The interaction stops when |C| = 1 and the point finally

left in C is returned. The processing of R and C is in the same way

as BS. In the following, we show how to initialize and update P.
Initialization of P. Recall that DI divides E into partitions and

utilizes the points that correspond to the partitions for interaction.

We intend to follow DI to find points and store them in P for point

selection. Since E is not a line segment if𝑑𝑢 > 1, we are to find a line

segment in E to proceed. Let 𝑒 and 𝑒 ′ be any two points in E. With a

slight abuse of notations, we denote the line segment that connects

𝑒 and 𝑒 ′ by [𝑒, 𝑒 ′]. We select two extreme points 𝑒1 and 𝑒2 of R (R ⊆
E) (the way of selecting extreme points is shown in Section 5.2.2)

and divide line segment [𝑒1, 𝑒2] into the fewest partitions. Each

partition Θ𝑝 corresponds to a point 𝑝 ∈ C that is the nearest point

of any 𝑒 ∈ Θ𝑝 . Set P stores all these corresponding points.

Specifically, for each 𝑝 ∈ C, we define the length 𝑡𝑝 of 𝑝 w.r.t.

[𝑒1, 𝑒2] to be the projection of vector 𝑝 − 𝑒1 on the direction of

vector 𝑒2 − 𝑒1, i.e., 𝑡𝑝 =
(𝑝−𝑒1) · (𝑒2−𝑒1)
| |𝑒2−𝑒1 | | . We first sort all the points

in C based on their 𝑡𝑝 in ascending order. Let < 𝑝1, 𝑝2, ..., 𝑝 |𝐶 | >
represent the sorted list. Similar to DI, every set of points 𝑆𝑖−1 =<
𝑝1, 𝑝2, ..., 𝑝𝑖−1 > decides a division of [𝑒1, 𝑒2], where 𝑖 = 2, 3, ..., |C|+
1. We are to add 𝑝𝑖 and update the division of [𝑒1, 𝑒2]. Note that not
every point in 𝑆𝑖−1 corresponds to a partition in the division. As-

sume that < Θ𝑞1 ,Θ𝑞2 , ...,Θ𝑞𝑘 > is the division of [𝑒1, 𝑒2] decided by
𝑆𝑖−1 and < 𝑞1, 𝑞2, ..., 𝑞𝑘 > are the corresponding points. Denote by

∧𝑝,𝑞 the intersection of [𝑒1, 𝑒2] and hyper-planeℎ𝑝,𝑞 . The boundary
of each pair of adjacent partitions Θ𝑗−1 and Θ𝑗 is ∧𝑞 𝑗−1,𝑞 𝑗

, where

𝑗 ∈ [2, 𝑘]. We add 𝑝𝑖 by scanning points from 𝑞𝑘 to 𝑞1 until we

reach a point 𝑞𝑙 in < 𝑞1, 𝑞2, ..., 𝑞𝑘 > such that ∧𝑝𝑖 ,𝑞𝑙 is farther away
from 𝑒1 than ∧𝑞𝑙−1,𝑞𝑙 . Figure 8 shows such case when 𝑑𝑢 = 2.

Lemma 5.7. The nearest point of any 𝑒 ∈ [𝑒1,∧𝑝𝑖 ,𝑞𝑙] among 𝑆𝑖 =
𝑆𝑖−1 ∪ {𝑝𝑖 } is the same as that among 𝑆𝑖−1. Point 𝑝𝑖 is nearest point
of any 𝑒 ∈ [∧𝑝𝑖 ,𝑞𝑙 , 𝑒2] among 𝑆𝑖 .

Proof Sketch. The proof is similar to that of Lemma 4.1. Based

on our scanning strategy, ∀𝑗 ∈ [𝑙 + 1, 𝑘], ∧𝑝𝑖 ,𝑞 𝑗
is closer to 𝑒1 than

∧𝑞 𝑗−1,𝑞 𝑗
. Figure 7 shows such case when𝑑𝑢 = 2. 𝑝𝑖 must be the near-

est point of any 𝑒 ∈ Θ𝑗 among 𝑆𝑖 . For 𝑝𝑙 , ∧𝑝𝑖 ,𝑞𝑙 is farther away from
𝑒1 than ∧𝑞𝑙−1,𝑞𝑙 . Figure 8 shows such case when 𝑑𝑢 = 2. The nearest

point of any 𝑒 ∈ [𝑒1,∧𝑝𝑖 ,𝑞𝑙] among 𝑆𝑖 is the same as that among 𝑆𝑖−1
and 𝑝𝑖 is nearest point of any 𝑒 ∈ [∧𝑝𝑖 ,𝑞𝑙 ,∧𝑝𝑙 ,𝑞𝑙+1] among 𝑆𝑖 . □

Lemma 5.7 is an extension of Lemma 4.1 in a high dimensional

space. Following the lemma, when we reach point 𝑞𝑙 , we update the

division of [𝑒1, 𝑒2] as follows. (1) < 𝑞1, 𝑞2, ..., 𝑞𝑙 , 𝑞𝑙+1, ..., 𝑞𝑘 > is up-

dated to be < 𝑞1, 𝑞2, ..., 𝑞𝑙 , 𝑝𝑖 >; and (2) < Θ𝑞1 ,Θ𝑞2 , ...,Θ𝑞𝑙−1 ,Θ𝑞𝑙 , ...,

Θ𝑞𝑘 > is updated to be < Θ𝑞1 ,Θ𝑞2 , ...,Θ𝑞𝑙−1 ,Θ
′
𝑞𝑙
,Θ𝑝𝑖 >, where

Θ′𝑞𝑙 = [∧𝑞𝑙−1,𝑞𝑙 ,∧𝑝𝑖 ,𝑞𝑙] and Θ𝑝𝑖 = [∧𝑝𝑖 ,𝑞𝑙 , 𝑒2].
Update ofP. LetP =< 𝑝1, 𝑝2, ..., 𝑝𝑚 >, where the points are sorted

based on their corresponding partitions from 𝑒1 to 𝑒2. Suppose we

select two nearby points 𝑝𝑖 , 𝑝𝑖+1 ∈ P as a question asked to a user.

If the user prefers 𝑝𝑖 to 𝑝𝑖+1, the user’s expected point must be in

ℎ+𝑝𝑖 ,𝑝𝑖+1 according to Lemma 3.3. Since∀𝑗 ∈ [𝑖+1,𝑚],Θ𝑝 𝑗
⊈ ℎ+𝑝𝑖 ,𝑝𝑖+1 ,

we delete the corresponding points < 𝑝𝑖+1, 𝑝𝑖+2, ..., 𝑝𝑚 > from P.
After the pruning, if |P | ≤ 𝛾 , we select two new extreme points

𝑒3, 𝑒4 ∈ R and partition line segment [𝑒3, 𝑒4] to initialize P with

C again. As for parameter 𝛾 , if it is too large, P may need to be

initialized many times. On the contrary, the lack of candidates for

point selection may affect the performance of the algorithm. The

setting of parameter 𝛾 will be discussed in Section 6.

2511

5.2.2 Point selection. We are ready to show how to select points

from P as questions, and pick extreme points of R to initialize P.
Selecting Points from P. Recall that we select a line segment

[𝑒1, 𝑒2] in R and partition it by considering the points in C to

initialize P. Let P =< 𝑝1, 𝑝2, ..., 𝑝𝑚 >, where points are sorted

based on their corresponding partitions from 𝑒1 to 𝑒2. Our thought

is to reduce P by half in each interactive round. Specifically, we

select the two median points 𝑝𝑖 and 𝑝𝑖+1 in P and present them to

a user, where hyper-plane ℎ𝑝𝑖 ,𝑝𝑖+1 divides the partitions into two

equal halves < Θ1, ...,Θ𝑖 > and < Θ𝑖+1, ...,Θ𝑚 >.

Picking Extreme Points of R. Our idea is to select the pair of

extreme points in R so that it could help to prune as many points

in C as possible in each interactive round. In detail, we randomly

select a set S of extreme points of R. For each pair 𝑒1, 𝑒2 ∈ S, we
divide [𝑒1, 𝑒2] into partitions by considering C. Each partition Θ
corresponds to a point in C that is the nearest point of any 𝑒 ∈ Θ
among C. Denote the corresponding points of the partitions by

P𝑒1,𝑒2 =< 𝑝1, 𝑝2, ..., 𝑝𝑚 >. We find the median points 𝑝𝑖 and 𝑝𝑖+1 of
P𝑒1,𝑒2 and check the priority of hyper-plane ℎ𝑝𝑖 ,𝑝𝑖+1 (defined in Def-

inition 5.4). If the priority is the highest, the pair 𝑒1 and 𝑒2 is picked

to initialize P. Note that if |P𝑒1,𝑒2 | = 1 for all pairs 𝑒1, 𝑒2 ∈ S, we
randomly select a new set S of extreme points of R. The following
lemma guarantees the soundness of our strategy used to pick the ex-

treme points to initialize P. Before reaching the stopping condition,
we can always find points in P as a question asked to a user.

Lemma 5.8. If |C| ≥ 2, we could initialize P such that |P | ≥ 2.

Proof Sketch. If |C| ≥ 2, we show that there exists a pair of

extreme points 𝑒1, 𝑒2 ∈ R such that line segment [𝑒1, 𝑒2] will be
divided into at least two partitions. Thus, there are at least two

points inserted into P that correspond to the partitions. □

5.2.3 Summary. The pseudocode of EDI is shown in Algorithm 3.

R, C and P are first initialized (lines 1-2). In each interactive round,

EDI selects the two median points in P as a question asked to a

user (line 4). Based on the user feedback, R and C become smaller.

P is also reduced by half (line 5). If |P | ≤ 𝛾 and the interaction does

not achieve the stopping condition (i.e., |C| > 1), P is initialized

again with |P | ≥ 2 based on Lemma 5.8 (lines 6-7). If |C| = 1, we

stop the interaction (line 3) and return the point finally left in C
(line 8). Theorem 5.9 shows the theoretical analysis. 𝑐 is the number

of times initializing P. We will study 𝑐 in Section 6 in detail.

Theorem 5.9. Algorithm EDI finds the user’s favorite point in
𝑂 (𝑐 log𝑛) rounds. 𝑐 is the number of times initializing P and 𝑐 ≤ 𝑛.

Proof Sketch. Since |𝐷 | = 𝑛, P is initialized with |P | ≤ 𝑛.

Since P can be reduced by half in each round, |P | becomes 1 (≤ 𝛾)
in 𝑂 (log𝑛) rounds in each iteration. Because |𝐷 | = 𝑛, 𝑐 ≤ 𝑛. □

6 EXPERIMENT
We conducted experiments on a machine with 3.10𝐺𝐻𝑧 CPU and

16𝐺𝐵 RAM. All programs were implemented in C/C++.

Datasets.We conducted experiments on synthetic and real datasets

that were commonly used in existing studies [22, 32, 35]. The syn-

thetic datasets were anti-correlated, correlated, independent and clus-
tered [5, 11]. The real datasets were Car, Flight, Air quality, House,

Algorithm 3: Algorithm EDI
Input: A point set 𝐷

Output: The user’s favorite point
1 R ← E, C = {𝑝 ∈ 𝐷 |∃𝑒 ∈ E, 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜 𝑓 𝑒}
2 P contains the corresponding points of partitions in [𝑒1, 𝑒2].
3 while |C| > 1 do
4 Select the median points of P and present them to a user

5 Update R, C and P based on the user feedback

6 if |P | ≤ 𝛾 and |C| > 1 then
7 Select extreme points in R and initialize P

8 return The point finally left in C

NBA and Wine. Car contained 20,186 cars after we filtered the cars

whose attribute values were not in a normal range. The filtering step

followed [32]. Car had 3 ordered attributes (price, year of produc-

tion, and used mileage) and 3 unordered attributes (length, width,

and the number of seats). There were cars whose attribute values

differed from those of the other cars largely (e.g., the year of produc-

tion was 1927). Thus, we removed the records with price outside the

range $27000 − $5215000 and the records with year of production

outside the range 1997−2020. Flight contained 439,645 records with
3 ordered attributes (taxi-out, taxi-in, and actual-elapsed-time) and

2 unordered attributes (air-time and distance). Air quality contained

2,470,487 records with 2 ordered attributes (PM 2.5 and PM 10) and

1 unordered attribute (temperature). Due to the lack of space, the

description and results of the other real datasets are shown in our

technical report [31]. Note that existing studies [32, 35] prepro-

cessed datasets to only contain skyline points 𝑝 (i.e., ∄𝑞 which is

better than 𝑝 w.r.t. any user preference). Consistent with their set-

ting, we preprocessed all the datasets to only contain the points

𝑝 such that ∄𝑞 which is closer than 𝑝 to any 𝑒 ∈ E. After the
preprocessing, the datasets contained about 10

2 − 104 records.
Algorithms. We evaluated our algorithms DI, BS and EDI with ex-

isting interactive algorithms ActiveRanking [13], UtilityApprox [20],

UH-Random [35], and RH [32]. The existing ones cannot solve our

problem directly since they are designed only for ordered attributes.

They model the user preference by a utility function and learn the

utility function by interacting with users. We adapted them by

replacing the utility function with our distance function and follow-

ing their idea to select points as questions for interaction. Besides,

we made a few more adaptations for each of them. ActiveRanking
learns the ranking of points. We returned the first ranked point

after obtaining the full ranking. UtilityApprox and UH-Random find

a point such that a criterion called the regret ratio [35] is minimized.

They stop the interaction when they can find a point whose regret

ratio satisfies a given threshold 𝜖 . We set 𝜖 = 0 since this guarantees

that the returned point is the user’s favorite point. RH returns one

of the user’s favorite 𝑘 points. To obtain the user’s favorite point, we

set 𝑘 = 1. Note that [32, 35] also proposed algorithms UH-Simplex
and HD-PI. However, both algorithms cannot be adapted to solve

our problem IOU since they utilize several properties of the utility

function that the distance function does not have.

Parameter Setting. We evaluated the performance of algorithms

by varying several parameters: (1) parameter 𝛽 , used in the priority

2512

shown in Section 5.1.2; (2) parameter 𝛾 , deciding the update of P
shown in Section 5.2.1; (3) the dataset size 𝑛; (4) the number of

ordered dimensions 𝑑𝑜 ; (5) the number of unordered dimensions 𝑑𝑢 ;

and (6) the number of questions we can ask. Unless stated explicitly,

following the default setting of [32, 35], the synthetic datasets were

anti-correlated. Besides, 𝑛 = 100, 000, 𝑑𝑜 = 4 and 𝑑𝑢 = 4 by default.

Performance Measurement. We evaluated algorithms by the fol-

lowing measurements: (1) preprocessing time, which is the time cost

before the user interaction; (2) interaction time, which is the time

cost of the user interaction; (3) the number of questions asked; and
(4) candidate size, which is the size of C during the interaction. We

reported the percentage of the remaining points in C in each inter-

active round. Each algorithm was conducted 10 times with different

distance functions and the average performance was reported.

6.1 Results on Synthetic Datasets
Parameter 𝛽 . In Figure 9, we studied parameter 𝛽 , which is used in

the priority (shown in Definition 5.4), by varying it from 2 to 7 and

evaluating the interaction time and the number of questions asked.

When 𝛽 = 4, the two measurements reach the smallest. Thus, we

stick to 𝛽 = 4 in the rest of our experiments.

Parameter 𝛾 . Figure 9 shows our exploration on parameter 𝛾 ,

which decides the update of P in EDI. We varied 𝛾 from 1 to 6 and

evaluated the interaction time and the number of questions asked.

Both measurements fluctuate slightly. The number of questions

asked is around 18 and the interaction time is comparably shorter

when 𝛾 = 3 and 4. Thus, we set 𝛾 = 4 in the rest of our experiments.

Ratio 𝛼 .We studied 𝛼 in Figure 10, which denotes the percentage of

points in C that BS reduces in each round (discussed in Section 5.1.3).
𝑖−𝑖 means that the dataset has 𝑖 ordered and 𝑖 unordered dimensions,

where 𝑖 ∈ [1, 4]. It can be seen that 𝛼 ≥ 25 and 𝛼 is around 40-50

in most cases. This indicates that BS can effectively reduces C and

thus, it will only ask users a few questions.

Parameter 𝑐. In Figure 11, we studied parameter 𝑐 used in the theo-

retical bound of the number of questions asked by EDI (discussed in
Section 5.2.3). 𝑖 − 𝑖 means the dataset has 𝑖 ordered and 𝑖 unordered

dimensions, where 𝑖 ∈ [1, 4]. The results show that 𝑐 is a small

value. This supports that EDI will only ask users a few questions.

Progress Study.We demonstrated how the algorithms progress

during the interaction process. Varying the number of questions

we can ask, we reported the interaction time and the candidate

size. The second measurement is an indicator showing the number

of questions asked by algorithms. If the candidate size can be re-

duced effectively, we can quickly achieve the stopping condition.

We also evaluated the preprocessing time. Algorithms BS and EDI
were compared against existing algorithms on 2 synthetic datasets.

For completeness, we also included the simple approach, namely

Baseline, in our experiments, which utilizes the Voronoi Diagram

(introduced at the beginning of Section 5.1).

In the first dataset, 𝑑𝑜 = 1 and 𝑑𝑢 = 1. It contained around

400 points after the preprocessing. Our algorithms DI were also
involved. Figure 13 shows the preprocessing time where the x-axis

label is “1-1”. All the algorithms preprocess nearly the same time

except UtilityApprox. Note that UtilitApprox does not preprocess

the dataset since it uses fake points (i.e., points not selected from

the dataset) during the interaction. Although it has a slight advan-

tage on the preprocessing time, it encounters several problems as

mentioned in Section 2. Figure 12 shows the results of the other two

measurements. All the algorithms can finish within 0.1 seconds. In

particular, DI performs the best among all the algorithms. It only

takes 10
−3

seconds. Besides, our algorithms DI, BS and EDI reduce
the candidate size the most effectively. They reduce the candidate

size to less than 3% after asking 3 questions.

In the second dataset, 𝑑𝑜 = 4 and 𝑑𝑢 = 4. It contained about 1300

points after the preprocessing. Figure 13 shows the preprocessing

time where the x-axis label is “4-4”. Baseline is costly since it utilizes
the Voronoi Diagram which is time-consuming to compute. It takes

3 orders of magnitude longer than our algorithms. Except for Base-
line, the preprocessing times of all the other algorithms are short.

Since the preprocessing times of algorithms are short (except Base-
line) and have little impact on the user interaction, we do not show

them later. Figure 14(a) shows the interaction time. All the algo-

rithms only take a few seconds. ActiveRanking and RH run slightly

faster than our algorithms since they do not prune points during the

interaction. The lack of pruning points may neglect the connection

between points and result in asking more questions. Although our

algorithms spend slightly more time, their interaction times are

short and reasonable, given that they can effectively reduce the

candidate size and obtain the user’s favorite point by asking a few

questions. Figure 14(b) shows the candidate size. Since ActiveRank-
ing only focuses on learning the ranking of points and UtilityApprox
does not include points from datasets during the user interaction,

they fail to provide any reduction on the candidate size. UH-Random
and Baseline do not reduce the candidate size effectively. After ask-

ing 5 questions, they contain about 5 times and 2 times more points

in C than our algorithms, respectively. Since Baseline performed

badly (i.e., a long preprocessing time and an ineffective candidate

size reduction), we did not include it in the later experiments.

Scalability. We studied the scalability of algorithms by varying

the type of datasets, 𝑑𝑜 , 𝑑𝑢 and 𝑛. Each algorithm was measured by

the interaction time and the number of questions asked.

Varying type. In Figure 15, we ran algorithms on four kinds of

datasets: anti-correlated (Anti), correlated (Cor), independent (In-

dep), and clustered (Clu). They contained about 1300, 2100, 2000,

and 1800 points after the preprocessing. All the algorithms run

within 3 seconds. Our algorithms ask the fewest questions. They

can ask up to 89% fewer questions than existing algorithms.

Varying 𝑑𝑜 . In Figure 16, we fixed 𝑑𝑢 = 4 and varied 𝑑𝑜 from 3 to 6.

After the preprocessing, the datasets contained 700-3000 records for

different 𝑑𝑜 . The results show that all the algorithms are fast. They

can finish within 3.4 seconds. Besides, our algorithms ask 8% − 88%
fewer questions than existing algorithms. This verifies that our

algorithms perform well when we scale the ordered attributes.

Varying 𝑑𝑢 . In Figure 17, we fixed 𝑑𝑜 = 4 and varied 𝑑𝑢 from 3 to 6.

After the preprocessing, the datasets contained 400-8000 records

for different 𝑑𝑢 . Our algorithms perform the best in terms of the

number of questions asked. When 𝑑𝑢 = 6, they ask at most 28.4

questions, while the best existing algorithm UH-Random asks 32

questions. The interaction times of UH-Random and ActiveRanking
increase largely when 𝑑𝑢 increases. When 𝑑𝑢 = 6, they run 1-2

orders of magnitude longer than our algorithms.

2513

β γ

 12
 13
 14
 15
 16
 17
 18
 19
 20

 1 2 3 4 5 6 7

#
 o

f
Q

u
e
s
ti
o
n
s

Parameter Value

 12
 13
 14
 15
 16
 17
 18
 19
 20

 1 2 3 4 5 6 7

#
 o

f
Q

u
e
s
ti
o
n
s

Parameter Value

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

Parameter Value

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

Parameter Value

(a) (b)

Figure 9: Parameter 𝛽 and 𝛾

4-4 dataset
3-3 dataset

2-2 dataset
1-1 dataset

0

20

40

60

80

100

 1 2 3 4 5 6 7 8 9 10

R
a
ti
o
 α

of Questions

Figure 10: Ratio 𝛼

0

10

20

30

40

50

1-1 2-2 3-3 4-4

P
a
ra

m
e
te

r
c

Datasets

Figure 11: Parameter 𝑐

ActiveRanking
UtilityApprox

UH-Random
RH

DI
EDI

BS
Baseline

10
-5

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

of Questions

0%

20%

40%

60%

80%

100%

1 2 3 4 5

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) (b)

Figure 12: 1 Ordered & 1 Unordered

ActiveRanking
UtilityApprox
UH-Random

Baseline

RH
DI

EDI
BS

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1-1 4-4P
re

p
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Datasets

Figure 13: Preprocessing

ActiveRanking
UtilityApprox

UH-Random
RH

EDI
BS

Baseline

10
-3

10
-2

10
-1

10
0

10
1

 1 2 3 4 5

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

of Questions

0%

20%

40%

60%

80%

100%

1 2 3 4 5

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) (b)

Figure 14: 4 Ordered & 4 Unordered

ActiveRanking
UtilityApprox

UH-Random
RH

EDI
BS

0

0.5

1

1.5

2

2.5

3

3.5

Anti Cor Indep Clu

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

Datasets

16

32

64

128

Anti Cor Indep Clu

#
 o

f
Q

u
e
s
ti
o
n
s

Datasets

(a) (b)

Figure 15: Vary Type

ActiveRanking
UtilityApprox

UH-Random
RH

EDI
BS

0

0.5

1

1.5

2

2.5

3

3.5

 3 4 5 6

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

of Ordered Dimensions

16

32

64

128

3 4 5 6

#
 o

f
Q

u
e
s
ti
o
n
s

of Ordered Dimensions

(a) (b)

Figure 16: Vary 𝑑𝑜

ActiveRanking
UtilityApprox

UH-Random
RH

EDI
BS

0

50

100

150

200

 3 4 5 6

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

of Unordered Dimensions

8

16

32

64

128

256

3 4 5 6

#
 o

f
Q

u
e
s
ti
o
n
s

of Unordered Dimensions

(a) (b)

Figure 17: Vary 𝑑𝑢

ActiveRanking
UtilityApprox

UH-Random
RH

EDI
BS

0

20

40

60

80

100

120

50k 100k500k 1M 2M 5M 10M

In
te

ra
c
ti
o
n
 T

im
e
 (

s
)

Size

16

32

64

128

50k 100k500k 1M 2M 5M 10M

#
 o

f
Q

u
e
s
ti
o
n
s

Size

(a) (b)

Figure 18: Vary 𝑛

Varying 𝑛. In Figure 18, we varied dataset size𝑛 from 50k to 10M. Af-

ter the preprocessing, the datasets contained 1000-12,000 records for

different 𝑛. Our algorithms ask 5%− 92% fewer questions than exist-

ing algorithms. They also scale well w.r.t. the interaction time. They

spend less than 0.6 seconds even if 𝑛 = 10M. Note that RH is slightly

faster than our algorithms since it does not prune points during the

interaction. However, this leads it to ask around 3 times more ques-

tions than our algorithms. Although our algorithms spend slightly

more time, their interaction times are still short (within 0.6 seconds)

2514

ActiveRanking UtilityApprox UH-Random RH EDI BS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) Car (b) Flight (c) Air quality

Figure 19: Real Datasets

of Questions
Satisfaction

Boredness
Rank

 0

 5

 10

 15

 20

 25

 30

UH-Random RH ActiveRanking EDI BS

M
e
a
s
u
re

m
e
n
t

Algorithm

Figure 20: User Study

and they can effectively reduce the candidate size and obtain the

user’s favorite points by asking only a few questions.

6.2 Results on Real Datasets
We explored how the algorithms progress during the interaction

process on real datasets. Car, Flight and Air quality contained about

3×102, 6×103 and 2×104 records after the preprocessing. We varied

the number of questions we can ask and reported the candidate size.

Due to the lack of space, the interaction time of each algorithm is

shown in the technical report [31]. Figure 19 presents the candidate

size by varying the number of questions we can ask. Our algorithms

reduce the candidate size the most effectively. For example, on

dataset Car, after asking 2 questions, our algorithms only contain

less than 15% points in C. In comparison, the existing algorithms

contain at least 68% points in C.

6.3 User Study
We conducted a user study on dataset Car to see the impact of user

mistakes on the final results since users might make mistakes or

provide inconsistent feedback during the interaction. Following the

setting in [23, 32, 34, 35], 30 users were recruited, and their aver-

age result was reported. We compared our algorithms BS and EDI
against 3 existing algorithms Active-Ranking, UH-Random and RH.
We did not involve UtilitApprox since there are issues to apply it in

real life scenarios [32, 35] as mentioned in Section 2. The adaptation

of the existing algorithms shown previously was maintained.

The following measurements evaluated each algorithm. (1) The
number of questions asked. (2)Degree of satisfaction. It is a score from
1 to 10 given by each user, indicating how satisfied the user is with

the returned car. A larger score means the user is more satisfied

with the returned car. (3) Rank. It is the rank of the algorithm given

by each user based on its returned car. Since users sometimes gave

the same degree of satisfaction for the cars returned by different

algorithms, to distinguish them clearly, we asked each user to give

a ranking of all the algorithms. (4) Degree of boredness. It is a score
from 1 to 10 given by each user, indicating how bored the user feels

when s/he sees the returned car after being asked several questions.

1 denotes the least bored and 10 means the most bored.

Figure 20 shows the results. Our algorithms BS and EDI ask 9.8

and 8.9 questions, respectively, while existing algorithms ask more

than 11.9 questions. In particular, the number of questions asked

by ActiveRanking is up to 28.1. Besides, our algorithms BS and EDI
return the car with the highest satisfaction and rank the best. Their

degrees of satisfaction are 7.4 and 7.5, respectively. In comparison,

the degrees of satisfaction of existing algorithms are less than 6.7.

The degree of satisfaction of the least satisfying algorithm RH is

5.5, especially. Our algorithms also obtain the least boredness score.

Their degrees of boredness are 3.6 and 2.9, respectively, while the

degrees of boredness of existing algorithms are more than 3.8.

We also conducted a user study to see the impact of difficult

questions since there might be questions that users cannot answer.

Due to the lack of space, it can be found in the technical report [31].

6.4 Summary
The experiments showed the superiority of our algorithms over

the best-known existing ones. (1) We are effective and efficient.

Compared with the existing algorithms, our algorithms achieve

significant improvements in the interaction time and the number

of questions asked (e.g., when 𝑑𝑜 = 4 and 𝑑𝑢 = 4, our algorithms

ask up to 10 times fewer questions than ActiveRanking). (2) Our
algorithms scale well on the type of dataset, the number of dimen-

sions and the dataset size (e.g., our algorithm BS asks 25 questions
in 6 seconds on the dataset with 𝑑𝑜 = 4 and 𝑑𝑢 = 6, while UH-
Random asks 32 questions in 60 seconds). (3) The pruning strategy

(Lemma 3.4) is useful (e.g., our algorithms reduce the candidate

size to 15% by only asking 2 questions on datasets Car, while the
existing algorithms can only reduce it to 68%). In summary, DI asks
the fewest questions in the shortest time for the special case of IOU.

BS and EDI ask the fewest questions for the general case of IOU.

7 CONCLUSION
In this paper, we present interactive algorithms for searching the

user’s favorite tuple on the dataset with ordered and unordered

attributes. On the dataset in which 𝑑𝑜 = 1 and 𝑑𝑢 = 1, we propose

algorithm DI, which is asymptotically optimal w.r.t. the number of

questions asked. For the general cases, we present two algorithms

BS and EDI, which performwell w.r.t. the number of questions asked

theoretically and empirically. Extensive experiments showed that

our algorithms are both efficient and effective. As for future work,

we consider that users might have various priorities to different

attributes and may make mistakes when answering questions.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their constructive

comments on this paper. The research of Weicheng Wang and

Raymond Chi-Wing Wong is supported by 𝑃𝑅𝑃/026/21𝐹𝑋 .

2515

REFERENCES
[1] Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi. 2007. Eliciting Matters –

Controlling Skyline Sizes by Incremental Integration of User Preferences. In

Advances in Databases: Concepts, Systems and Applications. Springer, Berlin,
Heidelberg, 551–562.

[2] Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi. 2007. User Interaction

Support for Incremental Refinement of Preference-Based Queries. In Research
Challenges in Information Science. 209–220.

[3] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2014. Domination in the

Probabilistic World: Computing Skylines for Arbitrary Correlations and Ranking

Semantics. ACM Transactions on Database Systems 39, 2 (2014), 1–45.
[4] Ilaria Bartolini, Paolo Ciaccia, and Florian Waas. 2001. FeedbackBypass: A New

Approach to Interactive Similarity Query Processing. In Proceedings of the 27th
International Conference on Very Large Data Bases. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 201–210.

[5] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

Operator. In Proceedings of the International Conference on Data Engineering.
421–430.

[6] Baoping Cai, Lei Huang, andMinXie. 2017. BayesianNetworks in Fault Diagnosis.

IEEE Transactions on Industrial Informatics 13, 5 (2017), 2227–2240.
[7] JohnGerald Cleary. 1979. Analysis of anAlgorithm for FindingNearest Neighbors

in Euclidean Space. ACM Trans. Math. Softw. 5, 2 (1979), 183–192.
[8] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. 2008.

Computational geometry: Algorithms and applications. Springer Berlin Heidel-

berg.

[9] Evangelos Dellis and Bernhard Seeger. 2007. Efficient Computation of Reverse

Skyline Queries. In Proceedings of the 33rd International Conference on Very Large
Data Bases. VLDB Endowment, 291–302.

[10] Brian Eriksson. 2013. Learning to Top-k Search Using Pairwise Comparisons.

In Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics, Vol. 31. PMLR, Scottsdale, Arizona, USA, 265–273.

[11] Clustered Dataset Generator. 2022. https://personalpages.manchester.ac.uk/

staff/Julia.Handl/generators.html

[12] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in

high dimensions via hashing. In VLDB, Vol. 99. 518–529.
[13] Kevin G. Jamieson and Robert D. Nowak. 2011. Active Ranking Using Pair-

wise Comparisons. In Proceedings of the 24th International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,

2240–2248.

[14] Jongwuk Lee, Gae-Won You, Seung-Won Hwang, Joachim Selke, and Wolf-Tilo

Balke. 2012. Interactive skyline queries. Information Sciences 211 (2012), 18–35.
[15] Wei Li, Pascal Poupart, and Peter van Beek. 2011. Exploiting Structure in

Weighted Model Counting Approaches to Probabilistic Inference. J. Artif. Int.
Res. 40, 1 (2011), 729–765.

[16] Tie-Yan Liu. 2010. Learning to Rank for Information Retrieval. In Proceedings
of the 33rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, New York, NY, USA, 904.

[17] Alchemer LLC. 2022. https://www.alchemer.com/resources/blog/how-many-

survey-questions/

[18] Lucas Maystre and Matthias Grossglauser. 2017. Just Sort It! A Simple and

Effective Approach to Active Preference Learning. In Proceedings of the 34th
International Conference on Machine Learning. 2344–2353.

[19] Boriana L Milenova, Joseph S Yarmus, and Marcos M Campos. 2005. SVM in

Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support

Vector Machines. In Proceedings of the 31st International Conference on Very Large
Data Bases. 1152–1163.

[20] Danupon Nanongkai, Ashwin Lall, Atish Das Sarma, and Kazuhisa Makino. 2012.

Interactive Regret Minimization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, New York, NY, USA, 109–120.

[21] Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J. Lipton, and Jun

Xu. 2010. Regret-Minimizing Representative Databases. In Proceedings of the
VLDB Endowment, Vol. 3. VLDB Endowment, 1114–1124.

[22] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive

Skyline Computation in Database Systems. ACM Transactions on Database
Systems 30, 1 (2005), 41–82.

[23] Li Qian, Jinyang Gao, and H. V. Jagadish. 2015. Learning User Preferences by

Adaptive Pairwise Comparison. In Proceedings of the VLDB Endowment, Vol. 8.
VLDB Endowment, 1322–1333.

[24] Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang, and Yaoshu Wang. 2021. High-

Dimensional Similarity Query Processing for Data Science. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery Data Mining. Association
for Computing Machinery, New York, NY, USA, 4062–4063.

[25] QuestionPro. 2022. https://www.questionpro.com/blog/optimal-number-of-

survey-questions/

[26] J.-R. Sack and J. Urrutia. 2000. Handbook of Computational Geometry. North-
Holland, Amsterdam.

[27] Gerard Salton. 1989. Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley Longman Publishing

Co., Inc., USA.

[28] Thomas Seidl and Hans-Peter Kriegel. 1997. Efficient User-Adaptable Similarity

Search in Large Multimedia Databases. In Proceedings of the 23rd International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 506–515.

[29] Zhexuan Song and Nick Roussopoulos. 2001. K-Nearest Neighbor Search for Mov-

ing Query Point. In International Symposium on Spatial and Temporal Databases.
Springer, Berlin, Heidelberg, 79–96.

[30] Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis. 2004. An Efficient

Cost Model for Optimization of Nearest Neighbor Search in Low and Medium

Dimensional Spaces. IEEE Trans. Knowl. Data Eng. 16, 10 (2004), 1169–1184.
[31] Weicheng Wang and Raymond Chi-Wing Wong. 2022. Interactive Mining with

Ordered and Unordered Attributes. Technical Report. https://cse.hkust.edu.hk/

~raywong/paper/vldb22-interaction-mixedAttribute-technicalReport.pdf

[32] Weicheng Wang, Raymond Chi-Wing Wong, and Min Xie. 2021. Interactive

Search for One of the Top-k. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, New York, NY, USA, 13 pages.

[33] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis

and Performance Study for Similarity-Search Methods in High-Dimensional

Spaces. In Proceedings of the 24rd International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 194–205.

[34] Min Xie, Tianwen Chen, and Raymond Chi-Wing Wong. 2019. FindYourFavorite:

An Interactive System for Finding the User’s Favorite Tuple in the Database.

In Proceedings of the ACM SIGMOD International Conference on Management of
Data. ACM, New York, NY, USA, 2017–2020.

[35] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2019. Strongly Truthful

Interactive Regret Minimization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, New York, NY, USA, 281–298.

[36] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2020. An Experimental

Survey of Regret Minimization Query and Variants: Bridging the Best Worlds

between Top-k Query and Skyline Query. VLDB Journal 29, 1 (2020), 147–175.
[37] Min Xie, Raymond Chi-Wing Wong, Jian Li, Cheng Long, and Ashwin Lall.

2018. Efficient K-Regret Query Algorithm with Restriction-Free Bound for Any

Dimensionality. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, New York, NY, USA, 959–974.

[38] Min Xie, Raymond Chi-Wing Wong, Peng Peng, and Vassilis J. Tsotras. 2020.

Being Happy with the Least: Achieving 𝛼-happiness with Minimum Number

of Tuples. In Proceedings of the International Conference on Data Engineering.
1009–1020.

[39] Jiping Zheng and Chen Chen. 2020. Sorting-Based Interactive Regret Mini-

mization. In Web and Big Data-4th International Joint Conference, APWeb-WAIM.

Springer, 473–490.

2516

https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html
https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html
https://www.alchemer.com/resources/blog/how-many-survey-questions/
https://www.alchemer.com/resources/blog/how-many-survey-questions/
https://www.questionpro.com/blog/optimal-number-of-survey-questions/
https://www.questionpro.com/blog/optimal-number-of-survey-questions/
https://cse.hkust.edu.hk/~raywong/paper/vldb22-interaction-mixedAttribute-technicalReport.pdf
https://cse.hkust.edu.hk/~raywong/paper/vldb22-interaction-mixedAttribute-technicalReport.pdf

