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ABSTRACT

There has been a growing interest in using GPU to accelerate data
analytics due to its massive parallelism and high memory band-
width. The main constraint of using GPU for data analytics is the
limited capacity of GPU memory.

Heterogeneous CPU-GPU query execution is a compelling ap-
proach to mitigate the limited GPU memory capacity and PCle
bandwidth. However, the design space of heterogeneous CPU-GPU
query execution has not been fully explored. We aim to improve
state-of-the-art CPU-GPU data analytics engine by optimizing data
placement and heterogeneous query execution. First, we introduce
a semantic-aware fine-grained caching policy which takes into
account various aspects of the workload such as query seman-
tics, data correlation, and query frequency when determining data
placement between CPU and GPU. Second, we introduce a hetero-
geneous query executor which can fully exploit data in both CPU
and GPU and coordinate query execution at a fine granularity. We
integrate both solutions in Mordred, our novel hybrid CPU-GPU
data analytics engine.

Evaluation on the Star Schema Benchmark shows that the semantic-
aware caching policy can outperform the best traditional caching
policy by up to 3x. Compared to existing GPU DBMSs, Mordred
can outperform by an order of magnitude.
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1 INTRODUCTION

Graphics Processing Units (GPU) have shown great potential in
accelerating data analytics queries due to their massive compu-
tational power and high memory bandwidth compared to CPUs.
GPU databases have been studied in both academic research [17, 40,
41, 47, 54] and developed as commercial products [1, 5, 8, 11, 12],
demonstrating more than 10X speedup over the CPU counterparts.
Today, the wider adoption of GPU databases is limited by the small
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GPU memory capacity (up to 80 GB) such that only small workloads
can fit in and fully leverage GPU acceleration.

Existing solutions address GPU memory limitation using two
different approaches. The first approach is to transfer data to GPU
on demand through PCle when a query accesses data that is not
in GPU. This solution is straightforward and has been adopted
in both commercial systems [8] and research projects [40, 52, 54].
However, one downside is the potentially significant data traffic
over PCle, which can become a new performance bottleneck [47].
In certain cases, the PCle bottleneck may cause the system to even
under-perform a highly-optimized CPU database [47]. Although
the interconnect bandwidth will increase through new hardware
technologies like NVLink [7] and CXL [3], it will likely remain much
lower than GPU memory bandwidth in the foreseeable future.

To mitigate the limited GPU memory capacity and PCle band-
width, a second approach is to leverage both CPU and GPU for
heterogeneous query processing [17, 27]. Such a design can fully
exploit the computational power of both devices and avoid exces-
sive data transfer over PCle by running certain sub-queries in CPU.
However, this performance advantage comes at a cost of higher
design complexity for data placement and heterogeneous query
execution across devices; existing designs have not fully explored
the design space and achieved suboptimal performance in many
cases. For example, GDB [33] and HetExchange [27] do not have
a data placement strategy for query execution. CoGaDB [17] and
Ocelot [37] adopt primitive replacement policies by simply placing
the most frequently or recently used columns in the GPU memory.

In this paper, we aim to improve existing heterogeneous GPU
and CPU databases by optimizing both data placement policies
and heterogeneous query execution. We develop a heterogeneous
analytical engine called Mordred, which innovates mainly in the
following two aspects:

Data Placement. Similar to prior work [17], Mordred models
data placement as a caching problem where a subset of data is
cached in GPU memory and the CPU maintains a copy of the entire
database. Different from prior work, however, Mordred manages
caching at a fine granularity (i.e., sub-column) and uses a novel
semantic-aware cache replacement policy. The new policy considers
various aspects of the workload such as the query semantics, data
correlation, query frequency, etc. Mordred uses a lightweight cost-
based performance model to estimate the benefit of caching, guiding
the decision of replacement. For example, Mordred prioritizes the
caching of segments that are part of joins over filters. The optimized
cache replacement policy can lead to 3X speedup compared to the
best prior baseline we compared against.

Heterogeneous Query Execution. Caching data at a fine gran-
ularity in GPU presents new challenges during query execution.
Ideally, a heterogeneous query executor should exploit data in
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both devices and coordinate query execution at a fine granularity,
which prior systems could not achieve. In Mordred, we support
fine-grained heterogeneous execution by introducing segment-level
query plan — Mordred allows different segments of a column to
execute different query plans depending on the segments’ loca-
tion. To further improve performance, Mordred also adopts various
optimization techniques (including late materialization, operator
pipelining, segment skipping, and lightweight memory allocation)
to reduce the traffic through PCle or device memory.
In summary, this paper makes the following contributions:

o We develop a semantic-aware fine-grained caching policy for
heterogeneous CPU and GPU databases. The policy takes into
account query semantics, data correlation, and query frequency
to determine data placement.

o We develop a fine-grained heterogeneous CPU-GPU execution
engine which converts a query plan into a segment-level query
plan to be executed in parallel on both CPU and GPU.

e We build Mordred, a heterogeneous CPU-GPU analytics engine
based on fine-grained semantic-aware caching and heteroge-
neous query execution; Mordred includes various performance
optimizations. The source code will be made publicly available.

e We conduct a detailed evaluation and demonstrate that semantic-
aware caching can outperform the best traditional caching policy
by 3%. Mordred can outperform the best-prior GPU DBMSs by
an order of magnitude.

The rest of the paper is organized as follows: We discuss the back-
ground in Section 2. Section 3 describes the fine-grained semantic-
aware caching policy. Section 4 presents the heterogeneous CPU-
GPU query execution engine and its optimizations. Section 5 de-
scribes Mordred’s system architecture and some implementation
details. Section 6 evaluates the performance of Mordred. Section 7
discusses related work and Section 8 concludes the paper.

2 BACKGROUND

In this section, we describe the basics of GPU architecture and past
systems that execute queries on GPUs.

2.1 GPU Architecture

GPU data analytics applications are typically bounded by the band-
width of global and/or the shared memory [47, 54]. The global
memory is at the bottom of the GPU memory hierarchy and is
typically implemented using high bandwidth memory (HBM). A
modern GPU can have up to 80 GB of global memory with 2 TB/s
bandwidth [6]. The basic compute unit is called streaming multi-
processors (SM). Each SM has a fixed set of registers and a shared
memory (SMEM) that is accessed by all cores in the SM. Accesses
to the global memory can be cached in the L1 and L2 caches. L1
cache is local to an SM and the L2 cache is shared by all SMs.

The GPU programming models (e.g., CUDA [2], HIP [4], and
OpenCL [9]) group threads into collections of 32 to 1024 threads
called a thread block. Each thread block executes on one SM. A
thread block is further divided into groups of 32 threads called
warps. Threads in the same warp execute the same instruction
stream following the Single Instruction Multiple Threads (SIMT)
model. A warp coalesces memory accesses to neighboring memory
addresses to reduce memory traffic.
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2.2 GPU for Data Analytics

Previous works have shown great speedup for data analytics in GPU.
There are three design categories in existing GPU data analytics
systems: (1) GPU as the primary execution engine, (2) GPU as a
coprocessor, and (3) Heterogeneous CPU-GPU query execution.

In the first category, all or a significant portion of the working
sets are stored in one or multiple GPUs [1, 5, 8, 11, 12, 47]. These
designs are limited by GPU memory capacity, which can be smaller
than the data set size. To fit more data into GPU, some prior works [1,
5, 8, 11, 12] use multiple GPUs for larger aggregated memory.

The second design category treats GPU as an accelerator in a
coprocessor model [30, 40, 52, 54]. In these systems, the data mainly
resides on the CPU and is transferred to GPU on demand during
query execution. Several systems in the first category adapt to this
model once the data does not fit in GPU. Systems in this category
do not suffer from limited GPU memory capacity, but the excessive
data movement over PCle may become a performance bottleneck
due to its limited bandwidth.

The third design category addresses the GPU memory capacity
constraint by using both CPU and GPU for query execution [17, 27,
33,36, 37, 39]. By executing the query partially on the CPU, we could
avoid excessive data transfer through PCle as in the coprocessor
model. This paper focuses on this category. We will discuss related
works belonging to each category in greater detail in Section 7.

2.3 Crystal Library

We build Mordred on top of Crystal [47], which is a library of CUDA
device functions that execute analytic queries fully on GPU. Crystal
develops the idea of tile-based execution model. Instead of viewing
each thread as an independent execution unit, it views a thread
block as the basic execution unit with each thread block processing
a tile of entries at a time. A thread block holds a large group of
elements (called a tile) collectively in shared memory. Typically, one
tile consists of 512 entries. The key benefit of this model is that after
a tile is loaded into the shared memory, subsequent passes over the
tile will be served directly from shared memory, avoiding multiple
round-trips to global memory. Therefore, Crystal can pipeline con-
secutive operators executed on GPU in a single kernel call. Crystal
could execute analytics queries close to memory bandwidth speed.

Crystal also provides a cost model to accurately estimate the
query runtime in CPU and GPU. The cost model assumes that the
queries can always saturate the memory bandwidth and derives
the execution time from the data traffic to the CPU/GPU memory.
Mordred borrows the same cost model in Crystal to estimate the
query runtime as part of its replacement policy which we will
discuss in Section 3.2.2.

3 DATA PLACEMENT

Mordred treats data placement as a caching problem following
previous work [17] — the complete data set resides in CPU memory
and a mirrored subset of data is cached in GPU. Compared to the
alternative design that partitions data into disjoint sets across CPU
and GPU, maintaining a copy of all the data in CPU allows for more
flexible query scheduling — the CPU can process a query if the GPU
is occupied with other tasks. It also allows the CPU to reconstruct
results to reduce PCle traffic, as will be discussed in Section 4.
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Figure 1: Illustration of Different Caching Policies — The example assumes a cache size of seven data segments.

A key design decision with this model is to decide which data
to cache in GPU memory. Previous work [17, 37] explored caching
at column granularity using least-recently used (LRU) and least-
frequently used (LFU) replacement policies. We observe that such a
design cannot optimally capture the benefit of GPU acceleration. In
Section 3.1, we argue (1) how a sub-column fine-grained policy can
improve caching efficiency and (2) how semantic-aware replace-
ment leads to better performance. Then in Section 3.2 we explain
the proposed fine-grained semantic-aware caching policy in detail.

3.1 Motivation

3.1.1 A Case for Fine-Grained Caching.
Caching data in column granularity has several problems. First, it
is prone to fragmentation where a portion of the cache is empty
due to the lack of space to fit in another column. This prevents
us from making use of the full capacity of GPU memory. Second,
column granularity caching cannot capture access skewness within
a column. In real workloads, data accesses are often nonuniform,
e.g., recent data is more frequently accessed than older data. In such
cases, hotter data within the same column should be prioritized in
caching, which cannot be captured in column-granularity caching.
Figures 1a and 1b illustrate the difference between coarse-grained
(i-e., column granularity) and fine-grained (i.e., sub-column granu-
larity) caching. Each column is split into segments with the same
size and we assume a cache size of seven segments. We use the term
segment to refer to sub-column for the rest of the paper. Column-
granularity caching (Figure 1a) caches a single column of table A
and leaves the remaining two cache slots empty since no column
can fit in. In contrast, fine-grained caching can utilize all seven
cache slots. Fine-grained caching does introduce new complexity in
query execution; we will describe Mordred’s solution in Section 4.

3.1.2 A Case for Semantic-Aware Caching.

One way to implement fine-grained caching is to use LRU or LFU on
segments rather than columns. However, such semantic-agnostic
replacement policies may not be able to accurately identify data
that benefits the most from GPU acceleration. For example, join
operators are computationally complex and comprise significant
execution time of queries. Therefore, data that participates in joins
should be cached with higher priority. Such semantic-awareness is
not exploited in conventional LRU and LFU.

Furthermore, semantic-aware caching should consider the corre-
lation between multiple columns when deciding what data to cache.
In particular, some operators can execute on GPU only if all the
involved columns are cached simultaneously. One example is a join
operator, where both join keys should be cached. Other examples
include columns that are involved in the same filtering predicate
or the same aggregation function.
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Figures 1b and 1c illustrate the difference between naive fine-
grained caching and semantic-aware fine-grained caching. In this
example, the DBMS identifies that caching segments in the join
columns leads to higher speedup over other segments.

3.2 Semantic-Aware Fine-Grained Caching

This section describes the proposed semantic-aware fine-grained
caching policy. We extend conventional LFU with weighted fre-
quency counters, where the weight reflects the potential benefits of
caching the segment and is derived using a cost model. The cost
model captures (1) the relative speedup of caching a segment and
(2) the correlation among segments from different columns. Sec-
tion 3.2.1 describes the general caching framework and Section 3.2.2
describes the cost model for the weighted frequency counters.

3.2.1 Cache Replacement Policy.

The cache replacement policy is based on conventional LFU where
each data segment is associated with a frequency counter, which is
incremented when the segment is accessed by a query. The cache
stores segments with the largest frequency counters. Different from
the baseline LFU that increments the counter always by 1 for each
access, the replacement policy in Mordred increments it with a
weight that is calculated based on semantic information.

Algorithm 1 demonstrates the semantic-aware weight update
algorithm in Mordred. We call UpdateWeightedFreqCounter() after
accessing each segment S to update its weight. The algorithm first
estimates the query runtime RT,,cqcheq if segment S is not cached
in GPU (line 2). The runtime estimation is based on the current con-
tent in GPU (i.e., cached_segments) with S removed. The function
estimateQueryRuntime() uses a simple model to predict runtime
with the assumption that the CPU/GPU memory and PCle band-
width are the performance bottleneck; we will describe details of
the cost model in Section 3.2.2. Then, the algorithm estimates the
query runtime RT,,cpeq if S and all segments correlated with S are
cached in GPU (line 3), besides the currently cached segments.

We use the difference between RT,;,cqcheq and RT gcpeq to rep-
resent the weight (line 4). The weight is added to the weighted
frequency counter of S (line 5). Furthermore, it is also evenly dis-
tributed to all the correlated segments of S (line 6-7) through divid-
ing the weight by |correlated_segments|. This means more correlated
segments leads to smaller weight assigned to each, which bounds
the total weight incremented by accessing a segment.

The precise definition of correlated segments for segment S de-
pends on the operator being performed. So far, Mordred considers
three operators: selection, join, and group-by aggregation.

For selection, we consider segments correlated if they are (1)
involved in a predicate where the attributes cannot be separated
by logic “and” or “or” and (2) correspond to the same set of rows.



Algorithm 1: Update the weighted frequency counter
for segment S

1 UpdateWeightedFreqCounter(segment S)
# estimate query runtime when S is not cached.

2 RT yncached = estimateQueryRuntime(cached_segments \ S)
# estimate query runtime when S and segments correlated with S
are cached.
3 RT ¢4cheq = estimateQueryRuntime(cached_segments U S U
correlated_segments)
4 weight = RTyncached = RTcached
5 S.weighted_freq_counter += weight
6 for C in correlated_segments do
# evenly distribute weight to all segments correlated with S
L C.weighted_freq_counter += weight / [correlated_segments|

In such a case, all the segments in this correlation set will be incre-
mented by the same weight.

For hash join, we make a key observation that GPU acceleration
is effective only if at least one column (i.e., the build column) is
completely cached. Therefore, we consider the build and probe
relations differently. Specifically, we perform Algorithm 1 on every
segment S in the probe column (i.e., typically the larger one) and
consider all segments in the build column as correlated.

For group-by aggregation, a correlation exists between the aggre-
gation column and the grouping key column. We consider two cases.
First, if aggregation and grouping columns are all in the same table,
we perform Algorithm 1 on every segment S in the aggregation
column and consider segments in the same set of rows as correlated.
Second, if aggregation and grouping columns are in different tables
(i.e., they are joined together), we perform Algorithm 1 for every
segment S in the aggregation column and consider all segments in
the grouping column as correlated.

322 Cost Models.

We now explain how the estimateQueryRuntime() function in Al-
gorithm 1 works. In particular, we use the cost model presented in
Crystal [47] to estimate the execution time of subqueries in both
CPU and GPU. The cost model assumes that the queries can satu-
rate the memory bandwidth and derives the execution time from
memory traffic. The accuracy of the model has been verified in
Crystal on simple operators. We extend the model to support more
complex queries and to support PCIe. While the model may not be
as precise in this more complex environment, we find the accuracy
to be acceptable for the purposes of cache replacement policy.

In particular, we model filtering cost as follows:

size(int) X N N size(int) X N X o
B, B,,

filter runtime =

where N is the cardinality of input segments, o is the predicate
selectivity, B, and B,, are read and write memory bandwidth, re-
spectively. The first term of the equation is the time taken to scan
the input column and the second term is the time taken to write
the matched entries to the output array. This and the following
equations assume relations of integers.

For hash join, the probe runtime is modeled as follows:

size(int) X N +a _”)NXC . size(int) X N X o

probe runtime =
B, B, B
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where the extra parameter C is the cache line size, 7 is the prob-
ability the accessed cache line is in the last level cache. The first
term is the time taken to scan the probe relation from memory, the
second term is the time taken for probing the hash table, and the
third term is the time taken to write the matched entries to the
output array. Other database operations such as hash aggregation
and sorting can be modeled in a similar fashion.

In heterogeneous query execution, there is an extra cost for
materialization, merging, and data transfer between CPU and GPU.
We model the cost of data transfer as follows:

data transfer time = size(int) x N
chi
where Bp,; is the interconnect bandwidth. This equation represents
the time taken to transfer N integers over PCle.

Materialization is the process of reconstructing tuples from inter-
mediate results expressed as row IDs (more details in Section 4.2.1).
We model the materialization cost as follows:
size(int) X N . NxC

B, B,
where the first term is the time taken to scan the row IDs from
the intermediate results and the second term is the time taken to
reconstruct the tuples from the row IDs.

Finally, the following equation models the cost of merging the
final results from CPU and GPU:

2 X size(int) X N N size(int) X N

B, B,y
where the first term is the time taken to scan the two columns to be
merged and the second term is the time taken to write the results.

These equations are used as building blocks to estimate the query
runtime in the estimateQueryRuntime() function. The cost model is
lightweight such that its evaluation incurs negligible overhead.

materialization time =

merging time =

3.2.3 Example of Semantic-Aware Caching.
Qx: SELECT R.B, SUM(R.A) FROM R,S

WHERE R.D = S.E
Qy: SELECT R.A AND R.B FROM R

We present an example to illustrate how semantic-aware caching
works. Consider the schema in Figure 1 and performing replacement
after executing Ox and Qy. Assume a cache size of seven segments.

Coarse-grained LFU will cache either column R.A or R.B since
both columns are used by both queries and the cache has space for
only one column, as illustrated in Figure 1a. In contrast, fine-grain
LFU (Figure 1b) can fill in the two empty cache slots with two
segments from R.B. Different from both LFU policies, the semantic-
aware policy caches segments that maximize performance using
the cost model in Section 3.2.2. Therefore, even though R.D and S.E
are used only by Qx, our policy assigns higher weight for segments
in both columns since the GPU offers higher speedup for join over
filtering operations. The caching decision is shown in Figure 1c.

4 HETEROGENEOUS QUERY EXECUTION

A new challenge introduced by the fine-grained caching policy is
the extra complexity of query execution. It is possible that only
a subset of data required by an operator exists in GPU memory
so that the entire operator cannot directly run on GPU. Ideally, a
heterogeneous query executor should fully exploit the data in GPU
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and coordinate query execution across the two devices at segment
granularity instead of column granularity. While some existing
systems [8] have adopted fine-grain caching, they still execute the
entire query in GPU and transfer the uncached data to GPU during
query execution, leaving the available CPU cores unutilized.

In Mordred, we exploit both intra-device parallelism within
CPU/GPU and inter-device parallelism across CPU/GPU. Our het-
erogeneous query executor targets the following three goals:
Goal 1: Minimize inter-device data transfer. Currently, the
interconnect bandwidth (i.e., PCle) between CPU and GPU is very
limited. Transferring too much data through this interconnect could
throttle system performance.

Goal 2: Minimize CPU/GPU memory traffic. Data analytics
applications are memory-bound. Reducing the data traffic to both
CPU and GPU memory leads to more efficient query execution.
Goal 3: Fully exploit parallelism in both CPU and GPU. Ideally,
we want to utilize all the available computational power in both
multicore CPU and GPU during query execution.

4.1 Segment-Level Query Execution

A line of previous research [18, 19, 23-25, 39] has studied the prob-
lem of heterogeneous query execution in column granularity. In this
section, we discuss how we address heterogeneous query execution
in segment granularity in hybrid CPU and GPU systems.

4.1.1  Operator Placement.

Previous works have discussed operator placement strategies for
CPU-GPU systems. In particular, Bref3 et al. [19] proposed a data-
driven operator placement heuristic, where an operator is pushed
to where the input columns reside. The operator is executed in
GPU only if all the input columns are cached in GPU, otherwise,
the operator is executed in CPU. This heuristic has been shown to
outperform cost-based optimizer while being more lightweight.

In Mordred, we adopt the data-driven operator placement heuris-
tic but apply it at segment granularity — instead of executing an
operator in the device where the entire input columns reside, Mor-
dred executes portions of the operator in the device where all the
input segments reside. This means a single operator can be split
to run in both CPU and GPU depending on the location of input
segments. We call the resulting plan a segment-level query plan.

In Mordred, every operator can be split between CPU and GPU.
For filter, each partition can be filtered independently in either CPU
or GPU. For hash join, we require the build column to be entirely
cached and split the probe operator across the two devices. For
group-by, if the corresponding grouping and aggregation segments
are cached, we perform group-by on them in GPU and send the
results back to CPU.
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Figure 3: Example of Segment-level Query Plan.

4.1.2  Segment-Level Query Plan.

Given a particular data placement determined by the caching policy,
Mordred puts input segments into groups and executes them in par-
allel. In particular, Mordred applies the data-driven operator place-
ment heuristic to determine the execution plan for each segment
and puts segments with the same plan into the same segment group.
The query optimizer and executor work in segment-granularity.

Figure 2 demonstrates one example of segment grouping where
relation R is partially cached and relation S is fully cached in GPU.
One obvious grouping strategy is to split relation R into three seg-
ment groups — Group 1 comprises the first two rows of segments,
Group 2 comprises 3rd to 5th rows of segments, and Group 3 com-
prises the last row of segment. Note that the grouping strategy may
differ depending on the query plan. For example, if a query accesses
only columns A and B in relation R, then Groups 1 and 2 above can
be merged into a single large group. This is because both groups
have identical execution plan for such a query.

After the grouping phase, each segment group is executed in
parallel according to its execution plan. Finally, after all segment
groups finish execution, all results will be sent back to CPU and be
merged. The merge operation is lightweight. It simply combines
the aggregation results from different segment groups together. In
Section 6.3, we show that merging contributes to < 2.5% of total
query execution time in our workload. When the query result is
very large, however, merging could potentially be a bottleneck.
Such a case is partially captured in the cost model (Section 3.2.2),
which will choose not to cache the data and run the query in CPU.
A more general solution to the problem requires a full-fledged
heterogeneous query optimizer, which we defer to future work.

4.1.3  Example of Query Execution.
Q0: SELECT S.D, SUM(R.C) FROM R,S
WHERE R.B = S.D AND R.A > 10 AND S.E > 20
GROUP BY S.E
We present an example to illustrate how segment-level query execu-
tion works using the query Q0 shown above with the table schema
and cache layout in Figure 2. In this example, R is the probe relation
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and S is the build relation. Since the query accesses all the three
columns in relation R, we split R into three segment groups.

Figure 3 shows a physical query plan generated by Mordred.
Activities in CPU and GPU are shown in the left and right halves of
the figure, respectively. The red lines crossing the device boundary
indicate the transfer of intermediate results across PCle. The sub-
query plans for individual segment group are shaded with different
background colors. Below, we explain the sub-query plan for each
segment group individually.

Segment Group 1: All segments in this group are fully cached
and thus the entire sub-query is executed in GPU. After the group-
by operator, the results are sent back to CPU.

Segment Group 2: Segments in this group are partially cached.
Specifically, segments used for filter (A2, E1) and join (B2, D1) are in
GPU but segments used for group-by (C2) reside in CPU. The join
can still be performed in GPU; in fact, the hash table on relation S
can be reused for segment group 2 and segment group 1.

To minimize the data transfer across PCle, the result of the join is
expressed using row ID pairs between the two tables, i.e., (RowIDg,
RowlIDg), to indicate the rows that join. Using the row ID pairs, the
CPU will materialize the join results by reading the values from C,
and Eq. The materialized results are sent to the group-by operator
and the output is merged with other sub-queries’ results.

Segment Group 3: In this group, no segment from relation R is
cached in GPU. Therefore, join cannot be performed in GPU. The
entire sub-query is executed in CPU with the final output merged
with the other sub-queries’ results.

4.2 Other Performance Optimizations

Memory and PCle traffic is typically the performance bottleneck in
data analytics applications [47]. In this section, we describe other
optimization techniques in Mordred to further reduce data traffic.

4.2.1 Late materialization.

With heterogeneous query execution, there are often cases that
require the transfer of intermediate results of sub-queries from
one device to another. Transferring the whole intermediate rela-
tion across PCIe could be expensive. Previous CPU-based columnar
databases used the late materialization strategy to reduce data trans-
fer [13], where the intermediate relation can be expressed in the
form of row IDs. The receiver side can then reconstruct the tuples.
We implement this technique in Mordred to significantly reduce
the amount of data transfer.

Another benefit of late materialization is that we can execute an
operator in GPU with the minimum number of input columns. For
example, joining two relations in GPU requires only the two join
key columns to be present in GPU. The rest of the attributes can be
reconstructed in CPU using late materialization.

4.2.2  Operator Pipelining.

Previous work [27, 47] has developed an optimization technique for
GPU query execution by pipelining operators into a single kernel.
Operator pipelining can avoid storing intermediate results in mem-
ory after each operator, and only materialize the results at the end
of each pipeline. Crystal [47] has shown that pipelining operators
in GPU query execution can further improve the performance by
storing the intermediate result from each operator in the shared
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memory, which can reduce the total round trips to the global mem-
ory. We apply this optimization to Mordred by always pipelining
consecutive operators on the same device whenever possible.

4.2.3 Segment Skipping.

Many queries in OLAP workload only access a portion of the data af-
ter predicate evaluation. For example, business intelligence queries
often access only data in a specific period of time. Minmax prun-
ing is a well-known technique to reduce the amount of data being
scanned by the query [10]. The technique maintains per-segment
minimum and the maximum values in the segment. During query
execution, an entire segment can be skipped if the predicate cannot
possibly be satisfied based on the min and max values.

Typically, minmax pruning is applied only to predicate evalu-
ation. In Mordred, we extend it to filter during join operators as
well in order to further reduce the amount of data that needs to be
cached in GPU.

Q1: SELECT R.y FROM R

WHERE R.datekey = S.datekey AND S.year > 1997

We demonstrate this using an example query Q1 above. R is the
probe relation and S is the build relation. In the build phase, Mordred
maintains the min and max values of all keys (S.datekey) in the
hash table. After the build phase is finished, we use these min-max
values to skip segments in the probe relation. In particular, segments
from R can be skipped by looking at the min-max of the hash table
and the min-max of the segment in R. datekey. This optimization
allows us to further reduce memory and PCle traffic and identify
the truly hot segments when performing cache replacement.

5 SYSTEMS INTEGRATION

This section describes the implementation of Mordred, a hybrid
CPU-GPU DBMS with fine-grained semantic-aware caching and
segment-level query execution. Figure 4 shows the overview of Mor-
dred, which consists of three main modules that will be described
in the following subsections.



5.1 Cache Manager

The Cache Manager performs periodic data replacement in GPU
memory based on the caching policy described in Section 3. The
segment size is user defined and by default 1,048,576 records (220).

Mordred divides GPU memory into the following two regions.

Data Caching Region: The data caching region handles the
caching of raw data in segment granularity. Data in this region is
managed by the cache manager, using the semantic-aware caching
policy described in Section 3.2.
Data Processing Region: The data processing region stores inter-
mediate data (e.g., hash table, intermediate query result, etc.) during
execution. Since frequent memory allocation in GPU is expensive,
we develop a lightweight memory allocation strategy.

Specifically, when the cache manager is initialized, the data pro-
cessing region is preallocated. The cache manager maintains a
pointer to the starting address of the data processing region. When-
ever a memory allocation request arrives, the cache manager re-
turns the address of the pointer and advances it by the size of the
allocated region. After a query is executed, we reset the pointer
to the starting address of the data processing region. The same
lightweight memory allocation strategy is also applied in CPU.

The cache manager also handles metadata management. Meta-
data involves statistics information of each segment (e.g., access
timestamp and weighted frequency counters) and the metadata
required during query execution (e.g., min-max of each segment,
offset of cached segments, etc.). We use bitmap to mark if the seg-
ment is cached in GPU. We use a hash table to track the offset
and the statistics of each segment (min-max, counter, etc). Finally,
we use a free list to track available segments in GPU. The whole
metadata management in Mordred is handled by the CPU.

5.2 Query Optimizer

The query optimizer module converts a query plan into a segment-
level query plan. Currently, we take the query plan from Crystal [47],
which is already highly optimized for GPU.

Taken the input query plan, Mordred performs segment group-
ing as described in Section 4.1 based on the data-driven operator
placement heuristic. Meanwhile, Mordred also reorders the opera-
tors based on where they will be executed. For example, operators
that will be executed on GPU will be clustered together. We do this
to avoid ping-pong effect where the execution plan will go back
and forth between CPU and GPU, causing excessive data trans-
fer. Segment skipping as described in Section 4.2.3 is also partially
performed in this stage by the query optimizer.

For simplicity, our optimization is currently heuristic-based and
focuses on minimizing interconnect traffic. As interconnect band-
width improves, a cost-based optimizer that takes into account the
interconnect bandwidth might outperform our current design. We
leave this to future work.

5.3 Query Execution Engine

The query execution engine executes segment-level query plan
generated by the query optimizer. Specifically, the engine executes
the sub-query plan for each segment group in parallel and merges
the final results. Finally, the execution engine notifies the cache
manager to update the weight of segments following Algorithm 1.
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To launch operators in CPU, Mordred uses IntelTBB parallel pro-
gramming library. For GPU kernel implementation, we use Crys-
tal [47], a CUDA-based library for query execution. We add new
functions to express late-materialization in Crystal.

During execution, each segment group is assigned to a dedicated
CPU thread which holds information about the execution plan.
These CPU threads start the execution of all segment groups in
parallel. Each thread will launch either CPU kernels or GPU kernels
to execute operators according to its corresponding execution plan.
Since each CPU kernel will also be executed using multiple threads,
Mordred leaves the thread assignment to the thread scheduler of
the parallel programming framework (i.e., Intel TBB).

Currently, we implement a compound kernel for each pipeline
to enable operator pipelining (cf. Section 4.2.2). We leave automatic
code generation of pipelined kernels as part of our future work.

6 EVALUATION

In this section, we report the performance of Mordred. The section
will answer the following key questions:

o How does fine-grain semantic-aware caching perform compared
to traditional caching policies?

How does segment-level query execution improve the perfor-
mance of heterogeneous query processing?

How much performance improvement is achieved through var-
ious optimizations (i.e., segment skipping, operator pipelining,
and late materialization) implemented in Mordred?

How does Mordred perform compared to existing heterogeneous

CPU/GPU DBMSs?

6.1 Experimental Setup

Hardware configuration: We use a virtual machine instance
in Oracle Cloud with NVIDIA V100 GPU connected to Intel Xeon
Platinum 8167M CPU via PClIe3. The Nvidia V100 GPU has 16 GB of
HBM2 memory with read/write bandwidth of 880 GBps. The Intel
Xeon Platinum CPU has 24 virtual cores and 180 GB DRAM. The
bidirectional PCle bandwidth is 12.8 GBps. The system is running
on Ubuntu 18.04 and the GPU instance runs CUDA 11.2.
Benchmark: For our experiments, we use the Star Schema Bench-
mark (SSB) [43] which has been widely used in various data ana-
lytics research studies [30, 40, 51, 54]. We use Scale Factor 40 (i.e.,
25 GB data set) in all experiments unless otherwise stated. To en-
able efficient query execution in GPU, we dictionary encode the
string columns into integers prior to data loading and manually
rewrite the queries to directly reference the dictionary-encoded
value. Therefore, we ensure that all column entries are 4-byte in
value. We also sort the fact table by the orderdate column to en-
able the segment skipping optimization. In our evaluation, the entire
data set is loaded to CPU memory before each experiment starts.
Measurement: Before each experiment, we first warm up the GPU
memory by running 100 random queries from the SSB benchmark
and then perform a replacement to populate the cache. We run 500
queries in each experiment unless otherwise stated and perform
replacement after every 50 queries. We found the replacement
cost to be negligible (< 1.5%) and thus do not include it in our
measurement. For each measurement, we repeat the experiment 3
times and report the average results.
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6.2 Comparison with Other Caching Policies

This subsection evaluates the performance of fine-grained semantic-
aware caching policy. Specifically, we will compare the performance
of seven different caching policies:

e LRU (Column): This policy maintains the access timestamp
for each column and caches columns with the latest timestamps.
This policy is used by [17, 37].

LFU (Column): This policy maintains a frequency counter for
each column and cache columns with the largest counters. This
policy is used by [17].

LRU-K (Column): This policy maintains the backward K- dis-
tance for each column — the distance backward to the K most
recent reference to the column. Columns with the smallest back-
ward K-distance will be cached. We use K = 2 in our experiments.
LRU (Segment): Similar to LRU (Column) but timestamps are
maintained for segments instead of columns.

LFU (Segment): Similar to LFU (Column) but frequency coun-
ters are maintained for segments instead of columns.

LRU-K (Segment): Similar to LRU-K (Column) but the back-
ward K-distance are maintained for segments instead of columns.
Semantic-aware: The segment-granularity semantic-aware
caching policy described in Section 3.

6.2.1 Performance on Standard SSB.

In this experiment, we sweep the GPU cache size and measure
the performance of different caching policies when running SSB
queries. We sweep the cache size from 400 MB to 8.8 GB; all columns
that are accessed by queries fit in an 8.8 GB cache. The query access
distribution is uniform following the default configuration.

Figure 5 shows the result of our experiment. Overall, LFU-based
schemes perform better than LRU-based schemes. LRU-2 performs
similarly to LRU but slightly better for small cache sizes. For each
policy, the fine-grained version always outperforms its coarse-
grained counterpart. This is because the coarse-grained policy often
suffers from fragmentation, causing a portion of the cache unused.

The semantic-aware caching policy outperforms all the other
policies in all cache sizes, especially when the cache size is small
(3-7x lower runtime). This is because the new policy can more
accurately identify hot segments to cache leading to higher speedup.

Specifically, Figure 5 illustrates the limitation of conventional
schemes. For example, in LFU (Segment) from the cache size of 1.8
GB to 3.6 GB, there is little performance improvement even though
twice as much data has been cached. A closer investigation reveals
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that the newly cached data comes from the lo_revenue column
which is used only for group-by. Since the join is performed in CPU,
the heuristics decides to execute group-by also on CPU to avoid
excessive PCle traffic, rendering the cache ineffective. This results
in performance stall from 1.8 GB to 3.6 GB. The semantic-aware
caching policy, in contrast, is aware of the query semantics and
thus does not suffer from this performance stall.

6.2.2  Memory Traffic Breakdown.

To gain deeper insight on each caching policy, we compare the
data traffic going through the CPU memory, GPU memory, and
interconnect (PCle) for each policy. We use the same setup as Sec-
tion 6.2.1 with a cache size of 1.6 GB (which can hold 20% of all
accessed columns).

Figure 6 shows the traffic breakdown for different caching poli-
cies. The interconnect traffic remains low across all policies; this is
partly because of the data-driven operator placement heuristic (see
Section 4.1) where an operator is executed on GPU only if the input
data is cached. Column-granularity caching shows a very low GPU
memory traffic and high CPU memory traffic. For these policies,
only a single column from the fact table fits in the cache resulting
in most of the queries completely being executed on the CPU. The
fine-grain version of each policy always has higher GPU memory
traffic and lower CPU memory traffic.This shows that with segment
granularity caching, more work can be offloaded to the GPU.

Across all policies, semantic-aware caching has the highest GPU
memory traffic and lowest CPU memory traffic. This is because the
policy caches only critical segments which would greatly reduce
the total CPU memory traffic. Since GPU has a larger cache line
(128B) compared to CPU (64B), the GPU memory traffic can be
much higher especially when random reads/writes are involved.
However, since GPU memory has the highest bandwidth (10x of
CPU memory bandwidth), this still results in better performance.
Overall, our traffic breakdown from this experiment is aligned with
the query performance results from Section 6.2.1.

6.2.3 Varying Query Access Pattern.

This experiment evaluates the performance of semantic-aware
caching policy under varying query access distribution. To simulate
nonuniform query access distribution, we incorporate skewness
into the predicates of SSB queries. We pick the values following a
Zipfian [32] distribution with a tunable skewness that is controlled
by a parameter 6. Skewness is applied to the date predicate such
that more recent data has a higher probability to be accessed by
the query. A larger 6 indicates higher skewness.
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Figure 7 shows the execution time with three different cache
sizes when we sweep the skew factor. When the cache size is small
(Figure 7a), fine-grained caching is more sensitive to skewness than
column-granularity caching. This is because for nonuniform query
accesses, fine-grain policies can cache only the hot portion of the
data. The higher the skew factor, the more accurate these policies
can capture the hot portion. We can also see that LFU (Segment)
performs better than LRU (Segment) and LRU-2 (Segment) in most
cases. This shows that access frequency is better than access times-
tamp for capturing skewness in query distribution.

Across experiments in Figure 7, semantic-aware caching outper-
forms traditional caching policies. For large cache sizes (Figure 7c),
the performance of LFU (Segment), LRU (Segment), and LRU-2 (Seg-
ment) are very close to semantic-aware caching. This is because
the cache size is enough to fit in almost all the hot portion of the
data. For smaller cache sizes (see Figure 7a), however, the perfor-
mance gap is bigger since not all the hot portion can fit in. In this
case, semantic-aware caching can more accurately identify critical
segments that provide the most benefit from GPU acceleration.

6.2.4 Performance on Phase-Changing Workload.

This experiment evaluates different caching policies under a
phase-changing workload. We incorporate skewness into the date
predicate of SSB queries. We use a normal distribution with § = 0.5
years and a tunable mean controlled by parameter p. After every 5
batches of queries (50 queries per batch), we shift the mean by 3
years. The results are shown in Figure 8.

For frequency-based policies (LFU and semantic-aware), we mul-
tiply the current weight by an aging factor (default is 0.5) when a
new epoch starts. This would prioritize recent frequency informa-
tion over history in the past. Our experiment shows that LFU-based
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policy performs better than LRU and LRU-2. LRU and LRU-2 suffer
from random performance spikes since the cache content depends
on the last query in the previous batch, which can be random. If the
last query accessed data from the cold data region, replacement can
significantly degrade performance. Overall, our experiment shows
that our policy adapts quicker and outperforms other schemes
under a phase-changing workload.

6.2.5 Caching Statistics.

In this experiment, we show the content of the cache for each
caching policy. We use a cache size of 1.6 GB (which can hold 20% of
all accessed columns). Figure 9 shows the result of our experiment.

LFU (Column) policy can only cache a single column in the
fact table (lo_orderdate) and leaves 37% of the cache unused.
Column lo_orderdate is a foreign key to the d_datekey column
from the DATE relation. Caching this column enables us to perform
join against the DATE relation in GPU. However, the DATE table is
not as selective as the other dimension tables. This could result in
suboptimal performance since transferring the join result to CPU
will be expensive.

LFU (Segment) policy caches a more diverse set of columns com-
pared to the LFU (Column). It does not suffer from fragmentation
and tends to cache the hot portion of the data. A large chunk of
the cache, however, is still for 1o_revenue which is only used in
GROUP BY expression. GROUP BY is often lightweight and therefore
should not be prioritized over caching columns used for JOIN.

Our semantic-aware caching prioritizes caching the foreign keys
from the fact table (Lo_suppkey, lo_custkey, lo_partkey). This
often enables us to perform join with the SUPPLIER, CUSTOMER,
and PART relations in GPU. Joins involving these relations are very
selective. Therefore, caching segments from these columns is very
beneficial since the join output transferred from GPU is usually
small. This also leaves CPU with a much more lightweight execution
over a smaller relation in the later stage of query execution.
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6.3 Evaluating Segment-level Query Execution

One important optimization in segment-level query execution is
the grouping phase prior to query execution (see Section 4.1). In
this section, we will evaluate the performance difference when we
enable vs. disable segment grouping. Figure 10 shows the results
with different cache sizes.

Without segment grouping, the execution engine will launch
kernels in the granularity of segments instead of segment groups.
This leads to an excessive number of kernels launched, which leads
to performance degradation.

With segment grouping, all the segments with the same exe-
cution plan are grouped and executed with only a single kernel
launch. We see from Figure 10 that segment grouping can speed
up query execution by up to 3x. The gain increases as the cache
size gets larger as more work can be offloaded to the GPU. The
segment grouping optimization is novel in Mordred and has not
been adopted by existing approach (i.e., HetExchange [27]).

We also measure the breakdown of each phase in segment-level
query execution (grouping, execution, and merging). Our experi-
ment shows that for a small cache size (0.8 GB), Mordred spends
only 0.3% of the time for grouping, 99.2% of the time for execution,
and 0.5% of the time for merging. For a large cache size (6.4 GB),
the execution is much faster, and therefore merging and grouping
contribute to larger portions of the runtime; Mordred spends 4% of
the time for grouping, 93.6% of the time for execution, and 2.4% of
the time for merging. In either case, merging and grouping are not
performance bottlenecks.

6.4 Breakdown of Mordred Optimizations

6.4.1 Query Runtime Speedup.

We now measure the speedup from each optimization applied
to Mordred. We evaluate the performance gain from four optimiza-
tions: (1) lightweight memory allocation (Section 5.1), (2) late mate-
rialization (Section 4.2.1), (3) operator pipelining (Section 4.2.2), and
(4) segment skipping (Section 4.2.3). We perform the measurement
for 4 different cache sizes as shown in Figure 11. The query will run
completely in CPU when the cache size is 0 and will run completely
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in GPU when the cache size is 8 GB. For 2GB and 4GB cache sizes,
Mordred caches data following the semantic-aware policy.

Across all cache sizes, lightweight memory allocation (Lite
Malloc) consistently improves performance by around 3.3x, which
is due to eliminating the expensive memory allocation operations.

Late Materialization (Late Mat) provides performance speedup
by up to 3x. Without late materialization, operators are forced to be
executed on the CPU since we need to cache the whole relation to
execute an operator on the GPU. With late materialization, however,
we can offload some operators to GPU or divide the operators
between CPU and GPU which will provide significant speedup.

Operator pipelining (Op Pipelining) provides an extra speedup
by up to 1.3X. Operator pipelining reduces the memory traffic
during query execution Since our GPU implementation with Crystal
is close to saturating the memory bandwidth, the benefit from
operator pipelining is more significant in GPU.

Finally, segment skipping (Seg Skipping) provides another 1.6—
3% speedup. Segment skipping reduces the amount of data being
processed by the query. In the original SSB queries, segment skip-
ping manages to skip 48% of the data across all the queries. The
speedup is more significant when the data is partially cached in GPU.
This is because it can more accurately identify data that benefits
the most from GPU caching. Specifically, when segment skipping
is not applied, a full column scan is often required during query
execution. This causes the weight of all segments in the column
to be incremented following Algorithm 1. When segment skipping
is applied, however, the skipped segment will not get its weight
incremented. This improves the accuracy of our semantic-aware
caching and improves the overall the query performance.

6.4.2  Memory Traffic Breakdown.

To reveal deeper insight of the performance optimizations, we
show the memory traffic breakdown after every optimization is
applied. Figure 12 shows the breakdown with 1.6 GB cache size
(which can hold 20% of all accessed columns).

After lightweight memory allocation, the traffic does not really
affected since it just eliminates memory allocation operations. After
late materialization, we can offload more work to the GPU. This
reduces the CPU memory traffic and increases the interconnect and
the GPU memory traffic. After operator pipelining, both CPU traffic
and GPU traffic are reduced even further since the intermediate
results are not materialized. The reduction in CPU traffic is more
significant since the cache size is small and therefore most of the
operators are executed in CPU. Finally, segment skipping reduces
the CPU traffic and GPU traffic by reducing the total amount of
data being processed by the queries.
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To summarize, in this experiment we see how various optimiza-
tions in Mordred could: (1) lower the CPU traffic by offloading more
work to GPU and (2) lower the total traffic by reducing the data
being processed and pipelining operations.

6.5 Comparison with Other CPU/GPU DBMS

This subsection reports the end-to-end performance evaluation of
four existing CPU/GPU DBMSs:

CoGaDB: CoGaDB [17] is a prototype of column-store CPU-
GPU DBMS. CoGaDB uses column-granularity LRU and LFU
based replacement policy and utilizes a learning-based optimizer
called Hype [23].

HeavyDB: HeavyDB [8] is a commercial GPU DBMS. HeavyDB
treats GPU as the primary execution engine. When the data does
not fit in GPU, HeavyDB will divide the query plan into multiple
stages and execute each stage on GPU one step at a time. To
reduce the amount of data transfer, HeavyDB caches the data in
GPU using the LRU policy.

BlazingDB: BlazingDB [1] is a commercial GPU DBMS. Blaz-
ingDB uses the RAPIDS library [11] as its execution engine.
YDB: YDB [54] is a prototype of column-store GPU DBMS.
When the data does not fit, the input data will be transferred to
GPU following the coprocessor model.

Mordred: Mordred is our prototype of Hybrid CPU-GPU DBMS
which utilizes fine-grain semantic-aware caching policy and
segment-level query execution.

We run two sets of experiments: (1) when data fits in GPU and
(2) when data does not fit in GPU. For Mordred and CoGaDB, we
use 8 GB cache size. For HeavyDB, BlazingSQL, and YDB, we let
the system control the GPU memory. When the data does not fit in
GPU, we enable the coprocessor mode in HeavyDB and YDB. We
use a scale factor of 40 for when the data fits in GPU and a scale
factor 160 (4 the cache size) for when the data does not fit in GPU.

Queries

Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)
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6.5.1 Data Fits in GPU.
Figure 13 shows the query performance when the data fits in GPU.
For Q4.1-Q4.3, BlazingDB suffers an out-of-memory exception er-
ror and not shown in the figure. Compared to BlazingDB, YDB,
CoGaDB, and HeavyDB, Mordred is around 400X, 175X, 48X, and
9x faster, respectively. These systems do not have the tile-based
execution model in Crystal and thus do not utilize the GPU mem-
ory bandwidth as efficiently as Mordred. They also do not have all
the performance optimizations we implement in Mordred, such as
operator pipelining, segment-grouping, and segment skipping.
Across the 13 queries, Mordred’s performance is significantly
better compared to other systems especially in Q1.2, Q1.3, and Q3.4.
These queries only access data in the range of a week or a month
and benefit significantly from the segment skipping optimization.

6.5.2 Data Does Not Fit in GPU.

Figure 14 shows the query performance when the data does not fit
in GPU. Since BlazingDB requires the dataset to fit in the GPU, we
do not include it in this experiment.

Compared to CoGaDB, Mordred is around 48X faster. Apart from
the lack of optimizations described in Section 6.5.1, our semantic-
aware caching policy will be superior compared to the column-
granularity LFU/LRU policy used by CoGaDB.

Compared to HeavyDB and YDB, Mordred is around 11X and 25X
faster. This is because when the data does not fit in GPU, HeavyDB
and YDB will switch to coprocessor mode and stream the data on
demand from CPU memory during query execution. This results in
suboptimal performance due to excessive data transfer.

Across the 13 queries, Mordred’s performance gain in Q3.1-Q4.3
is more significant than Q2.1-Q2.3. This is because our semantic-
aware policy chooses to prioritize caching more segments from
Q3.1-Q4.3 which results in performance difference between the
query sets. This behavior would not be apparent in other systems
which do not adopt semantic-aware policy.



7 RELATED WORK

In this Section, we discuss prior works that are related to Mordred.

7.1 GPU as the Primary Execution Engine

There has been a number of research projects and commercial
systems [1, 5, 8, 11, 12, 47] that treat GPU as the primary execu-
tion engine. These systems, however, will either force query exe-
cution on the CPU or trigger an out of memory execution error
when the data does not fit in the GPU. To allow more data to fit in
GPU memory, existing works have also attempted to use multiple
GPUs [1, 5, 8, 11, 12] for query execution. These GPUs are con-
nected via NVLink, a modern interconnect with higher bandwidth
to mitigate the inter-GPU bottleneck. In this paper, we focus on
systems with a single GPU device due to their wider deployment.

7.2 GPU as a Coprocessor

Some previous works in this category focused on accelerating indi-
vidual database operations such as selection [49], join [34, 35, 38, 44~
46, 48, 53], and sorting [31, 50] in one or more GPUs. To accelerate
a single database operation, it is required to transfer the data from
CPU to GPU and transfer the result back to the CPU main memory.

Several full-fledged GPU-as-co-processor engines have also been
developed in the past [30, 40, 52, 54]. YDB [54] and HippogriffDB [40]
stream the data from CPU memory and execute one operator at a
time. To reduce the overhead of data transfer, they support com-
pression over input data. Commercial systems such as HeavyDB (8]
adopt GPU as a primary execution engine and switch to coprocessor
model when the data no longer fits in GPU memory. We compared
our performance against HeavyDB in Section 6.5.

7.3 Heterogeneous CPU-GPU Query Execution

There have been a few previous systems that attempted to leverage
both CPU and GPU for query execution [17, 27, 33, 36, 37, 39, 42, 55].
GDB [33] was the earliest effort in this direction. GDB can exe-
cute an operator on both CPU and GPU by partitioning the input
data prior to execution (e.g. partitioned hash join). OmniDB [29]
improved GDB with kernel adapter design so that it could target
different hardware architectures efficiently. Unlike Mordred, these
systems do not handle data placement between CPU and GPU.

He et al. [36] discussed heterogeneous query execution that
specifically targets an integrated CPU-GPU architecture in a single
chip (e.g AMD APU). In this architecture, PCle is no longer a bottle-
neck but the GPU is less powerful and has a much lower memory
bandwidth than the ones in a discrete architecture.

DB2 BLU [42] showed how to use GPU and CPU cores for faster
processing in IBM DB2 database. This work uses a heuristic to
decide where to execute an operator based on its runtime features
(e.g. input size, number of groups, etc). This work, however, only
supports limited number of operators (group-by, aggregation, and
sort) and does not address data placement between CPU and GPU.

Ocelot [21, 37] is a hardware-oblivious database engine which
integrates GPU backend to the in-memory column-store Mon-
etDB [14, 15]. Ocelot uses OpenCL [9] runtime to enable hardware-
agnostic operator implementation. For its data placement policy,
Ocelot caches the most recently used columns in GPU memory.
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CoGaDB [17] is a main-memory DBMS with GPU accelerator.
CoGaDB utilizes a framework called Hype [16, 18, 20, 22-26], which
uses a learning-based model to assign operators on either CPU or
GPU. The latest work of CoGaDB [19] introduced data-driven oper-
ator placement heuristic as an alternative to Hype (see Section 4.1.1).
Experiments showed that this heuristic manages to outperform the
learning-based optimizer [19]. Mordred also adopts the same heuris-
tic as CoGaDB. Similar to Ocelot, CoGaDB uses column-granularity
LRU or LFU policy to cache data in GPU. We compared the perfor-
mance of Mordred against CoGaDB in Section 6.5.

HERO [39] investigated work placement in heterogeneous com-
puting. Operator placement decision typically depends on the pro-
cessed and transferred data in terms of data cardinalities. This work
proposed a placement optimization strategy that can be completely
independent on cardinality estimation of the intermediate result.
However, unlike Mordred, this work focuses on placement opti-
mization and does not address data placement and heterogeneous
query execution. HERO is developed as an extensible virtual layer
on top of YDB [54] which we compared against in Section 6.5.

Lutz et al. [41] discussed query execution across CPU and multi-
ple GPUs through fast interconnect. This work, however, specifi-
cally targets CPU-GPU with NVLINK interconnect instead of PCle,
which is available only for IBM Processor in the current market.
Most other processors (e.g., Intel and AMD) still use PCle as the
inter-device interconnect. Moreover, this work only focuses on hash
join and does not support general queries like Mordred.

Finally, HetExchange [27, 28] introduced a query execution
framework to encapsulate heterogeneous parallelism in hybrid
CPU/GPU system through redesigning the classical Exchange oper-
ator. This framework is also integrated with just-in-time compila-
tion engine to enable operator pipelining. HetExchange, however,
does not address the data placement between CPU and GPU and
lacks an optimizer component to generate the heterogeneous query
plan based on the data location. Mordred addresses these issues
through segment-level query plan which we described in Section 4.

8 CONCLUSION

This paper advances the state-of-the-art for heterogeneous CPU-
GPU DBMS by contributing in two aspects: (1) data placement and
(2) heterogeneous query execution. We introduce semantic-aware
fine-grained caching policy which takes into account query seman-
tics, data correlation, and query frequency when determining data
placement between CPU and GPU. We also introduce a heteroge-
neous query executor which can fully exploit data in both devices
and coordinate query execution at a fine granularity. We integrate
both solutions in Mordred, our hybrid CPU-GPU analytical engine.
Evaluation on the Star Schema Benchmark shows that our semantic-
aware caching policy manages to outperform the best traditional
caching policy by 3X. Mordred also manages to outperform existing
GPU databases by an order of magnitude.
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