Efficient Load-Balanced Butterfly Counting on GPU

Qingyu Xu Feng Zhang’

Zhiming Yao LvLu

Renmin University of China Renmin University of China Renmin University of China Renmin University of China

qingyuxu@ruc.edu.cn fengzhang@ruc.edu.cn

jimmyyao@ruc.edu.cn lvlu@ruc.edu.cn

Xiaoyong Du Dong Deng Bingsheng He
Renmin University of China Rutgers University - New National University of Singapore
duyong@ruc.edu.cn Brunswick hebs@comp.nus.edu.sg
dong.deng@rutgers.edu

ABSTRACT

Butterfly counting is an important and costly operation for large
bipartite graphs. GPUs are popular parallel heterogeneous devices
and can bring significant performance improvement for data sci-
ence applications. Unfortunately, no work enables efficient butterfly
counting on GPU currently. To fill this gap, we propose a GPU-based
butterfly counting, called G-BFC. G-BFC addresses three main tech-
nical challenges. First, butterfly counting involves massive serial
operations, which leads to severe synchronization overheads and
performance degradation. We unlock the serial region and utilize
the shared memory on GPU to efficiently handle it. Second, butter-
fly counting on GPU faces the workload imbalance problem. We
develop a novel adaptive strategy to balance the workload among
threads for efficiency. Third, butterfly counting in parallel suffers
from the traversal of the huge amount of two-hop paths, also called
wedges, in bipartite graphs. We develop a novel preprocessing
strategy, which can effectively reduce the number of wedges to
be traversed. Experiments show that G-BFC brings significant per-
formance benefits. On eleven real datasets, G-BFC achieves 19.8%
performance speedup over the state-of-the-art solution.

PVLDB Reference Format:

Qingyu Xu, Feng Zhang, Zhiming Yao, Lv Lu, Xiaoyong Du, Dong Deng,
and Bingsheng He. Efficient Load-Balanced Butterfly Counting on GPU.
PVLDB, 15(11): 2450 - 2462, 2022.

doi:10.14778/3551793.3551806

1 INTRODUCTION

Butterfly counting (BFC) has been proven to be an important and
costly operation for large bipartite networks [43]. Butterfly count-
ing not only proves to be of great significance in graph theory [4],
but also serves as a primitive in many bipartite graph operations,
such as measuring graph cohesion [4], clustering coefficient [19],
and community structure [11]. In these bipartite graph operations,
BFC accounts for the majority of the entire execution time, even
more than 80% execution time. Even worse, in many real world
applications like spam detection [12], we have to repeatedly count

“Feng Zhang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551806

2450

clustering coefficient that uses BFC [19]. Thus, there is an urgent
need in accelerating BFC. On the other hand, BFC has a lot of
potential in parallelism. Since GPUs have been used as powerful
accelerators in many data-intensive applications [18, 25, 31], this
paper studies GPU accelerations for BFC on large bipartite graphs.

Accelerating butterfly counting on GPU is of great significance.
GPU can provide magnitude performance over CPU. For example,
the Nvidia RTX 3090 GPU provides 35.7 TFLOPS computing capac-
ity, which is about 40X over that of the Intel core 19 10900X CPU on
our platform. Moreover, current bipartite networks are becoming
extremely large. For example, if we construct a bipartite graph for
Taobao of Alibaba group, the graph involves 500 million customers
with 800 million commodities, and its scale is still growing [1].
It takes a long time to process large graphs, and heterogeneous
acceleration is a potential solution to reduce the latency of BFC.

The algorithm of butterfly counting itself brings about three
major technical challenges, given the special architecture charac-
teristics of GPU. First, the parallel butterfly counting algorithm
requires locks for consistency, but synchronization on GPUs can
incur significant performance degradation. Second, the relations in
bipartite graphs can be very imbalanced. For instance, a bipartite
graph can be used to depict the interaction between consumers and
goods in a purchasing system. In many user-commodity bipartite
graphs, the number of purchased commodities, which is the num-
ber of neighbors from users, varies dramatically among different
users, causing severe workload imbalance. Given that a GPU has
tens of thousands of threads, distributing the workload to different
threads can have an imbalance problem. Meanwhile, threads in
GPU execute in a SIMT (single instruction multiple threads) mecha-
nism. As a result, workload imbalance, or thread divergence, results
in significant thread stalls and causes a sharp fall in performance.
Third, the butterfly counting algorithm suffers from traversing a
huge number of wedges, which are the two-hop paths in bipartite
graphs. Even when using GPU, random wedge accesses are still a
bottleneck for improving the algorithm.

With the bipartite graphs becoming more and more popular,
there is a rapidly growing interest in accelerating the butterfly
counting algorithm. For example, Shi et al. [38] proposed a parallel
method for butterfly counting on the multi-core CPU. However,
existing BFC works [35, 38, 43] mainly focus on accelerating BFC
on CPU, and do not take GPU’s characteristics into consideration.
Performing BFC algorithm on GPU efficiently is non-trivial because
of the aforementioned challenges. For instance, to store the priority
queue, we need to optimize the utilization of GPU global memory
that has high memory access latency. Moreover, there is a large

https://doi.org/10.14778/3551793.3551806
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551806

amount of literature accelerating graph algorithms with GPU, such
as triangle counting [16], BFS [41], and PageRank [46]. Unfortu-
nately, we identify two major drawbacks in applying these works
on accelerating BFC on GPU. First, applying existing GPU-based
graph processing studies to BFC in bipartite graphs requires com-
plicated design. For example, we need to identify all sub-structures
and add extra restrictions to count butterflies in bipartite graphs,
which degrades performance. Second, we need to maintain extra
lists in these methods for storing all sub-structures, which further
increases the memory access speed and consumes large memory
space. Based on these analyses, existing methods cannot be directly
applied to BFC on GPUs.

We design G-BFC, the first solution that provides GPU-based
ButterFly Counting, which effectively solves the challenges men-
tioned above. First, to efficiently handle the heavy dependencies in
butterfly counting, we develop a fine-grained lock-free algorithm
on GPU, which unlocks the serial region and minimizes the syn-
chronization when multiple threads update the shared result simul-
taneously. Second, to solve the imbalance challenge in partitioning
bipartite networks, we develop an adaptive workload partitioning
strategy, which assigns vertices with a close amount of workload
to be handled by the same number of threads. Third, to reduce the
cost of huge time complexity in traversing wedges, we develop a
novel preprocessing method that applies rule filters to reduce the
number of legal wedges.

We evaluate G-BFC on eleven real-world datasets. Experiments
show that G-BFC achieves an average of 19.8X speedup over the
state-of-the-art butterfly counting solution. In addition, the experi-
mental results demonstrate that G-BFC sharply reduces the number
of processed wedges by 18%. Our paper has made the following
contributions.

e We develop a fine-grained parallel lock-free BFC algorithm
on GPU, which reduces the number of synchronizations
significantly.

We develop an adaptive workload partitioning strategy,
which partitions the bipartite graphs in a balanced strategy
efficiently.

We develop a novel preprocessing method applying rule fil-
ters to reduce the cost of huge time complexity in traversing
wedges efficiently.

The rest of this paper is organized as follows. Section 2 shows the
problem definition, preliminaries, and existing solutions. Section 3
shows our motivation and framework for parallel butterfly counting.
Section 4 shows our basic design of GPU-based butterfly counting.
Section 5 shows the adaptive load balancing optimization, and
Section 6 shows the memory aware edge direction optimization.
Section 7 reports our experimental results, and Section 8 concludes
this paper.

2 PRELIMINARIES AND RELATED WORK
2.1 Problem Definition

In this section, we provide the formal definition of mathematical
symbols used in this work. All symbols appearing in this paper can
be found in Table 1.

Bipartite graphs. Our solution takes undirected bipartite graphs
as input, as shown in Figure 1. The bipartite graph G(V, E) has two

2451

Table 1: Symbols and meanings.

Symbol Meaning

G an undirected bipartite graph

V(G) the vertices of G

E(G) the edges of G

L(G),R(G) the two differnt layers of G

u,o vertices

(1, vj, ug) a wedge in G

(ui, vj, ug, vp) abutterfly in G

NE (u) the neighbor sets of vertex u

NE (u) the 2-hop neighbor sets of vertex u
N3G (u) the 3-hop neighbor sets of vertex u
deg(u) the degree of vertex u

B(u) the number of butterflies containing a vertex u
B(G) the number of butterflies in G

ng,ny the number of edges and vertices in G

layers, as shown in Figure 1 (a), and we define V = (L,R). L(G)
denotes the left set of vertices and R(G) denotes the vertices on the
right side. Meanwhile, L(G) N R(G) = @,V(G) = L(G) UR(G) is
the complete vertex set, and E(G) denotes the edges between L(G)
and R(G). We use ng and ny to denote the numbers of edges and
vertices in E(G) and V(G), respectively. In addition, the numbers of
vertices of L(G) and R(G) are denoted as nj, and ng. We use (u,v)
to represent an edge, where u and v must come from different layers.
The set of neighbors of vertex u is defined as NC (u) = {0|(u,0) €
E(G)}. The degree of vertex u is defined as deg(u) = INC (u)]. To
demonstrate our algorithm clearly, we let NZG (u) denote the two-
hop neighbors of vertex u (any vertices that are reachable from u
by a path of length of two), and we let N3G (u) denote the three hop
neighbors of vertex u (any vertices that are reachable from u by a
path of length of three). When we read a graph, we re-encode the
IDs of vertices so all vertices have a unique ID. We decide to let
L(G) start from zero in a consecutive manner.

R(G) L(G) R(@G) L(G) R(G) L(G) R(G) L(G)
Uo Vo O

Uo Vo Uo Vo Uo Vo
4] Vi1
u: V2
Us V3
u+ Vi1 u+ Vi1 u+ V1
(a) Bipartite graph. (b) Wedge. (c) Caterpillar. (d) Butterfly.

Figure 1: Wedges and butterfly patterns.

Wedge. Given an undirected bipartite graph G(V, E), we define
awedge in G as (u;, vj, uy), s.t. i! = k, where u; and u;. come from
the same layer, but v; differs. Wedges can also be defined as all the
2-length paths that vertices L(G) can reach to the vertices of set
R(G). Typically, we refer to u;, vj, and uy as the start, middle, and
the end vertex respectively. As shown in Figure 1 (b), we designate
ug the start vertex, vy the middle vertex, and u; the end vertex.

Caterpillars. A caterpillar in a given undirected bipartite graph
G(V,E) can be defined as a path of length three. When we conduct

butterfly counting using list intersection, we need to traverse the
caterpillars in bipartite graphs.

Butterfly. A butterfly can be denoted as (u;, v, ug, vp), s.t. il =
k,j! = h, as shown in Figure 1 (d). It contains four vertices. u;
and uy come from the same layer, while v; and v, come from the
other layer. A butterfly has four edges, (uj, vj), (u;,vp), (ug, vj), and
(ug,vp) in E(G). A butterfly can also be regarded as two wedges
that share the same start vertex and end vertex, but differ in the
middle vertex. The number of butterflies is represented by B(G),
and our goal is to compute B(G) in a given bipartite graph G.

Butterfly counting. Accordingly, we define butterfly counting
as the procedure to retrieve B(G) in a given bipartite graph G(V, E).

2.2 Applications of Butterfly Counting

Bipartite graphs gain increasing attention in recent years, and there
is a recent surge in studying butterfly counting. Butterfly count-
ing has been used as an important primitive in many graph al-
gorithms [4, 24, 26, 34, 53]. We list the following applications for
illustration.
e Graph cohesion [24] calculates the minimum number of edges
whose deletion can make the graph disconnected. It unveils
hidden orderings and graph hierarchies [8, 28]. The number of
butterflies per vertex can be used to calculate graph cohesion.
Clustering coefficient [4] represents the probability that any
two neighbors of a vertex in a bipartite graph have the same
neighbors. It serves as an important indicator of community
structure [4], and can be measured by the fraction of three-path
connected components that form butterflies in bipartite graphs.
K-wing [36] is the largest subgraph of a bipartite graph with
each edge contained in at least k butterflies. It is useful in many
real-world applications, such as social network analysis [11]
and community detection [9]. Butterfly counting serves as the
foundation of computing k-wing in bipartite graphs [36].
Moreover, with the development of big data technology [16,
41, 46, 50-52], other graph applications, such as realistic graph
models [23], abnormal activities detection [6], and social inter-
corporate relation detection [29, 34], also include butterfly counting
as a major component. We demonstrate the time breakdown for
these applications on three graphs (Stack, BC-rate, and A-rate) in
Figure 2. The test algorithm is the state-of-the-art approach on
the CPU [4, 36]. More experimental setup details can be found in
Section 7.3. Butterfly counting (BFC) occupies 38% to 86% of the
total time, which becomes the bottleneck of these applications and
needs GPU acceleration desperately.

2.3 Existing Solutions

In this section, we first introduce the basic algorithm of butterfly
counting. Then, we briefly discuss the state-of-the-art methods.
Basic butterfly counting. We first introduce the hashmap-
based BFC. This BFC randomly selects one side of the vertices as the
start vertices. Then, it visits the neighbors of the start vertices, and
records the number of collisions for each 2-hop neighbor. Another
option of butterfly counting is to find the intersection of the 3-
hop neighbors and neighbors of the vertices. The state-of-the-art
BFC [43] focuses on the hashmap-based method. Our solution is

2452

£100%
75%
50%

25%

0%

Time occupation ratio (%

Clustering Coefficient
Graph Cohesion
Clustering Coefficient
Graph Cohesion
Clustering Coefficient
Graph Cohesion

Stack BC-rate A-rate

Figure 2: Total time breakdown.

also based on this method. We give the pseudocode of the hashmap-
based BFC in Algorithm 1.

Algorithm. Algorithm 1 first randomly selects a layer as the
start layer (Line 2), and initializes a hashmap at each outermost
for loop (Line 4). Then, it traverses all wedges for each vertex
and updates the butterfly counts before updating the hashmap
(Lines 5 to 7). After finishing traversing wedges of a vertex, it
resets the hashmap to 0 (Line 8). In this method, since one layer is
randomly selected as the starting layer, the time complexity reaches
O(Zuer(c) deg(w)?).

Example. We illustrate the workflow of Algorithm 1 in Fig-
ure 3. We use wedge_num() to denote the list that stores the num-
ber of wedges for each vertex. Each vertex has a private copy
of wedge_num(). We choose R(G) as our start layer. B(G) and
wedge_num() vectors are initialized to 0.

Algorithm 1: BFC-WEDGE [35]
input :A bipartite graph G
output :B(G)
1 B(G) <0
2 S« R(G)
3 foreach u € S do
initialize hashmap wedge_num with 0;
foreach v € N€(u) do
foreach w € N (v) and w.id > u.id do
B(G) < B(G) + wedge_num(w)
wedge_num(w) «— wedge_num(w) +1
reset(wedge_num)

9 return B(G)

4

5
6
7

8

First, we traverse ug’s 2-hop neighbors through vy. We visit uy,
but wedge_num(ug, u1) is still 0. Hence, we add 0 to B(G), and then
add 1 to wedge_num(ug, u1). Second, we visit u; again through v;.
The current value of wedge_num(ug, u1) is 1, so we add 1 to B(G)
accordingly, which means that we have detected one butterfly and
updated the value of wedge_num(ug, u1) to 2. Third, we continue
the process until all edges have been traversed (from dashed line to
solid line in Figure 3). In the example, we obtain B(G) = 3 following
Algorithm 1.

R(G) Uo U1 Uo Ut Uo Ut

'\ B(G)=B(G)+0 s _/\ BG=BEG)+ B(G)=B(G)+2
\
N\ wedge_num(Uo,U1) SN wedge_num(Uo,U1 wedge_num(Uo,U1)
N L=t S \+=1 =1
N —> N >
Vs AN
N S

LG) Vo Vi V2 V3 Vo Vi

Figure 3: BFC workflow.

State-of-the-art approaches on the CPU. Based on Algo-
rithm 1, Sanei et al. [35] utilized the degree information of layers.
They choose the layer with a lower vertex degree as the starting
layer, and reduce the time complexity to O(Min(Y,er. () deg(u)?,
2 0eR(G) deg(v)?). Wang et al. [43] further proposed an algorithm
that does not count butterflies from only one side of the layers. In-
stead, they select the vertices with a large degree as the end vertices
by marking the priority of the vertices, further reducing the time
complexity of the algorithm to O(X (, 0) e£(G) Min(deg(u), deg(v))).

2.4 GPU Parallelism

GPUs, as powerful accelerators, have been widely applied to data
science applications [30, 47—-49]. Different from CPU, GPU has a
much powerful compute ability with thousands of computing cores
and high memory bandwidth. Although new GPUs are released
every year, they share almost the same CUDA parallel architec-
ture. Accordingly, CUDA, as the most popular GPU programming
model, can be used for different generations of GPUs. Threads
in CUDA are organized as blocks, and the blocks form a grid. The
cores on GPU are grouped into streaming multiprocessors, and a
thread block is mapped to one streaming multiprocessor. During
execution, threads are executed at warp granularity, which means
that a fixed collection of threads needs to execute in a SIMT (single
instruction, multiple threads) mechanism. The memory hierarchy
is also sophisticated. On GPU, registers provide the fastest access
speed. Along with regular caches, GPU provides a fast controllable
cache, called shared memory, on each streaming multiprocessor.
Threads within a block can access the shared memory accordingly,
which needs to be carefully designed. The largest memory on the
GPU is global memory, which is accessible to all threads, but with
very high latency.

3 MOTIVATION

3.1 Revisiting Previous Butterfly Counting

Observation. Although the time complexity of the state-of-the-
art method is O(X (,,0) cE(G) Min(deg(u), deg(v))), several stud-
ies [38, 43] notice that the main workload of butterfly counting
comes from traversing all wedges, and accordingly, they put for-
ward corresponding solutions. For example, the state-of-the-art
BFC [38] supports parallelism on CPU. It allocates partial memory
for each thread to avoid writing conflicts and explores different
scheduling methods. However, this solution does not consider the
massive computational power and special memory hierarchy of
GPU. To fully utilize GPU, we need to launch thousands of threads,
and these massive threads execute simultaneously. Furthermore,

2453

we cannot afford to allocate a private local memory copy for each
thread with the GPU memory limitation. In detail, assume each
thread is allocated 0.1MB memory buffer, then 10241024 threads
require 102.4GB memory, which is much larger than the memory
capacity of the latest GPUs. Therefore, we need to design a more
fine-grained GPU-parallel version of the BFC algorithm.

Why existing GPU-based graph algorithms do not apply?
Many graph algorithms have been proposed on GPUs, and the
closest work to ours is triangle counting. However, these solutions
cannot be applied to BFC. Butterfly counting and triangle counting
are inherently different, because intuitively, the structures they cal-
culate are different. Moreover, existing triangle counting algorithms
focus on the list intersection method, which can be parallelized
using binary search algorithm [17, 18], but incurs high time com-
plexity in butterfly counting. The reason is that we have to conduct
list intersection method for not only each vertex’s neighbors and 2-
hop neighbors but also 3-hop neighbors. In addition, there are novel
triangle counting works considering load imbalance problem on
GPU [7], but ours differs from theirs in kernel function designs, de-
tailed in Section 5.2. There are also algorithms targeting rectangles
and 5-vertices structures [20, 32, 33]. However, they do not target
on bipartite graphs [54] and can have quadratic works, which cause
high time and space complexities [10, 39, 42]. Furthermore, we can-
not project a bipartite graph to a unipartite graph, because such a
projection can lead to information loss and pattern changes [36, 37].
Therefore, existing GPU-based graph algorithms do not apply and
it is critical to develop a fine-grained BFC algorithm on GPU.

3.2 Design Overview

To solve the challenges against efficient butterfly counting on GPU,
we develop GPU-based butterfly counting, called G-BFC, which
includes a series of novel designs. Our first design is to utilize
GPU parallelism and reduce serial region in butterfly counting.
We propose a lock-free algorithm combined with the utilization of
GPU memory hierarchy to reduce the waiting overhead and huge
memory access latency. More details are discussed in Section 4. Our
second design is a fine-grained adaptive strategy, which can solve
the workload imbalance problem. We analyze the G-BFC process,
and develop an adaptive thread allocation method in accordance
with the length of adjacency lists. In addition, we adjust the parallel
loop according to the length of the list. We further explore the
possibility of using list intersection based method to optimize our
algorithm. More details are discussed in Section 5. Our third design
is to reduce the overhead of traversal of redundant wedges. Because
the main workload of G-BFC comes from the huge number of
vertices to be traversed, it is crucial for us to narrow the scope of
wedges. We develop a novel preprocessing method to reorder the
input bipartite graph by utilizing the vertices’ degree information.
More details are discussed in Section 6.

Workflow. We demonstrate our workflow in Figure 4, which can
be divided into three major steps. First, we pre-process the graph
by directing the edges. In detail, this process reduces the memory
consumption for the input graph and accelerates the later steps in
the workflow, which is the design to reduce the overhead of traver-
sal of redundant wedges. Second, we apply diverse parallelization
for different vertices dynamically to balance workload, which is

Um

uo

Um

/. nodes with few neighbors \

R(G) U0

N Step 1 step2,| [1]3[4 List
:A\\ --- n Intersection
Equ . | Parallel n
\ Directing

nodes with massive neighbors

‘i Multi-Block Strategy

Step 3
others

==

Figure 4: G-BFC Workflow.

the design to solve the workload imbalance problem. Third, we uti-
lize shared memory in GPU to reduce serial regions and minimize
waiting latency for the threads in the same block.

4 GPU-BASED BUTTERFLY COUNTING

In this section, we introduce our basic design of G-BFC. First, we
propose a lock-free design in accordance with GPU characteristics
to remove the busy-waiting overhead. Second, we analyze the mem-
ory usage of G-BFC to ensure its scalability. Third, we demonstrate
our G-BFC design.

4.1 Lock-Free Design for Butterfly Counting

Section 2 shows that the serial BFC algorithm updates a variable and
a hashmap to count the butterflies. However, in the parallel design,
if the variable and hashmap are visible to massive threads, write
conflicts occur. Intuitively, to avoid conflicts, we can restrict that
only one thread can access the shared variable and hashmap when
there are multiple operations that can potentially cause conflicts.
Accordingly, we apply an extra lock to guarantee consistency. When
the locked region contains multiple steps, the time spent waiting
for the thread to release the lock can be significant. As a result, the
serial region must be minimized or even removed. There are three
options for reducing waiting overhead when we develop BFC on
GPUs.

o Shared lock vector. We can use a thread block to process
a vertex, and threads inside a block share the same copy
of hashmap. To guarantee the consistency of the hashmap,
we utilize a vector of locks when reading and writing the
hashmap.

Thread-level hashmap. To completely remove the atomic
operations, we develop a thread-level kernel, which assigns
one thread to handle a vertex. Accordingly, each thread has
a private hashmap.

Operation rearrangement. We still apply the block-level
kernel, but to minimize the overhead, we remove the lock
vectors and move the read operation of the hashmap to the
end of the process.

Analysis. The first option utilizes a shared lock vector. We
allocate a shared lock vector that has the same size as the shared
hashmap. Once a thread is updating the hashmap, it needs to update
the corresponding position of the lock vector first so that the other
threads can access other positions of the shared hashmap to avoid
conflicts. Since the serial region still exists, only a minor reduction

2454

in overhead is possible. The second option is to allocate a thread to
count a vertex and let each thread have its own hashmap. Although
we cannot afford to allocate a private local copy for each thread,
there are vertices with few neighbors. In detail, for the groups of
vertices whose degrees are smaller than 16, we allocate a private
copy for them to accelerate the performance of G-BFC. In this
circumstance, we do not need to have lock operations. However,
we need to consider the usage of the various memory hierarchy.
Assume that we have a global memory of M GB, and we choose
to start from L. Then, each hashmap takes |[Lg|*4 (the size of an
integer) byte memory space. In real-world datasets, it is common
that even a small dataset can have thousands of vertices. Hence,
we have to repeat the execution of the kernel for |Lg|? * 4/M times
to get all vertices processed. We cannot launch numerous threads
because of the limited resources of each streaming multiprocessor.
In addition, this option causes high warp divergence, which can
hurt the performance. The third option is to rearrange operations
and unlock the serial region, which can tackle the shortcomings of
the former choices. Hence, we choose the third option.

Design. The fine-grained G-BFC is developed in accordance
with the GPU characteristics. To limit warp divergence and speed
up the operation, we assign a thread block to each vertex at first.
Second, we carefully unlock the serial region by rearranging the
reading operations to avoid conflicts. We defer the add-up operation
after we complete updating the hashmap. Third, we sum up the final
butterfly counts using the warp-level communication functions.

4.2 Memory Hierarchy Utilization

As mentioned above, we use hashmap to store the number of visited
times of each vertex, which causes a great consumption of GPU
memory resources and cannot be loaded into the shared memory
and registers. Therefore, we must store the hashmap in the global
memory of the GPU. However, this leads to a problem: the data
needs to be read and written through global memory multiple times,
and the memory access overhead is large.

Considering the random memory access of 2-hop vertices, we
reduce the memory access overhead by taking advantage of the GPU
memory hierarchy. In detail, we consider using the controllable
shared memory, which provides fast access speed. The benefits of
using shared memory are enormous. In particular, accessing global
memory can be 150 times slower than accessing shared memory,
which implies that we access 150 vertices in the shared hashmap in
the same amount of time as accessing one vertex in global memory.
Accordingly, based on our original design in Section 4.1, we load the
vertices stored in the original hashmap into the shared memory part
by part, and only consider the number of butterflies between the
current start vertex and the vertices stored in the shared memory
each time. During each time, we update the visited times of vertices
in shared memory and sum up the butterflies in the shared hashmap.
We then reload the next partition of vertices in shared memory
and continue the counting procedure until we finish processing the
adjacency list of the vertex.

4.3 G-BFC

Design. Classic BFC algorithm uses hashmap for efficiency. The
hashmap is reset to 0 after each vertex is calculated. Therefore,
we allocate threads and hashmap space for each vertex in parallel.

Initially, to launch more threads to maximize the computing power
of GPU, we choose the layer with a large number of vertices as the
starting layer for parallelism. However, since the global memory of
the GPU is limited, we cannot load all the hashmaps for every block
into the global memory at one time. Accordingly, we change our
starting layer to the other side. As discussed in Section 4.1, we use
a block to handle the workload of a vertex. Because of the limited
memory, we set the grid dimension to its maximum to maximize
the GPU parallelism. However, due to the limited shared memory
resources, we store the adjacency list and offset of the vertex in
the constant memory of the GPU, which can be shared globally. As
stated in Section 4.2, we load the hashmap to shared memory for
fast memory access. Note that G-BFC is not a simple transplant
of BFC-WEDGE [35]. First, we reduce the overhead of the serial
region by carefully rearranging the operation of the BFC-WEDGE.
Second, we have tried different methods to alleviate the time cost of
GPU AtomicAdd operations. Third, we design other optimizations
targeting GPU characteristics, such as load balancing and edge
direction, detailed in Section 5 and Section 6.

Example. We show an example of G-BFC in Figure 5, which
calculates the number of butterflies of a vertex. For instance, we
launch a block for up. When traversing the neighbor vertices of ug,
we assign the neighbors to different threads in the block for paral-
lel processing. For example, thready in blockg visits the neighbor
vertices of vy in L(G). However, due to the limited shared mem-
ory resources, we need to load the 2-hop neighbor vertices of uy,
NZG (up), into memory part by part in different loops. For example,
if we load 128 vertices at a time, we only need to update the map
for the first 128 vertices in this loop, which are ug to u127. Then, we
sum up the butterflies in the map by shuffle and sum operations.
Thread) continues this process until all vertices in NZG (up) have
been processed. So do the other threads in blocky. These threads
perform the same operations for different vertices in N (ug).

Block0
uo uq U128 U129 U256 U257

Threads parallel

u3gs Uzgs Un-1 16

O O... O

L(G)

Vi Vj+1 Vk Vk+1 Vh Vhsq

Threado updates shared map

U128 U129 U256 U257 U3g4 U385 Un-1 Uy

L(G)&OD (lg oo O O oo O O .o O O... O O

shared[first loop][second loop][third loop] oo [* IoopJ
map share size

Figure 5: G-BFC example.

Algorithm. We show the pseudocode of G-BFC in Algorithm 2.
Each block handles a vertex, and different threads in the block
handle different neighbor vertices. Therefore, each block has a
private hashmap, which can be stored in shared memory and added
up to obtain the butterfly counts.

Next, the processing flow of each vertex is as follows. First, we
choose the layer with fewer vertices as the start layer, which is

2455

denoted as S (Lines 2 to 4). We initialize the shared hashmap to
0 (Line 6) by assigning this task to the first thread of each block.
Second, we obtain the neighbors of the vertex by analyzing its
adjacency list (Line 9). Each thread traverses the corresponding
neighbor list and accesses the 2-hop neighbors (Line 10). Third, we
judge whether the 2-hop neighbors are stored in shared memory. If
so, we update the shared map, and broadcast this update to the other
threads (Line 12). Here, we use atomicadd(add, Val) to update the
shared map because multiple threads can visit the map. Then, we
need to use the threadfence() function to ensure the consistency
of the shared map (Line 13). We assign the block to another vertex
after it finishes processing the current workload (Line 15). Every
time the 2-hop neighbors are processed, the results in the shared
memory must be updated. In the block_reduce operation, because
the threads in a block are responsible for different parts, a private
copy of butterfly counts is saved to their own local variables. After
processing the second for-loop in Line 8, that is, after processing
this vertex, we add up the number of butterflies in each thread, using
the shuffle and sum operations to obtain the number of butterflies
for this vertex (Line 14). It is worth noting that we not only need
block synchronization, but also need synchronization every time
we set and reset the shared map.

Algorithm 2: G-BFC
input :A bipartite graph G
output :B(G)

1 B(G) «0

2 S« R(G)

3 if [R(G)| > [L(G)| then

4 L S« L(G)

5 foreach u = blockldx.x and u.id < |S| do

6 if threadldx.x==0 then

7 L initialize shared hash map sh_wedge_num with 0;

3 foreach k € [0, |S|/sharedMemorySizeInBlock] do

9 foreach v € N© (u) do

10 foreach w € NC (v) do

1 if w.id € sh_wedge_num and w.id > u.id
then

12 L atomicAdd(sh_wedge_num(w))

13 threadfence();
14 B(G) « blockreduce(sh_wedge_num)

15 | wid +=gridDim
16 return B(G)

Complexity analysis. In Algorithm 2, the complexity of the
preparation from Lines 1 to 4 is O(1). The for-loop in Line 5 takes
O(S) times, where S is the number of vertices in the layer with a
smaller number of vertices. It can be reduced to O(S/P) with paral-
lelism, where P is the number of blocks. The initialization in Line 7
can be done in O(1). The for-loop in Line 8 takes O(S/M), where
M is the shared memory space of the block. The two for-loops in
Lines 9 and 10 take O(X,, X, deg(y,0)c£(v)), Where deg() repre-
sents the vertex’s degree. As a result, the complexity of Algorithm 2

is (325 . deg?(v)).

5 ADAPTIVE BFC LOAD BALANCING
OPTIMIZATION

In this section, we explain how we develop the fine-grained work-
load scheduling strategy.

5.1 BFC Load Balance Design

In this part, we show our general design to address the load im-
balance problem. From Section 3, we observe that synchronization
inside each block is an important operation that assures the consis-
tency of reading and writing operations of the global memory and
shared memory by different threads.

Analysis. Different blocks in our algorithm are responsible for
processing different vertex, whose adjacency lists vary in length,
and the threads inside each block handle different partitions of the
adjacency list. The workloads for threads within each block vary
significantly, and the load imbalance problem occurs.

Existing works mainly assign different numbers of blocks or
warps to handle vertex with different workloads [21, 44]. How-
ever, they are suboptimal in our scenario. These methods do not
adopt the optimal butterfly counting algorithm for different ker-
nels. In contrast, we change both the number of threads and kernel
according to the application scenario.

For example, Figure 6 shows that the workloads of blocks 0, 1,
and 2 are different, and this difference is related to the length of
each vertex’s adjacency list. Furthermore, the workload fluctuates
within each block. For block 0, the lengths of the 2-hop neighbor
list processed by distinct threads also vary a lot, resulting in load
imbalance at thread granularity within a block. Load imbalance
causes delays and impairs the efficiency of G-BFC, as a result of
the synchronization procedure. Motivated by these drawbacks, we
need to adjust G-BFC according to the analysis. Hence, we can
make full advantage of the massive computation power compared
with just assigning different numbers of threads.

I

block 0
(

1
1
1
:
1

G/l
ook 1 R),

T v |

1
1
1
1
1
1
1

-

block 2
oc []/\/f(w)

barrier

Figure 6: Workload balancing model.

General design. We allocate vertices with different lengths of
adjacency lists and 2-hop neighbor lists to corresponding buckets.
For vertices with fewer than 16 neighbors, we use a single thread
to calculate the butterfly counts. In detail, we utilize the list inter-
section based method, so there are no conflicts. For vertices with
neighbors more than 16 but less than 1024, we use a thread block to
handle the vertex, which is the same as we mentioned in Section 4.3.

For vertices with neighbors more than 1024, we use multiple blocks
to process the vertex. Such processing aims to make better use of
GPU resources. We store the graph in the CSR format [15], which
is a compact and memory-hierarchy-friendly graph representation.
We read the list directly when judging the neighbors of the vertex,
with no additional operations required. To calculate the number of
2-hop neighbors of a vertex, we use an estimation method and add
the lengths of adjacency lists of all neighbors. We set the thresholds
based on the following summaries.

o If the number of neighbors is smaller than 16, we consider
using list intersection to perform butterfly counting, and
store the adjacency list in shared memory to decrease the
memory access overhead.

o If the number of neighbors is between 16 and 1024, then
we use a block to process this vertex at the same time. The
processing of this vertex is the same as we mentioned in Sec-
tion 4.3. We adjust the usage of shared memory according
to the list length of 2-hop neighbors.

o If the number of neighbors is greater than 1024, we use two
blocks to process the workload of this vertex at the same
time.

This adaptive method is useful for improving experimental re-
sults and for determining the optimal number of threads for pro-
cessing different vertices. To summarize our selection, we list the
characteristics of the vertices as well as our preferences in Table 2.
Different kernels vary in butterfly counting algorithms and the
utilization of GPU features.

5.2 BFC Kernel Details

Multi-block kernel. As stated in Section 5.1, if the number of
neighbors of a vertex exceeds 1024, two blocks are used to process
this vertex at the same time. In this case, these two blocks are
respectively responsible for the butterfly counting for half of the
neighbors. We still combine the shared memory and global memory
to perform butterfly counting of this part of the vertex. It is worth
noting that the estimated number of 2-hop neighbors of this part
of the vertex can be very large. Because in our prior method, a
portion of the 2-hop neighbors must be transferred into shared
memory for calculation every time, we have the number of loops
as |N2|/SharedMemoryBlockSize. When |N?| is large, the time
overhead caused by the loop can cover the saved memory access
time optimized by our design in shared memory. Therefore, for this
portion of the vertices, we do not use shared memory part by part
for computation. We directly put the map in the global memory for
butterfly counting.

Warp kernel. We develop a novel adaptive butterfly counting
function, which adjusts the parallel loop in accordance with the
vertices’ 2-hop neighbor length. This warp kernel is optimized from
the kernel function we mentioned in Section 4.3 by adopting load
balance strategy. In the kernel function stated in Section 4.3, we
assume that the adjacency lists of the neighbors of each vertex
have similar lengths, but in real datasets, the distribution of the
degree of vertices varies a lot. For the estimation of the number of
2-hop neighbors of a vertex, we use the sampled average length to
represent the expectation of the vertices’ degree. Accordingly, we

2456

Table 2: Summary of the kernels used for butterfly counting,.

Kernel type Threshold Features Counting method Shared memory
Thread kernel |chi threaq)<16 The number of neighbors of a vertex is very small (<than 16) lets ;:;Zl:ecnon& yes
Adjust parallel section according to NZG :
Warp kernel |N; ?Wa, pl<1024 NZG > threshold: assign threads to parallel 2-hop neighbors hashmap yes
N2G <= threshold: assign threads to parallel neighbors
Multi-block kernel |N1)Gmu 14171024 The number of elements in the 2-hop neighbor list is huge hashmap no

multiply the number of its neighbors and the average number of
vertices of its neighbors’ adjacency lists.

The discrepancy between approximate and real numbers of ver-
tices can be mitigated by experimentally choosing appropriate
thresholds, as detailed in Section 7.5. Thus, if the estimated number
of 2-hop neighbors is large, it is likely that the thread workloads
in the block are very imbalanced. We need to minimize this imbal-
anced circumstance as well. Therefore, when the estimated number
of 2-hop neighbors of a vertex is more than a threshold (4096 by
default), we let the thread process the 2-hop neighbors of the vertex
in parallel when traversing the neighbors. If the number of 2-hop
neighbors is smaller than the threshold, we assign different neigh-
bors to the corresponding threads for traversal, as mentioned in
Section 4.3.

Thread kernel. The last kernel function we develop is the thread
based kernel. This method is generally applied to vertices with a
small number of neighbors and 2-hop neighbors, because no matter
whether it is a warp-based kernel or a block-based kernel, it can
cause a waste of computing resources in this circumstance. Consid-
ering the memory consumption discussed in Section 4.3, if we keep
a separate hashmap for each thread, we can incur huge memory
consumption. Additionally, because the number of 2-hop neighbors
of the vertex is small, this causes a huge waste of resources. Because
it is rather challenging to accurately estimate the length of the 2-
hop neighbors, we load all possible 2-hop neighbors from the global
memory. Then, we load the 2-hop neighbors part by part into shared
memory. Because of the sparsity of 2-hop vertices, this increases
the probability of cache misses and causes waste of computing
resources and storage resources. Therefore, we consider another
solution to calculate the butterfly counts in parallel. The butterfly
counting method we use in this kernel function is to conduct list
intersections using the adjacency list and 3-hop neighbors.

5.3 List Intersection-Based BFC

In this part, we further optimize the thread-level kernel by the list
intersection.

Analysis. In butterfly counting, we also need to process graphs
with very unbalanced vertex degree distributions. For vertices with
few neighbors, list intersection is used to save memory usage as well
as to accelerate the counting process. BFC traverses the caterpillars
of each vertex, as mentioned in Section 2.1, and then conducts list
intersection with its neighbors.

The method used here is the binary search. Then, our parallel
method is to select the side with more vertices as the start layer,
because we allocate threads for each vertex to execute tasks without
worrying about memory consumption. This method maximizes

2457

the parallel efficiency of GPU, alleviates the estimated number of
caterpillars that a vertex lies in and the neighbor lists, and reduces
the time for list intersection.

Comparison. Although the hashmap based method has smaller
time complexity than the list intersection based method, its mem-
ory consumption is unbearable if we keep a separate hashmap for
each thread. To better utilize the GPU resources, we use the list
intersection based butterfly counting algorithm when the length
of the adjacency list of vertices is relatively small. We assign 32
threads to a block. When the vertices’ adjacency list is small, we can
store all the adjacency lists in shared memory. This largely reduces
the memory access cost. In addition, the list intersection time is
also bearable because of the small length of the adjacency list. Note
that existing GPU-based list-intersection algorithms [13] cannot be
used in butterfly counting, even though they have been applied to
triangle counting [18]. Because butterfly counting requires travers-
ing 3-hop neighbors, it is not feasible to use these methods for
high-degree vertices. We are the first work that innovatively adapts
it to the complex situation of butterfly counting.

Algorithm. We provide the algorithm of G-BFC with load bal-
ancing optimization in Algorithm 3. At first, we decide which kernel
to launch (Line 2). We call the thread kernels separate functions. If
the estimated length of the vertices’ 2-hop neighbor lists is smaller
than the threshold, we use a thread block to parallelize this vertex
(Lines 4-5). Otherwise, we assign two blocks to process this vertex.
We assign half of the estimated 2-hop neighbors to each block (Line
8), and replace the hashmap in shared memory with a hashmap
stored in the global memory (Line 10). If the thread based kernel
is launched, we conduct the list intersection based butterfly count-
ing (Line 12). We store the adjacency list in the shared memory
(Line 12), which significantly decreases the time required for vertex
processing. When making the list intersection, we use the vertex
list in shared memory as the search list (Line 13). Hence, we also
reduce the time cost for binary search.

Complexity analysis. In Algorithm 3, the outermost for-loop
in Line 1 takes O(S/P) times, where P denotes the number of
launched cores. Lines 5 to 6 have a complexity of O(S - deg(v) -
deg(w)), as analyzed in Algorithm 2. From Lines 7 to 10, Algorithm 3
takes O(deg(u) - deg(v)) complexity. The for-loop in Line 14 takes
O(deg(u)), and the binary search function in Line 15 is expected to
take O(Xy, (1,0) cE 2w, (w,0) cE d€g(w) -1og(S)). As a result, the time

complexity for Algorithm 3 is O}, cg min(% 2 (u,0) £ deg(v),
Zv,(u,v) €E Zw,(w,v) ek deg(w) - log(9))).

Algorithm 3: G-BFC with load balancing optimization

input :A bipartite graph G
output :B(G)

1 foreachu € S do

2 kernel_type = judge(|NC (u)])
3 if kernel_type # thread_based then
4 initialize hash map wedge_num with 0;
5 if |N2G (u)| < threshold then
6 L run Lines 8 to 13 of Algorithm 2
7 else
8 foreach
k € [0, |S|/sharedMemorySizelnBlock] do
9 foreach v € NC (u) do
10 foreach w € w do
11 if w.id € global_wedge_num and
w.id > u.id then
12 L atomaticadd(global_wedge_num(w))
13 else
14 Memcopy(NC (u), shared_memory);
15 foreach v € N€(u) do
16 L Binary_search(wv, NSG(u));

17 return B(G)

6 MEMORY AWARE EDGE DIRECTION
OPTIMIZATION

We present our memory-aware edge direction optimization in this
section.

General design. We develop a memory-aware edge direction
optimization, which is tightly coupled to our G-BFC and GPU archi-
tecture. Previous edge direction methods, such as [43], only focus
on accelerating butterfly counting on CPU, which are not specially
designed for GPU memory hierarchy. Different from these exist-
ing works, our design has the following distinctions. First, G-BFC
adapts to the complicated GPU memory hierarchy. For example, the
work [43] also contains an edge direction step but does not need to
consider GPU memory consumption. In our work, we accelerate the
algorithm on GPU with limited memory. We reconstruct the graph
and do not have to maintain the extra priority queue. Second, we de-
sign an edge direction strategy to reduce the graph’s storage space
so that it can fit into the separate GPU global memory. Previous
works [38, 43] have overlooked this problem. Third, motivated by
the drawbacks, we develop a novel edge direction optimization to
limit the number of wedges we need to traverse to further improve
the performance of G-BFC. We use a k-core degeneration [22] based
method to mark the direction of the edges. Then, we change the
adjacency list and narrow the scope of legal wedges.

Detailed design. We first select the vertex with the highest
degree, and mark all its edges as out edges. Then, we mark the
remaining edges connected to its neighbors as out edges. In other
words, our vertex adjacency list stores only the neighbors to which
its outgoing edge points. After removing these edges, we continue
to look for the vertex with the highest degree, and then mark the

2458

direction of the edges just like the previous vertex, until all ver-
tices have been processed. Now, we store the directed graph. The
adjacency list of each vertex records only such vertex to which the
outgoing edge of the vertex points, and the wedges we traverse
must start from a vertex with a higher degree. In other words, for
wedge (uj, v}, ug), the highest degree must be u;, and we do not
need to know the degree relationship of v; and u.

As mentioned in Section 2.1, the butterfly is composed of two
wedges. Here, to prevent double calculation of butterfly, we stipulate
a path to reach the end vertex. We stipulate that the start vertex
is the vertex with the highest degree, and the middle vertex is the
vertex that has an undirected edge with the start vertex. Therefore,
we specify the edge direction from the start vertex to the middle
vertex (i.e., u; = vj). Similarly, the end vertex is the vertex that
has an undirected edge with the middle vertex, and then we set the
edge direction as that from the middle vertex to the end vertex. We
reduce the number of wedges we need to traverse by specifying
the direction of the wedges.

We only reconstruct the adjacency list of the graph. Our original
algorithm only needs to traverse the vertices on one side, but now
we are based on the edge direction for butterfly counting. We must
traverse all vertices. In the following part of this section, we show
that the number of wedges that need to be visited is significantly
decreased and the time complexity has been reduced accordingly.
We also prove that our method counts all the butterflies correctly.

Example. We show an example of how to transform an undi-
rected bipartite graph into a directed bipartite graph by our edge
direction optimization. Figure 7 (a) shows an example of a bipartite
graph. The degrees of the vertices up and vg are both 6, and the
degrees of the remaining vertices are all 2. In the original algorithm,
regardless of which side we choose to start the butterfly counting
from, we still need to traverse 23 wedges in total. Meanwhile, we
reduce the wedges to be traversed after directing the edges. As
we stated above, we specify that the index of the L(G) vertex is
smaller than that of R(G). Although the degrees of uy and ve are
both 6, we start with vg to indicate the direction. Then, the edges
of v, which connect u; to ug, are all outgoing edges of vg. Then,
from u; to ue, the remaining edges of each vertex are marked as
their outgoing edges. Accordingly, all the edges of ug are marked as
outgoing edges. Fortunately, this time we no longer need to traverse
the wedges in ug, because the edges of all vertices from vy to v5 are
in-edges, with the adjacency lists of the vertices empty. Next, we
mark the edges of v7. After that, the total number of wedges we
need to traverse is 8. This method greatly reduces the number of
wedges we need to traverse.

To demonstrate the directed bipartite graph, we select a subgraph
of Figure 7 (a) and show its directed results in Figure 7 (b). In
Figure 7 (b), the edge direction phase generates only the last output.
The reason is that we start from the vertex uy, and firstly mark all
connected edges as out-edges. Accordingly, we have edges of u7 to
v7, and uy to vs. Next, we check the neighbors of v7 and vg except
for u7. The vertex ug’s degree is equal to that of the start vertex u7,
so we mark the connected edges as v7 to ug, and vg to ug. Finally,
we obtain the last subgraph in Figure 7 (b).

Algorithm. We provide the complete version of the optimized
G-BFC in Algorithm 4. In detail, we first initialize a priority vector
(Line 2). After that, we locate the vertex with the maximum degree

Uo Ut U2 Us U4 Us Us U7 Us ur us ur us urz Us

UBRG
RG) (G)

L(G) L)
Vo vi V2 V3 V4 V5 V6 V7 V8 V7 Ve V7 V8 V7 Vs V7 Vs

(a) Bipartite graph of vertices. (b) Directed bipartite graphs.

Figure 7: Illustration for bipartite graphs.

in S (Line 6), and set it as the highest priority (Line 7). We then
remove the vertex from the vertex set (Line 8). Second, we set the
priority of the neighbors of the vertex to be lower than that of the
vertex, followed by peeling the neighbors off (Lines 9 to 11). Then,
we conduct the reconstruction of the graph. Third, we traverse
through the edges and mark the edges in accordance with the prior-
ity of the source vertex and the destination vertex (Lines 12 to 14).
We let the vertex with higher priority be the source vertex and store
the destination vertex in its adjacency list. Hence, we reduce the
memory consumption of Algorithm 3. After finishing redirecting
the edges and reconstructing the graph, we start butterfly counting
as Algorithm 3 does.

In our method, we do not need to use extra arrays for butterfly
counting, which means that we do not incur additional GPU mem-
ory consumption. We even reduce the number of vertices of the
adjacency list, because the original undirected graph needs to store
the edge information twice.

Complexity analysis. We next analyze the complexity for Al-
gorithm 4. In Line 5, the number of for-loops is smaller than S,
where S denotes the number of vertices of the start layer. Because
the vertices are sorted in order, the complexity of the max function
in Line 6 is O(1). The complexities of set_priority in Lines 7 and
10, and delete in Lines 8 and 11 are both O(1). The complexity of
the for-loop in Line 9 is O(deg(v)), where deg() denotes the degree
of a certain vertex. Based on these analysis, the complexity from
Lines 1 to 11 is O(2yes deg(v)). The complexity from Lines 12 to
14 is O(E) where E denotes the number of edges. The complexity of
rebuild in Line 15 is O(V), because here we only count the length
of vertices’ adjacency lists. We use O(ALG) to denote the time com-
plexity for Algorithm 3. Therefore, the complexity of Algorithm 4
is O(S-deg(v)+E+V+ALG).

7 EVALUATION

In this section, we evaluate the performance of G-BFC, and compare
it to the cutting-edge butterfly counting method.

7.1 Experimental Setup

Methodology. We compare our GPU-based butterfly counting,
denoted as “G-BFC”, with three existing methods. The first method
is the vertex priority based butterfly counting [43], which is the
state-of-the-art butterfly counting, denoted as “BFC-VP++". The
second method is the parallel list intersection based butterfly count-
ing on CPU [35], denoted as “BFC-WE-CPU”. The third method
is the GPU version of list intersection based butterfly counting,
denoted as “BFC-WE-GPU”, which has the same kernel function as
we have in the thread kernel in the load balancing optimization of
G-BFC. BFS-WE-GPU has the same start layer as that of the basic

2459

Algorithm 4: G-BFC with edge direction optimization

input :A bipartite graph G
output :B(G)

B(G) « 0

2 S—V(G)

E «— E(G)

4 p = priority_list;

-

()

5 foreach i € range(S) do

6 v = max(S, adjacency_list_length);
7 set_priority(v);

8 S.delete(v);

9 foreach u € NC (v) do

10 L set_priority(u);

1 s.delete(v);

12 foreach e € E do
13 if p(e.src) < p(e.dst) then
14 L swap(e.src, e.dst);

rebuild graph;
run Algorithm 3;
return B(G)

1

a

1

2

1

S

G-BFC (Algorithm 2), and stores the start layer in shared memory.
Then, BFS-WE-GPU traverses the 3-hop neighbors of vertices in the
start layer and uses binary search to conduct the list intersection.
Additionally, we evaluate G-BFC without using shared memory,
denoted as “G-BFC (w/o sharedMem)”, G-BFC without load bal-
ancing optimization, denoted as “G-BFC (w/o loadBalance)”, and
G-BFC without edge direction optimization, denoted as “G-BFC
(w/o edgeDirect)”.

Platform. We conduct the evaluation on a platform equipped
with an Intel Core 19-10900X CPU, and an Nvidia Geforce RTX
3090 GPU. The CPU has 10 cores, which can provide 1,504 GFLOPS.
The GPU has 10,496 light-weight cores, which can provide 35.6
TFLOPS. The platform has 128GB memory and the operating system
is Ubuntu 20.04.01.

BFC supported graph algorithms. As discussed in Section 3,
BFC has been used as an important primitive in many graph algo-
rithms. We apply G-BFC to three graph algorithms, k-wing [36],
clustering coefficient [53], and graph cohesion [24], to validate its
end-to-end acceleration effectiveness.

Datasets. We employ eleven real datasets that have been widely
used in prior studies [5, 18, 38, 43, 45] in our evaluation. The detailed
descriptions of the datasets are shown in Table 3, including Wik-
ilens, Amazon (Wang), Sexual escorts, Trip Advisor, BookCrossing
(Ratings), Stack Overflow, Yahoo songs, Amazon Ratings, Epinions,
Tracking Network, and LiveJournal [2], which can be obtained from
KONECT [3]. In Table 3, R and L are different layers in the bipartite
graph. |R| represents the total number of vertices in the R layer. |L|
represents the total number of vertices in the L layer. |E| represents
the total number of edges in the graph. To illustrate the difference
in the distribution of vertex degrees, we also list the maximum
vertex degree in R and L.

[JBFC-VP++ @ BFC-WE-CPU [BFC-WE GPU

1000
100

Time cost (sec)

10
1
0.1
0.01 .
0.001 _— g L .
E - [\ | < |\
0.0001 : %H , | >
0.00001 ! i I L Ll |

A-wang Sexual Trip BC-rate

G-BFC (w/o sharedMem)

= G-BFC (w/o loadBalance) @ G-BFC (w/o edgeDirect) m G-BFC

N/A
N/A

Stack Yahoo A-rate

Figure 8: Performance on different datasets.

Table 3: Summary of the datasets. BC# represents the num-
ber of butterflies in the graph. MD(L/R) represents MaxDe-
gree(L)/MaxDegree(R).

Dataset IL| R| [E| BC # MD(L/R)
Wikilens (WIKI) 0.3K | 5K 27K 6M 1.7K/80
Amazon (A-wang) 0.8K | 26K 29K 3.6K 0.8K/44
Sexual escorts (Sexual) 6.6K | 10K 51K 0.2M 0.1K/0.6K
Trip Advisor (Trip) 1.8K | 0.1M | 0.18M | 11K 2K/22
BookCrossing(Ratings) (BC-rate) | 78K 0.2M | 0.4M 1.5M 8K/0.7K
Stack Overflow (Stack) 97K 0.5M | 1.3M 18.3M 6K/5K
Yahoo songs (Yahoo) 0.6M | 1M 250M | 582M 468M/307M
Amazon Ratings (A-rate) 1.2M | 21M | 5.8M 35.8M 3K/12K
Epinions (EP) 0.1IM | 0.8M | 13.7M | 170B 162M/1K
Tracking Network (Track) 0.4K 18M | 37TM 600B 11B/346
LiveJournal (LG) 32M | 7.5M | 112M | 7-10B | 0.3K/IM

7.2 BFC Performance

We show the execution time of different methods in Figure 8. If the
execution time of a program exceeds 10 hours, we shall terminate
the procedure (denoted as N/A in the measurements). We can see
that our solution, G-BFC, has the lowest time cost. We have the
following observations.

First, G-BFC achieves the highest performance in all cases. On
average, G-BFC achieves 19.8X speedup over BFC-VP++, 4507.6X
speedup over BFC-WE-CPU, and 308.8x speedup over BFC-WE-
GPU. Although BFC-VP++ and BFC-WE-CPU are parallel in CPU,
their performance is limited by the CPU capacity. The reason for
the high performance of G-BFC lies in the full utilization of the GPU
computing capability. G-BFC provides carefully designed memory
access patterns, such as the lock-free counting strategy, as well as
novel optimizations including load balancing and edge direction.

Second, all the three optimizations of shared memory utilization,
load balancing, and edge direction considerably enhance the per-
formance of G-BFC. On average, the shared memory optimization,
mentioned in Section 4, brings about 38% performance improve-
ment. The load balancing optimization, mentioned in Section 5,
brings 26% performance improvement. The edge direction opti-
mization, mentioned in Section 6, brings nearly 95% performance
improvement. Edge direction optimization brings the greatest per-
formance improvement, which implies that reducing the number
of wedges to be traversed introduces great benefits to butterfly
counting.

Third, G-BFC exhibits different performance behaviors on var-
ious datasets. Compared to BFC-VP++, G-BFC achieves 44X per-
formance speedup on dataset A-rate. However, on dataset WIKI,

the performance speedup of G-BFC is only 4.5X. The reason is that
for small datasets, the compute capacity of CPU is sufficient for
handling the workload, and processing directly on CPU does not
require the data transmission between CPU and GPU. However,
for large datasets, the benefits of massive parallelism on GPU can
amortize the overhead of the memory transition. Besides, n, and n,
in A-rate are much larger than those of WIKI, and the CPU cannot
provide sufficient computing power to process all these vertices
and edges efficiently.

7.3 BFC Supported Graph Algorithms

As discussed in Section 2.2, k-wing [36], clustering coefficient [53],
and graph cohesion [24] have been used as key graph algorithms in
many applications. Table 4 shows the performance improvement
of G-BFC for k-wing, clustering coefficient, and graph cohesion.
We can see from Table 4 that BFC occupies an average of 41% of the
total time. For clustering coefficient, it can occupy more than 80% of
the time. For k-wing and graph cohesion, BFC also accounts for the
majority of the time, which is consistent with the study [36]. With
our solution of G-BFC, we save 38% execution time on average, and
thus BFC is no longer a performance bottleneck in these algorithms.

Table 4: Speedup of G-BFC over CPU-based BFC and time
contribution of BFC in different algorithms.

Dataset Clustering coefficient Graph cohesion K-wing decomposition
Speedup | BFC I(;I:‘C Speedup | BFC gI;C Speedup | BFC](B;I;C
WIKI 2.23 58.37% | 2.99% 1.88 49.01% | 2.10% | 1.43 52.19% | 22.30%
A-wang | 3.36 75.41% | 3.89% 1.68 42.02% | 0.91% | 1.68 42.30% | 1.11%
Sexual 3.73 74.18% | 0.87% 1.78 44.14% | 0.24% | 4.36 78.08% | 1.30%
Trip 2.75 65.10% | 1.06% 2.31 58.23% | 1.11% | 1.33 25.09% | 0.22%
BC-rate | 4.64 82.12% | 2.88% 3.03 69.18% | 2.01% | 1.59 38.23% | 0.43%
Stack 2.05 86.01% | 35.19% | 1.66 47.20% | 6.89% | 1.58 43.91% | 6.21%
A-rate 5.14 84.23% | 3.70% 1.97 56.11% | 7.33% | 2.39 71.29% | 13.09%
EP 2.45 61.12% | 1.70% 3.39 72.02% | 2.06% | 3.55 73.98% | 2.18%
Track 7.11 85.68% | 0.32% 3.04 70.03% | 3.32% | 2.07 52.85% | 1.20%
Yahoo 1.82 51.11% | 6.09% 143 30.03% | 0.12% | 1.40 29.21% | 0.02%
LG 2.53 61.59% | 2.99% 1.64 40.41% | 1.05% | 1.60 39.09% | 0.83%

7.4 Performance Profiling

Time breakdown. We compare BFC-VP++ and G-BFC, and show
their detailed time breakdown in Table 5. The total time for G-BFC
we demonstrate in Table 5 includes the BFC time and the edge
direction time. The BFC time represents the accelerated butterfly
counting running time. For small datasets including WIKI, A-wang,

2460

Sexual, Trip, BC-rate, and Stack, we do not apply the edge direction
stage for both BFC-VP++ and G-BFC, because their edge direc-
tion time significantly exceeds their BFC time, and the speedup is
relatively small.

Table 5: Time breakdown of different methods. “N/A” means
that the method is not applicable. “O0T” means timeout.

Dataset BFC-VP++ (ms) G-BFC (ms) Speedup
kernel total edge direction kernel total kernel total
WIKI 4.37 4.37 N/A 1.08 1.08 4.05 4.05
A-wang | 1.95 1.95 N/A 0.32 0.32 6.09 6.09
Sexual 17.78 17.78 N/A 3.74 3.74 4.75 4.75
Trip 107.13 107.13 | N/A 10.29 10.29 10.41 10.41
BC-rate | 328.83 328.83 | N/A 85.23 85.23 3.86 3.86
Stack 2040 2040 N/A 738.26 738.26 | 2.76 2.76
Yahoo OoT OoT 1210 3400 4610 N/A N/A
A-rate 62846 66580 13600 14000 27060 | 4.49 2.41
EP 37498 40760 | 4115 1136 5250 33.01 7.76
Track 53611 87740 | 6392 1788 8180 29.98 10.73
LG OoT OoT 67809 30425 98234 | N/A N/A

We have the following observations. First, in most cases, G-BFC
achieves benefits in BFC time. On average, G-BFC achieves 11.8x
speedup in BFC time and 63% time saving in total time. Second,
G-BFC brings significant performance benefits in the preprocessing
stage for large datasets. The reason is that as the size of bipartite
graphs increases, more wedges are required to be traversed. Accord-
ingly, preprocessing reduces a large proportion of the unnecessary
wedges, thus improving the performance. Third, it can be seen that
our algorithm indeed has large performance benefits compared with
the state-of-the-art BFC-VP++, and our optimization reduces the
time of the butterfly counting, bringing large savings in BFC time,
especially for large datasets. In addition, edge direction is extremely
beneficial for graphs that are used multiple times. For example, the
large-scale graph benchmark, Graph500 [27], serves as a guide for
many HPC designs and allows preprocessing. Edge direction can
be applied to many downstream applications that are based on but-
terfly counting, such as spam detection [14] and recommendation
algorithms [40]. In our application scenarios, the bipartite graphs
only need to be preprocessed once and then used multiple times.
Hence, the edge direction overhead can be amortized.

Occupancy. The achieved occupancy is the average active warp
ratio. To assess the achieved occupancy of G-BFC, we use the Nvidia
performance measurement tool nvprof. We show the occupancy
of our platform in Figure 9 (a). G-BFC achieves high occupancy in
most datasets. On average, G-BFC achieves 65.6% occupancy. For
large datasets such as Yahoo and LG, the achieved occupancy can
reach 81%.

Memory bandwidth. DRAM throughput represents the sum
of read and write bandwidth utilization of GPU memory. We use
nvprof to analyze the achieved memory bandwidth, as shown in
Figure 9 (b). G-BFC achieves high memory bandwidth utilization on
datasets with millions of vertices, but on small datasets like WIKI
and A-wang, the achieved bandwidth utilization is moderate. The
reason is that there still exists dependencies in butterfly counting,
and the amount of data is too small for GPU capacity to be fully
utilized.

2461

100 _ 600
S =10
=S 60 S 400
3 240 § = 200
582 <5 11
3 0 2% 0
<8 T O/ 22O X 90 X 00O OS T O[T LLL X N0 X OO
S EZE3ES8EL9S83 55 EFIEESEWEEl
3§ gp< £ = £ ooz FF

(a) Occupancy. (b) Memory bandwidth.

Figure 9: Performance profiling.

7.5 Threshold Selection

To demonstrate the threshold selection, we select three represen-
tative datasets for description (“Stack”, “Trip”, and “EP”). We re-
fer the parameters of Nzﬁthread’ NZ,Cjwarp,
Table 2, as threshold1, threshold2, and threshold3, respectively,
and we obtain the optimal result when threshold1, threshold2, and
threshold3 are set to be 16, 1024, and 4096. The search space for
threshold1 is {16,32,64,128}, for threshold? is {512, 1024,2048,4096},
and for threshold3 is {1024,2048,4096,6144}. Due to space limita-
tion, we describe the results in brief. We have explored different
combinations of thresholds, and the combination of thresholds that
we choose achieves the optimal performance. The selected com-
bination achieves 738 ms in Stack, 10.29 ms in Trip, and 1136 ms
in EP, which can bring 7% performance improvement on average
compared with other combinations. The reason is that with the
increasing degree of vertices, due to limited memory resources, the
thread-level kernel does not have sufficient degree of parallelism
as the block-level kernel, and the extra time cost exceeds the bene-
fits gained. For similar reasons, when threshold? is too large, the
block-level kernel can also be exhausted in processing the vertices.
For threshold3, G-BFC achieves the optimal performance when
threshold3 is set to 4096.

8 CONCLUSION

In this paper, we develop a novel GPU-based butterfly counting,
called G-BFC, which enables efficient butterfly counting on GPU.
G-BFC can make full use of GPU resources and reduce the over-
head of memory accesses. In addition, we provide optimizations
regarding the problem of butterfly counting and GPU character-
istics. We tackle the load imbalance issue and reduce the number
of wedges G-BFC needs to traverse by preprocessing, which suc-
cessfully improves the efficiency of G-BFC. Experimental results
demonstrate the effectiveness of performing butterfly counting
on GPU and show that our solution significantly outperforms the
state-of-the-art butterfly counting algorithm.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Devel-
opment Program of China (No. 2018YFB1004401), and National
Natural Science Foundation of China (61732014, 62172419, and
62072458). This work is also sponsored by CCF-Tencent Open Re-
search Fund. Bingsheng’s work is in part supported by a Singapore
MoE Tier 2 grant (T2EP20121-0030). The research of Dong Deng
was supported by NSF grants #2152908 and #2212629. Q. Xu, F.
Zhang, Z. Yao, L. Lu, and X. Du are with the Key Laboratory of Data
Engineering and Knowledge Engineering (MOE), and the School
of Information, Renmin University of China. Feng Zhang is the
corresponding author of this paper.

and NZG , mentioned in

REFERENCES

(1]
(2]
(3]
(4]

[10]

[11

[12]

[13]

[14

[15]

[16]

(17]

(18]

[19]

[20]

[21]

oo
0

[23]

[24

[25

[26

[27]

[28

[29

2021. https://www.taobao.com/about/intro.php

2021. https://ssc.io/trackingthetrackers/

2021. http://konect.cc

Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. 2017. Measuring and modeling
bipartite graphs with community structure. Journal of Complex Networks 5, 4
(2017), 581-603.

A. Azad, A. Buluc, and J. Gilbert. 2015. Parallel triangle counting and enumeration
using matrix algebra. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. IEEE, 804-811.

Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and
Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep
behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web. 119-130.

Mauro Bisson and Massimiliano Fatica. 2017. High performance exact triangle
counting on GPUs. IEEE Transactions on Parallel and Distributed Systems 28, 12
(2017), 3501-3510

Guido Caldarelli, Romualdo Pastor-Satorras, and Alessandro Vespignani. 2004.
Structure of cycles and local ordering in complex networks. The European
Physical Journal B 38, 2 (2004), 183-186.

Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to
community detection. IEEE Transactions on knowledge and data engineering 24,7
(2010), 1216-1230

Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2020. Pan-
golin: An efficient and flexible graph mining system on cpu and GPU. Proceedings
of the VLDB Endowment 13, 8 (2020), 1190-1205.

Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report 16, 3.1 (2008).

Hossam Faris, Al-Zoubi Ala M, Ali Asghar Heidari, Ibrahim Aljarah, Majdi
Mafarja, Mohammad A Hassonah, and Hamido Fujita. 2019. An intelligent
system for spam detection and identification of the most relevant features based
on evolutionary random weight networks. Information Fusion 48 (2019), 67-83.
James Fox, Oded Green, Kasimir Gabert, Xiaojing An, and David A Bader. 2018.
Fast and adaptive list intersections on the GPU. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1-7.

David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense
subgraphs in massive graphs. In Proceedings of the 31st international conference
on Very large data bases. Citeseer, 721-732.

Joseph L Greathouse and Mayank Daga. 2014. Efficient sparse matrix-vector
multiplication on GPUs using the CSR storage format. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 769-780.

O. Green, P. Yalamanchili, and L. M. Munguia. 2014. Fast triangle counting on the
GPU. In Proceedings of the 4th Workshop on Irregular Applications: Architectures
and Algorithms. 1-8.

Lin Hu, Lei Zou, and Yu Liu. 2021. Accelerating Triangle Counting on GPU. In
Proceedings of the 2021 International Conference on Management of Data. 736-748.
Yang Hu, Hang Liu, and H Howie Huang. 2018. Tricore: Parallel triangle counting
on GPUs. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 171-182.

Zan Huang. 2010. Link prediction based on graph topology: The predictive value
of generalized clustering coefficient. Available at SSRN 1634014 (2010).

Shweta Jain and C Seshadhri. 2017. A fast and provable method for estimating
clique counts using turan’s theorem. In Proceedings of the 26th international
conference on world wide web. 441-449.

Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2020.
NextDoor: GPU-Based Graph Sampling for Graph Machine Learning. arXiv
preprint arXiv:2009.06693 (2020).

Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-core decomposition of large networks on a single PC. Proceedings of the VLDB
Endowment 9, 1 (2015), 13-23.

Myunghwan Kim and Jure Leskovec. 2012. Multiplicative attribute graph model
of real-world networks. Internet mathematics 8, 1-2 (2012), 113-160.

Pedro G Lind, Marta C Gonzalez, and Hans J Herrmann. 2005. Cycles and
clustering in bipartite networks. Physical review E 72, 5 (2005), 056127.
Shih-Hsiang Lo, Che-Rung Lee, Yeh-Ching Chung, and I-Hsin Chung. 2011. A
parallel rectangle intersection algorithm on GPU+ CPU. In 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 43-52.
Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren
Zhou. 2020. Maximum biclique search at billion scale. PVLDB (2020).

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45-74.

Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167-256.

Donald Palmer. 1983. Broken ties: Interlocking directorates and intercorporate
coordination. Administrative Science Quarterly (1983), 40-55.

2462

[30

[31

[32

[34

[35

(36]

[37

'@
&

[39

[40]

[41]

[42

(43]

S
ot

[45

[46

[47]

[49

[50

[51

[52

[53

[54]

Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu,
and Xiaoyong Du. 2021. Exploring Data Analytics without Decompression on
Embedded GPU Systems. IEEE Transactions on Parallel and Distributed Systems
(2021).

Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun Xu, and Hang Liu. 2019.
H-index: Hash-indexing for parallel triangle counting on GPUs. In 2019 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Efficiently count-
ing all 5-vertex subgraphs. In Proceedings of the 26th international conference on
world wide web. 1431-1440.

Mahmudur Rahman, Mansurul Bhuiyan, and Mohammad Al Hasan. 2012. Graft:
An approximate graphlet counting algorithm for large graph analysis. In Pro-
ceedings of the 21st ACM international conference on Information and knowledge
management. 1467-1471.

Garry Robins and Malcolm Alexander. 2004. Small worlds among interlocking
directors: Network structure and distance in bipartite graphs. Computational &
Mathematical Organization Theory 10, 1 (2004), 69-94.

Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018.
Butterfly Counting in Bipartite Networks. In ACM SIGKDD. 2150-2159.

A. E. Sariyuce and A. Pinar. 2018. Peeling bipartite networks for dense subgraph
discovery. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 504-512.

SheshboloukiAida and Z. Tamer. 2022. sGrapp: Butterfly Approximation in
Streaming Graphs. ACM Transactions on Knowledge Discovery from Data (TKDD)
16, 4 (2022), 1-43

Jessica Shi and Julian Shun. 2020. Parallel algorithms for butterfly computations.
In Symposium on Algorithmic Principles of Computer Systems. SIAM, 16-30.
Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020. GraphPi: high per-
formance graph pattern matching through effective redundancy elimination.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-14.

Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering
techniques. Advances in artificial intelligence 2009 (2009).

Koji Ueno and Toyotaro Suzumura. 2013. Parallel distributed breadth first search
on GPU. In 20th Annual International Conference on High Performance Computing.
IEEE, 314-323.

Jia Wang, Ada Wai-Chee Fu, and James Cheng. 2014. Rectangle counting in large
bipartite graphs. In 2014 IEEE International Congress on Big Data. IEEE, 17-24.
Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex
Priority Based Butterfly Counting for Large-scale Bipartite Networks. PVLDB
(2019).

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1-12.

Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and
Sivasankaran Rajamanickam. 2017. Fast linear algebra-based triangle count-
ing with kokkoskernels. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1-7.

Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. 2010. Efficient
pagerank and spmv computation on amd GPUs. In ICPP. IEEE, 81-89.

Feng Zhang, Zheng Chen, Chenyang Zhang, Amelie Chi Zhou, Jidong Zhai, and
Xiaoyong Du. 2021. An efficient parallel secure machine learning framework on
GPUs. IEEE Transactions on Parallel and Distributed Systems (2021).

Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu,
and Xiaoyong Du. 2021. G-TADOC: Enabling Efficient GPU-Based Text Analytics
without Decompression. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE).

Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2016. Understanding co-running behaviors on integrated CPU/GPU architectures.
IEEE Transactions on Parallel and Distributed Systems 28, 3 (2016), 905-918.
Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018.
Efficient document analytics on compressed data: Method, challenges, algorithms,
insights. Proceedings of the VLDB Endowment 11, 11 (2018), 1522-1535.

Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022.
POCLib: A High-Performance Framework for Enabling Near Orthogonal Pro-
cessing on Compression. IEEE Transactions on Parallel and Distributed Systems
33, 2 (2022), 459-475

Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang, Zheng Chen, Onur Mutlu,
Wenguang Chen, and Xiaoyong Du. 2021. TADOC: Text analytics directly on
compression. The VLDB Journal 30, 2 (2021), 163-188.

Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan.
2008. Clustering coefficient and community structure of bipartite networks.
Physica A: Statistical Mechanics and its Applications 387, 27 (2008), 6869-6875.
Rong Zhu, Zhaonian Zou, and Jianzhong Li. 2018. Fast rectangle counting on
massive networks. In ICDM. IEEE, 847-856.

https://www.taobao.com/about/intro.php
https://ssc.io/trackingthetrackers/
http://konect.cc

