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ABSTRACT
Continuous subgraph matching (CSM) is an important building
block in many real-time graph processing applications. Given a
subgraph query & and a data graph stream, a CSM algorithm re-
ports the occurrences of & in the stream. Speci�cally, when a new
edge 4 arrives in the stream, existing CSM algorithms start from the
inserted 4 in the current data graph ⌧ to search & . However, this
rigid matching order of always starting from 4 can lead to a massive
number of partial results that will turn out futile. Also, if& contains
automorphisms, there will be a lot of redundant computation in
the matching process. To address these two problems, we propose
RapidFlow, an e�ective approach to CSM. First, we design a query
reduction technique, which reduces CSM to batch subgraph match-
ing (BSM) where we enumerate all results in a region of⌧ that will
be a�ected by the update. The well-established BSM techniques can
determine e�ective matching orders, not necessarily starting from
the newly inserted edge. Second, to eliminate redundant compu-
tation caused by automorphisms in & , we propose dual matching,
which leverages the duality of & and ⌧ in the matching process.
Extensive experiment results show that RapidFlow outperforms
state-of-the-art algorithms, including TurboFlux and SymBi, by up
to two orders of magnitude on various workloads.
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1 INTRODUCTION
Continuous subgraph matching (CSM) reports the occurrences of a
query graph in a graph stream. Speci�cally, given a query graph & ,
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(b) Data graph⌧ .
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(c)⌧0: Insert 4 (E2, E3) to⌧ .
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(d)⌧00: Insert 4 (E6, E13) to⌧0.
Figure 1: Example graphs.

a data graph ⌧ and a sequence �G of updates on ⌧ , CSM �nds the
incremental matches of& in⌧ for each update �⌧ 2 �G. For exam-
ple, {(D0, E0), (D1, E1), (D2, E4), (D3, E10), (D4, E11)} is a match given
& and⌧ in Figure 1. Asmatches {(D0, E2), (D1, E3), (D2, E8), (D3, E12),
(D4, E13)} and {(D0, E2), (D1, E3), (D2, E8), (D3, E13), (D4, E12)} appear
in⌧ 0when inserting 4 (E2, E3) to⌧ in Figure 1c, they are incremental
results for the update.

CSM is an important operation in many real-time graph analysis
applications, for example, monitoring cycles in transaction graphs
to detect merchant frauds in e-commerce [27], matching rumor
patterns in message transmission graphs to identify the spread of
rumors [37], and spotting system anomalies by analyzing communi-
cation logs among computers [20]. Thus, CSM has recently received
signi�cant research interests [8, 10, 16, 18, 23]. To facilitate online
monitoring of subgraph patterns, we investigate how to further
improve the performance of CSM.

Researchers have recently proposed a variety of incremental
methods such as SJ-Tree [8], Graph�ow [16], TurboFlux [18] and
SymBi [23]. All these studies start a search procedure from the
updated edge because a match is an incremental result for �⌧ i�
the match contains the updated edge in �⌧ . The search procedure
recursively extends partial results, which are mappings from query
vertices to data vertices, by binding a query vertex (i.e., vertices in
&) to a data vertex (i.e., vertices in⌧) at each step along a matching
order (i.e., a sequence of query vertices). In order to reduce the
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search space size, existing research has developed powerful �ltering
rules to minimize the number of candidate data vertices for each
query vertex and optimized matching orders to reduce the number
of partial results.

Although these techniques signi�cantly accelerate the CSM per-
formance, we observe that they have a lot of redundant or un-
necessary computation (More details are presented in Section 2.4).
First, the matching order always starts from the updated edge. This
choice may lead to massive invalid partial results (i.e., partial results
that cannot be extended to �nal results). Second, the redundant
computation is even more severe if & contains more than one auto-
morphism. Speci�cally, given edges 4 and 4 0 that can be mapped
to each other in an automorphism"& , the search procedure for 4
�nds the same set of subgraphs as that for 4 0, and the computation
for either edge is su�cient for the other.

In this paper, we proposeRapidFlow to improve matching order
and reduce redundant computation in CSM. Given the updated
edge 4 (E0, E1 ) and a query edge 4 (D0,D1 ), we propose a novel query
reduction technique that reduces the problem of �nding the set
�M4 (D0,D1 ) of incremental matches mapping 4 (D0,D1 ) to 4 (E0, E1 )
to that of enumerating all matches of &' where &' = & � {D0,D1 }
(&' is the graph with D0,D1 as well as adjacent edges removed
from &). In particular, we extract a region of ⌧ a�ected by the
updated edge such that there is a one-to-one mapping relation
between matches in �M4 (D0,D1 ) and those inM&' , whereM&'

is the set of matches of&' in the a�ected region. Thus, we can �nd
�M4 (D0,D1 ) by searching M&' . This query reduction approach
essentially transforms CSM into a batch subgraph matching (BSM)
problem, i.e., �nding all subgraphs of a data graph identical to a
query graph. BSM has been widely studied in the past decade [1–
5, 13, 14, 17, 22, 29, 30, 33–35, 38, 39]. We utilize e�ective �lter rules
of BSM in extracting the a�ected region, and take advantage of
e�cient matching orders by applying BSM to the a�ected region.

The e�ciency of the query reduction approach highly depends
on the e�ciency of extracting the a�ected region. We propose an
e�cient two-level indexing mechanism to speed up the extraction.
The �rst-level index is a query-dependent global index � through
which we can �nd all matches of & in ⌧ . The maintenance of � is
lightweight. The second-level index is an update-dependent local
index � through which we can �nd incremental matches for the
update by enumerating all matches of &' in the a�ected region.
Upon each update, � is constructed by extracting relevant regions
from � , rather than scanning ⌧ , which may contain many invalid
candidates. The construction of the local index is also e�cient.

To eliminate the duplicate computation incurred by automor-
phisms of & , we design the dual matching technique. Speci�cally,
based on automorphisms, we group query edges into a set X of dis-
joint sets- , called auto-set, such that given- , the search procedure
for each query edge in- �nds the same set of subgraphs in⌧ . Given
an update, we �rst �nd incremental matches �M4 for an arbitrary
edge 4 2 - . Then, we obtain incremental matches for the other
edges in - by reversing the roles of query graphs and data graphs
and permutating query vertices in �M4 instead of searching in
the data graph. This way, we eliminate the redundant computation
problem and reduce the number of independent search procedures
from |⇢ (&) | to |X|.

Our experiment results on a variety of datasets show that Rapid-
Flow achieves speedups of up to two orders of magnitude over
state-of-the-art CSM methods including SymBi [23] and TurboFlux
[18]. Furthermore, RapidFlow dramatically reduces the number of
queries that cannot be resolved within a time limit (60 minutes).

In summary, we make the following contributions in this paper:
• We study the CSM problem and propose RapidFlow, an

e�cient approach to CSM.
• Wedesign a query reduction technique that optimizesmatch-

ing orders and enables CSM to utilize e�cient BSMmethods
to process graph streams.

• We propose a dual matching technique to eliminate redun-
dant computation incurred by automorphisms of & .

• We conduct detailed experiments to evaluate the e�ective-
ness of RapidFlow.

2 BACKGROUND
In this section, we present the background related to this paper.

2.1 Preliminaries
We focus on the undirected and labeled graph 6 = (+ , ⇢) in this
paper.+ is a set of vertices and ⇢ ✓ + ⇥+ is a set of edges. Given a
vertex D 2 + , # (D) is the set of D’s neighbors (i.e., vertices adjacent
to D in 6) and 3 (D) is the degree of D (i.e., 3 (D) = |# (D) |). ! is
the function mapping a vertex to a label ; in a label set ⌃. In our
implementation, RapidFlow supports both vertex and edge labels.
& and ⌧ denote the query graph and data graph, respectively. We
call vertices and edges of & query vertices and query edges, and
those of ⌧ data vertices and data edges. �G is a sequence of graph
update operations (�⌧1,�⌧2, ...) on ⌧ where �⌧ = (�, 4). � = +
is the insertion of an edge 4 , and � = � is the deletion of 4 . Table 1
lists the notations frequently used in this paper.

De�nition 2.1 de�nes subgraph isomorphism. We call a subgraph
isomorphism a match in short. Batch subgraph matching (BSM)
enumerates the set of all matches of & in⌧ . Given an update �⌧ 2
�G, ⌧ 0 is the graph resulted from applying �⌧ to ⌧ . Then, the set
�M of incremental matches on �⌧ is the di�erence between M
andM 0 whereM andM 0 represent the matches of& in⌧ and⌧ 0,
respectively. We de�ne the continuous subgraph matching (CSM)
problem as follows. Note that both BSM and CSM are NP-hard [10].

Problem Statement. Given& ,⌧ and �G, continuous subgraph
matching is to �nd the set �M of incremental matches for each
�⌧ 2 �G.

De�nition 2.1. Given graphs 6 and 60, a subgraph isomorphism
of 6 in 60 is a bijective function" from + (6) to + (600) where 600
is a subgraph of 60 such that

(1) 8D 2 + (6), !(D) = !(" (D));
(2) 84 (D,D 0) 2 ⇢ (6), 4 (" (D)," (D 0)) 2 ⇢ (600).

2.2 Related Work
In the following, we discuss related work on batch subgraph match-
ing and continuous subgraph matching to put our work in context.

Batch subgraph matching has been widely studied since Ull-
mann [36] proposed a graph exploration-based backtracking ap-
proach in 1976. Existing graph-exploration based methods can be
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Table 1: Notations frequently used in this paper.
Notations Descriptions
6,& ,⌧ graph, query graph, data graph
+ (6) , ⇢ (6) vertex set of 6, edge set of 6
# (D) , 3 (D) , ! (D) neighbors, degree and label of D
4 (D,D0) edge between D and D0

� ,� global index and local index
⇠� (D) (or⇠� (D)) candidate set of D in global (or local) index
�DD0 (E) E’s neighbors in⇠� (D0) given E 2 ⇠� (D)
�D
D0 (E) E’s neighbors in⇠� (D0) given E 2 ⇠� (D)

- , X auto-set and the set of auto-sets
�M incremental matches for an update
�M4 incremental matches mapping 4 to the updated edge
" mappings from query vertices to data vertices
i matching order
#i
+ (D) neighbors of D before D in i

�⌧ , �G graph update, graph stream
� = +/� the insertion/deletion of an edge

categorized by whether to use indexes or auxiliary structures [33].
The direct-enumeration methods such as Ullmann [36], VF2 [9],
QuickSI [30], and RI [5] directly search on⌧ to �nd all matches. The
indexing-enumeration methods, including GADDI [38], SPath [39],
and SGMatch [29] construct indices on sub-structures (e.g., paths)
of ⌧ and use the index to serve all queries. Latest algorithms, in-
cluding TurboIso [14], CFLMatch [4], CECI [3], DP-iso [13] and
VEQ [17], build an auxiliary data structure for& in a preprocessing
step, and then enumerate all matches with the assistance of the
data structure. In contrast to these exploration-based methods, the
join-based approaches [1, 2, 22, 34, 35] model the problem as a join
query and conduct multi-way joins to answer the query.

Continuous subgraph matching recently received signi�cant
research interests because many real-world graphs change over
time. To the best of our knowledge, IncIsoMatch [10] is the �rst CSM
algorithm. The method �rst extracts a subgraph⌧ 0 of⌧ within the
distance⇡ from the updated edgewhere⇡ is the diameter of& , then
�nds the matchesM/M 0 of& in⌧ 0with/without the updated edge,
and �nally gets incremental matches by computing the di�erence
between M and M 0. However, the method is ine�cient since it
enumerates many stale matches.

To solve the problem, latest algorithms adopt the incremental
methodology. SJ-Tree [8] models a CSM query as a multi-way join
and evaluates the query with a left-deep tree. SJ-Tree stores all par-
tial results of the join as the index to serve the query. Consequently,
the index can take a large amount of memory space because of
the exponential number of partial results. Graph�ow [16] starts
from the updated edge and enumerates all results in ⌧ . However,
many invalid candidates can involve in the computation. As such,
TurboFlux [18] constructs a tree-structured index where each node
contains the candidates of a query vertex. TurboFlux dynamically
maintains the index to keep consistency with each snapshot of
⌧ , and starts from the updated edge in the index to enumerate
incremental matches. SymBi [23] improves the pruning power by
constructing a graph-structured index and designs an adaptive or-
dering method. Nevertheless, these incremental methods start the
search from the updated edge to ensure that each reported match
is incremental.

Algorithm 1: Existing CSM Framework
Input: a query graph& , a data graph⌧ , an update stream �G
Output: incremental matches �M for each �⌧ 2 �G

1 �  build an index based on& and⌧ ;
2 foreach �⌧ = (�, 4) 2 �G do
3 if � is + then
4 Add 4 to⌧ and update � ;
5 FindIncrementalMatch(&, � , 4);

6 else
7 FindIncrementalMatch(&, � , 4);
8 Remove 4 from⌧ and update � ;

9 Procedure FindIncrementalMatch(&, � , 4 (E0, E1 ))
10 �M  {};
11 foreach 4 (D0,D1 ) 2 ⇢ (&) do
12 if ! (D0) = ! (E0) and ! (D1 ) = ! (E1 ) then
13 i  generate a matching order beginning withD0,D1 ;
14 "  {(D0, E0), (D1 , E1 ) };
15 �M4 (D0 ,D1 )  Enumerate(i, � ,", 3);
16 �M  �M [ �M4 (D0 ,D1 ) ;

17 Output �M;

18 Procedure Enumerate(i, � ,", 8)
19 if 8 = |i | + 1 then Output" , return;
20 else if 8 = 1 then D  i [8 ],⇠" (D)  ⇠� (D) ;
21 else D  i [8 ],⇠" (D)  —

D02#i
+ (D) �

D0
D (" (D0)) ;

22 foreach E 2 ⇠" (D) do
23 if E is not visited then
24 Add (D, E) to" ;
25 Enumerate(i, � ,", 8 + 1);
26 Remove (D, E) from" ;

In addition to the generic CSM methods targeting at queries of
arbitrary structures, there are also studies about CSM on speci�c
query types such as paths [26, 32]. C���� [24] �nds cliques, stars
and bi-cliques in graph streams. GraphS [27] detects cycles with
length constraints. Moreover, researchers proposed approximate
algorithms [7, 10, 11, 15, 31] because �nding exact results can be
time-consuming due to the hardness of the problem and subgraph
isomorphismmay be too restrictive for some applications. Addition-
ally, there are solutions on optimizing the processing of multiple
queries [21]. In this paper, we focus on the problem of �nding exact
results of a single query of arbitrary structures.

2.3 A Framework for Existing CSM Approaches
We review existing work on CSM and �nd that they follow the
same algorithmic framework as illustrated in Algorithm 1. The
di�erences are in rules for pruning candidates and methods of
generating the matching order. Given & and ⌧ , Line 1 builds an
index � , which maintains a candidate set ⇠� (D) for D 2 + (&) and
records edges between ⇠� (D) and ⇠� (D 0) if 4 (D,D 0) 2 ⇢ (&). The
use of � is to rule out data vertices unrelated to the query, and the
search procedure enumerates results based on � instead of ⌧ .

In particular, given insertion of 4 , Lines 4-5 �rst update ⌧ and
� and then �nd incremental matches. F���I����������M������
executes a search procedure for each 4 (D0,D1 ) 2 ⇢ (&) (Lines 11-16).
If vertices pass the label �lter at Line 12, then Line 13 generates a
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(c) Search tree.

u0 u1 u2 u3 u4

v2 v3 v8 v12 v13

v2 v3 v8 v13 v12

(d) Incremental matches.
Figure 2: Running example of existing CSM methods on insertion of 4 (E2, E3) in Figure 1.

matching order i , which begins with D0 and D1 , and Line 14 ini-
tializes" to records mappings from query vertices to data vertices.
After that, E�������� �nds the set �M4 (D0,D1 ) of incremental
matches mapping 4 (D0,D1 ) to 4 (E0, E1 ). Line 15 sets the initial re-
cursive depth to 3 because Line 14 has mapped D0 and D1 to E0 and
E1 correspondingly.

Overall, E�������� uses the backtracking search that extends
the partial result" by mapping a query vertex to a candidate along
i to �nd matches. The integer 8 is the recursive depth.i [8] is the 8th
vertex in i . For ease of presentation, we let 8 to start from 1 instead
of 0. Given 4 (D,D 0) 2 ⇢ (&) and E 2 ⇠� (D), �DD0 (E) = # (E) \⇠� (D 0)
(i.e., the neighbors of E who are in the candidate set of D 0). For the
�rst vertex D in i , Line 20 sets ⇠" (D) to ⇠� (D). Otherwise, Line 21
sets ⇠" (D) to the set of common neighbors of candidates who are
mapped to query vertices D 0 2 #i

+ (D) where #i
+ (D) is the set of D’

neighbors beforeD ini . Lines 22-26 loop over⇠" (D) to extend" . If
all query vertices are mapped in" , then Line 19 outputs" . During
the enumeration, each partial result" containing 8 mappings is a
match of & [i [1 : 8]] in ⌧ where & [i [1 : 8]] is the vertex-induced
subgraph of& on the �rst 8 vertices in i . Note that E�������� is a
common method for searching matches, which is used in both CSM
and BSM [33]. RapidFlow uses this procedure in the enumeration
of results as well.

2.4 Problems in Existing Work
Despite that existing CSM methods signi�cantly accelerate some
queries, the common framework has inherent �aws. In the follow-
ing, we use two running examples to illustrate these issues.

1. The matching order is required to begin with query edges mapped
to the updated edge, which may lead to many invalid partial results.
Given & and⌧ in Figure 1, the index � is illustrated in Figure 2a. In
the example, ⇠� (D) is generated based on the vertex label. When
inserting 4 (E2, E3) in Figure 1c, we �rst update � in Figure 2b to keep
it consistent with⌧ 0. As D0 and D1 have the same label as E2 and E3,
we start a search procedure for 4 (D0,D1) with i beginning with D0
and D1. Suppose that i = (D0,D1,D2,D3,D4). Figure 2c visualizes the
enumeration procedure where a node denotes a partial result and an
edge represents a mapping from a query vertex to a data vertex. The
enumeration explores the search tree in a depth-�rst search order.
Ticks and crosses denote matches and invalid results, respectively.
Finally, we �nd two incremental matches for the update, and the
other four invalid search paths fail.

A simple idea of reducing the search space size is to optimize
the matching order as i 0 = (D4,D3,D2,D1,D0) because triangles
with labels (⇠,⇡,⇡) are fewer than paths with labels (�,⌫,⇠,⇡)

in ⌧ 0. However, this method cannot outperform existing CSM ap-
proaches since many matches of& do not contain the updated edge
4 (E2, E3) and the enumeration with i 0 leads to many stale matches
(e.g., {(D0, E0), (D1, E1), (D2, E4), (D3, E10), (D4, E11)}). Thus, existing
methods force i to begin with D0 and D1, which are mapped to
the newly inserted edge 4 (E2, E3). In a word, starting the search
from the updated edge can ensure that each reported match is an
incremental result, but downside is that it can lead to many invalid
partial results.

u0 u1 u2 u3 u4

v0 v1 v6 v13 v12

v2 v1 v6 v13 v12

v2 v3 v6 v13 v12

u0 u1 u2 u4 u3

v0 v1 v6 v13 v12

v2 v1 v6 v13 v12

v2 v3 v6 v13 v12

∆ℳ𝑒(𝑢2,𝑢3) ∆ℳ𝑒(𝑢2,𝑢4)

The same 
table content

Figure 3: Incremental matches generated by existing CSM
methods given insertion of 4 (E6, E13) to ⌧ 0 in Figure 1d.

2. Existing approaches may perform redundant computation if &
hasmore than one automorphism. In Figure 1a,"& = {(D0,D0), (D1,D1),
(D2,D2), (D3,D4), (D4,D3)} is an automorphism of& . 4 (D2,D3) can be
mapped to 4 (D2,D4) in"& . When inserting 4 (E6, E13) to ⌧ 0 in Fig-
ure 1d, we �nd incremental matches in Figure 3. �M4 (D2,D3) , which
is the set of incremental matches mapping 4 (D2,D3) to 4 (E6, E13), is
reported by the search procedure for 4 (D2,D3), and �M4 (D2,D4) is
found by the search procedure for 4 (D2,D4). However, the contents
of the two tables are the same, which indicates that the two search
procedures �nd the same set of subgraphs in ⌧ 00. This duplication
of results indicates the redundancy in the search process. Table
2 lists the number of queries containing more than one automor-
phism in our benchmark consisting of four datasets, amazon(az),
livejournal(lj), net�ow(nf ), and lsbench(ls). The detailed statistics
of the datasets is listed in Table 3 in Section 6.1. In Table 2, we can
see that this redundancy issue frequently appears in the workload.

Table 2: The number of queries with more than one automor-
phism in our benchmark. A query set on a dataset contains
100 queries each of which has 6 vertices. Based on graph
density, we categorized queries into tree, sparse and dense.

Tree Sparse Dense
az lj nf ls az lj nf ls az lj nf ls
34 8 59 46 12 2 87 52 44 2 30 77
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(b) Global index on⌧0.
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(c) Local index.
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u3

u2
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✓ ✓

(d) Search tree.

u0 u1 u2 u3 u4

v2 v3 v8 v12 v13

v2 v3 v8 v13 v12

(e) Incremental results.
Figure 4: Running example of RapidFlow on insertion of 4 (E2, E3) in Figure 1.

3 AN OVERVIEW OF RAPIDFLOW
In order to address the issues in Section 2.4, we propose an end-
to-end CSM approach, called RapidFlow. Algorithm 2 gives an
overview. Overall, RapidFlow has two stages. In the o�ine stage,
we group query edges into a set X of disjoint sets based on au-
tomorphisms of & and build a global index � where we can �nd
all matches of & in ⌧ (Lines 1-2). Given an update, if the opera-
tion is insertion, then we add the edge to ⌧ and update the global
index to keep it consistent with ⌧ (Lines 5-6). This update on �
is light-weight given �⌧ is small. After that, we �nd incremental
matches based on � (Line 7). In contrast, for the deletion operation,
we reverse the order of these operations (Lines 9-11). As the global
index � is consistent with ⌧ , we directly invoke F���I�����������
M������ to �nd incremental matches (i.e., matches containing the
edge to be deleted) based on � . After that, we remove the edge from
⌧ and update � to keep its consistency. Thus, F���I�����������
M������ is symmetric, i.e., tackling the insertion and deletion with
the same logic. Therefore, we focus on the insertion of an edge in
the following of this paper for brevity.

Given the updated data edge 4 (E0, E1 ), we �nd incrementalmatches
for each set- 2 X seperately (Lines 14-23). Given 4 (D0,D1 ) 2 - , we
propose the query reduction technique that converts the problem of
�nding the set �M4 (D0,D1 ) of incremental matches for 4 (D0,D1 ) to
that of enumerating all matches of &' where &' = & � {D0,D1 } in
the region a�ected by the update. Speci�cally, we generate a local
index� for&' from the global index given the update.� maintains
a candidate set for each vertex D 2 + (&') and edges between can-
didates. Moreover,� guarantees that there is a one-to-one mapping
from matches of &' in � to those in �M4 (D0,D1 ) . Therefore, we
can enumerate all matches of &' and then generate �M4 (D0,D1 )
(Lines 20-21). Line 20 sets the initial recursive depth to 1 since the
input mapping set is empty. This way, we can evaluate the query
with any matching order and use the well-studied BSM techniques
to process the stream.

After that, we use the dual matching technique to �nd incremen-
tal matches for remaining query edges in - to obtain �M- , which
is the set of incremental matches mapping 4 (E0, E1 ) to query edges
in - . The dual matching technique �nds incremental matches by
permutating query vertices in matches in �M4 (D0,D1 ) , rather than
executing the recursive search in ⌧ . This way, we eliminate the
redundant computation incurred by automorphisms of & . Example
3.1 presents a running example of RapidFlow.

Example 3.1. Figure 4a illustrates the global index � given &
and ⌧ in Figure 1. Given the update in Figure 1c, RapidFlow �rst
updates � to keep it consistent with⌧ 0 in Figure 4b. Next, RapidFlow
extracts the local index�where eachmatch of&' corresponds to an

Algorithm 2: An Overview of RapidFlow
Input: a query graph& , a data graph⌧ , an update stream �G
Output: incremental matches �M for each �⌧ 2 �G
/* The offline stage. */

1 �  BuildGlobalIndex(&,⌧);
2 X  GenerateAutoSet(&);
/* The online stage. */

3 foreach �⌧ = (�, 4) 2 �G do
4 if � is + then
5 ⌧  ⌧ � �⌧ ;
6 UpdateGlobalIndex(&,⌧, � , �, 4);
7 FindIncrementalMatch(&, � , 4, X);
8 else
9 FindIncrementalMatch(&, � , 4, X);

10 ⌧  ⌧ � �⌧ ;
11 UpdateGlobalIndex(&,⌧, � , �, 4);

12 Procedure FindIncrementalMatch(&, � , 4 (E0, E1 ), X)
13 �M  {};
14 foreach - 2 X do
15 4 (D0,D1 )  an arbitrary edge in - ;
16 &'  & � {D0,D1 };
17 � BuildLocalIndex(&', � , 4 (D0,D1 ), 4 (E0, E1 ));
18 if there are empty candidate sets in � then Continue;
19 i  generate a matching order of&' ;
20 M&'  Enumerate(i,�, {}, 1);
21 �M4 (D0 ,D1 )  {{(D0, E0), (D1 , E1 ) } [" |" 2 M&' };
22 �M-  DualMatch(�M4 (D0 ,D1 ) ,-);
23 �M  �M [ �M- ;

24 Output �M;

u0 u1 u2 u3 u4

u0 u1 u2 u4 u3

v0 v1 v6 v13 v12

v2 v1 v6 v13 v12

v2 v3 v6 v13 v12∆ℳ𝑒(𝑢2,𝑢3) ∆ℳ𝑒(𝑢2,𝑢4)

Figure 5: Incremental matches generated by dual matching
given insertion of 4 (E6, E13) to ⌧ 0 in Figure 1d.
incremental matchmapping 4 (D0,D1) to 4 (E2, E3). After that, we �nd
all matchesM&' of&' in� with the matching order (D4,D3,D2) in
Figure 4d. Finally, we obtain incremental matches based onM&'

given the initial mapping {(D0, E2), (D1, E3)} in Figure 4e. Suppose
that 4 (E2, E3) is to be deleted from ⌧ 0 in Figure 1c and the data
graph will evolve from⌧ 0 in Figure 1c to⌧ in Figure 1b. RapidFlow
will directly extract the local index in Figure 4c from the global
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index in Figure 4b and enumerate incremental matches with the
same procedure as processing the insertion of 4 (E2, E3) in Figure
4d. After that, RapidFlow will delete 4 (E2, E3) from ⌧ 0 and update
the global index in Figure 4b to that in Figure 4a.

Figure 5 illustrates incremental matches for the update in Figure
1d. After �nding the set �M4 (D2,D3) of incremental matches map-
ping 4 (D2,D3) to 4 (E6, E13), we generate �M4 (D2,D4) by permutating
the sequence of query vertices instead of issuing a search procedure
for 4 (D2,D4), which avoids the redundant computation.

4 QUERY REDUCTION
We introduce the query reduction technique in this section.

4.1 Reduce CSM to BSM
According to De�nition 2.1, each incremental match contains the
updated edge.

F��� 1. Given insertion of 4 (E0, E1 ), the set �M of incremental
matches is the set of matches" of& in⌧ such that 4 ("�1 (E0),"�1 (E1 ))
belongs to ⇢ (&) where"�1 is the inverse function of" .

Based on Fact 1, a straightforward incremental CSM method
is to 1) start a search procedure for each 4 (D0,D1 ) to �nd the set
�M4 (D0,D1 ) of matches mapping 4 (D0,D1 ) to 4 (E0, E1 ); and 2) ob-
tain �M by computing

–
42⇢ (&) �M4 . As �M4 (D0,D1 ) generally

accounts for a small portion of matches of & in ⌧ , the search for
4 (D0,D1 ) starts the enumeration by mapping 4 (D0,D1 ) to 4 (E0, E1 )
to ensure that each match reported in the E�������� procedure
(see Algorithm 1) maps 4 (D0,D1 ) to 4 (E0, E1 ). Thus, this method
must put D0,D1 at the beginning of the matching order. However,
this requirement may lead to many invalid partial results, as illus-
trated in Section 2.4. To solve this problem, we propose the query
reduction technique that enables the enumeration of �M4 with any
matching order.

Intuitively, matches in �M4 (D0,D1 ) appear in the region of ⌧
around the updated edge 4 (E0, E1 ) because theymust contain 4 (E0, E1 ).
Therefore, if we can extract an a�ected region from ⌧ given the
update such that each match in the region is a match in �M4 (D0,D1 ) ,
then we can obtain �M4 (D0,D1 ) by enumerating all matches in this
region.

Speci�cally, each match" 2 �M4 (D0,D1 ) maps D0,D1 to E0, E1 ,
respectively, and therefore we only need to determine candidate
sets for remaining query vertices. According to De�nition 2.1, query
vertices D adjacent to D0 (resp. D1 ) must be mapped to the neigh-
bors of E0 (resp. E1 ) in" . Thus, the candidate set ⇠ (D) is a subset
of # (E0) (resp. # (E1 )). Similarly, the neighbors D 0 of D must be
mapped to the neighbors of candidates E in ⇠ (D), and therefore
⇠ (D 0) is a subset of–E2⇠ (D) # (E).

As a result, we can �rst obtain candidate sets for query vertices
adjacent to D0,D1 , then iteratively generate candidate sets for the
other query vertices based on the candidate sets of their neighbors,
and �nally map query vertices excludingD0,D1 to candidates to �nd
�M4 (D0,D1 ) . In short, we �nd �M4 (D0,D1 ) by enumerating matches
of &' = & � {D0,D1 } from candidate sets generated based on the
update.

Algorithm 3: Global Index
1 Procedure BuildGlobalIndex(&,⌧)
2 foreach D 2 + (&) do
3 ⇠� (D)  {E 2 + (⌧) |! (D) = ! (E) ^ #!� (D, E) is true};
4 foreach 4 (D,D0) 2 ⇢ (&) do
5 foreach E 2 ⇠� (D) do
6 �DD0 (E)  # (E) \⇠� (D0) ;

7 return � ;

/* Maintain the index given an update. */
8 Procedure UpdateGlobalIndex(&,⌧, � , �, 4 (E0, E1 ))
9 foreach {(D,D0), (E, E0) } 2 ⇢ (&) ⇥ {(E0, E1 ), (E1 , E0) } do
10 if E 2 ⇠� (D) and E0 2 ⇠� (D0) then
11 Add E0 to �DD0 (E) and add E to �D0D (E0) ;

12 �⇠�  {};
13 foreach (D, E) 2 + (&) ⇥ {E0, E1 } do
14 if ! (D) = ! (E) and E 8 ⇠� (D) and NLF(D, E) is true then
15 Add E to⇠� (D) and add (D, E) to �⇠� ;

16 foreach D0 2 # (D) where (D, E) 2 �⇠� do
17 �DD0 (E)  # (E) \⇠� (D0) ;
18 Add E to �D0D (E0) given E0 2 �DD0 (E) ;

4.2 Two-Level Indexing Mechanism
The e�ciency of the query reduction technique highly depends
on the e�ciency of extracting the a�ected region. To improve the
performance, we design a two-level indexing mechanism to obtain
the a�ected region.

Global Index. The goal of the �rst-level index, called the global
index, is to rule out data vertices irrelevant to the query. Speci�cally,
the global index � is query-dependent; it maintains a candidate set
⇠� (D) for each query vertexD and records edges between candidates.
The candidate set⇠� (D) is global complete (De�nition 4.1) in terms of
all matches of & in⌧ , where⌧ is the data graph after the insertion.

De�nition 4.1. Given & and ⌧ , the global complete candidate
set ⇠� (D) for D 2 + (&) is a set of data vertices E such that if a
mapping (D, E) appears in a match of & in ⌧ , then E must belong
to ⇠� (D). If ⇠� (D) is global complete for each D 2 + (&), then � is
global complete.

Given & and ⌧ , we build � in the o�ine and dynamically up-
date it to keep its completeness online. Algorithm 3 depicts the
construction and update of the global index. Given& and⌧ , B�����
G�����I���� generates a candidate set for each query vertex based
on the neighbor label frequency (NLF) �lter (Lines 2-3), which is a
widely used �ltering rule [33]. Particularly, given D 2 + (&) and
E 2 + (⌧), NLF requires that given ; 2 !(# (D)), |# (D, ;) | 6 |# (E, ;) |
where !(# (D)) = {!(D 0) |D 0 2 # (D)} (i.e., the set of labels of D’s
neighbors) and # (D, ;) = {D 0 2 # (D) |!(D 0) = ;} (i.e., the set of
D’s neighbors with label ;). Next, Lines 4-6 record edges between
candidates in ⇠� (D) and ⇠� (D 0) given 4 (D,D 0) 2 ⇢ (&). �DD0 (E) is the
set of E ’s neighbors in ⇠� (D 0).

U�����G�����I���� keeps the completeness of � given the
updated edge 4 (E0, E1 ). Lines 9-18 presents the index update for the
insertion. Given 4 (D,D 0) 2 ⇢ (&), if E and E 0 belong to ⇠� (D) and
⇠� (D 0), respectively, then Lines 9-11 add 4 (E, E 0) to � . Lines 13-15
compute the modi�cation on candidate sets. As the insertion of
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Algorithm 4: Local Index
1 Procedure BuildLocalIndex(&', � , 4 (D0,D1 ), 4 (E0, E1 ))
2 if E0 8 ⇠� (D0) or E1 8 ⇠� (D1 ) then return;
3 "  {(D0, E0), (D1 , E1 ) };
4 � + (&' ) \ (#& (D0) [ #& (D1 )) ;
5 foreach D 2 � do
6 ⇠� (D)  —

D02#& (D)\{D0 ,D1 } �
D0
D (" (D0)) � {E0, E1 };

7 X  sort vertices D 2 � in the ascending order of |⇠� (D) |;
8 foreach D 2 � along the order of X do
9 foreach D0 2 #X

+ (D) do
10 ⇠� (D)  ⇠� (D)—(–E2⇠� (D0) �

D0
D (E)) ;

11 � + (&' ) � �;
12 while � < ; do
13 D  0A6maxD02� |# (D) � � |;
14 ⇠� (D)  ⇠� (D) � {E0, E1 };
15 foreach D0 2 # (D) � � do
16 Do the same operation as Line 10;

17 Remove D from �;

18 foreach 4 (D,D0) 2 ⇢ (&' ) do
19 foreach E 2 ⇠� (D) do
20 �D

D0 (E)  �DD0 (E) \⇠� (D0) ;

21 return �;

4 (E0, E1 ) updates # (E0) and # (E1 ) in⌧ , we only check whether E0
and E1 can be inserted into certain candidate sets based on NLF. If
so, we add it to⇠� (D) and record the update in �⇠� . Next, we update
edges between candidates in � correspondingly (Lines 16-18).

Example 4.2. Figure 4a demonstrates � given & and ⌧ in Figure
1. �D1

D0 (E1) = {E0, E2}. Although !(E3) = !(D1) in Figure 1b, E3 8
⇠� (D1) because |# (E3,�) | = 0, which is less than |# (D1,�) | = 1.
Given insertion of 4 (E2, E3) in Figure 1c, #!� (D1, E3) is true. There-
fore, we add E3 to ⇠� (D1) and update edges between candidates in
Figure 4b.

Local Index. The second-level index, called the local index, is
built on top of the global index for each update. In particular, the
local index � is update-dependent, which keeps a candidate set
⇠� (D) for D 2 + (&') and maintains edges between candidate sets
⇠� (D) and ⇠� (D 0) if 4 (D,D 0) 2 ⇢ (&'). ⇠� (D) is local complete
(De�nition 4.3). Therefore, the local index is the a�ected region
where we can �nd incremental matches.

De�nition 4.3. Given & , ⌧ , the updated edge 4 (E0, E1 ) and the
query edge 4 (D0,D1 ) that maps to 4 (E0, E1 ), the local complete can-
didate set ⇠� (D) for D 2 + (&') is a set of data vertices E such that
if a mapping (D, E) belongs to a match in the set �M4 (D0,D1 ) of
incremental matches mapping 4 (D0,D1 ) to 4 (E0, E1 ), then E must
belong to ⇠� (D). If ⇠� (D) is local complete for each D 2 + (&'),
then � is local complete.

The local index is generated for each update and immediately
destroyed after the search procedure. Algorithm 4 presents the
generationmethod of the local index. Given a query vertexD,#& (D)
and # (D) denote the neighbors of D in & and &' , respectively.
4 (E0, E1 ) is the updated data edge and 4 (D0,D1 ) is the target query
edge." records initial mappings (Line 3). Lines 4-6 compute⇠� (D)

based on E0 and E1 where D 2 � (i.e., query vertices adjacent to
D0,D1 ). After that, Lines 7-10 prune candidate sets ⇠� (D) for D 2 �
based on the �ltering rule: we can remove E from ⇠� (D) without
breaking its completeness if there exists D 0 2 #X

+ (D) such that E has
no neighbor in⇠� (D 0) where #X

+ (D) is the set of vertices positioned
before D in a sequence X of �. In particular, X prioritizes query
vertices with fewer candidates to utilize small candidate sets to
prune large ones. Given D 0 2 #X

+ (D), we �rst compute the union of
neighbors of candidates in⇠� (D 0) based on � (i.e.,

–
E2⇠� (D0) �D

0
D (E)

at Line 10), and then intersect the union with ⇠� (D) to eliminate
invalid candidates. Lines 11-17 generate candidate sets for D 2 �
(i.e., query vertices not adjacent to D0,D1 ). At each step, we select
D 2 �who has the largest number of neighbors that have candidate
sets generated. Based on De�nitions 4.1 and 4.3, ⇠� (D) must be
local complete. As such, Lines 14-16 initialize ⇠� (D) as ⇠� (D) and
prune it with the same method as Line 10. Finally, we record edges
between candidates in ⇠� (D) and ⇠� (D 0) if 4 (D,D 0) 2 ⇢ (&').

Example 4.4. Given the updated edge 4 (E2, E3) and the query
edge 4 (D0,D1) mapped to 4 (E2, E3), the mapping" is initialized to
{(D0, E2), (D1, E3)}. Figure 4c presents the local index given" . As
D2 is adjacent to D1, ⇠� (D2) = �D1

D2 (" (D1)) = {E6, E7, E8}. Next, we
generate⇠� (D3) by pruning⇠� (D3) based on⇠� (D2). E10 is invalid
since E10 has no neighbor in⇠� (D2). Thus,⇠� (D3) = {E11, E12, E13}.
Next, we generate ⇠� (D4) by pruning ⇠� (D4) based on ⇠� (D2) and
⇠� (D3). E10 has no neighbor in ⇠� (D2), and E11 has no neighbor
in ⇠� (D3). Therefore, ⇠� (D4) = {E12, E13}. Finally, we add edges
between candidate sets if 4 (D,D 0) 2 ⇢ (&') where&' is the triangle
in & .

4.3 Analysis
In the following, we analyze the time and space cost, and discuss
the connections with existing work.

Time and Space. We �rst analyze the cost of the global in-
dex. Given D 2 + (&) and E 2 + (⌧), we perform NLF check on
# (E). Thus, the time complexity of generating candidate sets (Lines
2-3 in Algorithm 3) is $ (ÕD2+ (&)

Õ
E2+ (⌧) 3 (E)) = $ ( |+ (&) | ⇥

|⇢ (⌧) |). Given two sets (1, (2 where |(1 | 6 |(2 |, the cost of set
intersection on them is $ ( |(1 |) [1]. Then, the time complexity of
recording edges between candidates (Lines 4-6 in Algorithm 3) is
$ (Õ4 (D,D0)2⇢ (&)

Õ
E2⇠� (D) 3 (E)) = $ ( |⇢ (&) | ⇥ |⇢ (⌧) |). Thus, the

time complexity of building the global index is $ ( |⇢ (&) | ⇥ |⇢ (⌧) |).
The space complexity is $ ( |+ (&) | ⇥ |+ (⌧) | + |⇢ (&) | ⇥ |⇢ (⌧) |).

The neighbor set is sorted in the index. The cost of adding an
edge 4 (E, E 0) to �DD0 (E) is $ (log |�DD0 (E) |) = $ (3 (E)). For simplicity,
we use the average degree 3 of ⌧ in the analysis. Thus, the cost of
Lines 9-11 is$ ( |⇢ (&) | ⇥ log3). The cost of updating candidate sets
and neighbor sets is$ ( |+ (&) |⇥3+|+ (&) |⇥3⇥log3). Therefore, the
time cost of updating the global index given an update is$ ( |⇢ (&) |⇥
log3 + |+ (&) | ⇥ 3 ⇥ log3).

Next, we analyze the cost of the local index. Given 4 (D,D 0) 2
⇢ (&), the cost of pruning⇠� (D)with⇠� (D 0) is$ (ÕE2⇠� (D0) |�D

0
D (E) |) =

$ ( |�D0D |) where |�D0D | is the number of edges between ⇠� (D) and
⇠� (D 0). Lines 8-17 in Algorithm 4 utilize each edge in&' to generate
candidate sets. Thus, the time complexity is$ (Õ4 (D,D0)2⇢ (&' ) |�DD |).
The time complexity of recording edges is the same as the pruning.
Therefore, the time and space complexity of constructing the local
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index is$ (Õ4 (D,D0)2⇢ (&' ) |�DD |). In practice, the construction of the
local index is very e�cient as only a small portion of vertices in �
is involved in the computation for each update.

Discussion. Given 4 (D0,D1 ), &' = & � {D0,D1 } can be a dis-
connected graph. The E�������� procedure in Algorithm 1 can
handle disconnected graphs by setting ⇠" (D) to ⇠� (D) at Line 21
if #i

+ (D) = ;.
Latest algorithms [18, 23] build an index to serve the enumeration

as presented in Section 2.3. Such an index has the same structure
as the global index. These algorithms keep candidate sets global
complete given the stream, and utilize advanced �ltering rules to
prune invalid candidates. Formally, the rule is: given D 2 + (&) and
E 2 ⇠� (D), E has at least one neighbor in⇠� (D 0) for each D 0 2 # (D).
This rule is widely used in both CSM and BSM approaches [33]. The
cost of maintaining the index for each update is$ ( |⇢ (&) |⇥ |⇢ (⌧) |)
in SymBi [23], the latest CSM algorithm. Although these rules can
be applied to our global index, we use a simpler �ltering rule (i.e.,
NLF) because 1) the overhead of complex �ltering rules may o�set
the bene�t on short-running queries; and 2) the simple �ltering
rule is su�cient for pruning candidate sets in the global index.

In summary, our two-level indexing mechanism consisting of
the global index and the local index has a lower maintenance cost
than existing CSM approaches because the global index � uses a
simple �ltering rule and the a�ected part for each update in � is
small. In case an a�ected region is large, our index maintenance
cost can be higher than existing methods because of the local index.
However, the bene�t of our approach o�sets the overhead because
there are many incremental results in a large a�ected region and
therefore the enumeration time dominates the cost of processing
the update. We evaluate the query reduction technique in Section
6.3.1.

5 DUAL MATCHING
We introduce the dual matching technique in this section.

5.1 Reverse Roles of Query and Data Graphs
Given a match from & to ⌧ , the subgraph ⌧ 0 consisting of the
matched edges of⌧ is isomorphic to& . Let& 0 be a graph isomorphic
to & . ⌧ 0 is isomorphic to & 0 because the subgraph isomorphism
relation is transitive. We start |⇢ (&) | search procedures each of
which �nds the set �M4 of incremental matches mapping 4 2 ⇢ (&)
to the updated data edge. Intuitively, if 4 0 can be mapped to 4 in
an automorphism of & , then each subgraph of matches in �M4
appear in a match in �M40 . In other words, there is a one-to-one
mapping relationship between matches in �M4 and �M40 , which
is described formally in the following proposition.

P���������� 5.1. Given an automorphism "& of & , 4 denotes
4 (D0,D1 ) 2 ⇢ (&) and 4 0 denotes 4 ("& (D0),"& (D1 )) 2 ⇢ (&). Then,
�M40 is equal to {" � "& |" 2 �M4 } where � is the function
composition operation.

P����. Let M be {" � "& |" 2 �M4 }. We �rst show M ✓
�M40 . Suppose " 0 = " � "& where " 2 �M4 . As "& and "
are bijective functions, " 0 must also be a bijective function and
" 0(D) = " ("& (D)) given D 2 + (&). Given 4 (D,D 0) 2 ⇢ (&), we
have 4 ("& (D),"& (D 0)) 2 ⇢ (&) since"& is a match of & in & . As

Algorithm 5: Dual Matching
1 Procedure GenerateAutoSet(&)
2 M&  �nd matches of& in& ;
3 X  ;;
4 foreach 4 (D,D0) 2 ⇢ (&) do
5 if 4 (D,D0) is not selected then
6 -  ;;
7 foreach"& 2 M& do
8 if 4 ("& (D),"& (D0)) is not selected then
9 -  - [ {(4 ("& (D),"& (D0)),"& ) };

10 Mark 4 ("& (D),"& (D0)) as selected;

11 X  X [ {- };

12 return X;

13 Procedure DualMatch(�M4 ,-)
14 foreach (40,"& ) 2 - do
15 if 40 < 4 then �M40  {" �"& |" 2 �M4 };
16 �M-  

–
42- �M4 ;

17 return �M- ;

" is a match of& in⌧ , we have 4 (" ("& (D))," ("& (D 0))) 2 ⇢ (⌧).
Therefore," 0 is a bijective function that satis�es given 4 (D,D 0) 2
⇢ (&), 4 (" 0(D)," (D)) 2 ⇢ (⌧). Because" maps 4 (D0,D1 ) (i.e., 4) to
the updated edge, we have" 0 maps 4 ("& (D0),"& (D1 )) (i.e., 4 0) to
it. Thus," 0 belongs to �M40 and M ✓ �M40 . Similarly, we have
�M40 ✓M. Therefore, the proposition holds. ⇤

According to the proposition, we have the following two obser-
vations on the impact of automorphisms in CSM. First, automor-
phisms that do not map each query vertex to itself lead to redundant
computation. Second, the set of subgraphs of⌧ corresponding to
matches in �M4 is the same as that in �M40 if 4 can be mapped to
4 0 in an automorphism.

Based on these observations, we propose the dual matching tech-
nique to eliminate redundant computation incurred by automor-
phisms of & . In principle, the procedure of enumerating matches
permutates data vertices to �nd results. In contrast, given �M4 ,
the dual matching technique swaps the roles of query and data
graphs and enumerates matches by permutating query vertices to
�nd �M40 based on Proposition 5.1.

5.2 Incremental Matching based on Auto-Sets
Based on automorphisms of& , the dual matching technique groups
query edges into a set X of auto-sets - (De�nition 5.2). G�����
���A���S�� in Algorithm 5 presents the techniques. Given 4 (D,D 0) 2
⇢ (&) that does not belong to any auto-sets, Lines 6-11 iterate each
match"& 2M& to �nd query edges 4 ("& (D),"& (D 0)) and group
these edges into a new auto-set. - records the edge and the cor-
responding match (Line 9). As a query graph has at least one au-
tomorphism (i.e., the match mapping each query vertex to itself),
the function ensures that each query edge belongs to exactly one
auto-set. Auto-sets are generated in the o�ine processing stage,
since & is �xed during the online processing.

De�nition 5.2. LetM& denote the automorphisms of& . An auto-
set - is a set of query edges that satis�es the following condition:
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given any two edges 4 (D0,D1 ), 4 (D 00,D 01 ) 2 - , there exists "& 2
M& such that D0 = "& (D 00) and D1 = "& (D 01 ).

Given �M4 and the auto-set - that 4 belongs to, D���M����
generates incremental matches for remaining edges 4 0 in - . Partic-
ularly, Line 15 loops over" 2 �M4 and generates �M40 based on
Proposition 5.1 where"& is the automorphism mapping 4 to 4 0. Fi-
nally, we union the results and return the set �M- of incremental
matches that map edges in - to the updated edge.

Optimization. To further improve the performance, we op-
timize the procedure of generating matches for auto-sets - . In
practice, �M4 is stored as a table where the header is a sequence
of query vertices (...,D8 , ...) and each tuple is a sequence of data
vertices. Figure 3 presents an example. Given 4 0 2 - and the cor-
responding automorphism"& , we can generate �M40 by simply
adding another header (...,"& (D8 ), ...) instead of iterating each
match in �M4 . Therefore, the set �M- is stored as a table with
|- | headers each of which is a sequence of query vertices based on
automorphisms of & .

Example 5.3. Given& in Figure 1a,M& = {"1 = {(D0,D0), (D1,D1),
(D2,D2), (D3,D3), (D4,D4)},"2 = {(D0,D0), (D1,D1), (D2,D2), (D3,D4),
(D4,D3)}}. The set X of auto-sets is {-1 = {(4 (D0,D1),"1)},-2 =
{(4 (D1,D2),"1)},-3 = {(4 (D3,D4),"1)},-4 = {(4 (D2,D3),"1),
(4 (D2,D4),"2)}}. Given insertion of 4 (E6, E13), suppose that we ob-
tain �M4 (D2,D3) in Figure 3. As 4 (D2,D3) 2 -4, the dual matching
technique generates �M-4 by adding a header based on"2. The
results are shown in Figure 5. Thus, we do not need to execute a
search procedure for 4 (D2,D4).

5.3 Analysis
In the following, we analyze the time and space cost of the dual
matching.

Time and Space. After �nding M& , the time complexity of
G�������A���S�� is $ ( |⇢ (&) | ⇥ |M& |). As the query graph is
small, the procedure is fast. Given- and �M4 , the time complexity
of D���M���� is $ (( |- | � 1) ⇥ |�M4 |). The optimization avoids
iterating each match in �M4 and reduces the cost to$ (( |- | � 1) ⇥
|+ (&) |).

X generated by Algorithm 5 maintains an automorphism "&
for each query edge and has no duplicate query edge. Therefore,
the space cost of storing X is $ ( |⇢ (&) | ⇥ |+ (&) |). If we need to
store incremental matches for the update, then the space cost of
the dual matching is $ ( |+ (&) | ⇥ Õ

- 2X |�M- |) where �M- is
the set of incremental matches mapping edges in - to the updated
edge. Otherwise, we can �nd an incremental match and emit it
immediately. Therefore, the space cost of maintaining the output is
negligible.

Discussion. Given & , ⌧ and �G, for simplicity, assume that
�nding incremental matches mapping 4 2 ⇢ (&) to the updated
edges in the entire stream takes ) time. The cost of processing the
stream can be estimated as) ⇥ |⇢ (&) |. The dual matching technique
reduces the execution time to ) ⇥ |X|. Thus, the speedup on the
entire stream is |⇢ (&) |

|X | . For example, the speedup on the entire
stream given & in Figure 1 is 1.25 under the assumption because
|⇢ (&) | = 5 and |X| = 4. In contrast, the speedup for the update in
Example 5.3 is 2 because the cost of �nding incremental matches

for -1�3 can be neglected for this update. We evaluate the dual
matching technique in Section 6.3.2.

The symmetry-breaking technique [12] eliminates duplicate re-
sults in the subgraph enumeration problem [25, 28], which is to
�nd all subgraphs in the data graph identical to the query graph.
Symmetry-breaking assigns partial orders to query vertices and
requires data vertices mapped to query vertices to satisfy these
orders. However, this technique cannot be directly applied to CSM
because it may miss valid results. Moreover, it may issue more
sub-queries than our dual matching technique on update streams.

6 EXPERIMENTAL RESULTS
We conduct experiments to evaluate the performance of RapidFlow.

6.1 Experiment Setup
In our experiments, we compare RapidFlow (named RF) with Tur-
boFlux (named TF) [18] and SymBi (named SYM) [23], which are
state-of-the-art CSM methods. RapidFlow utilizes the ordering
method of RI [5] to generate the matching order for enumerat-
ing matches of &' in the local index, because previous studies on
BSM [33] show that the ordering method of RI is simple and e�ec-
tive. For a fair comparison, we implement all competing algorithms
in C++ and optimize them with our best e�orts. The source code
is compiled with g++ 8.3.1. We conduct experiments on a Linux
server with two Intel Xeon Gold 5218 CPUs and 512GB DRAM.

Table 3: The detailed information of datasets. |⌃+ | is the
number of distinct vertex labels. |⌃⇢ | is the number of distinct
edge labels. 30E6 is the average degree. 3<0G is the maximum
degree. 2<0G is the maximum core value.
Datasets |+ | |⇢ | |⌃+ | |⌃⇢ | 30E6 3<0G 2<0G

Amazon (az) 0.4M 2.4M 6 1 12.2 0.2M 10
LiveJournal (lj) 4.9M 42.9M 30 1 18.1 4.3M 350
Net�ow (nf ) 3.1M 2.9M 1 7 2.0 0.2M 8
LSBench (ls) 5.2M 20.3M 1 44 8.2 2.3M 27

Data Graphs. We use Net�ow and LSBench in our experiments
to keep consistent with previous work [18, 23]. Net�ow is a real-
world dynamic graph representing passive tra�c traces [6]. LS-
Bench is a synthetic dynamic social network generated by Linked
Stream Benchmark [19]. Net�ow and LSBench have 7 and 44 dis-
tinct edge labels, respectively, and all vertices in both graphs have
the same label. The edge label distribution is highly skewed. For
example, 70.9% edges in Net�ow have the same label.

Following existing research on streaming graphs [16, 21], we
further generate dynamic graphs from static graphs including Ama-
zon and LiveJournal by randomly sampling edges as the update
stream. As the original datasets are unlabeled, we assign labels from
a label set to vertices randomly. Table 3 presents the statistics of
datasets. We can see that the datasets in our experiments cover a
wide range of settings, e.g., the graph size, the graph density and
the label distribution.

The insertion (resp. deletion) rate is the ratio of the number
of edge insertions (resp. deletions) to the number of edges in the
dataset. We set the rate to 10%, the same as previous work [16,
21]. Because competing algorithms are generally symmetric (i.e.,
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processing insertion and deletion with the same algorithm), we
report the results on the insertion stream for brevity.

Query Graphs. Following previous work [18, 23], we obtain
query graphs by randomly extracting connected subgraphs from
the data graph and categorize queries into tree queries and cyclic
queries. Moreover, following previous studies on batch subgraph
matching [4, 13], we classify cyclic query graphs into sparse queries
(30E6 6 3) and dense queries (30E6 > 3) to study the performance
of competing algorithms on queries with di�erent densities. Note
that if the threshold increases further, there will be few incremental
matches of dense queries since real-world graphs are sparse. We in-
crease |+ (&) | from 4 to 12 at a step of 2. We do not further increase
the query size because most of the data graph will involve in the
computation for each update if the query graph is big and conse-
quently the CSM problem is close to the BSM problem. For each
query type and size, we generate a query set containing 100 queries.
We report experiment results on the query sets with |+ (&) | = 6 by
default.

Metrics. The o�ine preprocessing stage of all competing algo-
rithms in our paper is e�cient. Therefore, we focus on evaluating
the online processing. We measure the query time, which is the
elapsed time of processing the stream online, of each algorithm. The
query time excludes the time of modifying the data graph because
the overhead is the same for all algorithms. To complete our exper-
iments in a reasonable time, we set the time limit for each query to
one hour. If a query cannot be completed within the time limit, we
terminate the query and mark it as unsolved. If the algorithm �nds
fewer than 109 results on a unsolved query, the query is marked as
a hard unsolved query.

Given a set . of competing algorithms and a query set Q, Q 0
is the set of queries that all algorithms in . can complete within
the time limit, and Q 0 is the supplementary set of & 0 (i.e., the set
of queries that at least one algorithm in . cannot complete within
the time limit). The average query time C~ of an algorithm ~ 2 .
on Q is equal to 1

|Q0 |
Õ
& 2Q0 C~ (&) where C~ (&) is the query time

of ~ on & . We also count the number of unsolved queries for each
algorithm and measure the number of edges processed on the query
in Q 0 to study their performance on unsolved queries.

Moreover, we evaluate the response time, which is the time �nd-
ing one incremental match, for each relevant update. Speci�cally, a
relevant update given & is an update �⌧ in the stream such that at
least one edge 4 (D,D 0) 2 ⇢ (&) has the same label as the updated
edge 4 (E, E 0) in �⌧ (i.e., !(D) = !(E) and !(D 0) = !(E 0)). We omit
the irrelevant updates in the stream because the cost of pruning
them with the label �lter is negligible. The query time (resp. index
update time) per update is also computed in terms of the relevant
updates in the stream. Additionally, we evaluate the candidate set
size for each query vertex to study the pruning power.

6.2 Overall Comparison
Average Query Time. Figure 6 presents the average query time
one each query set. As shown in the �gure, TF runs faster than
SYM on tree queries, but slower on cyclic queries. In contrast, RF
signi�cantly outperforms both TF and SYM on each query set and
the speedups are up to two orders of magnitude, e.g., on tree and
sparse queries on nf. As the query time on di�erent queries varies

greatly and algorithms can have performance variance on di�erent
queries, the average value can hide the performance of competing
algorithms on each individual query. Therefore, we measure the
speedup of RF on each query.

Figure 6: Comparison of competing methods on average
query time.

Individual Speedup.We measure the speedup of RF over TF
and SYM on each query in Figure 7. The individual speedup on a
query & is computed by C0 (&)

C'� (&) where C'� (&) is the query time
of RF and C0 (&) is the query time of TF or SYM. We can see that
there is no value below 1, which shows that RF outperforms SYM
and TF on all cases that competing algorithms can complete within
the time limit. The speedups are up to four orders of magnitude
on some cases. These results demonstrate the high performance of
RapidFlow.

Figure 7: Individual speedup of RF over TF and SYM in terms
of the query time. Each dot denotes the speedup on a query.

Unsolved Queries.We count the number of unsolved queries,
including hard unsolved queries, for each algorithm in Table 4. As
shown in the table, TF has more unsolved queries than SYM and
RF. RF signi�cantly reduces the number of unsolved queries, for
example, RF has no unsolved queries on lj. Moreover, both TF and
SYM have hard unsolved queries, which cause performance issues.
In contrast, RF has no hard unsolved queries. In other words, the
unsolved queries in RF are because of the large number of results.
For example, RF has 16 unsolved tree queries on nf where RF reports
as many as 1012 results in one hour.

To compare the performance of competing algorithms on un-
solved queries, we measure the number of relevant updates pro-
cessed on unsolved queries in Figure 8. There are in total 116 queries
that at least one algorithm cannot complete within the time limit
on the four data graphs. The number of relevant updates processed
by either TF or SYM is fewer than or equal to that of RF on all these
queries except one where TF deals with 177209 relevant updates
while RF handles 163375. Both TF and SYM encounter performance
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Table 4: The number of unsolved queries and hard unsolved
queries. The unsolved queries include hard unsolved ones.
az is omitted because there is no unsolved query on az.

Query
Structure Method #Unsolved Queries #Hard Unsolved

lj nf ls lj nf ls

Tree
TF 3 38 11 0 3 0
SYM 4 41 12 0 1 0
RF 0 16 9 0 0 0

Sparse
TF 0 20 35 0 15 32
SYM 0 11 4 0 6 1
RF 0 0 3 0 0 0

Dense
TF 0 1 2 0 1 2
SYM 0 0 0 0 0 0
RF 0 0 0 0 0 0

Total
TF 3 59 48 0 19 34
SYM 4 52 16 0 7 1
RF 0 16 12 0 0 0

issues on some queries and consequently process much fewer up-
dates than RF. The results demonstrate the performance advantage
of RF on unsolved queries.

Figure 8: Comparison of competing methods on the num-
ber of relevant updates processed on unsolved queries. The
query ID is labeled in the ascending order of relevant updates
processed by RF.

6.3 Evaluation of Individual Techniques
In this subsection, we evaluate the e�ectiveness of the query reduc-
tion and dual matching, respectively.

6.3.1 E�ectiveness of �ery Reduction. We �rst evaluate the e�ec-
tiveness of the query reduction technique by measuring the number
of partial results generated in the enumeration.

Partial Results. Figure 9 illustrates the average number of par-
tial results (excluding �nal results) generated in the enumeration
for each query set. The value of each query is normalized to the
min value among competing algorithms. The value of RF is close
to one and therefore RF generally generates the minimum number
of partial results for each query. In contrast, TF and SYM lead to
much more partial results than RF. The experiment results show
that existing CSM approaches generate many invalid partial results,
and utilizing the well-studied BSM techniques can signi�cantly
reduce the search space size. Thus, the query reduction technique,
which reduces CSM to BSM, is an e�cient approach for CSM.

Candidate Set Size.We evaluate the pruning power of the global
index by comparing the candidate set size for each query vertex
with that in indexes of TF and SYM. As the index is frequently
updated given the stream, we use the index for the data graph after

Figure 9: Comparison of competing methods on #partial re-
sults generated in the enumeration.
applying the entire stream in the comparison. Figure 10 presents the
average candidate set size for each query vertex. We can see that RF
achieves competitive performance although it uses a simple �ltering
rule. In some cases, RF even has fewer candidates than SYM, which
adopts a complex �lter rule. Looking into these cases, we �nd the
reason is the �lter rule of SYM requires a candidate E 2 ⇠� (D) must
have at least one neighbor E 0 in⇠� (D 0) for eachD 0 2 # (D), but does
not consider the number of distinct neighbors with speci�c labels.
As a neighbor E 0 2 # (E) can appear in candidate sets of di�erent
neighbors D 0 2 # (D), E 0 can be valid for SYM, but is pruned by the
neighbor label frequency �lter (NLF) in RF. We do not report the
number of candidates in the local index because it is generated for
each update. We evaluate the cost of index update in the following.

Figure 10: Comparison of the average candidate set size for
each query vertex.

Query Time Breakdown. Given an update, RF �rst updates the
global index and then builds the local index to obtain the a�ected re-
gion. Figure 11 shows the query time breakdown for each update on
individual queries. As the local index time �uctuates, we represent
it as dots instead of a line. The �gure also illustrates the indexing
time of SYM, the latest CSM algorithm, for reference. We present
the results on sparse queries on lj and ls as representatives. Based
on the experiment results, we have the following observations.

Global Index. The global index update time of RF is much shorter
than that of SYM because the �lter rule of RF is simpler. The global
index update time is more steady than the local index generation
time on a variety of queries since each update only a�ects candi-
dates adjacent to the updated edge. Overall, the global index update
is very e�cient, less than 0.01 ms for each update, as shown in the
�gure.

Local Index. The local index generation time is very short in most
cases because the global index signi�cantly reduces the number of
data vertices involved in the computation, and the region a�ected
by the update is small. However, some queries in Figure 11b have
much longer local index generation time than other queries because
the update has a big a�ected region. For example, we �nd a local
candidate set had more than 500,000 candidates for a query vertex.
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Nevertheless, RF built the local index e�ciently (less than 50 ms)
on those queries, and the enumeration time can dominate the cost
because there are many incremental matches (e.g., some queries
have more than 107 results per update) in the big a�ected region.
As shown in Figure 7, RF signi�cantly outperforms SYM in terms
of the query time. Therefore, the bene�t of the query reduction
o�sets the overhead.

(a) Sparse queries on lj. (b) Sparse queries on ls.
Figure 11: Query time breakdown of each individual query.
The query ID is labeled in the ascending order of query time.
Query time (Total Query) for an update includes the global
index update time (Global Index), the local index construction
time (Local Index) and the enumeration time. SYM Index is
the index update time of SYM.

Response Time. Figure 12 presents the response time for each
update on individual queries. RF runs much faster than SYM on lj
and the response time is less than 0.01 ms. RF cannot dominate SYM
on each case in ls. Speci�cally, RF is slower than SYM on 10 of 100
queries in terms of the response time. Those 10 queries generally
have a big a�ected region that contains many incremental results
and the local index generation dominates the response time. In such
cases, it is easy for SYM to �nd one result from the large result
set, whereas the overhead of extracting the a�ected region in RF
o�sets the bene�t of �nding one result. Despite of the overhead of
the local index, the response time of RF is generally less than 1 ms
on most queries on ls.

(a) Sparse queries on lj. (b) Sparse queries on ls.
Figure 12: Response time of each individual query. The query
ID is labeled in the ascending order of response time of SYM.

Summary.We have the following �ndings through the exper-
iments in this subsection. 1) The query reduction technique can
dramatically accelerate the query because the e�ective matching
order reduces the search space size. 2) Compared with existing CSM
approaches, our global index with a simple �lter rule achieves a
considerable pruning power at a much lower overhead. 3) The two-
level indexing mechanism is e�ective for extracting the a�ected
region. 4) RF can perform worse than existing CSM approaches
if the workload has a large number of incremental matches for

the update, whereas we only want to get a small portion (e.g., one
result) of them.

6.3.2 E�ectiveness of Dual Matching. We evaluate the e�ectiveness
of the dual matching technique by comparing the performance of
RF with and without the optimization. Table 5 lists the speedup
achieved by enabling the technique. The value excludes the over-
head of the global index update because it is �xed for RF with/with-
out the optimization. The optimization generally accelerates the
query, and the speedup is up to 10X on some queries. This result
shows the e�ectiveness of the technique. Because the auto-sets
are obtained in the o�ine stage, the technique does not incur any
overhead for the online processing. Thus, we recommend to always
enable dual matching for CSM.

Table 5: E�ectiveness of the dual matching technique. Avg
is the average speedup achieved by enabling dual matching.
Max is the maximum speedup on the query set.

Dataset Tree Sparse Dense
Avg Max Avg Max Avg Max

az 1.27X 1.69X 1.28X 1.68X 1.82X 5.00X
lj 1.23X 1.40X 1.39X 1.62X 1.01X 1.03X
nf 1.74X 4.14X 2.15X 10.16X 1.40X 4.14X
ls 1.12X 1.52X 1.46X 4.59X 1.62X 4.48X

7 CONCLUSION
In this paper, we study the problem of continuous subgraph match-
ing (CSM) and propose an e�cient CSM approach, RapidFlow. We
design the query reduction technique that reduces the problem of
�nding incremental matches for an update to that of enumerating
all matches of a subgraph of & in the region of ⌧ a�ected by the
update, i.e., a batch subgraph matching (BSM) problem. In order
to reduce the redundant computation caused by automorphisms
of & , we propose the dual matching technique, which reverses the
roles of query graphs and data graphs and enumerates incremen-
tal matches by permutating query vertices. Extensive experiment
results show that RapidFlow signi�cantly outperforms state-of-the-
art CSM approaches including TurboFlux and SymBi. The results
also suggest that with the query reduction, existing BSM techniques
are e�cient in the CSM setting. An interesting research direction is
to investigate how to implement and integrate the query-dependent
index into existing systems. A promising approach is to regard the
query-dependent index as a collection of materialized views. We
can maintain these views incrementally given the update and �nd
incremental matches based on the views instead of the base data.
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