
Waffle: In-memory Grid Index for Moving Objects with
Reinforcement Learning-based Configuration Tuning System

Dalsu Choi
Korea University

Seoul, Korea

dalsuchoi@korea.ac.kr

Hyunsik Yoon
Korea University

Seoul, Korea

hyunsikyoon@korea.ac.kr

Hyubjin Lee
Korea University

Seoul, Korea

hyubjinlee@korea.ac.kr

Yon Dohn Chung∗

Korea University

Seoul, Korea

ydchung@korea.ac.kr

ABSTRACT

Location-based services for moving objects are close to our lives.

For example, ride-sharing services, micro-mobility services, navi-

gation and traffic management, delivery services, and autonomous

driving are all based on moving objects. The efficient management

of such moving objects is therefore getting more and more im-

portant. The main challenge is the handling of a large number of

location-update queries with scan queries. To address this challenge,

we propose a novel in-memory grid indexing system, Waffle, for

moving objects. Waffle divides a geographical space into fixed-sized

cells. For efficient query processing, Waffle forms chunks, each of

which consists of neighboring cells. Such a Waffle index is defined

by several configuration knobs. A knob configuration has a sig-

nificant impact on the performance of Waffle, and an appropriate

configuration may change as objects continuously move. Therefore,

we propose an online configuration tuning system, WaffleMaker,

that automatically determines not only knob values but also when

to change knob values, as a part of Waffle. Using a configuration

determined by WaffleMaker, Waffle rebuilds the current index with-

out blocking user queries based on a concurrency control scheme.

Through extensive experiments, we show that Waffle performed

better than the existing methods, and WaffleMaker automatically

tuned configuration knob values.

PVLDB Reference Format:

Dalsu Choi, Hyunsik Yoon, Hyubjin Lee, and Yon Dohn Chung. Waffle:

In-memory Grid Index for Moving Objects with Reinforcement

Learning-based Configuration Tuning System. PVLDB, 15(11): 2375-2388,

2022.

doi:10.14778/3551793.3551800

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dalsuchoi/waffle.

1 INTRODUCTION

A lot of location-based services based on moving objects are getting

more and more popular and important. For example, ride-sharing

services (e.g., Uber and Lyft), micro-mobility services (e.g., Lime

and Bird), navigation and traffic management systems (e.g., Google

∗Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551800

Maps and Waze), delivery services (e.g., Grubhub, DoorDash, Uber

eats, and Postmates), and autonomous driving (e.g., Tesla) are all

based on moving objects. Therefore, the efficient management of

these moving objects is one of the important challenges in real-

world services.

The main characteristic of moving objects is that their positions

defined by latitude and longitude continuously change. Therefore,

the support of rapid location-updates is the primary requirement.

Furthermore, the fast processing of scan queries including range

and 𝑘-NN queries is another requirement for retrieving necessary

information for the services.

In this paper, we propose a novel in-memory grid indexing sys-

tem,Waffle, for moving objects. The grid coordinate of an object is

easily calculated based on a grid definition, which is similar to find-

ing a target bucket in a hash data structure. The feature constructs

the basis of efficient location-update query processing. Moreover,

an in-memory index provides a fast response time, which is critical

for real-world services.

A Waffle index is defined by several configuration knobs, which

have a significant impact on the performance ofWaffle. Appropriate

knob values depend on various factors including object distribution,

query workload, hardware configuration, and a trade-off between

query processing time and memory usage.

Toward appropriate configuration, we propose an online config-

uration tuning system,WaffleMaker, as a component of Waffle.

WaffleMaker is based on reinforcement learning, does not require

pre-training, and models the following process. WaffleMaker ob-

serves the current object distribution, outputs a knob setting, and

obtains the performance results for the Waffle index defined by

the knob setting. By repeating the process, WaffleMaker gradually

outputs a configuration that leads to better performance.

Whenever given a new configuration automatically determined

by WaffleMaker, Waffle redefines a Waffle index, called a regrid.

While rebuilding a Waffle index, without a mechanism to handle

user queries, the query processing is blocked, and the blocked time

increases when the number of objects is large. Waffle overcomes

the problem by including a concurrency control scheme.

Our contributions are summarized as follows. First, we propose a

novel in-memory grid indexing system, Waffle, for moving objects.

We propose the details on how to organize the objects in the main

memory based on the concept of cells and chunks. Second, we

propose a novel reinforcement learning-based configuration tuning

system, WaffleMaker. Third, we propose a novel workflow model

to redefine a grid index without blocking user queries. Finally, we

perform extensive experiments to demonstrate the efficiency of

Waffle.

2375

https://doi.org/10.14778/3551793.3551800
https://github.com/dalsuchoi/waffle
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551800
https://www.acm.org/publications/policies/artifact-review-and-badging-current

The rest of this paper is organized as follows. Section 2 introduces

the basic structure of a Waffle grid index, and Section 3 describes

the query processing. We then discuss effects of knob configuration

in Section 4 and a regrid mechanism in Section 5. Next, Section

6 introduces WaffleMaker, an online configuration tuning system.

In Section 7, we describe the experimental evaluation. Section 8

introduces previous related studies, and Section 9 concludes the

paper.

2 BASIC INDEX STRUCTURE

We introduce the basic structure of a Waffle grid index based on a

concept of cells and chunks. A geographical space is defined as

([𝑚𝑖𝑛𝑙𝑎𝑡 ,𝑚𝑎𝑥𝑙𝑎𝑡), [𝑚𝑖𝑛𝑙𝑜𝑛,𝑚𝑎𝑥𝑙𝑜𝑛)), where𝑚𝑖𝑛𝑙𝑎𝑡 and𝑚𝑎𝑥𝑙𝑎𝑡 are

theminimum andmaximum latitude values, and𝑚𝑖𝑛𝑙𝑜𝑛 and𝑚𝑎𝑥𝑙𝑜𝑛
are the minimum and maximum longitude values, respectively.

The coordinate of an object 𝑂 in the space is represented by

(𝑂𝑙𝑎𝑡 ,𝑂𝑙𝑜𝑛).

Definition 2.1 (Cell). Suppose that (1) the number of cells along

latitude in the space is 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒂𝒕
, and (2) the number of cells

along longitude in the space is 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒐𝒏
. The coordinate of an

object𝑂 is mapped to the integer cell coordinate, (𝑐𝑒𝑙𝑙𝑙𝑎𝑡 , 𝑐𝑒𝑙𝑙𝑙𝑜𝑛),

where

𝑐𝑒𝑙𝑙𝑙𝑎𝑡 = ⌊
𝑂𝑙𝑎𝑡 −𝑚𝑖𝑛𝑙𝑎𝑡
𝑚𝑎𝑥𝑙𝑎𝑡 −𝑚𝑖𝑛𝑙𝑎𝑡

× 𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡
⌋

𝑐𝑒𝑙𝑙𝑙𝑜𝑛 = ⌊
𝑂𝑙𝑜𝑛 −𝑚𝑖𝑛𝑙𝑜𝑛
𝑚𝑎𝑥𝑙𝑜𝑛 −𝑚𝑖𝑛𝑙𝑜𝑛

× 𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑜𝑛
⌋ .

(1)

A cell of Waffle, 𝑐𝑒𝑙𝑙 (𝑐𝑒𝑙𝑙𝑙𝑎𝑡 , 𝑐𝑒𝑙𝑙𝑙𝑜𝑛), is a set of objects with the

same cell coordinate, and the number of objects in a cell is limited

by 𝑴𝑶𝑷𝑪 (Maximum Objects Per Cell). □

A cell with zero object is called an empty cell. 𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡
,

𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑜𝑛
, and 𝑀𝑂𝑃𝐶 are the knobs of Waffle used to construct

cells. If more than 𝑀𝑂𝑃𝐶 objects have the same cell coordinate,

Waffle creates more than one cell, and we describe the detailed

query processing in Section 3.

Definition 2.2 (Chunk). Suppose that (1) the number of cells

along latitude in a single chunk is 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌
𝒍𝒂𝒕

, and (2) the num-

ber of cells along longitude in a single chunk is 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌
𝒍𝒐𝒏

. The

cell coordinate of a cell, (𝑐𝑒𝑙𝑙𝑙𝑎𝑡 , 𝑐𝑒𝑙𝑙𝑙𝑜𝑛), is mapped to the integer

chunk coordinate, (𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑡 , 𝑐ℎ𝑢𝑛𝑘𝑙𝑜𝑛), where

𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑡 = ⌊
𝑐𝑒𝑙𝑙𝑙𝑎𝑡

𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑎𝑡

⌋

𝑐ℎ𝑢𝑛𝑘𝑙𝑜𝑛 = ⌊
𝑐𝑒𝑙𝑙𝑙𝑜𝑛

𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑜𝑛

⌋ .

(2)

A chunk, 𝑐ℎ𝑢𝑛𝑘 (𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑡 , 𝑐ℎ𝑢𝑛𝑘𝑙𝑜𝑛), is a set of all possible cells,

of which (1) chunk coordinates are (𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑡 , 𝑐ℎ𝑢𝑛𝑘𝑙𝑜𝑛), and (2)

cell coordinates are unique in the set. A chunk also includes empty

cells if they exist. □

In Waffle, a chunk is the unit of serial memory allocation in the

main memory. The neighboring cells that construct a chunk tend to

be accessed consecutively during query processing, and the access

is likely to be cache-friendly through serial allocation. Without loss

of generality, Waffle assumes that the cells in a chunk are stored in

the latitude-major order of the cell coordinates. A chunk consisting

of only empty cells is called an empty chunk. If Waffle requires

more than one cell with the same cell coordinate to store the objects,

Waffle creates more than one chunk because the cell coordinates

are unique in a chunk. We describe the detailed query processing in

Section 3. 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑎𝑡

and 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑜𝑛

are the knobs of Waffle used

to define chunks.

We call a set of five knob values, {𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡
, 𝑛𝐶𝑒𝑙𝑙

𝑠𝑝𝑎𝑐𝑒

𝑙𝑜𝑛
,𝑀𝑂𝑃𝐶 ,

𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑎𝑡

, 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘
𝑙𝑜𝑛

}, a knob setting. Determination of a knob

setting has a huge impact on the overall performance of Waffle, and

we describe a method for determining a knob setting in Section 6.

If 𝑛𝐶𝑒𝑙𝑙
{𝑠𝑝𝑎𝑐𝑒/𝑐ℎ𝑢𝑛𝑘 }

𝑙𝑎𝑡
= 𝑛𝐶𝑒𝑙𝑙

{𝑠𝑝𝑎𝑐𝑒/𝑐ℎ𝑢𝑛𝑘 }

𝑙𝑜𝑛
, we briefly denote the

two knobs as 𝑛𝐶𝑒𝑙𝑙 {𝑠𝑝𝑎𝑐𝑒/𝑐ℎ𝑢𝑛𝑘 } .

latitude

longitude
(0.3,0.3) (0.4, 0.7)

(0.5, 0.5)
(0.8, 0.4) (0.8, 0.8)(0.7, 0.5)

(0.4, 1.0)
(0.5, 1.1)(0.7, 1.4)

(0.8, 1.1) (0.9, 1.5)

Cell

(1,0)

chunk

(0,1)

: object
: chunk boundary

: cell boundary

(a) Cells and chunks

main memory

𝑐ℎ𝑢𝑛𝑘(0,0)
𝑐ℎ𝑢𝑛𝑘(0,1)𝑐𝑒𝑙𝑙(0,0)

𝑐𝑒𝑙𝑙(0,1)
𝑐𝑒𝑙𝑙(1,0)

𝑐𝑒𝑙𝑙(1,1)

𝑐𝑒𝑙𝑙(0,2)
𝑐𝑒𝑙𝑙(0,3)

𝑐𝑒𝑙𝑙(1,2)
𝑐𝑒𝑙𝑙(1,3)

: an object is stored

(b) Memory representation

Figure 1: Cell and chunk definition

Figure 1 shows an example Waffle grid index, where the space

is ([0.3, 0.9), [0.3, 1.5)), and the knob setting is {2, 4, 2, 2, 2}. Each

object is uniquelymapped to a cell, and each cell is uniquelymapped

to a chunk. Figure 1(b) shows that the cells of each chunk are serially

placed in the main memory, but the two chunks are scattered.

3 QUERY PROCESSING

Waffle supports four query types: insertion, deletion, range, and

𝑘-NN queries 1. We introduce query processing based on the cell

and chunk structure.

(1) Insertion query: Given the key of an object and its coor-

dinate, an insertion query adds the object to a Waffle index. We

introduce query processing based on the example in Figure 2. The

objects in the figure are inserted into a Waffle index with the same

knob setting as Figure 1 in an ascending order of their keys. The

cell and chunk coordinate of Object 10 are both (0, 0), and the ob-

ject is inserted into 𝑐𝑒𝑙𝑙 (0, 0) in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1. The cell and chunk

coordinate of Object 11 are also (0, 0). Waffle first checks whether

𝑐𝑒𝑙𝑙 (0, 0) in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 has less than 𝑀𝑂𝑃𝐶 (= 2) objects. How-

ever, because the cell already has 𝑀𝑂𝑃𝐶 objects, Waffle creates

a new chunk with the same chunk coordinate, 𝑐ℎ𝑢𝑛𝑘 (0, 0)2, and

inserts Object 11 into the chunk. The cell and chunk coordinate of

Object 12 are (1, 0) and (0, 0), respectively. Waffle checks whether

𝑐𝑒𝑙𝑙 (1, 0) in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 has already 𝑀𝑂𝑃𝐶 objects. Waffle then

moves to the next chunk, 𝑐ℎ𝑢𝑛𝑘 (0, 0)2, created during the insertion

query for Object 11 and inserts Object 12 into the chunk. Objects

13 is inserted in the same manner.

(2) Deletion query: Given the key of an object, a deletion query

removes the object from a Waffle index. We introduce query pro-

cessing based on the example in Figure 3 starting from the grid

index in Figure 2. First, Waffle deletes Object 1. The cell and chunk

coordinate of Object 1 are (0, 0). Waffle checks 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 and

1Even if insertion and deletion are not queries but operations, this paper calls them
queries for the sake of brevity.

2376

finds Object 1. Then, Waffle finds the last object of the cell coordi-

nate, Object 11, swaps Object 1 with Object 11, and marks Object

1 as deleted. Next, Waffle deletes Object 12. The cell and chunk

coordinate of Object 12 are (1, 0) and (0, 0), respectively. Waffle

first checks Object 5 and then Object 6 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 and fails to

find Object 12. Waffle moves to the next chunk, 𝑐ℎ𝑢𝑛𝑘 (0, 0)2, swaps

Object 12 with Object 13, and marks Object 12 as deleted. If Object

13 is also deleted, Waffle deletes 𝑐ℎ𝑢𝑛𝑘 (0, 0)2 because it becomes

an empty chunk.

latitude

longitude
(0.3,0.3) 21

6 75
3 4 98

(0.9, 1.5)

: inserted object

12
13

10
11

: chunk boundary

: cell boundary

(a) Cells and chunks

: inserted object

1 10 2 5 6 7

11 12 13 3 4 8 9

𝑐𝑒𝑙𝑙(0,0)
𝑐𝑒𝑙𝑙(0,1)

𝑐𝑒𝑙𝑙(1,0)
𝑐𝑒𝑙𝑙(1,1)

𝑐ℎ𝑢𝑛𝑘 0,0 2

main memory

𝑐ℎ𝑢𝑛𝑘(0,1)𝑐ℎ𝑢𝑛𝑘 0,0 1

(b) Memory representation

Figure 2: Example of insertion query processing

latitude

longitude
(0.3,0.3)

(0.9, 1.5)

: deleted object21
6 75

3 4 9812
13

10
11

: chunk boundary

: cell boundary

(a) Cells and chunks

11 10 2 5 6 7

13 3 4 8 9

𝑐𝑒𝑙𝑙(0,0)
𝑐𝑒𝑙𝑙(0,1)

𝑐𝑒𝑙𝑙(1,0)
𝑐𝑒𝑙𝑙(1,1)main memory

𝑐ℎ𝑢𝑛𝑘(0,1)𝑐ℎ𝑢𝑛𝑘 0,0 1
𝑐ℎ𝑢𝑛𝑘 0,0 2
(b) Memory representation

Figure 3: Example of deletion query processing

(3) Range query: A range query returns all objects within a

rectangular range specified by a start and end coordinate. Waffle

processes a range query as follows. If a chunk is completely within

the range boundary, all objects in the chunk are added to the an-

swers. If a chunk overlaps with the range boundary, a cell in the

chunk is completely within or overlaps with the range boundary.

In the former case, all objects in the cell are added to the answers.

In the latter case, Waffle checks whether each object in the cell is

within the range boundary.

(4) 𝒌-NN query: Given a target coordinate, 𝑘 , and a rectangu-

lar range specified by a start and end coordinate, a 𝑘-NN query

returns 𝑘 objects closest to the target coordinate within the range.

We adopt the 𝑘-NN query processing in the grid index from [46].

First, we define a cell level. Assume that the coordinate of the

cell containing the target coordinate is (𝑡𝑙𝑎𝑡 , 𝑡𝑙𝑜𝑛). Cell level 0

is defined as {𝑐𝑒𝑙𝑙 (𝑡𝑙𝑎𝑡 , 𝑡𝑙𝑜𝑛)}. Cell level 𝑖 (≥ 1) is defined as

{𝑐𝑒𝑙𝑙 (𝑐𝑒𝑙𝑙𝑙𝑎𝑡 , 𝑐𝑒𝑙𝑙𝑙𝑜𝑛) | 𝑡𝑙𝑎𝑡 −𝑖 ≤ 𝑐𝑒𝑙𝑙𝑙𝑎𝑡 ≤ 𝑡𝑙𝑎𝑡 +𝑖, 𝑡𝑙𝑜𝑛 −𝑖 ≤ 𝑐𝑒𝑙𝑙𝑙𝑜𝑛 ≤

𝑡𝑙𝑜𝑛 + 𝑖} −
⋃𝑖−1

𝑗=0Cell level 𝑗 . The example cell levels are shown in

Figure 4(b).

Waffle maintains a priority queue that contains three types of el-

ements: an object, a non-empty cell, and a cell level. For an element,

the Euclidean distance from the target coordinate is calculated. An

element closer to the target coordinate has a higher priority in the

queue. Specifically, for a cell, the shortest distance between the cell

boundary and the target coordinate is calculated. For a cell level,

the distance from the closest cell at the level is calculated.

Waffle only considers elements overlapping with or included in

the range boundary. First, Waffle inserts (1) all objects at Cell level

0 and (2) Cell level 1 into the priority queue. If the top of the queue

is an object, it becomes a new answer. If the top of the queue is a

cell, all objects in the cell are inserted into the queue. If the top of

latitude

longitude

: range

: object

: start coordinate

: end coordinate

: chunk boundary

: cell boundary

(a) Range query

latitude

longitude

: target coordinate

: Cell level 0

: Cell level 1

: Cell level 2

(b) k-NN query

Figure 4: Example of range and k-NN query processing

the queue is a cell level, (1) all non-empty cells at the cell level and

(2) the next cell level are inserted into the queue. If 𝑘 objects are

retrieved, or the queue becomes empty, then the query processing

is completed.

4 EFFECTS OF KNOB CONFIGURATION

Section 2 introduced the cell and chunk definition based on the

five knobs. We next describe detailed configuration effects from

the perspectives of query processing and memory usage using

examples. Assume that the objects in the examples are inserted in

an ascending order of their keys and then deleted in a decreasing

order of their keys, and the range queries are processed right after

all the objects are inserted.

4.1 Effects of the Number of Cells in the Space

Figure 5 shows an example when 𝑀𝑂𝑃𝐶 = 1 and 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 = 2.

When Object 5 is inserted, in Figure 5(a), Waffle first checks

𝑐ℎ𝑢𝑛𝑘 (0, 0)1 to check whether 𝑐𝑒𝑙𝑙 (1, 1) in the chunk already

contains 𝑀𝑂𝑃𝐶 object. Then, Waffle inserts the object into the

next chunk, 𝑐ℎ𝑢𝑛𝑘 (0, 0)2. In Figure 5(b), Object 5 is inserted into

𝑐ℎ𝑢𝑛𝑘 (1, 1) without checking additional chunks. When Object 6 is

deleted, in Figure 5(a), Waffle checks Object 4 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 and

Object 5 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)2 and then finds Object 6 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)3. In

Figure 5(b), Object 6 is deleted from 𝑐ℎ𝑢𝑛𝑘 (1, 1) without checking

additional objects. For the range query in the figures, in Figure 5(a),

Waffle checks all the objects because the range boundary overlaps

with all the cells. In figure 5(b), Waffle checks only the single object.

Figure 5(a) is likely to have more cache misses than Figure 5(b)

because the former checks more chunks. From the memory usage

perspective, Figure 5(b) results in less memory usage than Figure

5(a).

1 4

2 5

3 6

1
2

3

4 5

6

: object
: chunk boundary

: cell boundary

latitude

longitude

𝑐𝑒𝑙𝑙(0,0)
𝑐𝑒𝑙𝑙(1,1)𝑐ℎ𝑢𝑛𝑘 0,0 1 𝑐ℎ𝑢𝑛𝑘 0,0 2

𝑐ℎ𝑢𝑛𝑘 0,0 3

: range query

main memory

(a) 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 2

1
2

3

4 5

6

latitude

longitude

𝑐𝑒𝑙𝑙(0,1)
𝑐𝑒𝑙𝑙(0,0) 𝑐ℎ𝑢𝑛𝑘(0,0)𝑐ℎ𝑢𝑛𝑘(1,1)

𝑐𝑒𝑙𝑙(1,0)
𝑐𝑒𝑙𝑙(2,2)
𝑐𝑒𝑙𝑙(2,3)

𝑐𝑒𝑙𝑙(3,3)
main memory

4 5 6

1 2 3

(b) 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 4

Figure 5: Example effects of 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆

Figure 6 shows another example when 𝑀𝑂𝑃𝐶 = 1 and

𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 = 2. When Object 6 is inserted, in Figure 6(a), Waf-

fle first checks 𝑐ℎ𝑢𝑛𝑘 (0, 0)1 and then inserts the object into the

next chunk, 𝑐ℎ𝑢𝑛𝑘 (0, 0)2. In Figure 6(b), Object 6 is inserted into

𝑐ℎ𝑢𝑛𝑘 (3, 2) without checking additional chunks. When Object 4

is deleted, in Figure 6(a), Waffle checks Object 3 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)1

2377

: object
: chunk boundary

: cell boundary

𝑐𝑒𝑙𝑙(0,0)
𝑐𝑒𝑙𝑙(0,1)

𝑐ℎ𝑢𝑛𝑘 0,0 1
𝑐ℎ𝑢𝑛𝑘 0,0 2 𝑐𝑒𝑙𝑙(1,0)

: range query

latitude

longitude

1

5

3

4

2

6

main memory

2 4 6

1 3 5

(a) 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 2

4

1

6

2

3

5

latitude

longitude

𝑐ℎ𝑢𝑛𝑘(0,0)

1

5

3

4

2

6

𝑐ℎ𝑢𝑛𝑘(1,5)
𝑐ℎ𝑢𝑛𝑘(2,2) 𝑐ℎ𝑢𝑛𝑘(2,3)

𝑐ℎ𝑢𝑛𝑘(3,2)
𝑐ℎ𝑢𝑛𝑘(4,0)

main memory

(b) 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 12

Figure 6: Another example effects of 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆

and then finds Object 4 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)2. In Figure 6(b), Object 4 is

deleted from 𝑐ℎ𝑢𝑛𝑘 (1, 5) without checking additional objects. For

the range query in the figures, in Figure 6(a), Waffle checks all

the objects because the range boundary overlaps with all the four

cells. In Figure 6(b), Waffle checks only three objects, but they are

scattered in the main memory. Figure 6(b) is likely to have more

cache misses than Figure 6(a). From the memory usage perspective,

Figure 6(a) results in less memory usage than Figure 6(b).

4.2 Effects of the Number of Cells in a Chunk

Figure 7 shows an example when 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 = 4 and 𝑀𝑂𝑃𝐶 = 1.

For the insertion queries, in Figures 7(a)-7(b), all the objects are in-

serted without checking additional chunks. For the deletion queries,

in both figures, all the objects are deleted without checking addi-

tional objects. For the range query, the number of checked objects

during query processing is the same in both figures. Instead, for

an insertion/deletion/range/𝑘-NN query, Figure 7(b) is more cache-

friendly than Figure 7(a) because of the serial memory allocation.

From the memory usage perspective, Figure 7(a) uses less memory

than Figure 7(b).

1 3

2

6

5

4

: object
: chunk boundary

: cell boundary

latitude

longitude

𝑐ℎ𝑢𝑛𝑘(0,1)

1

5

3
4

2

6
: range query

𝑐ℎ𝑢𝑛𝑘(1,0) 𝑐ℎ𝑢𝑛𝑘(1,2)𝑐ℎ𝑢𝑛𝑘(1,3) 𝑐ℎ𝑢𝑛𝑘(3,0)𝑐ℎ𝑢𝑛𝑘(2,1)
main memory

(a) 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌 = 1

latitude

longitude

1

5

3
4

2

6

𝑐ℎ𝑢𝑛𝑘(0,0)𝑐𝑒𝑙𝑙(0,1) 𝑐𝑒𝑙𝑙(1,2)
𝑐𝑒𝑙𝑙(1,0) 𝑐𝑒𝑙𝑙(1,3)

𝑐𝑒𝑙𝑙(2,1)
𝑐𝑒𝑙𝑙(3,0)

main memory

1 2 3 4 6 5

(b) 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌 = 4

Figure 7: Example effects of 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌

4.3 Effects of the Maximum Objects per Cell

Figure 8 shows an example when 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 = 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 = 2.

When Object 3 is inserted, in Figure 8(a), Waffle first checks

𝑐ℎ𝑢𝑛𝑘 (0, 0)1 and 𝑐ℎ𝑢𝑛𝑘 (0, 0)2 and then inserts the object into

𝑐ℎ𝑢𝑛𝑘 (0, 0)3. In Figure 8(b), Object 3 is inserted into 𝑐ℎ𝑢𝑛𝑘 (0, 0)

without checking additional chunks. When Object 3 is deleted, in

Figure 8(a), Waffle first checks Object 1 and Object 2 and then finds

Object 3 in 𝑐ℎ𝑢𝑛𝑘 (0, 0)3. In Figure 8(b), Waffle also checks Object 1

and Object 2 and then finds Object 3 in 𝑐ℎ𝑢𝑛𝑘 (0, 0). For the range

query, Figure 8(a) is cache-friendly when reading the neighboring

cells in each chunk. Figure 8(b) is cache-friendly when reading

the objects with the same cell coordinate. From the memory usage

perspective, Figure 8(a) uses less memory than Figure 8(b).

1 4 5 6 3

2

: object
: chunk boundary

: cell boundary

latitude

longitude

: range query

1

5

3
4

2

6

𝑐ℎ𝑢𝑛𝑘 0,0 1 𝑐ℎ𝑢𝑛𝑘 0,0 3
𝑐ℎ𝑢𝑛𝑘 0,0 2

main memory

(a) 𝑴𝑶𝑷𝑪 = 1

latitude

longitude

𝑐ℎ𝑢𝑛𝑘(0,0)
𝑐𝑒𝑙𝑙(0,0)

1

5

3
4

2

6

𝑐𝑒𝑙𝑙(0,1) 𝑐𝑒𝑙𝑙(1,0) 𝑐𝑒𝑙𝑙(1,1)
main memory

1 2 3 4 5 6

(b) 𝑴𝑶𝑷𝑪 = 4

Figure 8: Example effects of 𝑴𝑶𝑷𝑪

4.4 Discussion

For an insertion/deletion query, the number of checked

chunks/objects affects computational cost and cache misses. After

an insertion/deletion query is processed, if Waffle processes the

next insertion/deletion query while minimizing cache misses,

the query processing becomes efficient. For a range/𝑘-NN query,

if checked objects are serially placed in the main memory, and

non-answer objects are checked less, then the query processing

becomes more efficient. If the knob values are smaller, Waffle tends

to use less memory.

However, generalization and formulation of the configuration

effects are not trivial. The example configuration effects are only

a few possible scenarios, and the effects may change if the other

knob values are different. An appropriate configuration is affected

by various factors including object distribution, query types and

workload, hardware configuration, and a trade-off between query

processing time and memory usage. Furthermore, a configuration

has a significant impact on the performance of Waffle. The difficulty

of generalization and the importance of an appropriate configura-

tion become the motivations of automatic configuration tuning.

5 REGRID: A MECHANISM FOR REDEFINING
AWAFFLE INDEX

Section 4 discussed the several effects of knob configuration through

the examples. Before introducing how to automatically determine

a knob setting in Section 6, we propose redefining a Waffle index.

Whenever 𝑥 queries are processed, given a new knob setting,

Waffle reorganizes a grid index, called a regrid. Specifically, for

each object in the original grid index, Waffle deletes it from the

original index and inserts it into the new grid index. When no

objects remain in the original index, the new index replaces the

original index, which means that the regrid is completed.

While rebuilding a Waffle index, without a mechanism to handle

user queries, the query processing is blocked, and the blocked time

increases when the number of objects is large. To overcome this

problem, Waffle includes a concurrency control scheme through a

strict two-phase locking protocol. Waffle sets the lock granularity as

a set of chunks with the same chunk coordinate because a chunk is

the unit of serial memory allocation, and the chunks with the same

chunk coordinate are likely to be accessed together during query

processing. An insertion/deletion query requires an exclusive lock

(X-lock), and a range/𝑘-NN query requires a set of shared locks

(S-lock). When a transaction requires a set of locks, a deadlock

problem is prevented by setting a partial order as follows. (1) Locks

2378

Main thread Regrid thread

X-lock(original, chunk(0,0))

A range query needs delete Object 1

S-lock(original, chunk(0,0)) X-lock(new, chunk(0,0))

and S-lock(new, chunk(0,0)) insert Object 1

Range query X-lock(original, chunk(7,7))

delete Object 2

X-lock(new, chunk(3,5))

insert Object 2

unlock X-locks

commit

start query processing

commit

(a) Original regrid

Main thread Regrid thread

Transfer

X-lock(original, chunk(0,0))

delete Object 1

X-lock(new, chunk(0,0))

Range query insert Object 1

unlock X-locks

commit

start query processing Transfer

commit X-lock(original, chunk(7,7))

delete Object 2

X-lock(new, chunk(3,5))

...

(b) Split regrid

Figure 9: Example schedules for a regrid

in the original index are obtained earlier than locks in the new

index. (2) In an index, for 𝑐ℎ𝑢𝑛𝑘1 = 𝑐ℎ𝑢𝑛𝑘 (𝑙𝑎𝑡1, 𝑙𝑜𝑛1) and 𝑐ℎ𝑢𝑛𝑘2 =

𝑐ℎ𝑢𝑛𝑘 (𝑙𝑎𝑡2, 𝑙𝑜𝑛2), if 𝑙𝑎𝑡1 < 𝑙𝑎𝑡2, the lock for 𝑐ℎ𝑢𝑛𝑘1 is obtained

earlier than that for 𝑐ℎ𝑢𝑛𝑘2. If 𝑙𝑎𝑡1 = 𝑙𝑎𝑡2 and 𝑙𝑜𝑛1 < 𝑙𝑜𝑛2, the lock

for 𝑐ℎ𝑢𝑛𝑘1 is obtained earlier than that for 𝑐ℎ𝑢𝑛𝑘2.

Based on the locking protocol, Waffle splits a regrid into a set

of transfer transactions, each of which consists of one deletion

query for an object from the original index and one insertion query

for the object into the new index. Waffle processes concurrent user

queries without waiting until all transfer transactions from the

regrid are completed. Figure 9 shows the example schedules for a

regrid. While a range query from a user cannot be processed until

the regrid is completed if not split (Figure 9(a)), Waffle processes

the range query after one transfer transaction (Figure 9(b)).

Splitting a regrid based on the concurrency control scheme re-

quiresmodification of the query processing during a regrid.Without

loss of generality, we assume that (1) a user corresponds to a unique

object, (2) if the user issues a query, the user is prevented from issu-

ing other queries before the query processing is completed, and (3)

user queries from multiple users are processed in a single thread,

and a regrid is processed in another thread 2. The detailed query

processing is as follows.

(1) User insertion query: If a given object does not exist in

both the original and new indexes, Waffle processes a transaction

for an insertion query to the new index without considering the

original index. If the given object already exists in the original or

new index, Waffle processes the request as a movement query, as

described later.

(2) User deletion query: If an object is still in the original

index, Waffle processes a transaction for a deletion query from the

original index. If the object is in the new index, Waffle processes a

transaction for a deletion query from the new index.

(3) User movement query: In Section 3, we do not discuss a

movement query of an object because it can be simply replaced with

a deletion query and a subsequent insertion query without con-

sidering the concurrency 3. With the concurrency control scheme,

Waffle should consider a movement query separately; that is, Waffle

processes a transaction for (1) a deletion query and (2) a subsequent

insertion query. If the deletion and insertion query for an object are

not processed as a transaction, after the deletion query is processed,

2If user queries are processed in a massively parallel environment, different concur-
rency control schemes including latch-free methods may be considered. However, this
is out of the main focus of this paper.
3A movement query within a cell boundary can be optimized. However, we do not
consider the case in this paper.

another concurrent transaction cannot determine whether the ob-

ject has been deleted, or the movement query is being processed.

If the target object is still in the original index, Waffle processes

a transaction for (1) a deletion query from the original index and

(2) a subsequent insertion query into the new index. If the target

object is in the new index, Waffle processes a transaction for (1) a

deletion query from the new index and (2) a subsequent insertion

query into the new index.

(4) Transfer transaction: Before processing a transfer trans-

action for an object, if a user insertion/deletion/movement query

targeting the same object is being processed, Waffle waits until

the query processing is completed. After the user query finishes,

Waffle starts the transfer transaction and forces another user inser-

tion/deletion/movement query targeting the same object to wait.

For each object still in the original index, Waffle processes a

transfer transaction for (1) a deletion query from the original index

and (2) a subsequent insertion query into the new index.Waffle does

not have to transfer an object already deleted from the original index

because the previous user deletion or movement query deleted the

object from the space or updated the coordinate of the object in the

new index.

(5) User range/𝒌-NN query: Waffle processes a transaction for

two range/𝑘-NN queries: a range/𝑘-NN query for the original index

and a subsequent range/𝑘-NN query for the new index. Before pro-

cessing each query, the transaction obtains all the required shared

locks for the target index. The correct answers are constructed from

the union of the two range/𝑘-NN answers, and the reasons are as

follows. (1) When another transaction 𝐴 holds an exclusive lock

for updating the chunk that is also required by the range/𝑘-NN

transaction, the range/𝑘-NN transaction should wait until 𝐴 re-

leases the lock and the range/𝑘-NN transaction obtains the shared

lock. (2) When the range/𝑘-NN transaction holds the shared lock

for a chunk, another transaction 𝐵 that updates the same chunk

should wait until the range/𝑘-NN transaction releases the lock and

𝐵 obtains the exclusive lock. (3) The movement/transfer processing

ensures that an object in the geographical space exists only in either

the original index or the new index.

6 WaffleMaker: REINFORCEMENT LEARNING
-BASED CONFIGURATION TUNING SYSTEM

In Section 2, we introduced the five knobs to define cells and chunks.

Section 4 described the various configuration effects. In Section 5,

given a new knob setting, we proposed a novel regrid process based

on a concurrency control scheme. In this section, we propose an on-

line configuration tuning system, WaffleMaker, for determining the

knob setting for a regrid. WaffleMaker is based on reinforcement

learning performing a novel type of exploration and exploitation

and does not require pre-training. Section 6.1 introduces the basic

components of WaffleMaker. Section 6.2 defines the model, and

Section 6.3 describes the workflow of WaffleMaker. Finally, Sec-

tion 6.4 discusses the characteristics of WaffleMaker from several

perspectives.

6.1 Basic Components

We first define the basic components of WaffleMaker: a state, an

action, a reward, and an experience.

2379

(1) State (𝑺): A WaffleMaker state is defined as a grid summa-

rizing the current objects within a geographical space. Specifically,

given (1) a geographical space, (2) the number of state cells along

latitude 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑎𝑡

, and (3) the number of state cells along longitude

𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑜𝑛

, a WaffleMaker state is a 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑎𝑡

× 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑜𝑛

-sized

grid, each cell of which maintains the number of corresponding

objects. Note that a state grid is not related to a Waffle grid index.

𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑎𝑡

and 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑜𝑛

are the hyperparameters of WaffleMaker,

which means that they do not change during the runtime of Waffle.

(2) Action: A WaffleMaker action is to decide a knob setting

𝐾𝑆 . Specifically, each knob is matched with a single real-number

variable representing a value in [0, 1], which means that action

space is continuous. Given the minimum and maximum value of

each knob, the value of the variable is mapped to a knob value.

The continuous action space enables WaffleMaker to represent any

range of a knob with a single variable.

(3) Reward (𝑹): A WaffleMaker reward represents the quality

of an action. A reward consists of five elements: insertion, deletion,

range, 𝑘-NN, and memory reward.

{Insertion/Deletion/Range/𝒌-NN} reward (𝑹 {𝒊/𝒅/𝒓/𝒌 }): Sup-

pose that 𝑥 {𝑖/𝑑/𝑟/𝑘 } (≠ 0) {insertion/deletion/range/𝑘-NN} queries

are processed after the regrid with 𝐾𝑆 has been completed. The

{insertion/deletion/range/𝑘-NN} reward for the action is the nega-

tive value of the average {insertion/deletion/range/𝑘-NN} time for

the 𝑥 {𝑖/𝑑/𝑟/𝑘 } queries.

𝑅{𝑖/𝑑/𝑟/𝑘 } = −
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓 𝑜𝑟 𝑥 {𝑖/𝑑/𝑟/𝑘 } 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑥 {𝑖/𝑑/𝑟/𝑘 }
(3)

We reverse the sign to provide a higher reward to a shorter execu-

tion time.

Memory reward (𝑹𝒎): Suppose that the total number of

chunks is |𝑐ℎ𝑢𝑛𝑘𝑠 |, and memory usage of a single chunk is𝑚𝐶ℎ𝑢𝑛𝑘 .

The memory reward is the negative value of approximate memory

usage.

𝑅𝑚 = −|𝑐ℎ𝑢𝑛𝑘𝑠 | ×𝑚𝐶ℎ𝑢𝑛𝑘 (4)

|𝑐ℎ𝑢𝑛𝑘𝑠 | ×𝑚𝐶ℎ𝑢𝑛𝑘 approximates total memory usage of a Waffle

index at a specific moment because a single chunk is the memory

allocation unit, and memory usage of a single chunk is constant

regardless of the existence of objects in the chunk if the knob setting

does not change. |𝑐ℎ𝑢𝑛𝑘𝑠 | may change from insertion and deletion

queries; WaffleMaker obtains the values at the moment the memory

reward is measured.

Before calculating the final reward, each element is normalized

to prevent a particular element from being excessively reflected

to the final reward. We describe a method for normalizing each

element in Section 7.2.2. Suppose that (1) the normalized rewards

of insertion, deletion, range, 𝑘-NN, and memory are 𝑅′𝑖 , 𝑅
′
𝑑
, 𝑅′𝑟 , 𝑅

′
𝑘
,

and 𝑅′𝑚 , respectively, and (2) the weights for query processing time

and memory usage are 𝑤𝑡𝑖𝑚𝑒 and 𝑤𝑚𝑒𝑚𝑜𝑟𝑦 , respectively, where

𝑤𝑡𝑖𝑚𝑒 +𝑤𝑚𝑒𝑚𝑜𝑟𝑦 = 1. The final reward 𝑅 is defined as follows.

𝑅 = 𝑤𝑡𝑖𝑚𝑒 {
𝑅′𝑖 + 𝑅

′
𝑑
+ 𝑅′𝑟 + 𝑅

′
𝑘

4
} +𝑤𝑚𝑒𝑚𝑜𝑟𝑦𝑅

′
𝑚 (5)

The weight values are the hyperparameters of WaffleMaker.

(4) Experience: Assume that the current state is 𝑆 , and Waffle-

Maker determines a new knob setting 𝐾𝑆 and obtains the reward 𝑅

for the action. An experience is defined as (𝑆, 𝐾𝑆, 𝑅).

6.2 WaffleMaker Model

Given a state 𝑆 and a knob setting 𝐾𝑆 , the WaffleMaker model

outputs an expected reward, which means that the model is an

action-value function, 𝑄 (𝑆, 𝐾𝑆) = 𝑅. The model is a convolutional

neural network that consists of convolutional layers, pooling layers,

and fully connected layers. A convolutional neural network enables

sparse interactions considering spatial locality [11]. In addition, the

model learns from the state without requiring additional informa-

tion. This insight is similar to that of the previous studies [26, 37].

For example, the study [26] proposed a deep reinforcement learning

model with a convolutional neural network that learns how to play

Atari games directly from the pixel values.

The model is updated in an off-policy manner. Given a set of

experiences (𝑆, 𝐾𝑆, 𝑅), WaffleMaker samples a mini-batch of |𝑏𝑎𝑡𝑐ℎ |

experiences from the set and updates the model according to the

following mean squared error.

𝑙𝑜𝑠𝑠 =
1

|𝑏𝑎𝑡𝑐ℎ |

|𝑏𝑎𝑡𝑐ℎ |∑︁

𝑖=1

(𝑄 (𝑆𝑖 , 𝐾𝑆𝑖)) − 𝑅𝑖)
2 (6)

Given a state 𝑆 , WaffleMaker determines a knob setting𝐾𝑆 as fol-

lows. For exploration, WaffleMaker randomly selects |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 |

knob settings. WaffleMaker then passes the knob settings as a single

mini-batch to the model, obtains the expected rewards, and sorts

the knob settings in a descending order of the expected rewards.

For the top-𝑇% knob settings with regard to the expected rewards,

WaffleMaker samples a knob setting considering the expected re-

wards as sampling weights. As the model becomes more accurate,

an actual final reward from exploration is expected to be higher.

For exploitation, WaffleMaker utilizes a set of |𝑟𝑒𝑐𝑒𝑛𝑡 | knob set-

tings determined by recent explorations. Specifically, WaffleMaker

passes the recent knob settings as a mini-batch to the model and

obtains the top-1 knob setting with the highest expected reward.

Determining a knob setting from the recent knob settings means

that continuous action space is replaced with discrete action space,

where the discrete actions are not fixed but changing. As the model

becomes more accurate, the current set of recent knob settings is

expected to lead to higher final rewards than the previous set. The

novel exploitation method enables Waffle to perform a regrid in a

timely manner, specifically about determining when to perform a

regrid.

|𝑏𝑎𝑡𝑐ℎ |, |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 |, 𝑇 , and |𝑟𝑒𝑐𝑒𝑛𝑡 | are the hyperparameters

of WaffleMaker. As the model becomes more accurate, gradually

reducing 𝑇 is an option.

6.3 Workflow of WaffleMaker

We introduce the workflow of WaffleMaker based on Figures 10-11.

Waffle starts a new regrid whenever 𝑥 queries are processed after

the previous regrid finishes. The workflow varies depending on

whether the model converges.

We first explain the workflow before the model converges with

Figure 10. Waffle processes 𝑥 queries and starts a new regrid (Steps

1-2). WaffleMaker decides a new knob setting 𝐾𝑆 from the current

state 𝑆 (Step 3). WaffleMaker obtains the knob setting through

exploration with probability 𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 and exploitation with

probability 1 − 𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 . 𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is the hyperparameter of

WaffleMaker.

2380

WaffleMaker Waffle

…

…

(1) processes 𝑥 queries.

(2) starts a new regrid.

(3) decides a new knob setting 𝐾𝑆

from the current state 𝑆.

(4) receives 𝐾𝑆.

(6) gets the reward 𝑅 for the 𝑥 queries.

(5) performs the regrid.(7) stores the experience regarding 𝑅.

(9) updates the model. (8) finishes the regrid.

(1) processes 𝑥 queries.

(2) starts a new regrid.

… …

Figure 10: Workflow of WaffleMaker (before convergence)

Case (1). keeps the current knob setting.

Case (2). changes to the new knob setting.

WaffleMaker Waffle… …
(1) processes 𝑥 queries.

(2) starts a new regrid.

(3) determines whether to

perform the regrid.

(4) notifies that the knob setting

does not change.

(5) receives the notification.

(6) finishes the regrid.

(1) processes 𝑥 queries.

… …

(7) passes the new knob setting 𝐾𝑆
to Waffle.

(8) receives 𝐾𝑆.

(9) performs the regrid.

(6) finishes the regrid.

(1) processes 𝑥 queries.

… …

Figure 11: Workflow of WaffleMaker (after convergence)

After WaffleMaker decides the new knob setting, Waffle receives

the knob setting from WaffleMaker (Step 4). Then, Waffle performs

the regridwhile processing the concurrent user queries, as described

in Section 5 (Step 5).

While Waffle performs the regrid, WaffleMaker calculates the

reward 𝑅 for the 𝑥 queries based on Equation 5 (Step 6), stores the

new experience regarding 𝑅 into an experience buffer (Step 7), and

updates the model utilizing the buffer (Step 9), as detailed in Section

6.2.

Waffle finishes the regrid (Step 8) and processes subsequent 𝑥

queries (Step 1). The 𝑥 queries do not include user queries processed

during the previous regrid because query processing during the

regrid is affected by two different knob settings. Waffle starts a new

regrid (Step 2), and the process is repeated.

The workflow after the model converges is shown in Figure

11. Waffle processes 𝑥 queries and starts a new regrid (Steps 1-

2). Then, WaffleMaker determines whether to perform the regrid

(Step 3). Specifically, WaffleMaker obtains a candidate knob setting

from the current state through exploitation. If the candidate knob

setting is the same as the current knob setting, the current one still

has the highest expected reward for the current state among the

|𝑟𝑒𝑐𝑒𝑛𝑡 | knob settings, and WaffleMaker determines not to perform

the regrid (Case 1). Otherwise, the current knob setting no longer

has the highest expected reward for the current state among the

|𝑟𝑒𝑐𝑒𝑛𝑡 | knob settings, and WaffleMaker determines to perform the

regrid (Case 2).

6.4 Discussion

(1) Insight: The two primary motivations of WaffleMaker are (1)

how to determine a knob setting and (2) when to perform a regrid.

For the first motivation, the process to determine a knob setting

is modeled as a reinforcement learning problem, where a state is

defined from object distribution, an action is to determine a knob

setting, and a reward is calculated from the index performance. For

the second motivation, instead of building additional models or

rules, WaffleMaker naturally determines when to perform a regrid

by replacing continuous action space with discrete action space.

After convergence, WaffleMaker periodically determines a candi-

date knob setting from the current state and checks whether the

candidate is different from the existing one. If the two knob settings

are the same, WaffleMaker recognizes that the object distribution

has not changed enough to perform the regrid. Otherwise, Waffle-

Maker perceives that the object distribution has changed enough.

In summary, WaffleMaker integrates the two motivations.

(2) Contextual 𝒌-armed bandit problem: WaffleMaker defines

an automatic configuration tuning process as a contextual 𝑘-armed

bandit problem [1, 14, 16, 18, 20, 24, 25, 38], which is under the

category of reinforcement learning. The main characteristic of a

contextual bandit problem is that an action does not affect the next

state (i.e., context), and therefore, the reward is not delayed but

immediate. In WaffleMaker, an action does not affect the next state

because the state is a fixed-sized grid just representing an object

distribution. A state changes not by a knob setting (i.e., action) but

by user insertion/deletion/movement queries, and the user queries

are not under the control of WaffleMaker. A different type of action

and state affected by previous actions may be defined for a Markov

decision process. Instead, WaffleMaker models the natural process

of observing the current object distribution, determining a knob

setting, and obtaining index performance, as a contextual bandit

problem.

However, it is difficult to directly apply the existing contextual 𝑘-

armed bandit methods to our configuration tuning problem. As an

option, all possible knob settings (i.e., 𝑘 arms) are enumerated, and

one of the existing methods is applied, which results in excessively

large action candidates. As another option, a bandit model may be

built for each knob. However, a reward derives from a combination

of the five knob values, which makes it ambiguous how to update

each bandit model.

2381

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

Settings. We conducted our experiments using a server with an

Intel(R) Xeon(R) Silver 4215R CPU (3.20 GHz), 256 GB memory, a 2

TBNVMe SSD, and an NVIDIAQuadro RTX 8000. The L1 data cache

size is 32 KB, L1 instruction cache size is 32 KB, L2 cache size is 1024

KB, L3 cache size is 11MB, and cache line size is 64 B. The server

was operated by Ubuntu 18.04.5 LTS. All the evaluated systems and

algorithms were implemented using C++14 and PyTorch 1.8.1 with

the PyTorch C++ frontend if required. All the results in the graphs

and tables were averaged from 10 executions.

Evaluated Systems and Algorithms.

(1) Waffle: Waffle consists of five main components: grid in-

dex manager, lock manager, transaction manager, regrid manager,

and WaffleMaker. The hyperparameters of WaffleMaker used in

the experiments were as follows: 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑎𝑡

= 𝑛𝐶𝑒𝑙𝑙𝑠𝑡𝑎𝑡𝑒
𝑙𝑜𝑛

= 128,

𝑤𝑡𝑖𝑚𝑒 = 0.9, 𝑤𝑚𝑒𝑚𝑜𝑟𝑦 = 0.1, |𝑏𝑎𝑡𝑐ℎ | = 64, |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 | = 1000,

𝑇 = 5, |𝑟𝑒𝑐𝑒𝑛𝑡 | = 200, and 𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 0.8. The action-value

function consisted of four convolutional layers and three fully con-

nected layers. The learning rate was 10−3. The hyperparameters

common to DDPG including |𝑏𝑎𝑡𝑐ℎ |, the network structure, and

the learning rate were tuned based on DDPG, which is described

below. We implemented a prioritized experience replay [33]. For

an experience (𝑆, 𝐾𝑆, 𝑅), a priority was set to (𝑄 (𝑆, 𝐾𝑆)) − 𝑅)2.

(2) DDPG [23]: A policy gradient method, which has beenwidely

adopted for automatic database configuration tuning [3, 19, 44].

DDPGwas a baseline forWaffleMaker. DDPG supported continuous

action space and could be easily modified to consider an immediate

reward, instead of a delayed reward, as discussed in Section 6.4.

DDPG consisted of twomodels: an actor and a critic. For exploration,

DDPG added a noise to an action determined by the actor, where the

noise came from an Ornstein-Uhlenbeck process [41] with 𝜃 = 0.15

and 𝜎 = 0.15. For exploitation, DDPG utilized an action determined

by the actor without adding a noise. The learning rate of the actor

was 10−4, and that of the critic was 10−3. We also implemented a

prioritized experience replay [33]. Because we considered only an

immediate reward, a priority was replaced with |𝑐𝑟𝑖𝑡𝑖𝑐 (𝑆, 𝐾𝑆) − 𝑅 |.

(3) u-Grid [35] and (4) u-R-tree [35]: An in-memory grid and

R-tree index optimized for moving objects, which was a baseline

for Waffle.

(5) Quad tree [10]: Amultiple resolution grid index implemented

at in-memory setting, which was a baseline for Waffle.

(6) RSMI [29]: A recursive model index [15] for spatial data,

which was a baseline for Waffle. We utilized the source code up-

loaded on the GitHub website of the author, implemented at in-

memory setting. 𝑁 and 𝐵 were set to 20000 and 200, respectively.

All the methods processed a series of queries in a single thread,

and Waffle executed up to two additional threads for WaffleMaker

and a regrid only if required.

Datasets. We used the road network datasets [9], and each geo-

graphical space was as follows.

(1) LA: ([33.8449, 34.3243), [−118.766,−117.793))

(2) NewYork: ([40.2513, 41.0595), [−74.8782,−73.2227))

An episode in the experiments was defined as follows. |𝑏𝑎𝑠𝑒 |

objects were placed on random roads or at the last positions of the

previous episode and kept randomly moving along roads. |𝑒𝑥𝑡𝑟𝑎 |

objects were gradually inserted into roads around the center of the

geographical space and kept randomly moving along roads. Then,

the |𝑒𝑥𝑡𝑟𝑎 | objects were gradually deleted from the space while the

|𝑏𝑎𝑠𝑒 | objects were still randomly moving.

In the middle of insertion and deletion queries, a range or 𝑘-

NN query was created alternatively by setting the coordinate of a

random object as the center of its range. The range size of a range/𝑘-

NN query was randomly set to [0.5%, 1.5%] of the geographical

space size of each dataset. For a 𝑘-NN query, 𝑘 was set to 10, and

the target coordinate was set to the center of its range.

|𝑏𝑎𝑠𝑒 | and |𝑒𝑥𝑡𝑟𝑎 | were both set to 106 as a default setting. For

the values, the approximate number of insertion/deletion queries

during an episode was 1.7×107, and that of range/𝑘-NN queries was

9 × 10
4. Before each experiment, we generated queries and stored

them on the storage. A method read the queries one by one from

the storage, and the reading time was excluded from an execution

time.

7.2 Experimental Results

7.2.1 Experiments for Configuration Effects. Figures 12-14 show the

results according to various knob settings to check the configuration

effects described in Section 4 for LA dataset. We set |𝑏𝑎𝑠𝑒 | to 106 and

did not consider |𝑒𝑥𝑡𝑟𝑎 | objects in the experiments. We recorded

the average query execution time for each query type, memory

usage during the execution, and additional information. A non-

answer ratio was calculated from (1−
|𝑎𝑛𝑠𝑤𝑒𝑟𝑠 |

|𝑐ℎ𝑒𝑐𝑘𝑒𝑑 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 |
) × 100 for a

range/𝑘-NN query. We also measured execution stalls from L1 data

cache misses using perf, which is a performance analysis tool in

Linux.

First, the results according to the number of cells in the

space (𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒) are shown in Figure 12. In Figure 12(a), when

𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was small, the number of checked chunks increased

because Waffle created more cells with the same cell coordinate, as

shown in Figures 5(a) and 6(a). As the number of checked chunks

increased, the computational costs and stalls also increased, which

resulted in longer insertion time. When 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was large, even

if the number of checked chunks decreased, the stalls increased

because each insertion was likely to cause more cache misses, as

shown in Figure 6(b). Figure 12(b) shows the deletion times. Un-

like an insertion query, a deletion query checks other objects with

the same cell coordinate. When 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was small, the number

of checked objects increased because more objects had the same

cell coordinate, as shown in Figures 5(a) and 6(a). Accordingly, the

computational costs and stalls also increased, and the deletion time

also increased.

In Figure 12(c), when 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was small, more computational

costs occurred from checking more non-answer objects, as shown

in Figures 5(a) and 6(a). When 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was large, even if the

non-answer ratio decreased, more stalls occurred from checking

more chunks, as shown in Figure 6(b), and the range query time

increased. Figure 12(d) shows the results for 𝑘-NN queries, each

of which required a priority queue. When 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was small,

the larger number of checked objects caused more computational

costs and stalls. When 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 was large, even if the non-answer

ratio decreased, accessing objects was likely to cause more stalls.

Figure 12(e) shows that Waffle used more memory when 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒

increased, as shown in Figure 6(b).

2382

 200 400 600 800 1000 1200 1400 1600 1800 2000

Insertion (ns): [94, 157]

 200 400 600 800 1000 1200 1400 1600 1800 2000

Checked chunks (10
7
): [1.2, 8.2]

 200 400 600 800 1000 1200 1400 1600 1800 2000

L1D stalls (10
8
): [11.9, 33.7]

(a) Insertion
 200 400 600 800 1000 1200 1400 1600 1800 2000

Deletion (ns): [336, 852]

 200 400 600 800 1000 1200 1400 1600 1800 2000

Checked objects (10
7
): [2.2, 35.9]

 200 400 600 800 1000 1200 1400 1600 1800 2000

L1D stalls (10
8
): [95.2, 259.4]

(b) Deletion
 200 400 600 800 1000 1200 1400 1600 1800 2000

Range (μs): [7.4, 11.7]

 200 400 600 800 1000 1200 1400 1600 1800 2000

Non−answer ratio (%): [7.9, 49.8]

 200 400 600 800 1000 1200 1400 1600 1800 2000

L1D stalls (10
8
): [7.3, 13.6]

(c) Range
 200 400 600 800 1000 1200 1400 1600 1800 2000

k−NN (μs): [3.4, 6.9]

 200 400 600 800 1000 1200 1400 1600 1800 2000

Non−answer ratio (%): [42.7, 91.3]

 200 400 600 800 1000 1200 1400 1600 1800 2000

L1D stalls (10
8
): [1.9, 3.9]

(d) 𝒌-NN
 200 400 600 800 1000 1200 1400 1600 1800 2000

Maximum usage (MB): [130, 729]

 200 400 600 800 1000 1200 1400 1600 1800 2000

Average usage (MB): [129, 727]

(e) Memory usage

Figure 12: Results according to 𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 (𝑴𝑶𝑷𝑪 = 10, 𝒏𝑪𝒆𝒍 𝒍𝒄𝒉𝒖𝒏𝒌 = 10, LA)

 2 4 6 8 10 12 14 16 18 20

Insertion (ns): [104, 188]

 2 4 6 8 10 12 14 16 18 20

Checked chunks (10
7
): 1.5

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [17.4, 51.8]

(a) Insertion
 2 4 6 8 10 12 14 16 18 20

Deletion (ns): [339, 366]

 2 4 6 8 10 12 14 16 18 20

Checked objects (10
7
): 4.0

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [95.0, 110.6]

(b) Deletion
 2 4 6 8 10 12 14 16 18 20

Range (μs): [8.0, 14.8]

 2 4 6 8 10 12 14 16 18 20

Non−answer ratio (%): 14.9

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [8.5, 21.5]

(c) Range
 2 4 6 8 10 12 14 16 18 20

k−NN (μs): [3.4, 5.0]

 2 4 6 8 10 12 14 16 18 20

Non−answer ratio (%): 60.1

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [1.9, 5.0]

(d) 𝒌-NN
 2 4 6 8 10 12 14 16 18 20

Maximum usage (MB): [71, 478]

 2 4 6 8 10 12 14 16 18 20

Average usage (MB): [71, 475]

(e) Memory usage

Figure 13: Results according to 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌 (𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 1000, 𝑴𝑶𝑷𝑪 = 10, LA)

 2 4 6 8 10 12 14 16 18 20

Insertion (ns): [104, 335]

 2 4 6 8 10 12 14 16 18 20

Checked chunks (10
7
): [1.2, 8.4]

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [17.3, 98.9]

(a) Insertion
 2 4 6 8 10 12 14 16 18 20

Deletion (ns): [322, 1466]

 2 4 6 8 10 12 14 16 18 20

Checked objects (10
7
): 4.0

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [90.7, 517.5]

(b) Deletion
 2 4 6 8 10 12 14 16 18 20

Range (μs): [7.4, 27.1]

 2 4 6 8 10 12 14 16 18 20

Non−answer ratio (%): 14.9

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [7.9, 33.5]

(c) Range
 2 4 6 8 10 12 14 16 18 20

k−NN (μs): [3.2, 7.0]

 2 4 6 8 10 12 14 16 18 20

Non−answer ratio (%): 60.1

 2 4 6 8 10 12 14 16 18 20

L1D stalls (10
8
): [1.7, 7.7]

(d) 𝒌-NN
 2 4 6 8 10 12 14 16 18 20

Maximum usage (MB): [267, 429]

 2 4 6 8 10 12 14 16 18 20

Average usage (MB): [264, 427]

(e) Memory usage

Figure 14: Results according to 𝑴𝑶𝑷𝑪 (𝒏𝑪𝒆𝒍𝒍𝒔𝒑𝒂𝒄𝒆 = 1000, 𝒏𝑪𝒆𝒍 𝒍𝒄𝒉𝒖𝒏𝒌 = 10, LA)

Figure 13 shows the results according to the number of cells in a

chunk (𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘). In Figure 13(a), the number of checked chunks

remained the same because 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 and 𝑀𝑂𝑃𝐶 were fixed, as

shown in Figure 7, which means that the overheads from computa-

tional costs were similar. However, when 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 increased, the

stalls tended to decrease, as shown in Figure 7(b), and the insertion

time also tended to decrease. In Figure 13(b), unlike in Figure 12(b),

the number of checked objects was the same because 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒

was fixed, which resulted in similar computational costs. However,

the larger 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 tended to reduce the stalls, and the deletion

time tended to decrease. Figures 13(c)-13(d) show thatWaffle tended

to process the range and 𝑘-NN queries faster when 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 was

large because of the fewer stalls. In addition, the non-answer ratio

remained the same because of the fixed 𝑛𝐶𝑒𝑙𝑙𝑠𝑝𝑎𝑐𝑒 , as shown in

Figure 7. Figure 13(e) shows that Waffle tended to require more

memory when 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘 increased, as shown in Figure 7(b).

Figure 14 shows the results according to the maximum objects

per cell (𝑀𝑂𝑃𝐶). In Figure 14(a), when𝑀𝑂𝑃𝐶 increased, the num-

ber of checked chunks and stalls tended to decrease, as shown in

Figure 8(b). In Figure 14(b), 𝑀𝑂𝑃𝐶 did not affect the number of

checked objects, as shown in Figure 8. However, when𝑀𝑂𝑃𝐶 was

small, more chunks were created, and Waffle checked the same

objects at different chunks, which resulted in more stalls and in-

efficient deletion query processing. In Figures 14(c)-14(d), when

𝑀𝑂𝑃𝐶 increased, the range and 𝑘-NN query processing became

efficient because of the fewer stalls. Figure 14(e) shows that Waffle

tended to occupy more memory when𝑀𝑂𝑃𝐶 increased.

Figures 12-14 show that the performance of Waffle varies signifi-

cantly according to the knob configurations. The results shown in

the graphs may be different if the default knob values, object distri-

bution, and user queries change. The results support the necessity

of WaffleMaker automatically tuning knob values.

Insertion Deletion Range k−NN

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample correlation coefficient
Insertion: −0.97, Deletion: −0.46, Range: −0.65, k−NN: 0.30

(a) x: 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒂𝒕
y: 𝒏𝑪𝒆𝒍𝒍

𝒔𝒑𝒂𝒄𝒆

𝒍𝒐𝒏

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample correlation coefficient
Insertion: −0.19, Deletion: 0.53, Range: 0.42, k−NN: −0.13

(b) x: 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒂𝒕
y: 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌

𝒍𝒂𝒕

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample correlation coefficient
Insertion: −0.83, Deletion: 0.04, Range: −0.70, k−NN: −0.65

(c) x: 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒂𝒕
y: 𝒏𝑪𝒆𝒍𝒍𝒄𝒉𝒖𝒏𝒌

𝒍𝒐𝒏

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample correlation coefficient
Insertion: −0.69, Deletion: −0.37, Range: −0.37, k−NN: −0.03

(d) x: 𝒏𝑪𝒆𝒍𝒍
𝒔𝒑𝒂𝒄𝒆

𝒍𝒂𝒕
y: 𝑴𝑶𝑷𝑪

Figure 15: Relationships between the Waffle knobs (LA)

Figure 15 shows relationships between the Waffle knobs. For

each 𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡
value, Waffle processed 1 episode of queries with

the knob values in the 𝑦-axis, and for each query type, we recorded

the value in the𝑦-axis with the shortest processing time. The sample

correlation coefficient [31] was calculated, and a regression line was

estimated from the method of least squares. The default knob values

were set to {1000, 1000, 10, 10, 10} for knobs that do not appear on

a graph. A clear pattern from the experiments was anti-correlation

between 𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡
and 𝑛𝐶𝑒𝑙𝑙

𝑠𝑝𝑎𝑐𝑒

𝑙𝑜𝑛
for the insertion queries, which

means that the excessively small or large number of cells in a space

was not preferred. However, formulation of the pattern was still

difficult because the results may vary from various factors including

object distribution and user queries. The experiment supports the

necessity of an automatic configuration tuning system that does

not require prior knowledge of the relationships.

2383

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Insertion (ns): [131, 198], 112

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Deletion (ns): [541, 668], 470

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Range (μs): [19, 24], 16

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

k−NN (μs): [5, 6], 4

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Memory (MB): [372, 576], 72

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Reward: [0.84, 0.90]

(a) LA

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Insertion (ns): [121, 167], 105

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Deletion (ns): [557, 725], 486

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Range (μs): [20, 26], 17

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

k−NN (μs): [5, 7], 4

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Memory (MB): [346, 578], 79

 10 20 30 40 50 60 70 80 90 100

[minimum value, maximum value], baseline

Episode

Reward: [0.85, 0.90]

(b) NewYork

Figure 16: Validity of the reward definition in WaffleMaker

WaffleMaker (Exploration) WaffleMaker (Exploitation)

DDPG (Exploration) DDPG (Exploitation)

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

re
w

ar
d

Episode

(a) LA

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

re
w

ar
d

Episode

(b) NewYork

Figure 17: Comparison with DDPG

7.2.2 Experiments for WaffleMaker and Regrid. We first introduce

the experiments for WaffleMaker in Figures 16-17. Before each ex-

periment, we generated queries for continued and different 100

episodes. When processing 𝑥 = 505, 000 user queries after the

previous regrid (𝑥 in Figure 10), Waffle started another regrid. Dur-

ing the 100 episodes, approximately 2000 regrids were performed.

At the beginning of each episode, DDPG initialized an Ornstein-

Uhlenbeck process. For the initial |𝑏𝑎𝑡𝑐ℎ | regrids, each method

randomly determined knob settings without considering explo-

ration and exploitation. During the initial regrids, WaffleMaker

also recorded the minimum and maximum values for each reward

element and utilized them for normalizing each element based on

min-max normalization. DDPG also utilized the same minimum

and maximum values as those of WaffleMaker. WaffleMaker started

exploitation after the |𝑏𝑎𝑡𝑐ℎ | + |𝑟𝑒𝑐𝑒𝑛𝑡 | regrids. WaffleMaker and

DDPG determined each knob value from the following ranges:

𝑛𝐶𝑒𝑙𝑙
𝑠𝑝𝑎𝑐𝑒

𝑙𝑎𝑡,𝑙𝑜𝑛
: [100, 2000],𝑀𝑂𝑃𝐶 : [2, 20], and 𝑛𝐶𝑒𝑙𝑙𝑐ℎ𝑢𝑛𝑘

𝑙𝑎𝑡,𝑙𝑜𝑛
: [2, 20].

Figure 16 shows the validity of the reward definition. For each

episode, we recorded average values of query processing times,

memory usage, and rewards from knob settings determined by ex-

ploration. Memory usage was calculated using |𝑐ℎ𝑢𝑛𝑘𝑠 | ×𝑚𝐶ℎ𝑢𝑛𝑘

in Section 6.1. We also recorded the baselines for each query type

and memory usage to measure the performance achievement of

WaffleMaker. Specifically, we selected 10, 000 random knob settings,

executed one episode of queries for each knob setting, obtained

query processing times and memory usage, and picked the best re-

sults as the baselines. Note that the best results did not come from a

single knob setting, and obtaining the baselines took approximately

100 times longer than training WaffleMaker for the 100 episodes.

Initially, WaffleMaker obtained low rewards, which means that

Waffle processed the queries slowly and required more memory.

Based on the rewards, WaffleMaker updated the model and deter-

mined knob settings, and the query processing times and memory

usage both decreased, which shows the validity of the reward def-

inition. In addition, the memory usage was a lot larger than the

baseline because reducing query processing time was the primary

target (𝑤𝑡𝑖𝑚𝑒 = 0.9,𝑤𝑚𝑒𝑚𝑜𝑟𝑦 = 0.1).

Without performing a regrid (x=∞) While performing regrids (x=0) (x in Figure 10)

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 1 2 3 4 5 6 7 8 9 10

T
im

e
(n

s)

The number of objects (10
6
)

(a) User insertion

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(n

s)

The number of objects (10
6
)

(b) User deletion

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

T
im

e
(μ

s)

The number of objects (10
6
)

(c) User range

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

T
im

e
(μ

s)

The number of objects (10
6
)

(d) User 𝒌-NN

Figure 18: Regrid overhead (LA)

Table 1: Additional information about Figure 18 (LA)

Objects (106) 1 2 3 4 5 6 7 8 9 10

A single regrid time (seconds) 1.6 3.3 5.1 7.1 9.1 10.8 12.6 13.6 15.8 17.8

Concurrent user queries

processed during a single regrid (105)
7.5 13.1 19.7 25.5 30.4 34.9 38.0 39.2 44.1 46.7

Total time to wait for locks for user queries
during a single regrid (ms)

57 109 162 208 283 311 349 392 457 492

Figure 17 shows the rewards from exploration and exploitation

for WaffleMaker and DDPG. (1) DDPG performed gradient ascent

on the surface of an action-value function (i.e., critic) to update an

actor. Because the critic kept updated, gradient ascent on the fluc-

tuating surface tended to be unstable. WaffleMaker just observed

the surface with enough candidate actions instead of performing

gradient ascent, which led to higher rewards. (2) It was difficult

to perfectly represent the surface of the critic. Given a set of ex-

periences, a critic could learn a reasonable surface that represents

high and low rewards. However, some parts of the surface had

reverse slopes to what DDPG expected because the critic just tried

to minimize the mean squared error for the experiences. Gradient

ascent on the mis-represented surface resulted in lower rewards.

In contrast, WaffleMaker carefully trusted and explored the surface

based on weighted sampling for the knob settings with high ex-

pected rewards, which led to higher rewards. (3) Adding a noise

to the current action did not explore action space efficiently, and

DDPG was more likely to be stuck in a worse local minimum than

WaffleMaker, whose exploration did not depend on the current

policy. WaffleMaker discovered knob settings leading to high re-

wards that DDPG failed to find, learned a different action-value

function from that of DDPG, and led to the higher rewards from ex-

ploitation. (4) In WaffleMaker, the rewards from exploitation were

usually higher than those from exploration, which supported the

validity of the novel exploitation method. (5) The average times for

exploration/exploitation were 0.1008/0.022 s in WaffleMaker and

0.0021/0.0018 s in DDPG, respectively.

We also conducted the experiments to check the overhead of a

regrid according to the number of objects (|𝑏𝑎𝑠𝑒 |).We set |𝑒𝑥𝑡𝑟𝑎 | = 0

in the experiments. Figure 18 shows the average query execution

times, and Table 1 shows additional information. We fixed the knob

setting to {1000, 1000, 10, 10, 10}, which means that the knob setting

might not be optimal for each case.

As shown in Figure 18, the performance of Waffle during a regrid

was degraded because of additional cache misses from running the

multiple threads. For a range/𝑘-NN query during a regrid, Waffle

2384

(1) Waffle(WaffleMaker) (2) Waffle(fixed) (3) Waffle(DDPG) (4) u-Grid (5) u-R-tree (7) RSMI(6) Quad tree

 128

 256

 512

 1024

 2048

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

n
s)

128 139

334

153

1644

388

618

(a) Insertion

 256

 512

 1024

 2048

 4096

 8192

 16384

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

n
s)

501
681 599

1372

2254

1255

10844

(b) Deletion

 16

 32

 64

 128

 256

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

μ
s)

18.8
23.2

27.9

39.1
34.5

66

189

(c) Range

 4

 8

 16

 32

 64

 128

 256

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

μ
s)

5.37
6.89

10.5
8.46

18.5

8.07

217

(d) 𝒌-NN

 128

 256

 512

 1024

 2048

(1) (2) (3) (4) (5) (6) (7)

M
ax

im
u

m
 (

to
p

)
an

d
av

er
ag

e
(b

o
tt

o
m

)
u

sa
g

e
(M

B
)

479

189

1293

189

362

220

369
306

150

669

156

276

169

242

(e) Memory usage

 64

 128

 256

 512

 1024

 2048

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

s)

68.4
88.4

102

160

377

184

1227

(f) Total time

Figure 19: Comparison with existing methods (LA)

 128

 256

 512

 1024

 2048

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

n
s)

140
162

243

159

1574

379

528

(a) Insertion

 512

 1024

 2048

 4096

 8192

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

n
s)

584

1002

620

1373

2105

1294

7768

(b) Deletion

 16

 32

 64

 128

(1) (2) (3) (4) (5) (6) (7)
T

im
e
 (

μ
s)

20.2

26.7
23

41.9

33.4

70.3
77.8

(c) Range

 4

 8

 16

 32

 64

 128

 256

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

μ
s)

6.43

11.3
8.51 9.71

15.9

8.45

130

(d) 𝒌-NN

 128

 256

 512

 1024

(1) (2) (3) (4) (5) (6) (7)

M
ax

im
u

m
 (

to
p

)
an

d
av

er
ag

e
(b

o
tt

o
m

)
u

sa
g

e
(M

B
)

514

250

625

180

362

211

318
347

181

418

147

276

157

214

(e) Memory usage

 64

 128

 256

 512

 1024

(1) (2) (3) (4) (5) (6) (7)

T
im

e
 (

s)

78.2

123

93

162

356

188

847

(f) Total time

Figure 20: Comparison with existing methods (NewYork)

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Total time (s): [68, 126]

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Maximum memory usage (MB): [177, 479]

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Average memory usage (MB): [112, 306]

(a) LA

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Total time (s): [78, 156]

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Maximum memory usage (MB): [179, 514]

0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 0.9, 0.1

wtime, wmemory

Average memory usage (MB): [108, 347]

(b) NewYork

Figure 21: Results for Waffle(WaffleMaker) according to

𝒘𝒕 𝒊𝒎𝒆 and𝒘𝒎𝒆𝒎𝒐𝒓𝒚 .

processed two queries: one for the original index and another for

the new index. However, the regrids finished within reasonable

times based on the efficient insertion and deletion query processing

without blocking the user queries, as shown in Table 1.

7.2.3 Experiments for Comparison with Existing Methods. Figures

19-20 show comparisons for Waffle(WaffleMaker), Waffle(fixed),

Waffle(DDPG), u-Grid, u-R-tree, Quad tree, and RSMI.We generated

5 episodes of queries different from the 100 episodes in Section 7.2.2

for each dataset, where the four types of queries were mixed. For

each method, we measured the average query execution time for

each query type, maximum/average memory usage during runtime,

and the total execution time on a log scale.

The experimental setting for each method was as follows. (1)

Waffle(WaffleMaker): WaffleMaker determined knob settings

and when to perform a regrid as explained in Figure 11 (after con-

vergence). We used the WaffleMaker models trained in Section

7.2.2. Some user queries were executed in parallel with a regrid as

explained in Section 5 and also included in the results. (2) Waf-

fle(fixed): Waffle fixed a knob setting to the initial one used in Waf-

fle(WaffleMaker) and did not perform regrids. (3) Waffle(DDPG):

DDPG determined knob settings instead of WaffleMaker. When

a regrid started, DDPG obtained a candidate knob setting for the

current state through exploitation. If the candidate was different

from the current knob setting, Waffle performed the regrid. We

used the DDPG models trained in Section 7.2.2. (4) u-Grid: u-Grid

defined the index based on the initial knob setting used in Waf-

fle(WaffleMaker). (5) u-R-tree: The minimum and maximum num-

ber of objects/children were set to 16 and 32, respectively. (6) Quad

tree: The maximum number of objects in a leaf node was set to 64.

If all the children of a non-leaf node were leaf nodes, and the total

number of objects in the children was below 32, then the children

were merged to the parent. (7) RSMI: Whenever RSMI reached

the points where Waffle(WaffleMaker) performed the regrids, we

interrupted query processing and rebuilt RSMI models. The build-

ing times including the initial build were excluded from the query

processing times.

Waffle(WaffleMaker) provided the best performance for mov-

ing objects. The results supported the efficiency of a Waffle index

defined from the concept of cells and chunks. In addition, the com-

parisons between Waffle(WaffleMaker) and Waffle(fixed) showed

the benefit of performing regrids with appropriate knob settings

automatically determined by WaffleMaker. Even if Waffle(fixed) uti-

lized the decent knob settings from WaffleMaker, and performing

regrids caused overhead to query processing as shown in Figure 18,

Waffle(WaffleMaker) performed better than Waffle(fixed) because a

fixed knob setting could not efficiently handle a variety of distri-

bution of moving objects. However, Waffle(WaffleMaker) required

more memory than Waffle(fixed). The fixed knob setting in Waf-

fle(fixed) used less memory at several object distributions, where

Waffle(WaffleMaker) changed knob settings focusing on query pro-

cessing time. In addition, during a regrid, Waffle(WaffleMaker) kept

two different indexes at the same time, which caused additional

memory overhead.

Waffle(DDPG) performed worse than Waffle(WaffleMaker). The

knob settings determined by DDPG were less efficient than those

from WaffleMaker, as shown in Figure 17. Furthermore, when to

perform regrids was important. Waffle(DDPG) performed 95/96 re-

grids for LA/NewYork while Waffle(WaffleMaker) performed 11/20

regrids. The query processing times of Waffle(DDPG) were even

worse than Waffle(fixed) in some cases, which means that replacing

continuous action space with discrete action space in WaffleMaker

led to more timely regrids.

Although u-Grid also showed good performance, its performance

was worse than that of Waffle(WaffleMaker). Even if a secondary

index of u-Grid might reduce the computational cost by directly

accessing a target bucket, additional cache misses occurred from

updating the hash data structure for the secondary index. If there

were a lot of buckets for the same cell coordinate, the overhead

from the hash data structure might be compensated. However,

Waffle tried to avoid the situation in which a lot of cells and chunks

were created at the same coordinate by setting an appropriate

2385

configuration from WaffleMaker. Even without performing regrids,

Waffle(fixed) performed better than u-Grid in most cases, which

showed the efficiency of a Waffle index.

u-R-tree accessed the target node directly with a secondary index

without traversing the tree. However, because of the overhead

from node splitting and merging, the performance of insertion and

deletion queries were worse than that of u-Grid, which means that

a grid-based index was more appropriate for moving objects than a

tree-based index.

Quad tree performed worse than Waffle, which means that a

uniform grid defined from the cell and chunk structure with appro-

priate configuration was more efficient than a multiple resolution

grid for moving objects.

The observations for RSMI were as follows. (1) In RSMI, dur-

ing query processing, figuring out target blocks required passing

through RSMI models, which were on GPU in the experiments.

In Waffle, figuring out target cells and chunks required few arith-

metic operations, as shown in Section 2. Waffle utilized GPU not for

calculating target cells and chunks during query runtime but for ob-

taining a new knob setting and updating the model. (2) Despite fre-

quent rebuilding, RSMI performed worse than Waffle(WaffleMaker)

for moving objects because the primary target of RSMI was non-

moving objects, even if RSMI supported insertion and deletion

queries. The total building times for LA/NewYork were 3.4/4.5

hours, respectively.

Figure 21 shows the results for Waffle(WaffleMaker) according

to𝑤𝑡𝑖𝑚𝑒 and𝑤𝑚𝑒𝑚𝑜𝑟𝑦 introduced in Section 6.1. WaffleMaker was

trained for each pair of𝑤𝑡𝑖𝑚𝑒 and𝑤𝑚𝑒𝑚𝑜𝑟𝑦 on the 100 episodes of

queries used in Figures 16-17 and tested on the 5 episodes of queries

used in Figures 19-20. If query processing time is more important

thanmemory usage,𝑤𝑡𝑖𝑚𝑒 can be set higher than𝑤𝑚𝑒𝑚𝑜𝑟𝑦 . If mem-

ory usage is more critical than query processing time, 𝑤𝑚𝑒𝑚𝑜𝑟𝑦

can be set higher than𝑤𝑡𝑖𝑚𝑒 . This direct and intuitive control for

the trade-off between query processing time and memory usage

was not available in the compared methods.

8 RELATED WORK

In-memory Spatial Index for Moving Objects. In-memory

indexes for moving objects have been researched from various

perspectives [7, 13, 30, 34ś36, 43]. Darius et al. [35] proposed in-

memory grid and R-tree indexes for moving objects. MOVIES [7]

and TwinGrid [34] maintain an index for scan queries and another

buffer/index for update queries. MOVIES and TwinGrid have a

query staleness problem that some previous update query results

may not be reflected in the following scan query results. PGrid [36]

leverages the parallelism from a multi-core processor. PASTIS [30]

considers the temporal dimension by maintaining the previous 𝑁

days of data and indexes. D-Grid [43] considers both location and

velocity information. SwapQt [13] operates in a cloud environment

while reducing query staleness. The previous approaches, however,

did not state how to automatically determine the index configura-

tion, despite the configuration being significantly critical to their

performance.

Learned Spatial Indexes. The indexing of spatial data based on

machine learning has also emerged [12, 21, 29, 42]. ZM Index [42]

and RSMI [29] are based on a recursive model index [15]. LISA [21]

targets to reduce storage consumption and disk I/O cost. RLR-Tree

[12] learns how to choose a subtree for an insertion query and split

an overflowing node for an R-tree based on reinforcement learning

to reduce disk I/O. SPRIG [45] learns spatial data distribution based

on spatial interpolation function. In addition to the spatial indexes,

the learning of a multidimensional index has been proposed in the

studies [6, 27]. Waffle is a novel grid indexing system of which

main target is an update query for moving objects, with automatic

configuration tuning system, WaffleMaker.

Automatic Database Configuration. The automatic tuning

of knob configuration in database systems has been studied based

on machine learning. iTuned [8] utilizes Gaussian process regres-

sion to estimate performance from knob configuration. OtterTune

[2] proposes a Gaussian process regression model with workload

characterization and knob identification. The post-study on Otter-

Tune [3] extends OtterTune to support not only Gaussian process

regression but also deep neural networks and DDPG-based tuning

methods. CDBTune [44] first applies DDPG to automatic database

configuration based on a Markov decision process. QTune [19] is

also based on DDPG considering query-level tuning. iBTune [39]

and ResTune [47] configure resource-related knobs while guaran-

teeing the service level agreement for cloud databases. The study

[40] utilizes natural language processing to obtain useful infor-

mation from documents for configuration tuning. CGPTuner [4]

considers knobs from databases and external layers including an

operating system to improve the performance of databases based

on contextual gaussian process bandit optimization. WaffleMaker

is an online configuration tuning system that determines not only

a knob setting but also times to change a configuration, without

pre-training. In addition, the previous works [5, 17, 22, 28, 32] deal

with an index selection problem based on machine learning.

9 CONCLUSION

We proposed Waffle, an in-memory grid indexing system for mov-

ing objects. A Waffle grid index is based on the cell and chunk

definition optimized for the main memory. A knob configuration

significantly affects the performance of Waffle, and an appropriate

configuration depends on various factors. We proposed a regrid, a

grid redefinition mechanism that does not block user queries based

on a concurrency control scheme. To automatically determine an ap-

propriate knob setting for a regrid, we introduced WaffleMaker, an

online configuration tuning system based on novel reinforcement

learning. The future works are as follows. Waffle can be extended

to support continuous range or 𝑘-NN query processing optimized

for Waffle considering the overhead. Distributed processing is also

an area of future study.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.

This workwas supported by (1) the National Research Foundation of

Korea (NRF) grant funded by theMinistry of Science and ICT (MSIT)

(NRF-2020R1A2C2013286), (2) MSIT under the ICT Creative Con-

silience program (IITP-2022-2020-0-01819) supervised by the IITP

(Institute for Information communications Technology Planning

Evaluation), and (3) Basic Science Research Program through NRF

funded by the Ministry of Education (NRF-2021R1A6A1A13044830).

2386

REFERENCES
[1] Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and

Robert E. Schapire. 2014. Taming the Monster: A Fast and Simple Algo-
rithm for Contextual Bandits. In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR
Workshop and Conference Proceedings), Vol. 32. JMLR.org, 1638ś1646. http:
//proceedings.mlr.press/v32/agarwalb14.html

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1009ś
1024. https://doi.org/10.1145/3035918.3064029

[3] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Billian, and Andrew Pavlo. 2021. An Inquiry into Machine Learning-
based Automatic Configuration Tuning Services on Real-World Database Man-
agement Systems. PVLDB 14, 7 (2021), 1241ś1253. http://www.vldb.org/pvldb/
vol14/p1241-aken.pdf

[4] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic
Tuning of IT Configurations Under Varying Workload Conditions. PVLDB 14, 8
(2021), 1401ś1413. https://doi.org/10.14778/3457390.3457404

[5] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. ACM, 1241ś1258. https://doi.org/10.1145/3299869.3324957

[6] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. PVLDB 14, 2 (2020), 74ś86. https://doi.org/10.14778/3425879.3425880

[7] Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles. 2009. Indexing
Moving Objects Using Short-Lived Throwaway Indexes. In Advances in Spatial
and Temporal Databases, 11th International Symposium, SSTD 2009, Aalborg, Den-
mark, July 8-10, 2009, Proceedings (Lecture Notes in Computer Science), Vol. 5644.
Springer, 189ś207. https://doi.org/10.1007/978-3-642-02982-0_14

[8] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Data-
base Configuration Parameters with iTuned. PVLDB 2, 1 (2009), 1246ś1257.
https://doi.org/10.14778/1687627.1687767

[9] Ahmed Eldawy and Mohamed F. Mokbel. 2019. Roads and streets around the
world each represented as individual line segments. https://doi.org/10.6086/
N1H99379#mbr=9qwesvg4,9qxq6f81 Retrieved from UCR-STAR https://star.cs.
ucr.edu/?OSM2015/road-network.

[10] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for
Retrieval on Composite Keys. Acta Informatica 4 (1974), 1ś9. https://doi.org/10.
1007/BF00288933

[11] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

[12] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, ZhengWang, and ShengWang. 2021.
The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data. CoRR
abs/2103.04541 (2021). arXiv:2103.04541 https://arxiv.org/abs/2103.04541

[13] Hiba Jadallah and Zaher Al Aghbari. 2020. SwapQt: Cloud-based in-memory
indexing of dynamic spatial data. Future Generation Computer Systems 106 (2020),
360ś373. https://doi.org/10.1016/j.future.2020.01.009

[14] Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, and
Zhiwei Steven Wu. 2018. A Smoothed Analysis of the Greedy Algo-
rithm for the Linear Contextual Bandit Problem. In Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada. 2231ś2241. https://proceedings.neurips.cc/paper/2018/hash/
2cfd4560539f887a5e420412b370b361-Abstract.html

[15] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 489ś504. https://doi.org/10.1145/3183713.3196909

[16] Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, and Chicheng
Zhang. 2020. Contextual Bandits with Continuous Actions: Smoothing, Zooming,
and Adapting. The Journal of Machine Learning Research 21 (2020), 137:1ś137:45.
http://jmlr.org/papers/v21/19-650.html

[17] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In CIKM ’20: The 29th ACM International Conference on
Information and Knowledge Management, Virtual Event, Ireland, October 19-23,
2020. ACM, 2105ś2108. https://doi.org/10.1145/3340531.3412106

[18] John Langford and Tong Zhang. 2007. The Epoch-Greedy Algorithm for Multi-
armed Bandits with Side Information. In Advances in Neural Information Pro-
cessing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007. Curran Associates, Inc., 817ś824. https://proceedings.neurips.cc/paper/
2007/hash/4b04a686b0ad13dce35fa99fa4161c65-Abstract.html

[19] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. PVLDB 12, 12
(2019), 2118ś2130. https://doi.org/10.14778/3352063.3352129

[20] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-
bandit Approach to Personalized News Article Recommendation. In Proceedings
of the 19th International Conference on World Wide Web, WWW 2010, Raleigh,
North Carolina, USA, April 26-30, 2010. ACM, 661ś670. https://doi.org/10.1145/
1772690.1772758

[21] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, 2119ś2133. https://doi.org/10.1145/
3318464.3389703

[22] Gabriel Paludo Licks, Júlia Mara Colleoni Couto, Priscilla de Fátima Miehe, Re-
nata De Paris, Duncan Dubugras A. Ruiz, and Felipe Meneguzzi. 2020. SmartIX: A
Database Indexing Agent Based on Reinforcement Learning. Applied Intelligence
50, 8 (2020), 2575ś2588. https://doi.org/10.1007/s10489-020-01674-8

[23] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous Control
with Deep Reinforcement Learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. http://arxiv.org/abs/1509.02971

[24] Tyler Lu, Dávid Pál, and Martin Pal. 2010. Contextual Multi-Armed Bandits. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010
(JMLR Proceedings), Vol. 9. JMLR.org, 485ś492. http://proceedings.mlr.press/v9/
lu10a.html

[25] Maryam Majzoubi, Chicheng Zhang, Rajan Chari, Akshay Krishnamurthy, John
Langford, and Aleksandrs Slivkins. 2020. Efficient Contextual Bandits with
Continuous Actions. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/2020/hash/
033cc385728c51d97360020ed57776f0-Abstract.html

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[27] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ingMulti-Dimensional Indexes. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. ACM, 985ś1000. https://doi.org/10.1145/3318464.3380579

[28] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2021. DBA bandits: Self-driving Index Tuning under Ad-hoc,
Analytical Workloads with Safety Guarantees. In 37th IEEE International Con-
ference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE,
600ś611. https://doi.org/10.1109/ICDE51399.2021.00058

[29] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively
Learning Spatial Indices. PVLDB 13, 11 (2020), 2341ś2354. http://www.vldb.org/
pvldb/vol13/p2341-qi.pdf

[30] Suprio Ray, Rolando Blanco, and Anil K. Goel. 2014. Supporting Location-Based
Services in a Main-Memory Database. In IEEE 15th International Conference
on Mobile Data Management, MDM 2014, Brisbane, Australia, July 14-18, 2014 -
Volume 1. IEEE Computer Society, 3ś12. https://doi.org/10.1109/MDM.2014.7

[31] Sheldon M Ross. 2020. Introduction to Probability and Statistics for Engineers and
Scientists. Academic Press.

[32] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. DRLindex: Deep Rein-
forcement Learning Index Advisor for a Cluster Database. In IDEAS 2020: 24th
International Database Engineering & Applications Symposium, Seoul, Republic
of Korea, August 12-14, 2020. ACM, 11:1ś11:8. https://dl.acm.org/doi/10.1145/
3410566.3410603

[33] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
http://arxiv.org/abs/1511.05952

[34] Darius Sidlauskas, Kenneth A. Ross, Christian S. Jensen, and Simonas Salte-
nis. 2011. Thread-Level Parallel Indexing of Update Intensive Moving-Object
Workloads. In Advances in Spatial and Temporal Databases - 12th International
Symposium, SSTD 2011, Minneapolis, MN, USA, August 24-26, 2011, Proceed-
ings (Lecture Notes in Computer Science), Vol. 6849. Springer, 186ś204. https:
//doi.org/10.1007/978-3-642-22922-0_12

[35] Darius Sidlauskas, Simonas Saltenis, Christian W. Christiansen, Jan M. Johansen,
and Donatas Saulys. 2009. Trees or Grids?: Indexing Moving Objects in Main
Memory. In 17th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, ACM-GIS 2009, November 4-6, 2009, Seattle,
Washington, USA, Proceedings. ACM, 236ś245. https://doi.org/10.1145/1653771.
1653805

[36] Darius Sidlauskas, Simonas Saltenis, and Christian S. Jensen. 2012. Parallel
Main-memory Indexing for Moving-object Query and Update Workloads. In

2387

http://proceedings.mlr.press/v32/agarwalb14.html
http://proceedings.mlr.press/v32/agarwalb14.html
https://doi.org/10.1145/3035918.3064029
http://www.vldb.org/pvldb/vol14/p1241-aken.pdf
http://www.vldb.org/pvldb/vol14/p1241-aken.pdf
https://doi.org/10.14778/3457390.3457404
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.1007/978-3-642-02982-0_14
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.6086/N1H99379#mbr=9qwesvg4,9qxq6f81
https://doi.org/10.6086/N1H99379#mbr=9qwesvg4,9qxq6f81
https://star.cs.ucr.edu/?OSM2015/road-network
https://star.cs.ucr.edu/?OSM2015/road-network
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933
http://www.deeplearningbook.org/
https://arxiv.org/abs/2103.04541
https://arxiv.org/abs/2103.04541
https://doi.org/10.1016/j.future.2020.01.009
https://proceedings.neurips.cc/paper/2018/hash/2cfd4560539f887a5e420412b370b361-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2cfd4560539f887a5e420412b370b361-Abstract.html
https://doi.org/10.1145/3183713.3196909
http://jmlr.org/papers/v21/19-650.html
https://doi.org/10.1145/3340531.3412106
https://proceedings.neurips.cc/paper/2007/hash/4b04a686b0ad13dce35fa99fa4161c65-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/4b04a686b0ad13dce35fa99fa4161c65-Abstract.html
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1007/s10489-020-01674-8
http://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v9/lu10a.html
http://proceedings.mlr.press/v9/lu10a.html
https://proceedings.neurips.cc/paper/2020/hash/033cc385728c51d97360020ed57776f0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/033cc385728c51d97360020ed57776f0-Abstract.html
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1109/ICDE51399.2021.00058
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
https://doi.org/10.1109/MDM.2014.7
https://dl.acm.org/doi/10.1145/3410566.3410603
https://dl.acm.org/doi/10.1145/3410566.3410603
http://arxiv.org/abs/1511.05952
https://doi.org/10.1007/978-3-642-22922-0_12
https://doi.org/10.1007/978-3-642-22922-0_12
https://doi.org/10.1145/1653771.1653805
https://doi.org/10.1145/1653771.1653805

Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012. ACM, 37ś48. https:
//doi.org/10.1145/2213836.2213842

[37] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game
of Go with Deep Neural Networks and Tree Search. Nature 529, 7587 (2016),
484ś489. https://doi.org/10.1038/nature16961

[38] Aleksandrs Slivkins. 2011. Contextual Bandits with Similarity Information. In
COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11, 2011,
Budapest, Hungary (JMLR Proceedings), Vol. 19. JMLR.org, 679ś702. http://
proceedings.mlr.press/v19/slivkins11a/slivkins11a.pdf

[39] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. iBTune: Individualized Buffer
Tuning for Large-scale Cloud Databases. PVLDB 12, 10 (2019), 1221ś1234. https:
//doi.org/10.14778/3339490.3339503

[40] Immanuel Trummer. 2021. The Case for NLP-Enhanced Database Tuning: To-
wards Tuning Tools that "Read the Manual". PVLDB 14, 7 (2021), 1159ś1165.
https://doi.org/10.14778/3450980.3450984

[41] George E Uhlenbeck and Leonard S Ornstein. 1930. On the Theory of the
Brownian Motion. Physical review 36, 5 (1930), 823.

[42] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for
Spatial Queries. In 20th IEEE International Conference onMobile DataManagement,

MDM 2019, Hong Kong, SAR, China, June 10-13, 2019. IEEE, 569ś574. https:
//doi.org/10.1109/MDM.2019.00121

[43] Xiaofeng Xu, Li Xiong, and Vaidy S. Sunderam. 2016. D-Grid: An In-Memory
Dual Space Grid Index for Moving Object Databases. In IEEE 17th International
Conference on Mobile Data Management, MDM 2016, Porto, Portugal, June 13-16,
2016. IEEE Computer Society, 252ś261. https://doi.org/10.1109/MDM.2016.46

[44] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In Proceedings of the 2019 International Conference onManagement
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019. ACM, 415ś432. https://doi.org/10.1145/3299869.3300085

[45] Songnian Zhang, Suprio Ray, Rongxing Lu, and Yandong Zheng. 2021. SPRIG:
A Learned Spatial Index for Range and kNN Queries. In Proceedings of the 17th
International Symposium on Spatial and Temporal Databases, SSTD 2021, Virtual
Event, USA, August 23-25, 2021. ACM, 96ś105. https://doi.org/10.1145/3469830.
3470892

[46] Wei Zhang, Jianzhong Li, and Haiwei Pan. 2006. Processing Continuous k-nearest
Neighbor Queries in Location-dependent Application. International Journal of
Computer Science and Network Security 6, 3 (2006), 1ś9.

[47] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021. ACM, 2102ś2114.
https://doi.org/10.1145/3448016.3457291

2388

https://doi.org/10.1145/2213836.2213842
https://doi.org/10.1145/2213836.2213842
https://doi.org/10.1038/nature16961
http://proceedings.mlr.press/v19/slivkins11a/slivkins11a.pdf
http://proceedings.mlr.press/v19/slivkins11a/slivkins11a.pdf
https://doi.org/10.14778/3339490.3339503
https://doi.org/10.14778/3339490.3339503
https://doi.org/10.14778/3450980.3450984
https://doi.org/10.1109/MDM.2019.00121
https://doi.org/10.1109/MDM.2019.00121
https://doi.org/10.1109/MDM.2016.46
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3469830.3470892
https://doi.org/10.1145/3469830.3470892
https://doi.org/10.1145/3448016.3457291

