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ABSTRACT
In this paper, we introduce zero-shot cost models, which enable
learned cost estimation that generalizes to unseen databases. In
contrast to state-of-the-art workload-driven approaches, which
require to execute a large set of training queries on every new data-
base, zero-shot cost models thus allow to instantiate a learned cost
model out-of-the-box without expensive training data collection.
To enable such zero-shot cost models, we suggest a new learning
paradigm based on pre-trained cost models. As core contributions
to support the transfer of such a pre-trained cost model to unseen
databases, we introduce a new model architecture and represen-
tation technique for encoding query workloads as input to those
models. As we will show in our evaluation, zero-shot cost estima-
tion can provide more accurate cost estimates than state-of-the-art
models for a wide range of (real-world) databases without requiring
any query executions on unseen databases. Furthermore, we show
that zero-shot cost models can be used in a few-shot mode that
further improves their quality by retraining them just with a small
number of additional training queries on the unseen database.

PVLDB Reference Format:
Benjamin Hilprecht and Carsten Binnig. Zero-Shot Cost Models for
Out-of-the-box Learned Cost Prediction. PVLDB, 15(11): 2361 - 2374, 2022.
doi:10.14778/3551793.3551799

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DataManagementLab/zero-shot-cost-estimation.

1 INTRODUCTION
Motivation. Accurate physical cost estimation (i.e., estimating

query latencies) is crucial for query optimization in DBMSs. Classi-
cally, cost estimation is performed using models that make several
simplifying assumptions. As a result, such models often over- or
underestimate runtimes, leading to suboptimal planning decisions
that degrade the overall query performance [17]. Recently, machine
learning (ML) has thus been used for learned cost models that do
not need to make such simplifying assumptions [30].

While it was shown that the cost estimates of such learned cost
models are significantly more accurate than those of the traditional
cost models, the existing approaches rely on workload-driven learn-
ing where models have to observe thousands of queries on the same
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Figure 1: Cost Estimation Errors on the IMDB database.
While workload-driven approaches [30] require many
hours ofworkload executions as training data, our zero-shot
cost model supports the unseen IMDB database out-of-the-
box and provides highly accurate cost estimates. If a work-
load is observed however, the zero-shot model can be fine-
tuned, which further improves the performance.
database1 for which the cost prediction should be performed. This
workload execution is required to gather the training data, which
can take hours (or days) since tens of thousands of queries need to
be executed on potentially large databases.

In Figure 1, we show the cost estimation accuracy depending
on how many hours we allow for gathering the training data for a
workload-driven model. As we can see, even for a medium-sized
database such as IMDB, it takes more than 5 hours of running
queries on this database to gather enough training data such that
the cost estimation model can provide a decent accuracy.

Unfortunately, collecting training data by running queries is
not a one-time effort. In fact, the training data collection has to
be repeated for every new database a learned model should be
deployed for. This is due to the fact that current model architectures
for workload-driven learning tie a trained model to a particular
database instance. Consequently, for every (new) unseen database
we not only have to train a model from scratch but also gather
training data in the form of queries. And even for the same database,
in case of changed data characteristics due to updates, training data
collection needs to be repeated. Overall, these repeated high costs
for obtaining training data for unseen databases render workload-
driven learning unattractive for many practical deployments.

Contributions. In this paper, we thus suggest a new learning
paradigm for cost estimation called zero-shot cost models that
reduces these high efforts. The general idea behind zero-shot cost
models is motivated by recent advances in transfer learning of
machine learning models. While a wide spectrum of methods have
been proposed already to tackle zero-shot learning in domains such
as NLP [3] or computer vision [15], no approaches for zero-shot
learning exist for learned DBMS components and in particular also
for cost models. To enable this, as a core contribution in this paper,
we propose a new query and data representation that allows zero-
shot cost models to be pre-trained across databases and thus be

1Throughout this paper, we use the term database to refer to a particular dataset with
certain data characteristics.
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used out-of-the-box (or with minimal fine-tuning only) on unseen
databases.

In fact, as depicted in Figure 1 zero-shot cost models can thus
provide a high accuracy and even outperform existing workload-
driven approaches that have been trained on large sets of training
queries. One could now argue that it might be a significant effort to
collect sufficient training data across databases for pre-training a
zero-shot model. However, in contrast to workload-driven models,
which require training data for every unseen database, training data
collection is a one-time effort; i.e., once trained the zero shot model
can be used for any new unseen database. In fact, in our evaluation
we show that zero-shot models can provide high accuracies for a
wide variety of real-world databases. Moreover, historical traces
can be used, which eliminates the need to collect any training
data. For example, cloud providers such as AWS, Microsoft, or
Google, typically anyway keep logs of their customer workloads,
which could directly be used as training data for zero-shot learning
without collecting any further training data.

A key aspect to enable zero-shot learning is that a cost model can
be transferred to new (unseen) databases, i.e., the models leverage
observed query executions on a variety of different databases to
predict runtimes on new (unseen) databases. However, state-of-
the-art model architectures used for workload-driven learning do
not support this training and inference mode since they are tied to
a particular database. As a core novel contribution for zero-shot
cost models we thus devise a new model architecture based on a
representation of queries that generalizes across databases using a
transferable representation with features such as the tuple width
that can be derived from any database. Moreover, zero-shot models
separate concerns; i.e., data characteristics of a new database (e.g.,
rows of tables) are not implicitly learned as in classical workload-
driven learning (which hinders generalization), but are provided as
input to the model.

Another core question for zero-shot models is at which point
a sufficient amount of different training databases and workloads
was observed to generalize robustly to unseen databases. To answer
this question, as a second contribution in this paper we derive a
method to estimate how accurate the runtime estimations of zero-
shot models will be for unseen databases. We also discuss how to
address cases of workload drifts where the zero-shot models are
expected to generalize less robustly. Furthermore, we also show
that zero-shot models are widely applicable beyond cost models for
query optimizers for single-node DBMSs, which is the main focus
of this paper. For instance, we have initial results that zero-shot
cost models can be naturally extended to distributed DBMS or even
other use cases such as providing cost estimates for design advisors
where the goal is to automatically find a suitable database design
(e.g., a set of indexes) for a given workload. Due to space constraints,
we defer these results to an extended technical report.

Finally, in our extensive experimental evaluation, we verify that
zero-shot cost models generalize robustly to unseen databases and
workloads while providing cost estimates which are more accurate
than those of workload-driven models. As part of this evaluation,
we also provide a new benchmark (beyond JOB), which is necessary
to evaluate cost estimation models more broadly on a variety of
(real-world) databases. We will make this benchmark including
query executions for training cost models publicly available and

hope that it will benefit future research in learned cost estimation
and potentially beyond.

Outline. In Section 2, we give an overview of our approach and
describe the model architecture in more detail in Section 3. We then
derive formal methods to recognize when sufficient training data is
available for the model to generalize in Section 4. Before discussing
the evaluation in Section 6, we describe the design decisions for our
proposed benchmark to evaluate cost models. Finally, we present
related work (Section 7) and conclude in Section 8.

2 OVERVIEW
In this section, we introduce the problem of zero-shot cost estima-
tion and then present an overview of our approach.

2.1 Problem Statement
The overall goal of zero-shot cost estimation is to predict query
latencies (i.e., runtimes) on an unseen database without having
observed any query on this unseen database. Throughout this paper
we use the term database to refer to a particular dataset (i.e., a set
of tables with a given data distribution). Note that the problem of
zero-shot cost estimation is thus in sharp contrast to the problem
addressed by state-of-the-art workload-driven cost models, which
train a model per database. Finally, while we believe that zero-
shot learning for DBMSs is more generally applicable, we restrict
ourselves in this paper to cost estimations for relational DBMSs. In
particular, zero-shot cost models for other types of systems such as
graph-databases or streaming systems are interesting avenues of
future work.

2.2 Our Approach
A key challenge for developing zero-shot cost models is the question
how to design a model that allows to generalize across databases.
Here, we draw inspiration from the way classical cost models in
DBMSs are designed. Typically, these consist of two models: a
database-agnosticmodel to estimate the runtime cost and a database-
dependent model (e.g., histograms) to capture data characteristics.
When predicting the cost of a query, the estimated cardinalities
and other characteristics (i.e., outputs of the database-dependent
models) serve as input to the general database-agnostic cost model,
which captures the general system behavior (e.g., the costs of a
sequential scan grows linearly w.r.t. the number of rows). While
the classical models are lightweight, they often largely under- or
overestimates the true costs of a query since models are too simple
to capture complex interactions in the query plan and data.

Hence, in our approach, we also separate concerns but use a
much richer learned model, which similarly takes data characteris-
tics of the unseen database as input to predict query runtimes in
a database-agnostic manner. As depicted in Figure 2 (upper part),
for training such a zero-shot cost model we provide different query
plans along with the runtime as well as the data characteristics of
the plan (such as tuple width as well as intermediate cardinalities)
to the zero-shot cost model. Once trained, the model can be used on
unseen databases to predict the query runtime as shown in Figure 2
(lower part).

As mentioned before, to predict the runtime of a query plan on a
new (unseen) database, we feed the query plan together with its data
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Figure 2: Overview of Zero-Shot Cost Estimation. The zero-
shot costmodel is trained once using a variety of queries and
databases. At inference time, the model can then provide
cost estimates for an unseen database and queries without
requiring additional training queries. Enabling zero-shot
cost estimation is based on two key ideas: (1) a new trans-
ferable query representation and model architecture is used
to enable cost predictions on unseen databases and (2) we
separate concerns, i.e., a zero-shot model learns a general
database-agnostic cost model, which takes database-specific
characteristics as input.

characteristics into a zero-shot model. While data characteristics
such as the tuple width can be derived from the database catalogs,
other characteristics such as intermediate cardinalities require more
complex techniques. To derive intermediate cardinalities of a query
plan in our approach we thus make use of data-driven learning
[10, 34] that can provide exact estimates on a given database. Note
that this does not contradict our main promise of zero-shot learning
since data-driven models to capture data characteristics can be
learned without queries as training data.

Another core challenge of enabling zero-shot cost models that
can estimate the runtime of a plan given its data characteristics is
how to represent query plans, which serve as input to the model.
While along with workload-driven cost models, particular represen-
tation methods for query plans have already been proposed, those
are not applicable for zero-shot learning. The reason is that the
representations are not transferable across databases. For instance,
literals in filter predicates are provided as input to the model (e.g.,
2021 for the predicate movie.production_year=2021). However,
the selectivity of literals will vary largely per database since the
data distribution will likely be different (e.g., there might not even
exist movies produced in 2021 in the test database).

Hence, as a second technique in this paper, we propose a new
representation for queries that completely relies on features that
can be derived from any database to allow the model to generalize
to unseen databases. For example, predicates for filter operations
in a query are encoded by the general predicate structure (e.g.,
which data types and comparison operators are used in a predicate)
instead of encoding the literals. In addition, data characteristics of
a filter operator (e.g., input and output cardinality to express the
selectivity) are provided as additional input to a zero-shot model.
That way, a zero-shot model can learn the runtime overhead of

a filter operation based on database-agnostic characteristics. We
present details of our query representation in Section 3.

Finally, a last important aspect of zero-shot cost models is that
they can easily be extended to few-shot learning. Hence, instead
of using the zero-shot model out-of-the box (which already can
provide good performance), one can fine-tune the model with only
a few training queries on an unseen database.

2.3 Assumptions and Limitations
While we expect zero-shot cost models to support a variety of
different databases and workloads out-of-the-box, we next discuss
the assumptions for a successful generalization.

In this paper, the main assumption is that we only focus on the
transfer of learned cost models across databases for a single database
system on a fixed hardware. We think that this is already challenging
and allows for many interesting use cases. For instance, with zero-
shot cost models cloud DBMSs (such as Redshift or Snowflake) can
use learned cost models for new customer databases and workloads
with significantly lower training overhead compared to the existing
workload-driven models that require that a model is trained per
new database. While we believe that zero-shot cost models can be
extended to support also the transfer of cost models between differ-
ent hardware setups and DBMSs by adding additional transferable
features, we leave this to future work and assume a fixed hardware
and DBMS in this paper.

Furthermore, while zero-shot cost models can generalize to un-
seen query patterns as we show in our experiments, it is clearly
required that the training queries have a certain coverage, i.e., come
with a diverse set of workloads and databases. For instance, it is a
minimum requirement that every physical operator is observed in
the training data s.t. the model can internalize the overall character-
istics. Moreover, if there are extreme differences between training
and test workloads, we expect the zero-shot model accuracy to
degrade. We discuss how to detect and mitigate such cases by fine-
tuning a zero-shot model in Section 4.

3 ZERO-SHOT COST MODELS
As mentioned in Section 2, a zero-shot cost model (once trained) is
able to predict the runtime of a query on an entirely new database
without retraining. A core building block needed to enable a zero-
shot model is a new representation of queries that can generalize
across databases. In the following, we thus first explain how we
devised such a transferable query representation and then discuss
how inference and training of a zero-shot model that uses this
representation works.

3.1 Query Representation
State-of-the-art workload-driven models [13, 30] for cost estimation
do not use a transferable query representations and can thus only
be used on the database they were trained on. To better understand
why current query representations are not transferable, we first
explain how they typically encode queries.
3.1.1 Query Representation for Workload-Driven Models. At the
core, query representations used for workload-driven approaches
hard-code the model against a single database. For example, column
names (e.g., those used in filter predicates) are typically encoded
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using a one-hot encoding assigning each column present in the data-
base a specific position in a feature vector. For instance, the column
production_year of the IMDB dataset might be encoded using the
vector (0, 1, 0) (assuming that there are only three columns in total).
If the same model should now be used to predict query costs for
the SSB dataset, some columns might not even exist or even worse
they might exist but have very different data distributions or even
a different data type. In fact, non-transferable feature encodings
are not only used for columns but in various places of the query
representation such as encoding table names or literals in filter
predicates.

3.1.2 Query Representation for Zero-Shot Cost Models. Hence, for
zero-shot cost models we require a new query representation that
is transferable across databases. The main idea of the transferable
representation we suggest in this paper is shown in Figure 3. At
the core, a query plan and the involved tables and columns are
represented using a graph where graph nodes use transferable
features 1 (i.e., features that provide meaningful information to
predict runtime on different databases). This representation then
serves as input for the training and inference process of zero-shot
cost models 2 - 4 that we explain in the subsequent sections. In
the following, we discuss the graph encoding of the transferable
featurization in detail.

Graph Encoding of Query Plans. While graph-based represen-
tations have been already used to represent query operators of a
query plan [30], our representation has significant differences. First,
as shown in Figure 3 1 , our representation not only encodes phys-
ical plan operators as nodes (gray) in the graph as in previous work
[30], but it also covers all query plan information more holistically
using different nodes types for input columns (green), tables (blue)
as well as predicate information (red). Second, as discussed before,
previous approaches also covered such information, however, they
used one-hot-encodings (which are non-transferable) while our
representation captures the query complexity in a transferable way.

For instance, to encode filter predicates, different from previ-
ous approaches we encode the predicate structure as nodes (red)
without literals. In particular, we encode information such as data

types of the columns and operators used for comparisons. For ex-
ample, the filter predicate company_type_id=2 for the query 0
in Figure 3, is encoded using a column node (𝑥5) with the compar-
ison node = (𝑥7). As such, a zero-shot cost model provided with
the transferable features (e.g., intermediate cardinalities, which are
given by the data-driven models) can infer the complexity of the
predicates to estimate the query runtime.

Transferable Featurization. While our graph representation al-
lows to flexibly encode query plans across databases, we similarly
have to make sure that the features used to represent nodes in the
graph 1 (e.g., plan operators as shown in gray) are transferable.
In particular, when used on different databases, features should
not encode any implicit information that hinder the transfer of the
model to a new unseen database.

The concrete set of such features used for the different node
types in our graph representation is depicted in Table 1 specifically
for zero-shot cost models on Postgres, which we use as DBMS in
all our experiments. For instance, input column nodes (green) use
features such as the data type or the width in bytes. Similarly, for
tables (blue nodes), we use other transferable features (e.g., the
number of rows as well as the number of pages on disk). However,
note that the general class of features allows cost predictions also
for other single-node DBMSs such as MySQL. The rationale for
selecting these features is to include transferable features that cover
very different aspects aspects regarding the query (e.g., involved
operators, column types in predicates) as well as the data (e.g.,
queried tables, data distribution). As we will show in an ablation
study in the evaluation, each such aspect with the corresponding
individual features improves the cost estimation accuracy.

Importantly, transferable features can either characterize the
query plan (e.g., operator types) or represent the data characteris-
tics (e.g., intermediate cardinalities) and together allow a zero-shot
cost model to generalize to an unseen database. For transferable fea-
tures that represent data characteristics many can be derived from
the metadata of a database (such as the the number of rows of a
table node). However, some other features that represent data char-
acteristics — e.g., the estimated output cardinality of an operator
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Table 1: Zero-Shot Features. All features are transferable and
have the same semantics for different databases.

Node Type/Category Feature Description

Operators/ workers Number of parallel workers
Data Distribution opname Name of physical operator

cardout Estimated output cardinality of operator
width Tuple width
card_prod Estimated product of children output cardi-

nalities
Predicate operator Operator type (e.g., =)

literal_feat Feature capturing literal complexity, e.g.,
number of values for IN operator or regex
complexity

Table relpages Number of pages
reltuples Number of rows

Input Column width Avg. number of bytes to represent a value
correlation Attribute correlation with row number
data_type Data type of column
ndistinct Number of distinct attribute values
null_frac Fraction of NULL values

Output Column aggregation Which aggregation type is used

node — require more involved techniques. In Section 3.4, we discuss
alternatives of how we provide estimated output cardinalities to
zero-shot cost models.

3.2 Inference on Zero-Shot Models
Once a query graph with the transferable features on an unseen
database is constructed for a query plan, it can be used as input for a
(trained) zero-shot cost model to predict the runtime. Predicting the
runtime of a new query plan with a zero-shot cost model is executed
in three steps, which we depict as pseudocode in Algorithm 1: First,
we compute a hidden state for every node of the query graph 2
given the node-wise input features. Second, the information of
different graph nodes is combined using message passing 3 before
a Multi-Layer-Perceptron (MLP) predicts the runtime of the query
plan 4 . The same steps are also reflected in Figure 3 2 to 4 .

In particular, in step 2 , the feature vectors 𝑥𝑣 of each graph
node 𝑣 are encoded using a node-type specific MLP, i.e., nodes
of the same type (e.g., all plan operators) use the same MLP to
initialize their hidden state ℎ𝑣 (line 5). For instance, in Figure 3, the
hidden state ℎ8 of the node representing the sequential scan on the
movie_companies table is obtained by feeding the feature vector
𝑥8 (containing transferable features) into an MLP, which is shared
among all plan operators (gray nodes).

Afterwards, in step 3 , a message passing scheme is applied,
which is prominently used in graph neural networks (GNNs) [6]
to model the interactions between nodes in graphs (i.e., to cap-
ture interactions of query operators in the plan such as effects
of a pipelined query execution). Different from message passing
schemes for general graph encodings, for the message passing in
zero-shot models we can exploit the fact that queries can be rep-
resented as directed acyclic graphs (DAGs) since query-plans are
tree-structured. We thus use a novel bottom-up message passing
scheme through the graph (i.e., in topological ordering) to obtain
an updated hidden state ℎ′𝑣 of a node 𝑣 that contains all information
of the child nodes. During this pass, the updated hidden states ℎ′𝑢 of
the children 𝑢 are combined by summation [35] and concatenated
with the initial hidden state ℎ𝑣 of a node and fed into a node-type-
specific MLP (line 7). For instance, in Figure 3, the updated hidden
state ℎ′8 of the scan node is obtained by summing up the updated
hidden states of the child nodes (representing the table and predi-
cate operator of the scan) concatenated with the initial hidden state

Algorithm 1 Inference on Zero-Shot Models
1: Input: Query graph encoding with nodes 𝑣 and input features 𝑥𝑣
2: Output: Cost estimate 𝑐
3:
4: for 𝑣 ∈ graph encoding do ⊲ Compute hidden state per node 2
5: ℎ𝑣 ← MLP𝑇 (𝑣) (𝑥𝑣)
6: for 𝑣 ∈ in topological ordering do ⊲ Bottom-up pass in graph 3
7: ℎ′𝑣 ←𝑀𝐿𝑃 ′

𝑇 (𝑣)

(∑
𝑢∈children(v) ℎ

′
𝑢 ⊕ ℎ𝑣

)
8: 𝑐 ← 𝑀𝐿𝑃est (ℎ′𝑟 ) ⊲ Estimate costs using root node state 4
9: return 𝑐

(capturing properties of the scan), which is then fed into an MLP,
which is again shared among all plan operators.

Finally, as a result of step 3 the updated hidden state ℎ′𝑟 of
the root node 𝑟 of a query plan captures the properties of the
entire query. For the cost prediction in step 4 , we thus feed this
hidden state into a final estimation MLP to obtain the cost estimate
𝑐 = 𝑀𝐿𝑃est (ℎ𝑟 ) (line 8). Hence, in Figure 3 4 , the updated hidden
state ℎ′13 is fed into the final estimation MLP to obtain the cost
estimate since it captures information of the entire plan.

3.3 Training Zero-Shot Models
As mentioned before, a zero-shot cost model is trained on several
databases and queries to learn the runtime complexity of query
plans given the input features. To be more precise, a zero-shot
cost model is trained in a supervised fashion using pairs (𝑃, 𝑐) that
consists of a plan 𝑃 with the respective features and the actual
runtime cost 𝑐 . Importantly, all steps described in the inference
procedure (node encoding, message passing and finally runtime
estimation) are differentiable, which allows us to train the model
parameters of the MLPs used for all zero-shot model components
jointly in an end-to-end fashion. As loss function to compare the
actual costs 𝑐 of a featurized query plan 𝑃 with the estimated costs
𝑐 , we use the Q-error lossmax( 𝑐

𝑐
, 𝑐𝑐 ) [13, 30] since this worked best

for zero-shot models compared to other alternatives.

3.4 Deriving Data Characteristics
As discussed before, an important aspect of a zero-shot model is
that the model is not tied to a particular data distribution of a single
database. For enabling this, we provide data characteristics such
as column widths in bytes, number of pages and tuples of tables
but also output cardinalities of operators as input to those models.
To be more precise, given a particular query plan for which the
runtime should be estimated, those features have to be annotated
for each graph node in the query encoding.

While the majority of those features can simply be derived from
the database catalog, intermediate cardinalities in a query plan are
notoriously hard to predict and simple statistics are known to be
often imprecise [17]. Hence, learned approaches to tackle cardinal-
ity estimation have been proposed to derive accurate intermediate
cardinalities. While in principle such learned approaches can be
used to predict intermediate cardinalities, which are then used as
input for the zero-shot models, there are important trade-offs when
choosing which techniques are suitable for zero-shot learning. In
the following, we discuss these aspects.
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First, a zero-shot cost model should be able to predict query run-
times on databases that were not seen before without relying on an
observed workload on that database. Since workload-driven models
for cardinality estimation require such queries as training data,
they are not suited for our purpose of predicting cardinalities for
zero-shot models. Second, traditional histogram-based approaches
have the advantage that no additional efforts are required since
the query optimizers anyway have built-in techniques. However,
they are often imprecise. Third, data-driven models are more pre-
cise but also need to be trained. However, the training does not
rely on query executions and is thus usually just in the order of
minutes. Unfortunately, state-of-the-art data-driven cardinality es-
timators do not yet support the same variety of different queries as
traditional approaches.

Hence, we have two options to supply zero-shot cost models
with intermediate cardinalities. First, we can train a data-driven
model, which results in more accurate cardinality as input to a
zero-shot model and thus also cost estimates. However, if the effort
of training a data-driven model for a new database is not acceptable
or the workload is not supported by data-driven learning, we can
fall back to the cardinality estimates of the query optimizer. In our
evaluation, we will demonstrate that zero-shot models can still
produce reasonable estimates even if only cardinalities estimates
from traditional models are available.

4 ROBUSTNESS OF ZERO-SHOT MODELS
An important question for zero-shot models is at which point a
sufficient amount of different training databases (and workloads)
was observed to generalize robustly to unseen databases. As dis-
cussed in Section 2.3, a minimum requirement is to have sufficient
coverage of the training data for the expected queries in the eval-
uation workload. For instance, all operators should be observed
at least once and the number of joins, group by attributes as well
as databases used for pre-training etc. should be representative as
well. However, it is still interesting to provide an estimate of how
precise the zero-shot cost models will be for unseen databases and
what can be done in cases of more severe workload drifts which
we will discuss below.

4.1 Estimating the Generalization Performance
We first formalize the problem, before we derive a method to esti-
mate the generalization error. For training a zero-shot model, we
have observed 𝑛 databases and workloads. In particular, for each of
the databases 𝐷𝑖 we have access to training data 𝑇𝑖 in the form of
query plans and their runtimes𝑇𝑖 = {(𝑃1, 𝑐1), (𝑃2, 𝑐2), . . . (𝑃𝑚, 𝑐𝑚)}.
We are now interested in how accurately the zero-shot cost model𝑍
will predict the runtimes for plans 𝑇 ∗ on some unseen database 𝐷∗.
In particular, if the expected error is acceptable, we have observed
a sufficient amount of databases and workloads. More formally, we
will define some error metric 𝐸 (𝑇𝑖 ) with which we can compare
the true runtimes and model predictions for some database 𝐷𝑖 . An
example for such a metric could be the prominently used median
Q-error. We are now interested in estimating this error metric for
an unseen database 𝐸 (𝑇 ∗), i.e., the expected generalization error.

We now make use of statistical techniques to estimate the gener-
alization error. For instance, in ML it is standard practice to train the

model on a subset of the data and then use the remaining samples
to estimate the error for future unseen datasets. Analogously, we
can train the zero-shot model on a subset of the training databases
𝑇1,𝑇2, . . . ,𝑇𝑖 (i.e., for a subset of databases) and evaluate the trained
model on the remaining databases 𝑇𝑖+1, . . . ,𝑇𝑛 . Similar to cross
validation, we can repeat this procedure with different splits and
average the test errors to estimate the generalization error 𝐸 (𝑇 ∗),
i.e., how accurate the model is expected to be on an unseen data-
base. Interestingly, this is an unbiased estimator of the test error
𝐸 (𝑇 ∗) under the independent identically distributed (i.i.d.) assump-
tion, which we will discuss shortly. Hence, using only the observed
databases and queries, we can estimate how accurate the model
predictions for unseen databases will be.

In order to now evaluate whether the model has observed a
sufficient amount of databases and workloads, we can use two tech-
niques. First, we can simply estimate the generalization error as
described above and stop the training if it is sufficient. However, in
this case we have to decide which generalization error is accept-
able. A second technique (which we actually use in this paper) is to
estimate if additional training databases will improve the general-
ization performance. For this, we train the model on subsets of all
training databases. If the estimated generalization error 𝐸 (𝑇 ∗) does
not improve significantly for a larger number of training databases,
we can conclude that additional databases will not improve the
generalization capabilities of the zero-shot cost model and thus
stop the training data collection.

4.2 Tackling Workload and Data Drifts
The performance of zero-shot cost models will deteriorate if the new
database and workload is significantly different from the training
data. While data drifts can be handled by providing up-to-date
cardinality estimates (from simple or data-driven models) as we
show in our experiments, workload drifts need a more careful
handling. For instance, if there are significantly larger joins in
the unseen database than for the training databases, the zero-shot
model might not be able to predict the runtime with the same high
accuracy. As we will show in our experimental evaluation, however,
zero-shot cost models can often still generalize robustly in practice
and can provide more accurate estimates than other baselines in
case of workload drifts. In addition, we suggest a strategy to detect
cases of workload drifts by monitoring the test error and propose
to tackle workload-drifts using few-shot learning.

Note that in cases of workload drifts the i.i.d. assumption does not
hold and the Q-error on the unseen database is larger than implied
by the generalization error. More technically, the i.i.d. assumption is
a common assumption in ML that requires that the training datasets
and test datasets are independent samples of some distribution D.
Due to a workload drift, the samples are no longer independent and
thus the generalization error 𝐸 (𝑇 ∗) might be increased. A simple
yet effective strategy to recognize those cases is thus to monitor
the error for unseen databases during inference. In cases where the
error exceeds a certain threshold, one could decide to fine-tune the
zero-shot model using the additional observed queries as training
data (resulting in few-shot models). We will demonstrate in the
experimental evaluation that zero-shot cost models fine-tuned on a
small number of additional queries can significantly improve the
accuracy on the unseen database in such cases.
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5 A NEW BENCHMARK
In order to properly train and evaluate cost models, we require
both a diverse set of databases and executed workloads on these
databases. Since currently there is no suitable benchmark with such
properties, we created a new benchmark (that includes existing
benchmarks such as JOB), which we discuss in this section. Fur-
thermore, we will make this benchmark publicly available to foster
future research in this area.

5.1 Design Decisions
For many years, DBMS systems were evaluated using synthetic
benchmarks such as TPC-H [1], TPC-DS [26] or SSB [27]. While
such benchmarks allow to evaluate the general system performance
and scalability, they are in isolation insufficient to evaluate cost
prediction models since the predicted cardinalities of the query op-
timizer are significantly more accurate than in practice. The reason
is that the data is synthetic and thus no interesting correlations
have to be captured making cardinality estimation challenging in
practice. Hence, Leis et al. [17] suggested the JOB-workload on the
IMDB dataset that comes with challenging correlations and has
become the standard method (along with the simplified JOB-light
workload [13]) to evaluate learned cost and cardinality models.

While the IMDB benchmark is useful to evaluate workload-
driven cost estimators that need to work on a single database only,
it cannot be used for the evaluation of zero-shot cost models since
these have to be trained on a variety of different databases. More-
over, even for workload-driven cost estimators a benchmark that
spans a more diverse set of databases would definitively be helpful
to evaluate the prediction quality. Hence, we decided to create a
new benchmark that covers established datasets such as IMDB but
also additional datasets that have other characteristics.

5.2 Datasets
As discussed before, it is insufficient to just add synthetic datasets
since correlations hardly resemble data distributions found in the
real-world. We thus decided to leverage publicly available real-
world datasets [25] together with the datasets used in established
benchmarks such as JOB. Since certain databases were very small in
size, we additionally scaled them to larger sizes to be interesting for
cost estimation (s.t. a sample of queries takes a predefined threshold
of time). In addition to the datasets mentioned before, we also
include data and workloads of existing benchmarks such as SSB
and TPC-H. As these benchmarks rely on synthetic data, this further
increases the variety of data characteristics our benchmark covers
for testing learned cardinality estimators. Overall, the benchmark
comprises of 20 databases that vary largely in the number of tables,
columns and foreign-key relationships.

5.3 Workloads and Traces
Furthermore, for benchmarking learned cost models, workloads
are required for training and testing. To simplify the comparison
with prior work we first include predefined benchmark queries
for databases that come with such workloads (e.g., JOB for IMDB).
However, since for the majority of the databases mentioned before
no workloads are available, we implemented a workload generator
that generates different types of queries. For creating the work-
load, the generator supports three modes: a standard mode where

Select-Project-Aggregate-Join (SPAJ) queries with conjunctive pred-
icates on numeric and categorical columns similar to the ones used
by Kipf et al. [13] are generated, a more complex mode, which in-
cludes predicates involving disjunctions, string comparisons with
regex predicates, IS (NOT) NULL comparisons and IN operators
(resembling the complexity of the JOB-workload) and finally an
index workload where random indexes (both foreign key and for
predicate columns) are created throughout the execution of the
standard workload, which is challenging due to the varying physi-
cal designs. Since the benchmark will be publicly available it can
be easily extended in the future.

In addition to the datasets and the workload generator, the bench-
mark comes with workload traces (e.g., executions of the queries
and their runtime) for all 20 databases that can be used directly by
other researchers as training / testing data (which we also used in
our evaluation). To be more precise, we generated 15, 000 queries
per database and executed those queries on a Postgres DBMS (v12)
on c8220 nodes on the cloudlab platform. Overall, this also al-
lows for a better reproducibility since this platform can be used by
other researchers as well. To limit the already excessive resource
consumption required to produce this trace, we excluded queries
running longer than 30 seconds from the benchmark for all work-
loads. In total, the execution of these more than 300k queries takes
10 days if executed on a single node. As part of the traces, we not
only provide the runtime of the query but also the physical plan
used to run the query along with actual cardinalities.

6 EXPERIMENTAL EVALUATION
In this Section, we evaluate zero-shot cost estimation with a set of
different experiments:
• Exp 1. Zero-Shot Accuracy on Unseen Databases. We
evaluate how accurately zero-shot cost models can predict
costs for unseen databases.
• Exp 2. Zero-Shot vs. Workload-Driven. In addition, we
compare the training overhead and accuracy with state-of-
the-art workload driven approaches.
• Exp 3. Generalization. In this experiment, we study how
our models generalize under workload drifts (i.e., under data-
base updates and larger unseen joins).
• Exp 4. Training and Inference Performance. Further-
more, we evaluate the training and inference performance
of zero-shot cost models and compare training efforts to
workload-driven models.
• Exp 5. Ablation Studies. Finally, we show the effects of
different design alternatives of zero-shot models as well as a
study where we determine how many database are sufficient
for zero-shot cost models to generalize.

For all experiments, we use the traces of the benchmark discussed
before (for training and testing).

6.1 Exp 1: Zero-Shot Accuracy on Unseen
Databases

First, in order to evaluate the accuracy of zero-shot cost models,
we trained a zero-shot model using workloads on 19 out of the 20
datasets of the benchmark as training data and evaluated the model
on the workload of the unseen (remaining) database. In particular,
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Figure 4: Zero-Shot Generalization across Databases. The
zero-shot models are trained using workloads on 19/20
databases and tested on the remaining unseen database.
Overall, zero-shot models are significantly more accurate
than the scaled estimates of the optimizer cost model. In
addition to using workloads as defined by our benchmark
(left), we repeated this experiment with standard bench-
mark workloads (SSB and TPC-H on the right) to further
show the generalization potentials of zero-shot cost models.

we use the trained model to predict the runtimes of the queries
on the unseen database and report the median Q-error. In the first
experiment, we focus on the standard workloads and defer the
results of the complex and index workloads of our benchmark to
follow-up experiments. For this experiment, we ran each setup
three times using different seeds for the cost estimation for every
unseen database.

For showing the performance of zero-shot cost models on unseen
databases, we used two variants of providing intermediate cardinal-
ities - we either used predictions of learned cardinality estimators
or the actual cardinalities, which are not available in practice prior
to execution but serve as an interesting upper baseline for zero-shot
learning (i.e., how accurate the predictions become with perfect
cardinality estimates). For the data-driven cardinality estimator, we
trained DeepDB [10] models, which worked best in preliminary ex-
periments. To the best of our knowledge, we are the first to propose
zero-shot cost estimation and thus no other learned approaches
are included as a direct baseline in this first experiment where we
aim to analyze the accuracy on unseen databases. For instance,
workload-driven approaches would need query executions on the
unseen database, which we do not provide in the zero-shot setting.
However, we compare our approach with workload-driven models
in Section 6.2.

As a sanity check that zero-shot models provide better perfor-
mance than classical cost estimation models that rely on simple
(non-learned) techniques (and as such could also count as zero-shot
cost models), we use cost estimates coming from the Postgres query
optimizer as a baseline similar to previous work [30]. Moreover, for
the distributed setup we later on also employ the cost estimates
of a commercial cloud DBMS. Since Postgres cost estimates are
provided as abstract cost units, we use a simple linear model on
top of Postgres estimates (and hence the results are called Scaled
Optimizer), which provides actual query runtimes. Different from
[30], which directly take the cost units as runtime (in ms), using a
linear model on top results in a much lower Q-error for Postgres.
For training the simple linear model we are using the same training
data from the other 19 databases as for zero-shot models to be fair.

The results can be seen in Figure 4. In general, the zero-shot
models offer robust performances for all of the databases despite
the varying complexity. In fact, all median Q-errors are below 1.54
for the version using DeepDB cardinality estimates (vs. 8.62 in
the worst case for the Scaled Optimizer cost). Finally, we can see
that zero-shot cost models using DeepDB cardinalities are almost
matching the performance with perfect cardinalities. This suggests
that the models can cope with partially inaccurate cardinalities.
Indeed, as we will see in a follow-up experiment, this even holds
when we use potentially inaccurate cardinality estimates coming
from a classical optimizer instead.

Overall, we can see that the zero-shot cost models are signifi-
cantly more accurate than the scaled optimizer estimates outper-
forming these on 18 out of 19 datasets and being on par for the
last remaining dataset (Airline). The reason is that zero-shot cost
models capture subtleties in operator performance and interactions
of operators in the plan more accurately than simplistic cost models.
The results are just on par for the remaining database since the
optimizer costs are relatively accurate because it is merely a star
schema, i.e., a relatively simple schema structure.

To demonstrate that zero-shot cost models also improve the
estimates for workloads of traditional benchmarks, we repeat the
previous experiment with the original benchmark queries of SSB
and TPC-H.2 Again we train on 19 out of 20 datasets (excluding
either SSB or TPC-H) and show the median Q-errors of both the
baseline and our approaches. Note that DeepDB does not support all
operators in TPC-H and thus we use Postgres cardinality estimates
(orange bar in Figure 4) instead. As we can see, the results are
very similar to the results using our new benchmark for zero-shot
cost estimation providing additional evidence that zero-shot cost
estimation can improve the cost estimation accuracy on queries
from standard benchmarks as well.

6.2 Exp 2: Zero-Shot vs. Workload-Driven
In the following, we contrast the performance of zero-shot cost
models with workload-driven approaches.

Training Overhead. An interesting question is howmany training
queries are required for workload-driven learning on an unseen
database to match the performance of zero-shot learning, which
we will study next. In particular, in this experiment we evaluate the
Q-errors for the scale, synthetic, and JOB-light workloads (IMDB).
As before zero-shot models are not trained on IMDB at all (but on
the other 19 databases) while workload-driven models are trained
on a varying number of training queries on IMDB.

For the workload-driven approaches we use the E2E model pro-
posed by Sun and Li [30] as well as the MSCN model by Kipf
et al. [13]. The idea of the E2E models is to featurize the physi-
cal query plans and feed them into a neural model to predict the
runtime. However, in contrast to zero-shot cost models the query
plan representation is not transferable and thus the train and test
databases have to be identical. The MSCN model, which was ini-
tially developed for cardinality estimation uses a more high level
representation and encodes the sets of joins, predicates and tables

2For SSB, we used all queries as-is. For TPC-H, since our current implementation
does not support the subplan operator of Postgres, we rewrote subqueries using joins.
However, we believe that our approach can also be extended to support subqueries.
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Figure 5: Estimation Errors of Workload-Driven Models for
a varying Number of Training Queries compared with Zero-
Shot Cost Models. Even the most accurate workload-driven
model (E2E) requires approximately 50k query executions
on an unseen database for a comparable performance with
zero-shotmodels, which is roughly equivalent to 66 hours of
executed workload. Since zero-shot models do not require
any additional queries it is significantly cheaper to deploy
them for a new database. However, zero-shot models can
be fine-tuned to obtain few-shot models, which further im-
prove the accuracy.
of a query, which are then fed into a neural architecture, which is
thus oblivious of the physical plans used. Both models are trained
on a varying number of training queries, which are generated for
the IMDB dataset similar to the original training setup used by Sun
and Li [30]. Furthermore, as a last baseline, we again employ the
scaled costs of the Postgres query optimizer.

In Figure 5, we depict the median Q-error of comparing our
zero-shot performance to the baselines as discussed before for the
IMDB benchmark workloads for a varying number of training
queries. As we can see the zero-shot cost models can estimate
the runtimes accurately even though queries on the IMDB dataset
were not observed in the training data. In particular, E2E requires
about 50k training queries on the IMDB database to be on-par with
zero-shot cost models. As we can see in the lower right plot in
Figure 5 this amount of queries takes approximately 66 hours to
run, which is a significant effort given that it has to be repeated
for every new database. Another interesting comparison is to use
the training queries also to fine-tune the zero-shot models on the
IMDB database; i.e., we use zero-shot models in the few-shot mode
discussed in the paper. As we can see, few-shot cost models that
are fine-tuned on the IMDB database can further improve the cost
estimation accuracy of zero-shot models. It is thus beneficial to
also leverage fine-tuning in case training queries for the unseen
database are available.

Finally, we can see that the MSCN models are not equally ac-
curate, which is likely due to the fact that they do not consider
the physical plan that was run to execute a given query. Still, all
learned approaches are more accurate than the scaled optimizer
in the median after only a few queries. Furthermore, we can ob-
serve that zero-shot and few-shot cost models not only outperform
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Figure 6: JOB-Full Workload. Zero-shot models are signifi-
cantly more accurate than the workload-drivenmodel (E2E)
and the scaled optimizer estimates even for the complex JOB
benchmark. Again few-shot learning can further improve
the performance of zero-shot models.
workload-driven models in the median but also in the tail perfor-
mance, i.e., on the 95th percentile Q-error. We can observe similar
effects for the maximum Q-error.

Complex Queries. In this experiment, we next focus on the perfor-
mance for complex queries. For this, we again train on 19 datasets
and test on the IMDB database (this time using the complex bench-
mark queries) using the JOB-Full benchmark, which (different from
the other workloads on IMDB) contains also queries with a higher
number of joins and more complex predicates including pattern-
matching queries on strings. Note that data-driven models do not
support complex predicates and we thus resort to the cardinality
estimates of the query optimizer (Postgres) to inform the zero-shot
model. As baselines, we again compare to the scaled optimizer costs
and E2E, which in contrast to MSCN supports complex predicates.
To be fair, we use training queries with complex predicates on
IMDB for the workload-driven models. In addition, we also report
the accuracy of zero-shot models fine-tuned on the IMDB database
using the few-shot learning.

As we can see in Figure 6, again zero-shot models outperform
the other approaches. In particular, even the version using just
optimizer cardinality estimates is more accurate than E2E using
50𝑘 queries, which emphasizes that zero-shot cost models are ro-
bust w.r.t. imprecise cardinality estimates. The E2E models in this
case need 50𝑘 queries just to match the performance of the scaled
optimizer costs, which is inferior to the previous experiment with
a lower query complexity. The reason is that the E2E model has to
learn the data distribution of strings as well and support complex
predicates including wildcards while only observing queries. We
hope that in the future, data-driven models support string predi-
cates and disjunctions as well to be used in conjunction with zero-
shot cost models also for complex queries. Similar to the previous
experiment, few-shot learning can further improve the accuracy.

6.3 Exp 3: Generalization
In this experiment, we investigate how robustly zero-shot cost
models react to changes in the data characteristics and workload.

Generalization to Updates. For the first aspect, we analyze the
effects of updates on the accuracy of cost estimation. For this, we
only train on a fraction of the full data and then update the database
(without retraining the prediction models). After the update of the
database, we then predicted the query runtimes using zero-shot
cost models as well as the other baselines (workload-driven models
and the scaled optimizer). Note, that workload-driven models are
expected to result in inferior performance for a higher fraction
of updates since they cannot capture database updates without
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Figure 8: Zero-shot cost models generalize robustly to larger
Joins. Compared to zero-shot models trained also on larger
joins (Full), the zero-shot models trained only on smaller
joins (Small Joins) have only minor regressions in accuracy.
In addition, fine-tuning the zero-shot cost models on a low
number of additional queries with larger joins (resulting in
few-shot models) further improves the performance.
collecting new training data. This is very different from zero-shot
models that get informed by data-drivenmodels that can thus adjust
to data updates without the need to retrain. In particular, the data-
driven models from DeepDB [10] as well as classical statistics such
as histograms that are compatible with zero-shot cost models are
directly updateable with low overhead and hence can provide also
accurate estimates after the update.

We depicted the results in Figure 7. As we can see, there is al-
most no performance degradation for the zero-shot cost models
with a higher update fraction. Note that we did not retrain the
zero-shot cost models at all to achieve the performance but simply
relied on the ability to generalize to different data characteristics.
In contrast, for workload-driven models we observe a performance
degradation since those models would require additional training
queries on the updated database to be adapted. The reason is that
the models also internalize the data distribution (i.e., table sizes
and correlations) implicitly during the training and can only be in-
formed about changes by observing additional query runtimes. This
is especially problematic for more update-heavy workloads were
frequently additional training queries have to be run to update the
models. Note that the scaled optimizer costs do not experience such
a degradation but are again less accurate than zero-shot models.

Generalization to Workload Drifts. In this experiment, we investi-
gate how zero-shot models react to workload drifts, in particular to
larger joins that appear after training a cost prediction model. To
this end, we trained the zero-shot models using only queries with
up to 2 or 3-way joins on the 19 training datasets and evaluate the
model using 3-way or 4-way joins (or larger) on the IMDB dataset,
respectively. Since we suggest to address workload-drifts using
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Figure 9: Training and Inference and Performance. Even
though zero-shot models generalize across databases they
almost match the inference and training throughput of
the most accurate workload-driven alternative (E2E) and
quickly amortize in terms of required training queries.
few-shot learning, we also introduce variants that are fine-tuned
on a small amount of large joins on the IMDB database. As we can
see in Figure 8, the performance of the model with a training set
constrained to small joins does not degrade heavily compared to
the model that was also trained on larger joins on the remaining 19
datasets (Full) indicating a robust generalization to larger joins. In
addition, few-shot models fine-tuned on a small amount of larger
joins (≈ 50) observed on the IMDB dataset is sufficient to achieve
the same median Q-error. An even larger amount of retraining
queries allows to outperform the original zero-shot model, which
is consistent with previous experiments showing that few-shot
learning further improves the accuracy.

6.4 Exp 4: Efficiency of Training and Inference
In this experiment, we evaluate the efficiency of training and infer-
ence of zero-shot models compared to workload-driven models.

Training Overhead. In a first experiment, we compare the num-
ber of training queries required for zero-shot models as well as
for workload-driven models. Importantly, workload-driven mod-
els need to be trained on every single database while zero-shot
models can (once trained) be applied to many different databases
out-of-the-box. For showing this effect we analyze how many train-
ing queries would be required for supporting a varying number
of unseen databases for which new cost estimates are required
The results are shown in Figure 9a. As we can see since work-
load execution is a one-time effort for zero-shot models (since they
generalize across databases) this quickly amortizes compared to
workload-driven learning since for workload-driven models, we
need to collect training data for every new database.

Training and Inference Throughput. In a second experiment, we
compare the training and inference throughput of zero-shot cost
models with state-of-the-art workload-driven approaches. In this
experiment, we aim to show that zero-shot models are not imposing
higher overhead for training and inference and thus can be used
efficiently in real DBMSs. As we can see in Figure 9b, zero-shot
models achieve a comparable throughput and thus do not impose
higher overhead compared to workload-driven models. As we can
see, the MSCN models achieve higher throughput compared to all
other models (zero-shot and E2E). The reason is that these models
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Figure 10: Ablation Study. Using a flattened representation
of the plans instead of our graph-based encoding yields less
accurate models. Zero-shot models using the cardinality es-
timates of the query optimizer are still reasonably accurate.

0 1 2 3
Median Q-Error

Input/Output Column Features Only

+ Operator/Predicate Features

+ Table Features

+ Data Distribution Features
(All Features)

Figure 11: Feature Ablation Study. All groups of query graph
features used in zero-shot cost models individually improve
the accuracy. Table and data distribution features have the
largest impact since they determine the scan cost and size of
intermediate joins, respectively.
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Figure 12: Zero-Shot Generalization by Number of Training
Databases. Ifweusemore than 15 training databaseswe start
to see diminishing returns in accuracy suggesting that the
variety of databases in the benchmark is sufficient.
featurize the physical query plan resulting in larger graphs com-
pared to MSCN models, which only encode the joins, tables and
predicates in a query. However, this comes at the cost of an inferior
predictive performance as shown before.

6.5 Exp. 5: Ablation Study
In this experiment, we present the results of our ablation study
showing the effects of the different design choices as well as the ef-
ficiency of our estimator to determine howmany different databases
are needed for training a zero-shot model.

Zero-Shot Design Space. We first explore the different design
space options of zero-shot cost estimation. In particular, we focus
on the questions how different cardinality estimation techniques
impact themodel accuracy andwhether our newmodel architecture
using graph encodings is actually required or a simpler architecture
suffices.

To address the latter question, we implemented a different ver-
sion of zero-shot cost estimation that represents a single query plan
as a flat vector (instead of using a graph). In particular, the chosen
representation is similar to Ganapathi et al. [5] that represents a
query plan using a vector where each physical operator corresponds
to two entries in the vector: one that counts how often the operator

appears in the plan and one that sums up the cardinality estimates
for that operator. For instance, if we only had sequential scans and
nested loop joins in the query plans and one plan would scan two
relations of 1M tuples each and join them resulting in 1M tuples, the
vector representing the query plan could be (2, 2𝑀, 1, 1𝑀). Given
this representation, we train a state-of-the-art regression model
[12] to predict the runtime given a vector. Similar to the zero-shot
models, we train on the remaining 19 datasets and evaluate the
performance on the IMDB benchmarks.

As we can see in Figure 10, the flattened version of zero-shot cost
models is significantly less accurate than our proposed transferable
graph-based representation. The reason is that the interactions of
physical operators in the plan can only be modeled approximately
if represented as a vector while our graph-based encoding allows
the neural model to capture such interactions more accurately.
Second, regarding cardinality estimates, we can see that data-driven
cardinality estimates improve the accuracy of zero-shot cost models
compared tomodels using optimizer cardinality estimates. However,
the estimates are still very accurate even if cardinality estimates are
annotated from simple cardinality estimation models that are used
in DBMSs today. This is especially useful for query types that data-
driven models do not support as of today and where the optimizer
cardinality estimates hence serve as a fallback.

Query Graph Featurization. In addition, we also study the impact
of different featurizations of the query graph representations used
by zero-shot cost models. In particular, instead of training zero-shot
cost models using all the features introduced in Table 1, we will
gradually include more groups of features (e.g., all features related
to scanned tables). We then report the median Q-error achievable
with this set of features. As we can see in Figure 11, each group of
features individually improves the performance of the models. The
most significant improvement is due to features characterizing the
tables as well as the data distribution (e.g., cardinalities) as these fea-
tures influence the runtime overhead of a query most significantly.
However, we can conclude that all features are worth incorporating
in zero-shot models as long as they are transferable as described
in Section 3. The rationale is to include as many aspects that could
impact the query runtime as possible in the query representation.

Number of Training Databases. As described in Section 4.1, in
order to assess whether a zero-shot cost model has seen a suffi-
cient number of training databases and workloads, we estimate
the expected generalization error for a varying number of train-
ing databases. The generalization error is estimated by computing
the test error on an unseen holdout database. If the model perfor-
mance plateaus for a certain number of training databases, we can
conclude that the number of training databases is sufficient.

In this experiment, we show how the generalization error de-
velops for a growing number of training databases (i.e., from just
using one up to all 19 databases). For estimating the generalization
error, we use the standard benchmark queries as defined on the
IMDB dataset (i.e., we use the synthetic, scale and JOB-light [13]
workloads). As we can observe in Figure 12, as expected the gener-
alization errors reduce with a growing number of databases. This is
the case because with an increased number of databases the model
can observe a larger variety of different data characteristics and can
thus more robustly predict the runtimes for an unseen database,

2371



i.e., IMDB in this case. Interestingly, we can already achieve a rea-
sonably small generalization error after just five different databases
indicating that a moderate number of databases can be sufficient
for zero-shot learning. Moreover, we clearly observe diminishing
returns between 15 to 19 databases.

We can thus conclude that the number of training datasets from
the benchmark is indeed sufficient to allow a zero-shot model to
generalize robustly to unseen databases from the benchmark and
that further datasets will likely not improve the model performance.

Workload & Data drifts. While zero-shot cost models generalize
to some extent under workload and data drifts as demonstrated in
Section 6.3, there is clearly a point where the evaluation workload
differs too severely from any workload observed at training time
by the model and where the performance will degrade as discussed
Section 2.3. In a final ablation study, we thus want to investigate
further how quickly the performance degrades in such cases and
thus intentionally create evaluation workloads that differ largely
from the training workload (due to significantly more joins, group
by attributes, number of predicates, aggregations or larger dataset
sizes). As we can see in Figure 13, the more different the test data-
base and workload is from the training workload and data, the more
the performance degrades. However, while the zero-shot model can
still predict costs relatively accurately for cases close to training
data examples (e.g., five aggregates instead of one) the performance
degrades as the characteristics are further changed. Moreover, not
all aspects have an equal impact on the accuracy: for example, the
number of joins seems to be the most severe factor, which is ex-
pected, since more joins can result in large intermediate join sizes
the model has not experienced before. Note, that in this experi-
ment we report the results of zero-shot models using cardinality
estimates of the Postgres optimizer but we could observe similar
effects for the other methods as well.

7 RELATEDWORK
Learned Cost Estimation. Closest to our work are workload-

driven approaches for cost estimation. Neural predictions mod-
els [24, 30] have been proposed for cost estimation by featuriz-
ing the physical query plan as a tree. However, the models are
workload-driven and thus require thousands of query executions
for an unseen database. Recently, a framework has been proposed
to efficiently gather this training data [32]. In contrast, zero-shot
learning completely alleviates the need to run a representative
workload for new databases. Moreover, workload-driven models
were extended by improving inference and training performance
[11] and to concurrent query latency prediction [37]. These ideas
are orthogonal and could potentially be applied to zero-shot learn-
ing as well. An alternative to reduce the required training queries
for cost estimation is DBMS fitting [8] where the idea is to model the
operator complexity and adjust this basic model by fitting the pa-
rameters using differentiable programming. However, the operator
complexity has to be modeled explicitly, which can be impossible
for complex queries.

Earlier work proposes to use statistical methods to predict the
costs of queries. For instance, it was proposed to learn models at
a per-operator level [2, 18] to predict the overall query runtime.
However, since interactions of operators cannot be learned and
the models are thus too simplistic, the performance is inferior to
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Figure 13: Accuracy under Workload and Data Drifts. Train-
ing data coverage is shown in green (e.g., the training data
contains 0-5-way joins andwe generalize up to 10-way joins).
While zero-shot cost models generalize reasonably well to
unseen workload and data characteristics, we see an in-
crease in estimation errors for more severe drifts as ex-
pected.

workload-driven approaches [24]. An alternative idea is to repre-
sent query plans as flat vectors [5] to treat cost estimation using
supervised regression, which we have shown to be less accurate
than zero-shot cost estimation (cf. Section 6.1). In addition, it was
suggested to leverage query executions on smaller data samples
[4, 31] or queries sharing common subexpressions [29, 33] for cost
estimation. In both cases, the test workload needs to closely resem-
ble the train workload for the models to be effective.

Learned DBMS components and Design Advisors. Machine learn-
ing has been applied more broadly to optimize DBMS systems by
replacing traditional approaches for tasks such as query optimiza-
tion [14, 21–23] or query scheduling [20, 28]. In addition, it was
applied to knob tuning [36], materialized view selection [7, 19], in-
dex selection [16] or partitioning [9]. Note that all these approaches
are workload-driven since query executions on the test database
are required to train the models.

8 CONCLUSION AND FUTUREWORK
In this paper, we have demonstrated that it is possible to accurately
and robustly predict query runtimes on entirely unseen databases,
i.e., in a zero-shot setting. In addition, fine-tuning the zero-shot
models to obtain few-shot models can further improve the perfor-
mance if training queries are available on the new database. We
enabled this by deriving a transferable representation of queries that
generalizes across databases and a specialized model architecture.

As a future direction, we argue that zero-shot learning even has
a much broader applicability and could be applied to a large set of
learned DBMS components including design advisors etc. Further-
more, we believe that the underlying principles can be applied to
an even broader set of data systems (e.g., data streaming systems).
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