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ABSTRACT
Time series is traditionally treated with two main approaches, i.e.,

the time domain approach and the frequency domain approach.

These approaches must rely on a sliding window so that time-shift

versions of a periodic subsequence can be measured to be similar.

Coupled with the use of a root point-to-point measure, existing

methods often have quadratic time complexity. We offer the third

R domain approach. It begins with an insight that subsequences

in a periodic time series can be treated as sets of independent and

identically distributed (iid) points generated from an unknown

distribution in R. This R domain treatment enables two new possi-

bilities: (a) the similarity between two subsequences can be com-

puted using a distributional measure such as Wasserstein distance

(WD), kernel mean embedding or Isolation Distributional kernel

(IDK); and (b) these distributional measures become non-sliding-

window-based. Together, they offer an alternative that has more

effective similarity measurements and runs significantly faster than

the point-to-point and sliding-window-based measures. Our empir-

ical evaluation shows that IDK and WD are effective distributional

measures for time series; and IDK-based detectors have better de-

tection accuracy than existing sliding-window-based detectors, and

they run faster with linear time complexity.
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1 INTRODUCTION
Time series has been studied for more than one century [15]. It

is traditionally treated with two main approaches, i.e., the time

domain and the frequency domain approaches (see e.g., [31].) The

former views lagged relationships as themost important component
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Table 1: Three types of measures for time series.

Domain/type Example measures

Time ℓ𝑝 -norm, DTW, Lorentzian, Jaccard, Canberra

Frequency Cross-correlation, Wasserstein-Fourier distance

R WD, KME, IDK, Bergman-Divergence

in modeling; and the latter views cycles as the most important

component.

It is therefore of no surprise that, similarity/distance measures,

a core operation in data mining, for time series are in time or fre-

quency domain. Typical measures of time domain are lock-step and

elastic measures (as examined in [22]), which include ℓ𝑝 -norm and

Dynamic Time Warping (DTW) [26]. Cross-correlation measures

(e.g., Shape-based distance (SBD) [21]) and a recent Wasserstein-

Fourier distance (WFD) [3] are examples in frequency domain.

Both types of measures have a long-standing issue of high com-

putational cost, despite recent progress. Euclidean distance is iden-

tified as the fastest among 71 measures in a recent study [22], which

is the typical measure used.

We offer a third approach based on an insight that subsequences

in a time series can be treated as sets of independent and identically

distributed (iid) points generated from an unknown distribution

in R. With this R domain treatment, the similarity between two

subsequences can be computed using a distributional measure such

as Wasserstein distance (WD) [25], kernel mean embedding (KME)

[19] or Isolation Distributional kernel (IDK) [35].

Table 1 shows examples of the three approaches. While a dis-

tributional measure has been used previously in time series (e.g.,

[3, 11]), the time series is represented in the frequency domain

before WD is applied, as in WFD [3]. Time series has never been

measured using the R domain approach, as far as we know.

A possible reason why a distributional measure has not been

widely used is that: These distributional measures often require

a computationally expensive process. Two examples are: (a) WD

[25] requires a process to find an optimal transportation plan to

move from one distribution to another; (b) KME needs to convert a

Gaussian kernel (the root measure) to a finite-dimensional feature

map; and it is a fundamental issue [19]. To compute the similarity

between two subsequences, both WD and KME have a time cost of

at least𝑚2
, where𝑚 is the length of each subsequence.

A recent breakthrough in kernel mean embedding called Isola-

tion Distributional Kernel (IDK) [35] enables each distribution to

be mapped independently into a finite-dimensional point in Hilbert

space; and the similarity between two distributions can then be

computed as the similarity of two points in Hilbert space using a
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dot product. The total cost is𝑚 because the feature mapping costs

𝑚 for each subsequence; and each similarity computation takes

constant time.

The proposed distributional similarity measurement in time se-

ries is unique in two aspects. First, no existing measures in time

series are based on distributional treatments in the R domain, as far

as we know. Second, one measure, i.e., IDK, computes the similarity

between two subsequences via a dot product in Hilbert space, in-

stead of typically using a point-to-point distance function in input

space or in frequency domain.

Our contributions are:

(1) Providing an insight that each subsequence in a periodic

time series can be effectively represented as a set of iid

points in the R domain, generated from an unknown dis-

tribution. This enables a distributional measure to be em-

ployed tomeasure the similarity between two subsequences;

and a simple non-sliding-window method can be used to

extract subsequences from a time series.

(2) With the above insight, examining subsequence similar-

ity measurements using three distributional measures, i.e.,

Wasserstein distance (WD), kernel mean embedding (KME)

and Isolation Distributional kernel (IDK). We show that

IDK is the most effective and efficient measure.

(3) Defining an anomalous subsequence as a rare sample, gen-

erated from a distribution which is different from the one

that generates the majority of the samples in the dataset

(i.e., the periodic time series.)

(4) Endowing existing anomaly detectors with WD, KME and

IDK, we show that IDK-based detectors are the most effec-

tive for anomalous subsequence detection and run faster

with linear time complexity.

The advantages of the proposed distributional treatment over

the traditional treatments are two-fold. First, in terms of similarity

measures, the proposed distributional treatment can better repre-

sent a subsequence in a periodic time series than the traditional

representation because the former can better differentiate (i) a dis-

tribution from its variations (e.g., shortened or lengthened versions)

or its noise-corrupted versions; (ii) dissimilar distributions (e.g., a

different subsequence from those that are the norm in a periodic

time series). Yet, it treats all time-shift versions of a periodic subse-

quence as samples generated from the same distribution, without

additional effort (see the next paragraph).

Second, existing measures in time or frequency domain rely on

a sliding window to generate subsequences in a time series. This is

required in order to identify time-shift subsequences to be similar.

But this has come at a high cost because it has to deal with a total

of 𝑛 −𝑚 + 1 subsequences of length𝑚 in a time series of length

𝑛. In contrast, the proposed distributional treatment only needs to

examine ⌊𝑛/𝑚⌋ subsequences.
In a nutshell, the proposed distributional treatment in the R

domain is more powerful and robust than a measure in either the

time or frequency domain; and it runs faster because it needs to

deal with much fewer subsequences in computing their similarities

in a time series.

When the proposed distributional treatment is applied for anoma-

lous subsequence detection, the IDK-based detectors have the unique

characteristic that only two levels of IDK are applied to perform

the anomaly detection, without learning or additional processes.

This has led to the following advantages:

• IDK-based detectors have linear runtime. In contrast, the

fastest state-of-the-art sliding-window-based detector has

superlinear runtime, and the other distributional detectors

have quadratic runtime.

• IDK-based detectors have overall better detection accuracy

than other contenders.

The rest of the paper is organized as follows. Section 2 describes

the related work in time series. Section 3 provides the insight and

intuitive examples of the proposed distributional treatment. Section

4 presents the assumption and the properties of distributional mea-

sures in R. Section 5 introduces the detectors, endowed with the

three distributional measures (i.e., WD, KME and IDK), to detect

anomalous subsequences. Section 6 gives the experimental results.

Discussion and conclusions are provided in the last two sections.

2 RELATEDWORK
We begin our review from a recent study of measures in time series,

and re-categorize them along the line between time and frequency

domains. As such, the previous categories in [22], i.e., lock-step and

elastic measures are grouped into the time domain measures; and

the cross-correlation measures rely on the Fast Fourier Transform

(FFT) to operate in the frequency domain. There are a total of 63

measures in the time domain; and 4 in the frequency domain [22].

2.1 Issues in Time/Frequency Domain Measures
The use of a point-to-point distance in time domain necessitates

a point-to-point alignment between two subsequences during the

distance measurement. This makes the measurement sensitive to

misalignment between subsequences and between time-shift sub-

sequences that occur in a time series. Significant efforts have been

invested to address the need for a point-to-point alignment and the

resultant high time complexity issue.

Remedies to the misalignment issue include DTW that allows

full flexibility in alignment but high computational cost; and con-

strained DTW (cDTW) [27] allows limited flexibility in alignment

in exchange for reduced computational cost. Current research

has focused on ways to reduce its time complexity via bound-

ing to reduce its search space (e.g., [14, 30, 33]). The latest ver-

sion is said to have reduced to subquadratic time complexity, i.e.,

𝑂 (𝑛2 log log log𝑛/log log𝑛) [8].
Matrix Profile (MP) is a data structure that computes the z-

normalized Euclidean distances between all subsequences that can

be extracted from a time series and their nearest neighbors in the

time series based on a point-to-point distance [7, 41]. A fast imple-

mentation is called STOMP [42].

STOMP first computes a series (profile) of 𝑛 −𝑚 + 1 distances

between a query of length 𝑚 and a time series of length 𝑛 via a

sliding window. A matrix in STOMP records 𝑛 −𝑚 + 1 distances

between 𝑛 −𝑚 + 1 subsequences and their nearest neighbors in the

time series [7, 42].

Shape-based distance (SBD) [21] is a cross-correlation measure

that utilizes an inner product as its root measure. By examining

all possible shifts between two sequences, it is robust to time shift.
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Table 2: Key symbols and notations as used in [36]

𝑥 or 𝑦 A point in 1-dimensional real domain R
∥ 𝑥 − 𝑦 ∥𝑝 ℓ𝑝 -norm of 𝑥 − 𝑦.
𝑌𝑖,𝑚 Periodic subsequence [𝑦1, . . . , 𝑦𝑚]𝑖 of𝑚 points.

P𝑌 Probability distribution that generates the set 𝑌 ⊂ R
K̂𝐼 Isolation Distributional Kernel (IDK)

Φ̂ Feature map or kernel mean map of IDK

g 𝑌 is mapped to a point g = Φ̂(P𝑌 ) in Hilbert space H
Π A set of points {g𝑗 | 𝑗 = 1, . . . , 𝑛} in H , g ∼ PΠ
PΠ A distribution that generates a set Π of points in H

IDK
2

Two levels of IDK associated with Φ̂ & Φ̂2

The convolution of two subsequences is computed as the Inverse

Discrete Fourier Transform (IDFT) of the product of the Discrete

Fourier Transforms (DFT) of the individual subsequences; and the

latter must be computed using a Fast Fourier Transform to get a

speedup. Nevertheless, the overall time cost is still high.

In a nutshell, the use of a point-to-point distance in either time or

frequency domain is the root cause of the potential misalignment

issues and high computational cost. The latter has been a long-

standing issue, despite some progress recently (e.g., DTW reduces

the time complexity from quadratic to subquadratic [8]).

Here we show that, by abandoning the insistence to use a point-

to-point distance in either time or frequency domain, a distribu-

tional treatment on R domain has none of the misalignment issues;

and it is possible to significantly reduce high computational cost.

2.2 Distributional Measures
Table 2 shows the key symbols used in this paper.

Rather than representing a time series in either time or frequency

domain, this paper examines a distributional approach which re-

quires subsequences in a time series to be represented as iid samples

generated from a probability density function (pdf) in R domain.

Then, a distributional measure such as kernel mean embedding

(KME) or Wasserstein distance (WD) can be used to measure simi-

larity between subsequences, as samples of one or more pdfs. We

review KME and WD in this section.

Let 𝑋 and 𝑌 be two nonempty datasets where each point 𝑥 in 𝑋

and𝑌 belongs toX ⊆ R and is drawn from probability distributions

P𝑋 and P𝑌 defined on R, respectively.
Using kernel mean embedding (KME) [19, 32], the estimation

of the distributional kernel K̂ on P𝑋 and P𝑌 , which is based on a

point kernel 𝜅 on points 𝑥,𝑦 ∈ X, is given as:

K̂𝐺 (P𝑋 ,P𝑌 ) =
1

|𝑋 | |𝑌 |
∑︁
𝑥 ∈𝑋

∑︁
𝑦∈𝑌

𝜅 (𝑥,𝑦). (1)

where 𝜅 (𝑥,𝑦) = 𝑒𝑥𝑝 (− ∥𝑥−𝑦 ∥2
2

2𝜎2
), 𝜎 > 0 is Gaussian kernel.

The Wasserstein distance [25] is defined as:

𝑊𝑝 (P𝑋 ,P𝑌 ) =
(

min

𝜆∈Λ(P𝑋 ,P𝑌 )

∫
R×R

∥ 𝑥 − 𝑦 ∥𝑝
2
𝑑𝜆(𝑥,𝑦)

)
1/𝑝

(2)

where Λ(P𝑋 ,P𝑌 ) denotes a collection of all measures on R × R
with marginals P𝑋 and P𝑌 .

WD must optimize a transportation plan from Λ(P𝑋 ,P𝑌 ); and
KME needs a point kernel 𝜅 . Both need a distance measure and cost

𝑚2
, if each of 𝑋 and 𝑌 has𝑚 points.

In the next section, we review a distributional measure which

employs a data dependent kernel called Isolation Kernel [37].

2.3 Isolation Kernel (IK) and IDK
2.3.1 Isolation Kernel. IK is a data dependent kernel that derives

directly from data without learning, and it has no closed-form

expression [37]. It has been shown to improve the task-specific per-

formance of SVM [37] and density-based clustering [24] by simply

replacing the data independent kernel/distance in the algorithms.

In the context of online kernel learning, IK has been shown to

be the most significant factor that enables efficient and effective

large-scale online kernel learning, where it eliminates the limiting

elements of using a data independent kernel [34].

Let 𝐷 ⊂ X ⊆ R be a dataset sampled from an unknown P𝐷 ;

and H𝜓 (𝐷) denote the set of all partitionings 𝐻 that are admissible

from D ⊂ 𝐷 , where each point 𝑧 ∈ D has the equal probability of

being selected from 𝐷 ; and |D| = 𝜓 . Each 𝜃 [𝑧] ∈ 𝐻 isolates a point

𝑧 ∈ D. Let 1(·) be an indicator function.

Definition 1. [24, 37] For any two points 𝑥,𝑦 ∈ R, Isolation
Kernel of 𝑥 and 𝑦 is defined to be the expectation taken over the
probability distribution on all partitionings 𝐻 ∈ H𝜓 (𝐷) that both 𝑥
and 𝑦 fall into the same isolating partition 𝜃 [𝑧] ∈ 𝐻 , where 𝑧 ∈ D ⊂
𝐷 ,𝜓 = |D|:

𝜅𝐼 (𝑥,𝑦 | 𝐷) = EH𝜓 (𝐷) [1(𝑥,𝑦 ∈ 𝜃 | 𝜃 ∈ 𝐻 )]

=
1

𝑡

𝑡∑︁
𝑖=1

1(𝑥,𝑦 ∈ 𝜃 | 𝜃 ∈ 𝐻𝑖 )

=
1

𝑡

𝑡∑︁
𝑖=1

∑︁
𝜃 ∈𝐻𝑖

1(𝑥 ∈ 𝜃 )1(𝑦 ∈ 𝜃 ) (3)

where𝜅𝐼 is constructed using a finite number of partitionings𝐻𝑖 , 𝑖 =

1, . . . , 𝑡 , where each𝐻𝑖 is created using randomly subsampledD𝑖 ⊂
𝐷 ; and 𝜃 is a shorthand for 𝜃 [𝑧].

Definition 2. [35] Feature map of Isolation Kernel. For point
𝑥 ∈ R, the feature mapping Φ : 𝑥 → {0, 1}𝑡×𝜓 of 𝜅𝐼 is a vector
that represents the partitions in all the partitioning 𝐻𝑖 ∈ H𝜓 (𝐷),
𝑖 = 1, . . . , 𝑡 ; where 𝑥 falls into either only one of the𝜓 hyperspheres
or none in each partitioning 𝐻𝑖 .

Re-express Eq 3 using Φ gives:

𝜅𝐼 (𝑥,𝑦 | 𝐷) = 1

𝑡
⟨Φ(𝑥 |𝐷),Φ(𝑦 |𝐷)⟩ (4)

2.3.2 Isolation Distributional Kernel. Based on the same framework

of KME [19], IK has been used as the basis to produce a distributional

kernel which measures the similarity between two distributions

called Isolation Distributional Kernel (IDK) [35]. IDK has since

been applied to point anomaly detection as well as group anomaly

detection [36].

Given the feature map Φ (defined in Definition 2) and Eq 4, the

estimation of KME can be expressed based on the feature map of

Isolation Kernel 𝜅𝐼 (𝑥,𝑦).
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Definition 3. [35] Isolation Distributional Kernel of two distri-
butions P𝑋 and P𝑌 is given as:

K̂𝐼 (P𝑋 ,P𝑌 | 𝐷) =
1

𝑡 |𝑋 | |𝑌 |
∑︁
𝑥 ∈𝑋

∑︁
𝑦∈𝑌

⟨Φ(𝑥 |𝐷),Φ(𝑦 |𝐷)⟩

=
1

𝑡

〈
Φ̂(P𝑋 |𝐷), Φ̂(P𝑌 |𝐷)

〉
(5)

where Φ̂(P𝑋 |𝐷) = 1

|𝑋 |
∑
𝑥 ∈𝑋 Φ(𝑥 |𝐷) is kernel mean map.

IDK [35] and its resultant group anomaly detector called IDK
2

[36] provide the foundation and the tool required in dealing with

anomalous subsequence detection in periodic time series.

We argue that each subsequence in a periodic time series can be

better represented as a set of iid points generated from a distribution

in R than in the time or frequency domain.

On the surface, this appears to be counter-intuitive. We provide

the insight and intuitive examples in the next section.

3 THE INSIGHT AND INTUITIVE EXAMPLES
A strictly stationary time series is defined as follows [31]:

Definition 4. A time series is strictly stationary if a collection of
values {𝑥

1+ℎ, . . . , 𝑥𝑚+ℎ} ⊂ R has the probabilistic behavior which is
identical to any ℎ-time-shift collection. That is P(𝑥1 ≤ 𝑐1, . . . , 𝑥𝑚 ≤
𝑐𝑚) = P(𝑥

1+ℎ ≤ 𝑐1, . . . , 𝑥𝑚+ℎ ≤ 𝑐𝑚) for all points in the time series
and all numbers 𝑐1, . . . , 𝑐𝑚 ; and all time shifts ℎ = 0,±1,±2, . . . .

In simple terms, the stationary property denotes ‘regularity’ [31]

in a time series that is characterized by recurring subsequences of

length𝑚 which have the same joint probability distribution. Note

that the subsequences could recur cyclically as in periodic time

series, or noncyclically as in aperiodic time series. They are normal

subsequences in the context of anomalous subsequence detection.

Let the recurring subsequence be 𝑋ℎ = {𝑥
1+ℎ, . . . , 𝑥𝑚+ℎ}; and

assume that 𝑋ℎ is a set of iid points sampled from pdf P𝑋ℎ
.

This gives rise to the insight that each subsequence of𝑚 points

in a stationary time series has

P𝑋0
= P𝑋ℎ

, ∀ℎ = ±1,±2, . . .
Note that the iid assumption is required only to apply an existing

distribution measure to a time series. It does not alter the time

dependency of adjacent points that has already existed.

In the context of anomalous subsequence detection, the iid as-

sumption is not an issue in a stationary periodic time series if its

normal subsequences are assumed to be generated from P𝑋ℎ
, and

anomalous subsequences are expected to emerge from a variation of

P𝑋ℎ
such that the time dependency between adjacent points is sus-

tained albeit altered; but not from an arbitrary distribution where

there is no time dependency between adjacent points. Examples of

these anomalous subsequences are:

(i) Subsequences with added noise: P𝑋ℎ+N(0,𝜎2) ;
(ii) Shortened/lengthened subsequences: P𝑋 ′

ℎ
, where

𝑋 ′
ℎ
= {𝑥

1+ℎ, · · · , 𝑥𝑚′+ℎ} &𝑚′ ≠𝑚; and

(iii) Subsequence {𝑥
1+ℎ, . . . , 𝑥

′
1
, · · · , 𝑥 ′𝑤 , . . . , 𝑥𝑚+ℎ}, where

𝑋 ′ = {𝑥 ′
1
, · · · , 𝑥 ′𝑤} is generated from P𝑋 ′ ≠ P𝑋ℎ

.

Figure 1 shows an example time series of sine wave and its

displacements of 45 degrees (ℎ = 125) and 180 degrees (ℎ = 500).

Each of the three time series has exactly the same pdf, as shown

Figure 1(d). Figure 1(e) shows the same time series as Figure 1(a),

except with added Gaussian noise. Its pdf, shown in Figure 1(f),

is different from that which generates all time-shift versions of a

noiseless sine wave, shown in Figure 1(d).

(a) 𝑋ℎ, ℎ = 0 (b) 𝑋ℎ , ℎ = 125 (c) 𝑋ℎ , ℎ = 500

(d) P𝑋0
= P𝑋ℎ

(e) 𝑋ℎ + N(0, 𝜎2) (f) P𝑋ℎ+N(0,𝜎2 )

Figure 1: Example sine waves (with𝑚 = 1000) and their pdfs

Table 3: Example time series and example similarity/distance
measurements from IDK, WD, WFD, STOMP and NormA.
The green curve is raised slightly so that it is not completely
overlapped with the red curve, which contains at least one
anomalous subsequence. Example similarity measurements
between (1) two normal subsequences (on the row denoted
as n-n); and (2) one normal subsequence and one anomalous
subsequence (n-a) are also given.

Dataset IDK WD WFD STOMP NormA

✓ ✓ ✓ × ×

n-n 0.8 3 7 12 4

n-a 0.6 18 14 7.5 2.9

✓ ✓ ✓ ✓ ×

n-n 0.9 3 2 11 4.7

n-a 0.7 8 5 13 4.6

✓ ✓ ✓ × ✓

n-n 0.8 11 14 21 4.7

n-a 0.5 17 19 20 4.9

Further examples are provided in Table 3.

The first row in Table 3 shows two periods of noisy sine (normal)

subsequences in green; and one anomalous subsequence without
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noise in red. IDK, WD and WFD measure the anomalous subse-

quence to be less similar to normal subsequence than that between

two normal subsequences. Yet, the reverse is true for both STOMP

and NormA which employ Euclidean distance. This is because the

noiseless (anomalous) subsequence is indeed having shorter dis-

tance to a noisy subsequence than between two noisy (normal)

subsequences, based on the lock-step Euclidean distance.

The second row shows that an anomalous subsequence which

has subtle but clear differences from a normal one. This is an exam-

ple of case (iii) P𝑋 ′ ≠ P𝑋ℎ
, where 𝑋 ′

is a narrow dip in the middle

which does not occur in a normal subsequence. Here, all except

NormA can identify the anomalous subsequence.

The third row shows that an anomalous subsequence which has

clear and small differences from a normal one, but there is another

anomalous subsequence with a peak signal several times larger that

exists in other part of time series (not shown). This is an example

in which a huge-difference anomalous subsequence can have a

negative impact on a measure’s ability to detect small-difference

anomalous subsequences. Here, all except STOMP can identify the

anomalous subsequence.

Note that the illustrations in Figure 1 using pdf are for concep-

tual explanation only. Though a measure such as WD needs a pdf

estimation, not all distributional measures require it. For example,

KME and IDK have no such requirement.

It is interesting to note that a sliding window produces𝑋ℎ , where

ℎ = 0, 1, 2, 3, (𝑛 −𝑚), with a total of 𝑛 −𝑚 + 1 subsequences sig-

nificantly overlapping from one subsequence to the next. With

the insight and the distribution assumption, we show in the next

section that only ⌊𝑛/𝑚⌋ non-overlapping subsequences 𝑋ℎ and 𝑋 ′
ℎ
,

where 𝑋ℎ ∩ 𝑋 ′
ℎ
= ∅, need to be examined since a part subsequence

𝑍ℎ ⊂ 𝑋ℎ is generated from the same P𝑋ℎ
.

Though the stationary property stated in Definition 4 applies to

both periodic and aperiodic time series, we focus on periodic time

series, like many existing works (e.g., [1, 12, 13]). A discussion on

aperiodic time series is provided in Section 7.

4 ASSUMPTION AND PROPERTIES OF
DISTRIBUTIONAL MEASURES

Definition 5. A periodic time series𝑌 is a series of 𝑛 points𝑦 ∈ R
sampled at a fixed time interval, and it has a set of non-overlapping
periodic subsequences: 𝑌𝑖,𝑚, 𝑖 = 1, . . . , 𝑠 , where 𝑠 = ⌊𝑛/𝑚⌋; and each
subsequence 𝑌𝑖,𝑚 = [𝑦1, . . . , 𝑦𝑚]𝑖 of a period consists of consecutive
𝑚 points in the series.

For brevity, we use 𝑌𝑖 to denote 𝑌𝑖,𝑚 hereafter, as𝑚 is the same

for all subsequences.

The assumption of the proposed R domain approach: each
subsequence 𝑌𝑖 in a time series is assumed to be iid points in
R which are generated from an unknown pdf P𝑌𝑖 .

With the above assumption, we can then employ a distributional

measure to compute the similarity between two subsequences 𝑌𝑖
and 𝑌𝑗 to determine whether the two subsequences are generated

from the same distribution (i.e.,P𝑌𝑖 = P𝑌𝑗
) or different distributions

(i.e., P𝑌𝑖 ≠ P𝑌𝑗
).

Definition 6. A distributional similarity measure 𝑓 (P𝑌𝑖 ,P𝑌𝑗
)

for two subsequences 𝑌𝑖 and 𝑌𝑗 has the following properties:

I. 0 ≤ 𝑓 (P𝑌𝑖 ,P𝑌𝑗
) ≤ 1

II. 𝑓 (P𝑌𝑖 ,P𝑌𝑗
) = 𝑓 (P𝑌𝑗

,P𝑌𝑖 )
III. 𝑓 (P𝑌𝑖 ,P𝑌𝑗

) = 1 ⇔ P𝑌𝑖 = P𝑌𝑗

Properties in relation to time series

• Time shift: If 𝑌𝑖 is a time-shift subsequence of 𝑌𝑗 , then

𝑃𝑌𝑖 = 𝑃𝑌𝑗
, i.e., 𝑓 (P𝑌𝑖 ,P𝑌𝑗

) = 1.

• Robust to noise of the same level & sensitive to differ-
ent noise levels: Let𝑌𝑖 and𝑌𝑗 be two normal subsequences

with the same noise level 𝛽 ; and another subsequence 𝑌𝑎
with a noise level 𝛽𝑎 ≠ 𝛽 . Then,

𝑃𝑌𝑖 ≈ 𝑃𝑌𝑗
⇒ 𝑓 (P𝑌𝑖 ,P𝑌𝑗

) ≈ 1.

𝑃𝑌𝑖 ≠ 𝑃𝑌𝑎 ⇒ 𝑓 (P𝑌𝑖 ,P𝑌𝑎 ) ≪ 1.

• Shortened/lengthened subsequences: Let𝑌𝑖 be a normal

subsequence; and 𝑌𝑠 be a shortened (or lengthened) version

of 𝑌𝑖 . Then, 𝑃𝑌𝑖 ≠ 𝑃𝑌𝑠 ⇒ 𝑓 (P𝑌𝑖 ,P𝑌𝑠 ) ≪ 1

• Sensitive to a different subsequence: Let 𝑌𝑎 be a sub-

sequence which is generated from a distribution different

from that which generates the normal subsequence𝑌𝑖 . Then,

𝑃𝑌𝑖 ≠ 𝑃𝑌𝑎 ⇒ 𝑓 (P𝑌𝑖 ,P𝑌𝑎 ) ≪ 1.

5 DISTRIBUTION-BASED DETECTORS
Definition 7. An anomalous subsequence 𝑌𝑎 in a periodic time

series is a subsequence which is rare and is generated from a pdf which
is different from that generating the majority of the subsequences 𝑌𝑖
in the series, i.e., ∀𝑖 𝑃𝑌𝑖 ≠ 𝑃𝑌𝑎 .

The above definition requires a distributional measure to com-

pute the similarity between two subsequences.

We show here that one may use three existing distributional mea-

sures, i.e., IDK, KME andWD, to build distribution-based anomalous

subsequence detectors. The methods based on IDK are described in

Section 5.1, and those based on KME and WD are in Section 5.2.

5.1 Anomalous Subsequence Detection via IDK
IDK [35] has all the properties mentioned in the last section:

𝐾 (P𝑌𝑖 ,P𝑌𝑗
|𝑌 ) = 1

𝑡

〈
Φ̂(P𝑌𝑖 |𝑌 ), Φ̂(P𝑌𝑗

|𝑌 )
〉
,

where the kernel mean map converts a subsequence 𝑌𝑖 to a point

in level-1 Hilbert space, i.e., 𝑔𝑖 = Φ̂(P𝑌𝑖 |𝑌 ).
The set of points Π = {𝑔𝑖 , 𝑖 = 1, . . . , 𝑠}, representing subse-

quences 𝑌𝑖 , 𝑖 = 1, . . . , 𝑠 , can then be used to construct the level-2

IDK 𝐾2 and its kernel mean map Φ̂2 [36].

The similarity between 𝑔𝑖 wrt Π is computed as

𝐾2 (𝛿 (𝑔𝑖 ),PΠ |Π) =
1

𝑡

〈
Φ̂2 (𝛿 (𝑔𝑖 ) |Π), Φ̂2 (PΠ |Π)

〉
where 𝛿 (𝑔) is a Dirac measure of a point 𝑔.

Similarity 𝐾2 (𝛿 (𝑔𝑖 ),PΠ) has values ranging within [0, 1]. Point
anomalies are those 𝑔𝑖 having the lowest similarities.

Point anomalies in level-2 Hilbert space correspond to the anoma-

lous subsequences in the given periodic time series, i.e., they are

detected using level-2 IDK. The entire process is called IDK
2
, and it

is shown in Algorithm 1. It is identical to that used for group anom-

aly detection [36], except line 1 is added to deal with subsequences

in a time series.
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Algorithm 1 IDK
2
for anomalous subsequence detection

Input: time series 𝑌 ; period length𝑚; sample sizes𝜓 of 𝑌 &𝜓2 of

Π for two levels of IK mappings Φ & Φ2, respectively.

Output: A ranked list of periodic subsequences 𝑌𝑖,𝑚, 𝑖 = 1, . . . , 𝑠

in ascending order by similarity score 𝛼𝑖 .

1: 𝑌 → {𝑌𝑖,𝑚, 𝑖 = 1, . . . , 𝑠}, where 𝑠 = ⌊𝑙𝑒𝑛𝑔𝑡ℎ(𝑌 )/𝑚⌋
2: * Map each periodic subsequence in R

to a point in level-1 Hilbert space Φ̂ *

For each 𝑖 = 1, ..., 𝑠, 𝑔𝑖 = Φ̂(P𝑌𝑖,𝑚 |𝑌 )
3: Π = {𝑔𝑖 | 𝑖 = 1, ..., 𝑠}
4: * Compute the similarity of a Φ2 mapped point wrt

the Φ̂2 mapped point of Π in level-2 Hilbert space *

For each 𝑖 = 1, ..., 𝑠, 𝛼𝑖 =
1

𝑡

〈
Φ̂2 (𝛿 (𝑔𝑖 ) |Π), Φ̂2 (PΠ |Π)

〉
5: Sort 𝑌𝑖,𝑚 ⊂ 𝑌 in ascending order by 𝛼𝑖

Table 4: Variants of IDK-based detectors, obtained by simply
replacing 𝛼𝑖 in line 4 in Algorithm 1.

IDK*IK : 𝛼𝑖 =∥ Φ2 (𝑔𝑖 |Π) ∥2
Anomalies are close to the origin in level-2 Hilbert space.

k-IDK : 𝛼𝑖 = kth-max{⟨𝑔𝑖 , 𝑔⟩ | 𝑔 ∈ Π \ {𝑔𝑖 }}
Anomalies have low IDK similarity wrt the kth most similar

neighbor in level-1 Hilbert space.

Note that Φ̂2 (PΠ) can be viewed as a typical periodic subse-

quence summarized from all periodic subsequences in a time series.

Therefore, anomalous and normal periodic subsequences, as de-

tected by IDK
2
, are defined as:

Definition 8. An anomalous (normal) periodic subsequence has
low (high) similarity with respect to the typical periodic subsequence
derived from a periodic time series.

Two variants of IDK-based detectors are provided in Table 4.

k-IDK is equivalent to kNN [16], except that the dot product is

used for similarity measurement, instead of distance calculation.

We create these variants in order to perform an ablation study.

Our proposed use of the distributional treatment is unique in

time series; and the application of IDK in IDK
2
and IDK*IK in time

series is unique because it is not a point-to-point measure based

method in R; but an operation in Hilbert space.

5.2 Anomalous Subsequence Detection Using
KME and WD

KME has previously been incorporated in OCSVM [28] to produce

OCSMM [20] by replacing the Gaussian kernel with KME, as defined

in Eq 1. OCSMM has been used to detect group anomalies [20],

where each group of points is assumed to be generated from an

unknown distribution.

By assuming that each periodic subsequence (as defined in Defi-

nition 5) is generated from an unknown distribution, we can then

use OCSMM to detect anomalous subsequences.

Once the Wasserstein distance (WD) is computed between two

subsequences, it can be used in two ways. First, converting WD to

a kernel such as Laplacian kernel. This was previously used in SVM

to perform graph classification [38]. Here, we use the WD-induced

Laplacian kernel in OCSVM to perform anomalous subsequence

detection. Second, WD is used in a distance-based anomaly detector

such as LOF [2] and kNN [16], by replacing the Euclidean distance.

The above WD is computed in the time domain. When it is

computed in the frequency domain, WFD [3] is produced. Similarly,

the WFD can be converted to Laplacian kernel; and OCSVM is used

as the anomaly detector.

All the above unsupervised detectors are summarized in Table 5.

Three existing detectors, as used in [1], are also listed. Note that

none of the distribution-based detectors we proposed in this section

need sliding-window to generate subsequences from a given dataset,

unlike the existing detectors.

However, although all distribution-based detectors need to deal

with 𝑠 subsequences (instead of 𝑛−𝑚 + 1 subsequences), all four de-
tectors, i.e., OCSMM, OCSVM, kNN and LOF, have 𝑛2 cost because

the detectors or/and WD have high cost.

In contrast, the runtime of each of the three IDK-based detectors

is dominated by the feature mapping at the first level, i.e., 𝑛𝑡𝜓 . The

second level mapping has 𝑠𝑡𝜓2, except k-IDK has 𝑠2 due to the use of

kNN-like operations and it does not have the second level mapping.

Table 5: Measures and time complexities of (i) distribution-
based detectors and (ii) existing detectors which employ a
sliding window. 𝑠 = ⌊𝑛/𝑚⌋, as stated in Definition 5.

Detector Measure Time cost

IDK
2
[36] 2 levels of IDK 𝑛𝑡𝜓 + 𝑠𝑡𝜓2

IDK*IK 1 level of IDK & 1 level of IK 𝑛𝑡𝜓 + 𝑠𝑡𝜓2
k-IDK 1 level of IDK 𝑛𝑡𝜓 + 𝑠2
OCSMM [20] KME using Gaussian kernel 𝑛2

OCSVM [28] WD or WFD → Laplacian kernel 𝑛2

kNN & LOF [2] WD 𝑛2

STOMP [42] Euclidean Distance 𝑛2

NormA [1] Euclidean Distance 𝑛

iForest [17] No explicit distance measure 𝑡 (𝑛 +𝜓 )𝑙𝑜𝑔𝜓

Table 6: Parameter search ranges. All distribution-based de-
tectors have 𝑚 = 𝐿, where 𝐿 is the period length of each
time series, and have two parameters that need to be tuned.
NormA & STOMP have one parameter; iForest has two.

Algorithm Parameter search ranges

IDK
2
,IDK*IK,k-IDK 𝜓,𝜓2 ∈ {2𝑞 |𝑞 = 1, 2, . . . , 7}; 𝑡 = 100

OCSVM,OCSMM 𝜎 ∈ {10𝑖 |𝑖 = −4,−3, . . . , 0, 1}
LOF,kNN,k-IDK 𝑘 ∈ {1, 3, 5, 7, 11, 21, 51, 101, 201, 501, 1001, 2001}
Wasserstein #bin = {10,20,50,100,200}; 𝑝 = 2

NormA,STOMP,iForest,1Line 𝜔 ∈{L, L±50, L±100}
iForest 𝜓 ∈ {2𝑞 |𝑞 = 1, 2, . . . , 11, 12}; 𝑡 = 100

Note that both IDK
2
and IDK*IK cost 𝑂 (𝑛 + 𝑠) only. In contrast,

OCSVM, kNN and LOF cost 𝑂 (𝑛2) in addition to the optimization

process ofWD. STOMP, NormA and iForest need to examine𝑛−𝑚+1
subsequences and have cost ranging from linear to quadratic.

2326



Table 7: Results of eleven detectors for anomalous subsequences in terms of AUC. The lowest two AUCs are underlined. The
dashline is drawn based on the sorted AUC of 1Line: those datasets in which 1Line produces below or above AUC=0.9.

Sliding-window Distribution-based (non-sliding-window)

Dataset Length #Anomalies 1Line STOMP NormA iForest OCSMM OCSVM LOF kNN k-IDK IDK*IK IDK
2

ℓ2 ℓ2 KME WLap WFLap WD WD IDK IDK IDK

GPS_trajectory 17175 2 .6 1 .69 1 .40 .80 1 .90 .80 .96 1 1

Patient_respiration 6500 2 .63 .57 .78 .90 .30 .90 .84 .95 .90 .95 .99 1

TEK 15000 3 .64 .83 .44 .92 .67 1 1 1 1 1 1 1

MBA806 100000 27 .69 .89 .88 .82 .67 .91 .85 .91 .90 .92 .93 .93

noisy_sine 10000 3 .73 .25 .28 .75 .75 .99 1 1 .89 1 1 1

mitdb_100_180 5401 1 .73 .95 .55 .77 .85 1 1 .95 .85 .92 .98 1

MBA820 100000 76 .73 .87 .96 .95 .64 .94 .88 .94 .93 .92 .92 .92

dutch_pwrdemand 35040 6 .76 .98 .97 .97 .72 1 .86 1 .99 1 1 1

mitdbx_108 12992 3 .78 .97 .99 .99 .80 1 .92 .97 .99 .96 .96 .99

ann_gun 11251 5 .86 .98 .99 .99 .99 1 .99 .99 .99 1 1 1

MBA14046 100000 142 .86 .85 .91 .98 .89 .90 .90 .89 .89 .94 .92 .93

ARMA 100000 3 .92 1 1 .59 .60 .70 .66 .90 .57 .99 1 1

stdb_308 5400 1 .92 .75 .81 .75 .92 .92 1 1 .75 .83 .88 .93

MBA803 100000 62 .96 .80 .99 .93 .89 .89 .89 .89 .79 .98 .98 .99

MBA805 100000 133 .97 .69 .94 .97 .89 .90 .91 .87 .89 .92 .91 .91

lstdb_20221_43 3750 1 .98 1 .98 1 1 .90 1 1 .86 1 1 1

lstdb_20321_40 3750 1 1 1 .85 1 .71 .88 .88 .88 .59 1 .99 1

qtdbsele0606 3000 1 1 1 1 1 .65 .95 1 .95 .95 1 1 1

Average Ranking 8.64 7.92 7.08 6.08 9.72 5.89 6.33 5.97 8.31 4.56 4.25 3.25

6 EXPERIMENTS
We aim to answer the following questions:

• Does the proposed R domain distributional treatment pro-

duce an effective measure to compute the similarity be-

tween two subsequences in a periodic time series?

• Does an R domain distributional measure have any advan-

tage over traditional time/frequency domain measures?

To answer the first question, we examine three distributional

measures, i.e., Isolation Distributional Kernel (IDK), Kernel Mean

Embedding (KME) andWasserstein distance (WD). They are used in

the distributional anomaly detectors described in Section 5. Because

of the distributional treatment, a given time series of 𝑛 points is con-

verted into ⌊𝑛/𝑚⌋ subsequences, instead of using sliding-window.

To answer the second question, we compare the distributional

treatments with two current state-of-the-art methods in time series,

STOMP [42] and NormA [1], which employ the Euclidean distance

(ED); and one popular point anomaly detector, iForest [17]. The re-

cent frequency domain measure, i.e., Wasserstein-Fourier-Distance

(WFLap) [3] and Wasserstein distance (WLap) are employed in

OCSVM. Note that STOMP, NormA and iForest require a given

time series of length 𝑛 to be converted into 𝑛 −𝑚 + 1 subsequences

of length𝑚 using sliding-window. We also use a single line (1Line)

of standard library Matlab code [39] to check whether anomalous

subsequences in a dataset can be easily detected.

The parameter search ranges of all algorithms used are given in

Table 6.

For iForest and IDK-based detectors that rely on randomization,

we report the average result of 10 trials on each time series.

The chosen periodic time series have been used in the previous

works on time series anomaly detection [1, 12, 13, 29].

All these time series are stationary according to each of the three

tests, i.e., (a) the Augmented Dickey-Fuller unit root test [5], (b)

DF-GLS test [6] (with the p-value threshold of 0.01 for the first

two tests), and (c) KPSS test [10] with the p-value threshold of 0.1.

These codes are implemented in Python and can be obtained from

https://github.com/bashtage/arch.

Details of the experimental settings are given in the Appendix.

6.1 Result Analysis
Table 7 provides the anomaly detection accuracy in terms of AUC.

The key results are given below.

A direct comparison among the three distributional measures

can be summarized as follows:

• The only difference between kNN_WD and k-IDK is WD

vs IDK. IDK is equal to or better than WD in all but three

datasets. On seven datasets, the gap in AUC is large (> .1

AUC) in favor of IDK. On the three exceptions where WD

is better, the difference is small.

• The three SVM detectors are a direct comparison between

KME and WD in time and frequency domains. KME has

lower AUC on most datasets than WD. The difference be-

tween WD and WFD is small, slightly in favor of WD.

In essence, IDK and WD are better than KME when kNN and

SVM detectors are used. This result is consistent with the previous

result comparing IDK and KME [36].

In terms of detection accuracy, all three IDK-based detectors are

the only detectors that yield the highest or close to the highest
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Figure 2: Friedman-Nemenyi test for the five top-ranked
distribution-based and the three sliding-window-based detec-
tors at significance level 0.1. If two algorithms are connected
by a CD (critical difference) line, then there is no significant
difference between them.

accuracy in every dataset (out of the 18 datasets) used in our exper-

iment. IDK
2
is the only detector that has AUC > 0.9 on all datasets;

and both IDK*IK and k-IDK have only one exception.

The closest contenders are LOF_WD, the two OCSVMs employ-

ing Wasserstein distance and iForest, followed by NormA and-

STOMP. The bottom-ranked are kNN_WD and OCSMM.

In general, IDK*IK is an improvement over k-IDK due to the use

of level-2 Hilbert space; and IDK
2
is an improvement over IDK*IK

due to the use of IDK instead of IK.

The power of an R domain distributional treatment over the

traditional sliding-window time domain treatment is demonstrated

here that the top-ranked detectors are dominated by detectors

which employ IDK or WD.

A Friedman-Nemenyi test [4] in Figure 2 shows that the top-

ranked IDK
2
is the only detector that is significantly better than

STOMP and NormA. The second-ranked IDK*IK is significantly

better than STOMP. No other detectors are significantly better than

STOMP or NormA.

With the datasets shown in Figure 3, we find that:

• NormA has difficulty producing a normal model (that con-

sists of mean vectors of clusters of subsequences) that can

be differentiated from anomalies on some datasets. This

occurs when there are noise and/or anomalies which have

small differences from these mean vectors. Examples are

shown in Figures 3a and 3b.

• STOMP has problems detecting anomalies of similar charac-

teristics that appear more than once in a time series because

of the use 1-NN. An example is MBA805, shown in Figure

3c. None of the other detectors have this issue. Like NormA,

STOMP is also sensitive to noise (see Figure 3a). The effect

of both issues could be reduced significantly by using kNN,

which requires to tune parameter 𝑘 .

Summary: A key determinant of detection accuracy is the similar-

ity measure used. We verified that IDK and Wasserstein distance

are effective in measuring similarity between two subsequences

in a periodic time series, without using sliding windows. A com-

mon characteristic is that they are both effective in dealing with

noisy time series. However, IDK is better than WD in dealing with

shortened/lengthened subsequences.

(a) Noisy_sine

(b) TEK

(c) MBA805

Figure 3: Anomalous and normal subsequences are shown in
orange and black, respectively. STOMP and NormA return
anomaly scores; and IDK2 returns similarity scores.

6.2 Ablation Studies
Here we provide two ablation studies that examine variants of IDK

2
.

These are described in the following two subsections.

Sliding-window variant of IDK2
. To examine the effect of

sliding windows on IDK
2
, we create a sliding-window-based vari-

ant, denoted as s-IDK
2
. The only change required is in step 1 of

Algorithm 1, i.e., to use a sliding window of length𝑚 (instead of

non-overlapping windows) to extract subsequences.

The result shown in the first two columns in Table 8 reveals

that the difference in AUCs, if any, between IDK
2
and s-IDK

2
is

small. Therefore we recommend using IDK
2
in dealingwith periodic

time series because the non-overlapping treatment runs faster as it

produces much fewer subsequences.

Note that, despite the use of a sliding window, the time complex-

ity of s-IDK
2
is still linear, i.e.,𝑂 (𝑛𝑡𝜓 + 𝑠 ′𝑡𝜓2), where 𝑠 ′ = 𝑛 −𝑚 + 1.

Variants that employ Gaussian kernel. To investigate the

effect of using a kernel alternative to IK on IDK-based detectors, we

use Gaussian kernel instead. Three variants are created, denoted

as GDK-IDK, IDK-GDK and GDK
2
. They are created by using the

feature map of Gaussian kernel approximated from the Nyström

method [40] in step 2, step 4, or both steps of Algorithm 1. The

sample size of the Nyström method is set to

√
𝑛 which is also equal

to the number of features. The bandwidth of GDK is searched over

{10𝑚 |𝑚 = −4,−3, ...0, 1}.
The result in the last four columns in Table 8 shows that IDK

2

has the highest anomaly detection accuracy in terms of AUC. GDK
2

and IDK-GDK are not competitive. But the difference between IDK
2
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Table 8: A comparison of Isolation/Gaussian kernel based
detectors for anomalous subsequences in terms of AUC.
s-IDK2 is not ranked as it performs similarly to IDK2.

Dataset s-IDK
2
IDK

2
GDK

2
IDK-GDK GDK-IDK

GPS_trajectory 1 1 .99 .99 1

Patient_respiration 1 1 .81 .84 .99

TEK 1 1 .8 .91 .96

MBA806 .97 .93 .93 .77 .93

noisy_sine .98 1 1 .96 1

mitdb_100_180 .95 1 .93 .92 .99

MBA820 .97 .92 .92 .85 .93

dutch_pwrdemand .99 1 1 .96 1

mitdbx_108 .98 .99 .99 .9 .99

ann_gun 1 1 1 .99 1

MBA14046 .96 .93 .93 .89 .93

ARMA .99 1 1 .98 1

stdb_308 .95 .93 .68 .75 .83

MBA803 .98 .99 .97 .82 .98

MBA805 .95 .91 .9 .85 .9

lstdb_20221_43 1 1 1 .99 1

lstdb_20321_40 1 1 1 .94 .99

qtdbsele0606 1 1 .96 .99 .98

Average Ranking — 1.58 2.67 3.69 2.06

and GDK-IDK is small on all datasets, except std_308. This shows

that representing the distribution of subsequences using GDK (or

KME via Gaussian Kernel) can also lead to good detection accuracy

if IDK is used for anomaly detection. This result again demonstrates

the effectiveness of our distributional treatment using Algorithm 1.

It has been shown previously that IDK is a better point anomaly

detector than GDK [35]. Thus, the main reason for the poor AUCs

of GDK
2
and IDK-GDK is the use of GDK for anomaly detection.

Note that Wasserstein distance (WD) could not be applied in

Algorithm 1 because WD does not produce a feature map.

Table 9: Runtime (in CPU seconds) & ratio of runtime using
10

6 data length and that using 10
3 data length

Data length 10
3

10
6

runtime ratio

OCSMM 0.08 74665 933312

STOMP 0.02 18346 917300

OCSVM_WLap 0.02 11701 585050

LOF_WD 0.02 11499 574950

OCSVM_WFLap 0.06 32529 542150

kNN_WD 0.03 12723 424100

NormA 0.07 813 11614

k-IDK 0.65 637 980

IDK*IK 0.72 628 872

iForest 0.51 375 735

IDK
2

1.06 661 623

6.3 Runtime Comparison
Table 9 provides the actual runtimes and runtime ratios when the

data size increases from 10
3
to 10

6
. All three IDK-based detectors

Figure 4: CPU runtime ratio comparison on the MBA14046
(full) dataset. All detectors use𝑚 = 90.

and iForest have their runtimes increased less than 1000 times.

NormA increased by a factor of 12000, i.e., a superlinear increase.

OCSMM and STOMP have the highest runtime ratio, with close to

a million times increase. OCSVM, LOF, kNN (which employ WD)

and STOMP in the same order.

Note that k-IDK, though using the same kNN algorithm, has lin-

ear time as opposed to quadratic time for kNN_WD. This is because

WD has quadratic runtime. This shows the runtime advantage of

using IDK overWD. The linear time is possible because all pair-wise

comparisons need to be conducted for ⌊𝑛/𝑚⌋ subsequences only
(not 𝑛 −𝑚 + 1 subsequences as required by sliding-window-based

methods such as STOMP).

To avoid overcrowding the graphs, only selected detectors are

shown in the comparison given in Figure 4. Notice that the gap be-

tween IDK-based detectors and all other contenders (except iForest)

widens as the data size increases (at different rates.)

7 DISCUSSION
Recent comparisons with deep learning. A recent paper has

questioned the claims made by deep learning models because many

time series datasets used can be solved with similarly high accu-

racy by using a single line of standard library Matlab code [39]. A

different study also found that a deep learning model performed

significantly poorer than NormA, even it has been given an unfair

advantage of training using normal subsequences only (see [1] for

details).

Do sliding-window-based methods such as STOMP work
without slidingwindows, using non-overlapped subsequences
as in the IDK-based detectors? We have attempted this, and

STOMP’s detection accuracy became much worse. This is not sur-

prising because any sliding-window-based method is sensitive to

misalignment between subsequences without using sliding win-

dows. That is the reason why sliding windows are used in the first

place to identify similar time-shift subsequences.

Can IDK-based detectors identify anomalous subsequences
of which the values are all the same as normal subsequences
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but in different order? An example is to detect ‘21’ as an anomaly

in a time series ‘12-12-12-21-12-12’ of which the period is two digits.

Here the subsequence ‘21’ is abnormal only because the order of the

values in this sequence is not the same as the normal subsequence

‘12’. A simple way to detect such an anomaly using an IDK-based de-

tector is to change the starting step of sliding subsequences. In this

example, starting from the second digit, we get subsequences ‘21’,

‘21’, ‘22’, ‘11’ ‘21’ after slicing. Then a distribution-based method

such as IDK
2
can easily detect the anomalous subsequences ‘22’ and

‘11’, which correspond to the position of anomalies that we want to

detect. In practical applications, we can slice the time series from

different starting points within one period. This is sufficient to get

the required result. As far as we know, only this kind of anomalies

requires such treatment. In the absence of this kind of anomalies, a

single run of IDK
2
with any starting point will do the job.

Further comments on different detectors. It is interesting
to note that Isolation Forest (iForest) [17] with its default setting

performed better than or competitive to many more complicated

time series anomaly detectors that require a mixture of different

algorithms/methods (see Table 4 in [1] for details.) In the context

of point anomaly detection, iForest has been shown to be closely

related to a kernel-based anomaly detector based on IDK; but iForest

is weaker than IDK because of its isolation mechanism and it has

no distributional characterization (see Section 7 in [35] for details.)

IDK*IK is equivalent to using an isolation-based point anomaly

detector such as Isolation Forest [17] and iNNE after the given

dataset has been mapped to level-1 Hilbert space. A close relation-

ship between isolation-based anomaly detection and IDK anomaly

detector has been revealed recently (see Section 7 in [35].)

It is interesting to note that NormA ismotivated to tackle noise by

using a summarized normal model [1]. The paper has verified that

NormA could detect anomalies in a time series corrupted uniformly

with Gaussian noise of the same level. However, we showed that, on

the noisy_sine dataset where normal and anomalous subsequences

have different noise levels, NormA failed to detect the anomalies.

Our result in Table 7 shows that OCSVM working in the time

domain (WLap) may be slightly better than in frequency domain

(WFLap); but the difference is small. A recent work shows thatWFD

is better than Euclidean distance in kNN and logistic classifications

[3]. However, they did not compare time versus frequency domains

using the same Wasserstein distance as we did.

Recall that IDK (used as level 1 of IDK
2
) is reported to be a better

measure than GDK (used as KME in OCSMM) in Section 6, but

they are almost equally well when evaluated using an IDK anomaly

detector in Section 6.2. This shows that IDK, as an anomaly detector,

is able to make full use of the feature map provided by either IDK

and GDK, via a distributional characterization, as shown in step 4

of Algorithm 1.

The key advantage of non-sliding window IDK
2
over sliding-

window methods such as STOMP and NormA is detection accuracy

(results reported in Section 6.1), in addition to the runtime advan-

tage (see Section 6.3). Other non-sliding window methods based

on Wasserstein distance and KME have no clear advantage in both

detection accuracy and runtime.

Issues with WD. Conceptually, WD should be as good as IDK.

Our result uncovers weaknesses in WD which could possibly oc-

cur in optimizing a transportation plan and the granularity of the

histogram representation. IDK, which needs no optimization and

histogram, has no such issues.

Dealing with aperiodic time series showing recurring nor-
mal subsequences. Many existing methods, including the pro-

posed treatment (IDK
2
being a specific implementation), rely on a

time series to be stationary, i.e., having recurring subsequences, in

order to differentiate normal (recurring) subsequences from anoma-

lous ones. These include STOMP and NormA which we have used

in the comparison. In other words, they are applicable to both pe-

riodic as well as aperiodic time series, as long as the time series

is stationary. Note that without establishing stationarity in a time

series, an analysis becomes intractable [23] (page 152).

Thus, the sliding-window variant s-IDK
2
(studied in Section

6.2) can be expected to detect anomalous subsequences which are

dissimilar to the normal subsequences in an aperiodic time series.

Figure 5: An example of aperiodic time series (only a short
interval of the series is shown for clarity). Anomalous and
normal subsequences are shown in orange and black, respec-
tively. s-IDK2 returns a similarity score for each subsequence
of time series; STOMP and NormA return anomaly scores.
The lowest similarity scores of s-IDK2 are highlighted in
green circles; the highest anomaly scores of both STOMP and
NormA are shown in blue circles; and the highest anomaly
scores of NormA only in red circles.

As an example, we create an aperiodic time series of the TEK

dataset with normal subsequences recurring aperiodically as shown

in Figure 5. Here all methods: STOMP and NormA, s-IDK
2
use a

sliding window of length 300.

As shown in the bottom subfigure, s-IDK
2
detects the two anom-

alies (drawn in orange in the top subfigure) by returning the lowest

similarity scores. In contrast, STOMP and NormA produce the high-

est anomaly scores in normal regions only, and fail to detect the

two anomalies.

This example further verifies that s-IDK
2
is more effective in

detecting anomalous subsequences than STOMP and NormA. The

same issues of STOMP and NormA dealing with periodic time series

(stated in Section 6) also exist in aperiodic time series.

Dealing with time series having multiple periodicity. Here
we examine the detection capabilities of IDK

2
, STOMP and NormA

in dealing with a time series having different period lengths at

different intervals. Note that all these methods require to set a

window size which is slightly larger than the largest period that

appears in a time series with multiple periodicity.

To create a time series having multiple periodicity, we concate-

nate two or four time series of single periodicity as shown in Table

10. Note that apart from different shapes of normal patterns, the

period length of each pattern also differs in each time series before

they are concatenated.

2330



Table 10: AUC of IDK2, STOMP and NormA applied to time
series having multiple periodicity.

Dataset IDK
2

STOMP NormA

MBA(803+805) .9 .71 .88

MBA(803+806) .92 .82 .95

MBA(803+820) .92 .81 .95

MBA(803+14046) .96 .83 .77

MBA(805+806) .9 .82 .93

MBA(805+820) .91 .79 .9

MBA(805+14046) .93 .8 .66

MBA(806+820) .88 .89 .95

MBA(806+14046) .91 .88 .8

MBA(820+14046) .94 .86 .7

MBA(803+805+806+820) .89 .82 .92

MBA(803+805+806+14046) .89 .82 .71

MBA(803+805+820+14046) .91 .81 .67

MBA(803+806+820+14046) .91 .87 .73

MBA(805+806+820+14046) .9 .86 .69

Average Ranking 1.4 2.4 2.2

Table 10 shows that IDK
2
has stable and high anomaly detection

accuracy, having at least AUC=0.88 on all fifteen datasets, and it

has the highest average rank (shown in the last row). In contrast,

STOMP and NormA have their lowest AUCs of 0.71 and 0.66, respec-

tively, and have 10 and 8 datasets with AUC ≤ 0.83, respectively.

In summary, the last two experimental results show that

s-IDK
2
deals with aperiodicity, and IDK

2
deals with multiple peri-

odicity a lot better than STOMP and NormA.

Effects of parameter period length𝑚. We evaluate the influ-

ence of input parameter𝑚 on IDK
2
using 3 time series. The result

in Figure 6 shows that the detection accuracy of IDK
2
becomes

stable with a small variation when𝑚 is larger than the (maximal)

period length of each time series.

Figure 6: AUC of IDK2 with different values of𝑚.

8 CONCLUSIONS
This paper shows that the insight of the distributional representa-

tion for subsequences (stated in Section 3) empowers a transfor-

mative treatment for time series. It is a paradigm shift from the

time/frequency domain approaches that have been around for more

than one century [15]. It also shows that the paradigm can use exist-

ing distributional measures and point anomaly detectors to achieve

what would otherwise be impossible in the existing paradigm.

Among the three existing distributional measures, we find that

IDK is the best for periodic time series because it is more effective in

detecting anomalous subsequences that are shortened/lengthened,

generated from a different distribution, and subject to a different

noise level. IDK also runs orders of magnitude faster because it

needs no additional process apart from the feature mapping, unlike

KME (using Gaussian kernel) and Wasserstein distance.

When applied to anomalous subsequence detection, IDK-based

detectors are the first method which can achieve linear runtime in

practice. This is because IDK is so powerful that it does not need

additional learning to accomplish the task with high accuracy. In

contrast, both WD and KME require to use OCSVM or kNN, which

adds to the already high cost of their similarity calculations.

Although we advocate the use of IDK based on our evaluation,

our proposal to use a distributional measure for time series is a

generic one, not tied to IDK. Any distributional measures, existing

or emerge in the future, can be applied to time series based on the

insight revealed in this paper.

We have shown that the proposed distributional treatment works

well for periodic as well as aperiodic time series. Our work opens up

opportunities to use the same distributional treatment (not limited

to IDK) for other data mining tasks in time series. The key to all

these endeavors is to definewhat a subsequence is, to be represented

as a set of iid points, generated from an unknown distribution.
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APPENDIX
The machine used in the experiments has two AMD7742 64-core

CPUs with 1024GB memory.

Subsequences in each time series are preprocessed with z-score

normalization. All final scores output by detectors are normalized

in [0, 1]. For detectors that rely on randomization, we report the

average result of 10 trials on each time series.

[Datasets] Synthetic datasets noisy_sine and ARMA are origi-

nated from a previous work [12]. Real-world datasets include MIT-

BIH Supraventricular Arrhythmia Database (MBA) [9, 18] and other

datasets from various domains have been studied in earlier works

[12, 13, 29].

Some datasets have two versions, e.g., ann_gun and stdb_308;

and each version uses one of the two variables. When either version

produces similar AUC for most detectors, we have chosen to use one

only. Some datasets are trivial, e.g., chfdb_chf0175 and qtdbsel102;

and all detectors have the perfect result (AUC=1), so we do not

show them in Table 7.

We labelled anomalous periods for each time series following the

previous work [12, 13, 29]. Details are given in Table 11. Positions of

anomalies inMBA datasets can be seen in folder "MBA_Annotation".

The period of some datasets varies slightly at different time steps

in the series; but it has no effect on the detection accuracy of all
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Table 11: Locations of anomalous periodic subsequences in
each dataset in terms of index 𝑖 in 𝑌𝑖,𝑚 , where the period
length is𝑚. Other details are in the MBA_Annotation folder
at github.com/IsolationKernel/Codes/tree/main/IDK/TS.

Dataset period length anomalous period index 𝑖

noisy_sine 300 6,11,21,31

ARMA 500 101,102,161

GPS_trajectory 2200 3,6

Patient_respiration 150 7,34

TEK 1000 2,10,13

dutch_pwrdemand 672 1,13,18,19,20,52

ann_gun 150 3,15,16,17,19

mitdb_100_180 250 8

mitdbx_108 370 12,28,29,30,31

stdb_308 400 7

lstdb_20221_43 170 5

lstdb_20321_40 200 5

qtdbsele0606 140 9

MBA803 105

MBA805 100 see details

MBA806 75 in folder:

MBA820 100 MBA_Annotation

MBA14046 90

algorithms. Our algorithmworks well when the subsequence length

is set to be roughly the length of the period.

Brief descriptions of some datasets are given as follows.

dutch_pwrdemand: There are a total of 6 anomalous weeks.

Some papers [1, 12, 13] use this dataset with fewer anomalies be-

cause they treat continuous anomalous weeks as one anomaly.

ann_gun: It has only one anomalous period when it was first

used in Keogh’s work [13], as shown in Figure 7a. Other anomalous

periods in this dataset were later identified [1], and they are shown

in Figure 7b.

Patient_respiration: Like the previous work [12], we use the

subset that begins at 15500 and ends at 22000 from the nprs44

dataset [13]. There are one apparent anomaly and one subtle anom-

aly in this dataset as shown in Figure 8a.

TEK: Following the previous work [12], we also concatenate

dataset TEK14, TEK16 and TEK17 as TEK of length 15000. In Keogh’s

work [13], a total of 4 anomalies are marked. But TEK14 has 2

anomalous snippets belonging to the same period as shown in Fig-

ure 8b. Since we regard each anomaly as an anomalous subsequence

of one complete period, it is treated as one anomalous periodic

subsequence of length 1000. So there are a total of 3 anomalous

subsequences in our annotations of this dataset.

MBA803,MBA805,MBA806,MBA820,MBA14046: These data-
sets are subsets of the full MBA dataset, as used in the previous

work [1].

[Algorithms] The STOMP [42] implementation of MP is used;

NormA is from http://helios.mi.parisdescartes.fr/ themisp/norma/;

IDK-based detectors are our implementations based on [36]; and

WFD is from github.com/GAMES-UChile/Wasserstein-Fourier. Oth-

ers are from scikit-learn.org. All are in Python.

(a) (b)

Figure 7: (a) One anomaly period and (b) additional anoma-
lous periods as identified by [1] in the ann_gun dataset. The
diagrams are extracted from [13] and [1], respectively.

(a) (b)

Figure 8: Anomalies in (a) Patient_respiration; (b) a period
of TEK14. The diagrams are extracted from [13].

As for the 1Line method, we use one of the following five types

of basic vectorized primitive functions in Matlab as an anomaly

score for each sliding window of size 𝜔 :

(i) ±diff(𝑌 ): the difference between the current point and the

previous point. Here 𝜔 = 1.

(ii) ±movmax(𝑌 , 𝝎)
(iii) ±movmin(𝑌 , 𝝎)

(iv) ±movmean(𝑌 , 𝝎)

(v) ±movstd(𝑌 , 𝝎)

where 𝑌 is the time series; and the maximum, minimum, mean or

standard deviation is computed for each window of 𝝎 points.

We run these 5 one-liner on each dataset and report the median

AUC (out of the five values) in Table 7. Low median values indi-

cate that the datasets are hard to detect using the 1Line method;

otherwise, the datasets have anomalies that can be easily detected.

[Measures] The detection accuracy of an anomaly detector is

measured in terms of AUC (Area under ROC curve). As all the

anomaly detectors are unsupervised learners, all models are trained

with the given datasets with no labels. Only after the trained models

have made predictions, the ground truth labels are used to compute

the AUC for each dataset.

Given a periodic time series 𝑌 of length 𝑛 and period length

𝑚, a subsequence 𝑌𝑖,𝑚 of 𝑌 is a subset of contiguous values of

length𝑚, for 𝑖 = 1, . . . , 𝑠 , where 𝑠 = ⌊𝑛/𝑚⌋. A distribution-based

(non-sliding-window) algorithm outputs a score of each periodic

subsequence 𝑌𝑖,𝑚 . Then AUC can be calculated based on scores 𝛼𝑖
for 𝑌𝑖,𝑚 ∀𝑖 = 1, . . . , 𝑠 .

An anomaly detector using the sliding window size 𝜔 produces

a total of 𝑛 − 𝜔 + 1 subsequences from 𝑌 . When calculating AUC,

scores of the sliding subsequences are transformed into periodic

subsequence scores as follows: Let 𝑆 𝑗 be the anomaly score of

subsequence 𝑌𝑗,𝜔 , where 1 ≤ 𝑗 ≤ (𝑛 − 𝜔 + 1). The final score

corresponds to a periodic subsequence 𝑌𝑖,𝑚 is the maximum score

of 𝑆 𝑗 ∀𝑗 such that at least half of 𝑌𝑗,𝜔 is included in 𝑌𝑖,𝑚 .
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