
Effective Community Search over Large Star-Schema
Heterogeneous Information Networks

Yangqin Jiang
The Chinese University of Hong

Kong, Shenzhen
jiangyangqin@cuhk.edu.cn

Yixiang Fang∗

The Chinese University of Hong
Kong, Shenzhen

fangyixiang@cuhk.edu.cn

Chenhao Ma
The University of Hong Kong

chma2@cs.hku.hk

Xin Cao
University of New South Wales

xin.cao@unsw.edu.au

Chunshan Li
Harbin Institute of Technology

lics@hit.edu.cn

ABSTRACT

Community search (CS) enables personalized community discovery

and has found a wide spectrum of emerging applications such as

setting up social events and friend recommendation. While CS has

been extensively studied for conventional homogeneous networks,

the problem for heterogeneous information networks (HINs) has

received attention only recently. However, existing studies suffer

from several limitations, e.g., they either require users to specify a

meta-path or relational constraints, which pose great challenges to

users who are not familiar with HINs. To address these limitations,

in this paper, we systematically study the problem of CS over large

star-schema HINs without asking users to specify these constraints;

that is, given a set 𝑄 of query vertices with the same type, find the

most-likely community from a star-schema HIN containing 𝑄 , in
which all the vertices are with the same type and close relationships.

To capture the close relationships among vertices of the community,

we employ the meta-path-based core model, and maximize the

number of shared meta-paths such that each of them results in a

cohesive core containing 𝑄 . To enable efficient CS, we first develop

online algorithms via exploiting the anti-monotonicity property of

shared meta-paths. We further boost the efficiency by proposing

a novel index and an efficient index-based algorithm with elegant

pruning techniques. Extensive experiments on four real large star-

schema HINs show that our solutions are effective and efficient

for searching communities, and the index-based algorithm is much

faster than the online algorithms.

PVLDB Reference Format:

Yangqin Jiang, Yixiang Fang, Chenhao Ma, Xin Cao, and Chunshan Li.

Effective Community Search over Large Star-Schema Heterogeneous

Information Networks. PVLDB, 15(11): 2307 - 2320, 2022.

doi:10.14778/3551793.3551795

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ZzMeei/CS-StarSchemaHIN.

∗Yixiang Fang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551795

(a) An HIN (b) Schema

Figure 1: An example HIN with a star-schema.

1 INTRODUCTION

Heterogeneous information networks (HINs) are networks with mul-

tiple typed objects and multiple typed links denoting different se-

mantic relations. A representative type of HINs is the star-schema

HIN [39, 42, 45, 55, 62], such as the bibliographic network [39, 45],

IMDB movie network [42, 55], Foursquare check-in network [18],

and patent network [62]. The star-schema often has a base-type and

several attribute-types, serving as the center node and tail nodes

respectively. Correspondingly, the vertices of base-type in the HIN

play the roles of hub vertices and connect vertices of attribute-types.

Figure 1(a) illustrates a star-schema HIN of the DBLP network, de-

scribing the relationships among objects of different types, i.e.,

author (𝐴), paper (𝑃 ), venue (𝑉 ), and topic (𝑇 ), and its schema is

depicted in Figure 1(b), where 𝑃 is the base-type and others are

the attribute-types. In specific, the HIN consists of six authors (i.e.,

𝑎1, · · · , 𝑎6), four papers (i.e., 𝑝1, · · · , 𝑝4), two venues (i.e., 𝑣1 and
𝑣2) and two topics (i.e., 𝑡1 and 𝑡2). The directed lines denote their

semantic relationships. For example, the author 𝑎3 has written a

paper 𝑝2, which mentions the topic 𝑡2, published in the venue 𝑣1.
In this paper, we study the problem of CS over star-schema HINs.

Given a star-schema HIN H and a set of vertices 𝑄 with the same

type, we aim to find a community, or a set of vertices, which are

with the same type of vertices in 𝑄 and have close relationships,

fromH containing𝑄 . The CS over HINs can be used in various real

applications, including event organization, friend recommendation,

and biological data analysis [14, 38]. For example, if a group of

organizers want to hold an academic workshop, they can search

the community with close relationships from the DBLP network,

and then invite its members to join the workshop.

Prior works. Network community retrieval has been studied

for decades. Existing works on community retrieval can be roughly

2307

https://www.acm.org/publications/policies/artifact-review-and-badging-current


classified into community detection (CD) and community search

(CS). Generally, CD algorithms aim to identify all communities for a

graph [19, 32–34, 36, 46–48, 61]. These studies are not “query-based",

i.e., they are not customized for a query request (e.g., a user-specified

query vertex and some parameters). Moreover, for large graphs,

they are often costly to detect all the communities. To tackle these

issues, the query-based CS approaches (e.g., [11, 17, 23, 43]) have

received much interest. While CS has been extensively studied for

homogeneous networks, the problem for HINs [18, 27] has received

attention only recently, and these works often require users to

specify constraints like a meta-path [18] or relational constraints

[27]. This poses great challenges to users, who just realize that

some vertices are in the same community, but not familiar with the

HIN schema or their semantic relationships.

CSSH problem. To overcome the limitations of existing CS on

HINs, in this paper, we propose to find the community containing a

set of query vertices 𝑄 from a star-schema HIN without specifying

constraints above, such that all the vertices of the community are

with the same type and close relationships. We also call it CS over

Star-schema HINs, or CSSH problem. To achieve the goal above,

we face two key questions: (1) How to model the relationships of

vertices with the same type in a community? (2) How to identify

the most-likely community containing 𝑄? For the first question,
the existing work [18] shows that the (𝑘 , P)-core, or the maximal

set of vertices in which each vertex has at least 𝑘 neighbors linked

by the path instances of meta-path P, is effective for modeling

the relationships of vertices with the same type in a community,

because a meta-path with limited length between two vertices well

reveals their specific semantic relationships (e.g., P=(𝐴𝑃𝐴) reveals
the co-authorship between two authors).

The second question is not easy to answer, because there may

exist many meta-paths connecting the query vertices𝑄 and various

combinations of these meta-paths also exist, making it hard to

figure out the proper meta-path(s) that can well explain the hidden

relationships among the query vertices. For example, in Figure 1(a),

let 𝑄={𝑎3, 𝑎4} and 𝑘 = 3 (i.e., each vertex has at least 3 neighbors).

Clearly, authors 𝑎3 and 𝑎4 can be connected via two different meta-

paths P1=(𝐴𝑃𝑉𝑃𝐴) and P2=(𝐴𝑃𝑇𝑃𝐴), and there are two different

communities containing 𝑄 , which are (3, P1)-core and (3, P2)-core,

denoted by C1 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} and C2 = {𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}
respectively. Figure 2 shows the induced homogeneous graphs of

these two communities, where each edge indicates a path instance

of the corresponding meta-path. Since the vertices’ relationships in

each community can be explained by the corresponding meta-path,

it is not easy to claim whether (3, P1)-core or (3, P2)-core is more

likely to contain the query vertices than the other one.

Inspired by existing community retrieval works [12, 31, 59], we

observe that for a set 𝑄 of query vertices, the community with

more shared meta-paths intuitively can better capture the close

relationships among them. In the example above, the vertex set

C3 = {𝑎2, 𝑎3, 𝑎4, 𝑎5} forms a (3, P1)-core and a (3, P2)-core at the

same time, so it is more likely to contain the query vertices than (3,

P1)-core and (3, P2)-core. Thus, it is better to find the community

with themaximum sharedmeta-paths such that each of them results

in a (𝑘 , P)-core containing the query vertices. Nevertheless, simply

maximizing the number of shared meta-paths may not result in

community with close relationships since the semantic meanings

P1

(a) P1 and (3, P1)-core

P2

(b) P2 and (3, P2)-core

Figure 2: Induced homogeneous graphs of two communities.

of different meta-paths have nested relationships. In Figure 1, for

example, consider the meta-paths P = (𝐴𝑃𝐴) and P1 = (𝐴𝑃𝑉𝑃𝐴).
The former implies that two authors have co-authored a paper, and

the latter one shows that two authors have published papers in

the same venue. Obviously, in the DBLP network, if two authors

meet the relationships of P, then they also naturally meet the

relationships ofP1, since two authorswho have co-authored a paper

must have papers published in the same venue. This also implies

that the semantic meanings of P and P1 have nested relationships,

so there is no sense to simply maximize the number of shared

meta-paths for the community containing 𝑄 .
Fortunately, the meta-paths with nested semantic relationships

can be easily detected from the schema of HIN. Therefore, by care-

fully considering the above issues in our CSSH problem formulation,

we aim to find a set of vertices by maximizing the number of shared

meta-paths without nested semantic relationships, such that for each

meta-path P, they form a (𝑘 , P)-core containing 𝑄 . This ensures
that the returned community can well capture the rich semantic

relationships carried by the query vertices.

Our technical contributions. To model the set of (𝑘 , P)-cores

for meta-paths without nested semantic relationships, we propose

a novel concept, called (𝑘 , Ψ)-Non-nested Meta-path Core, or (𝑘 ,
Ψ)-NMC, where Ψ is a set of meta-paths without nested semantic

relationships and for each meta-path P ∈ Ψ, there exists a (𝑘 , P)-

core containing 𝑄 . A naive method of solving our problem is to

enumerate the combinations of all possible meta-paths, then verify

the existence of (𝑘 ,Ψ)-NMC for each combination, and finally return

the (𝑘 , Ψ)-NMC with the maximum size of Ψ. However, this method

needs to verify 2 |X | − 1 possible (𝑘 , Ψ)-NMCs, where X is the set of

all meta-paths linking vertex types of 𝑄 , thus it will be very costly

specially when X is very large.

We observe the anti-monotonicity property, which states that

given a set Ψ of meta-paths, if it results in a (𝑘 , Ψ)-NMC contain-

ing 𝑄 , then for every subset Ψ′ of Ψ, there exists a (𝑘 , Ψ′)-NMC

containing 𝑄 . We use this intuition to propose an online algorithm

by reducing the number of candidates verified. However, this al-

gorithm needs to build many homogeneous graphs induced by

different meta-paths, leading to expensive cost w.r.t. time and space.

We further boost the efficiency by developing a faster online algo-

rithm which tries to save the cost of building homogeneous graphs.

Although the online algorithms perform well on many HINs,

they are still inefficient to process large-scale HINs with compli-

cated schemas.We observe that there is much repeated computation

among different queries, which can be avoided if some prepossess-

ing is made. In light of this, we design a novel index, which stores

2308



the core numbers of vertices w.r.t. different meta-paths and exploits

an efficient compression strategy to reduce the space cost. More-

over, much unnecessary verification of candidates can be pruned by

exploiting our index and the set of vertices for candidate verifica-

tion can also be minimized. Using the techniques above, we design

a fast index-based algorithm with elegant pruning techniques.

In addition, we have performed extensive experiments on four

real large star-schema HINs. We first evaluate the effectiveness of

our CS query by analyzing the returned communities from different

angles and showing a case study. We then thoroughly evaluate the

efficiency of our algorithms, and the experimental results show that

they are efficient to answer the queries. In particular, our index-

based query algorithm is over two orders of magnitude faster than

the basic online query algorithm.

Outline.We formulate our CSSH problem in Section 2. In Sec-

tions 3 and 4, we show online algorithms and index-based algorithm

respectively. We report the experimental results in Section 5. We

review the related works in Section 6 and conclude in Section 7.

2 PROBLEM DEFINITION

2.1 Preliminaries

We first present the basic concepts about HIN. Frequently used

notations are summarized in Table 1.

Definition 1. HIN [26, 45]. An HIN is a directed graph H =
(𝑉 , 𝐸) with a vertex type mapping function𝜓 : 𝑉 → A and an edge

type mapping function 𝜙 : 𝐸 → R, where each vertex 𝑣 ∈ 𝑉 belongs

to a vertex type𝜓 (𝑣) ∈ A, each edge 𝑒 ∈ 𝐸 belongs to an edge type

(also called relation) 𝜙 (𝑒) ∈ R, and |A| + |R| > 2.

Definition 2. HIN schema [26, 45]. Given an HINH = (𝑉 , 𝐸)
with mappings 𝜓 : 𝑉 → A and 𝜙 : 𝐸 → R, its schema 𝑇H is

a directed graph defined over vertex types A and edge types (as

relations) R, i.e., 𝑇H = (A, R).

The HIN schema describes all allowable edge types between

vertex types, where each edge type can denote one-to-one, one-to-

many, or many-to-many relationships. Note that if there is an edge

type 𝑅 from vertex type 𝐴 to vertex type 𝐵, the inverse edge type
𝑅−1 naturally exists from 𝐵 to𝐴. In this paper, we focus on the HIN

with a star-schema, which has a base-type and several attribute-

types, serving as the center node and tail nodes respectively. A

vertex of base-type plays the role of hub vertex in the HIN, as it

connects a set of vertices whose types cover all the attribute-types.

Definition 3. Meta-path [45]. Ameta-path P is a path defined

on an HIN schema 𝑇H = (A, R), and is denoted in the form 𝐴1
𝑅1
→

𝐴2
𝑅2
→ · · ·

𝑅𝐿
→ 𝐴𝐿+1, or (𝐴1𝐴2 · · ·𝐴𝐿+1), where 𝐿 = |P | is the length

of P, 𝐴𝑖 ∈ A, and 𝑅𝑖 ∈ R(1 � 𝑖 � 𝐿).

In the HIN, we call a path 𝑝=𝑎1→𝑎2· · ·→𝑎𝐿+1 between vertices

𝑎1 and 𝑎𝐿+1 a path instance of P, if ∀𝑖 , the vertex 𝑎𝑖 and edge 𝑒𝑖=(𝑎𝑖 ,

𝑎𝑖+1) satisfy 𝜓 (𝑎𝑖 )=𝐴𝑖 and 𝜙 (𝑒𝑖 )=𝑅𝑖 . We call a meta-path P
′
the

reverse meta-path of P, if P
′
is the reverse path of P in 𝑇H , and

denote it by P−1. We say P is symmetric, if it is the same with P−1

[18]. For a symmetric meta-path P = (𝐴1𝐴2 · · ·𝐴𝑛+1 · · ·𝐴2𝐴1), we

use Pℎ𝑎𝑙 𝑓 = (𝐴1𝐴2 · · ·𝐴𝑛+1) to denote the half meta-path of P,

where 𝐿 is the length of P and 𝑛 = 𝐿/2. Note that since we focus

Table 1: Notations and meanings.

Notation Meaning

H = (𝑉 , 𝐸) An HIN with vertex set𝑉 and edge set 𝐸

P A symmetric meta-path defined on the schema of H

HP A homogeneous graph induced by a meta-path P on H

𝑑P (𝑣,B𝑘,P) P-degree, or the number of P-neighbors of 𝑣 in 𝑆

Ψ A set of meta-paths without nested semantic relationships

B𝑘,P A basic (𝑘 , P)-core [18]

(𝑘 , Ψ)-NMC (𝑘 , Ψ)-non-nested meta-path core, abbreviated as Ψ-NMC

𝑄 A set of query vertices

on finding communities of vertices with the same type, all the

meta-paths mentioned in this paper are symmetric.

In line with [18], we say that a vertex 𝑢 is a P-neighbor of a

vertex 𝑣 , if they are connected by an instance of P, and two vertices

𝑢 and 𝑣 are P-connected, if there exists a chain of vertices from𝑢 to 𝑣
such that any two adjacent vertices in the chain are the P-neighbor

of each other. Given a vertex 𝑣 and a set 𝑆 of vertices with the

same type, we define 𝑑P (𝑣, 𝑆), called P-degree, as the number of P-

neighbors of 𝑣 within the set 𝑆 . Based on the concept of P-degree,

Fang et al. [18] introduced the (𝑘 , P)-core model:

Definition 4. (k, P)-core [18]. Given an HINH and an integer

k, a (k, P)-core of H is a maximal set B𝑘,P of P-connected vertices,

s.t. ∀𝑣 ∈ B𝑘,P , 𝑑P (𝑣,B𝑘,P) � 𝑘 , where vertices of B𝑘,P are with the

type linked by P.

Definition 5. Core number. Given an HIN H , a vertex 𝑣 ∈ 𝑉
and a meta-path P, its core number, denoted by 𝑐𝑜𝑟𝑒P [𝑣], is the
largest 𝑘 such that there exists a (𝑘,P)-core, B𝑘,P , containing 𝑣 .

For example, in Figure 1, let 𝑘 = 2 and P = (𝐴𝑃𝐴). Then, we can
find a B2,P = {𝑎1, 𝑎2, 𝑎3}, since each vertex of B2,P has at least 2

P-neighbors in B2,P . Besides, the core numbers of all vertices in

B2,P are 2, since there is no B3,P . We would like to remark that in

[18], Fang et al. introduced two variants of the basic (𝑘 , P)-core

model above, and our solutions can also be extended for them, so

we omit the detailed discussions for lack of space.

For each meta-path P, we can also induce a homogeneous graph

from H , called P-graph, which is denoted by HP . Essentially, the

(𝑘 , P)-core is the set of vertices in a connected 𝑘-core of HP .

Definition 6. P-Graph [54]. Given an HINH and a meta-path

P, the P-graph is a homogeneous graph HP , such that it contains

all the vertices with the type linked by P and for every vertex, it has

an edge linked to each of its P-neighbors.

2.2 Problem Definition

To formulate the community model, we propose the concepts of

nested meta-path and (𝑘 , Ψ)-NMC.

Definition 7. Nested meta-path. Given a star-schema HIN

and a symmetric meta-path P whose half meta-path is Pℎ𝑎𝑙 𝑓 =

(𝐴1𝐴2 · · ·𝐴𝑖 · · ·𝐴 𝑗 ), the nested meta-path of P is a symmetric meta-

path P
′
whose half meta-path is P

′

ℎ𝑎𝑙 𝑓
= (𝐴1𝐴2 · · ·𝐴𝑖 ), where 𝑗 ≥ 𝑖 .

We use P′ � P to denote that P′ is nested in P.

In the star-schema HIN, the nested meta-paths of a meta-path

can be easily detected by traversing its schema network. Besides, in

2309



the star-schema HIN, for any two vertices, if there is a path instance

of P′ between them, then naturally there also exists a path instance

of P between them. This also implies that there exists a nested

relationship between the two cores of two meta-paths with nested

relationships, where the nested core is structurally more compact,

as stated by Lemma 1. Example 1 illustrates this.

Lemma 1. Given a star-schema HINH , a positive integer 𝑘 , two

meta-paths P and P
′
with P

′
� P, if there exists a (𝑘,P′)-core

B𝑘,P′ , then there must exist a (𝑘,P)-core B𝑘,P , s.t. B𝑘,P′ ⊆ B𝑘,P .

Proof. If there exists a B𝑘,P′ , then each vertex 𝑣 of B𝑘,P′ has

at least 𝑘 P′-neighbors, which further implies that it has at least 𝑘
P-neighbors. Hence, there must exist a B𝑘,P , s.t. B𝑘,P′ ⊆ B𝑘,P . �

Example 1. Reconsider the HIN in Figure 1. Since the meta-path

P=(𝐴𝑃𝐴) is a nested meta-path of P2=(𝐴𝑃𝑇𝑃𝐴), the (𝑘 , P)-core

is nested in the (𝑘 , P2)-core. E.g., the (2, P)-core contains vertices

{𝑎1, 𝑎2, 𝑎3} and (2, P2)-core contains vertices {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6},
so the former one is nested in the latter one and it is more compact.

Definition 8. Non-nested meta-path core. Given an HIN H ,

an integer 𝑘 , and a set Ψ of meta-paths without nested meta-paths (i.e.,

∀P,P′ ∈ Ψ, P � P′ and P′ � P), a (𝑘 , Ψ)-Non-nested Meta-path

Core, or (𝑘 , Ψ)-NMC, of H is a maximal set of vertices, such that

∀P ∈ Ψ, the vertices of (𝑘 , Ψ)-NMC form a (𝑘 , P)-core.

Example 2. In Figure 1, let Ψ = {P1,P2} with P1=(𝐴𝑃𝑉𝑃𝐴) and
P2=(𝐴𝑃𝑇𝑃𝐴). Then, there exists a (3, Ψ)-NMC = {𝑎2, 𝑎3, 𝑎4, 𝑎5}, since
these vertices form a (3, P1)-core and also a (3, P2)-core.

Intuitively, if Ψ={P, P′} and P′ � P, then Ψ can be simplified as

Ψ′={P}, since the (𝑘 , Ψ)-NMC is the same with (𝑘 , Ψ′)-NMC. This

also implies that there exists some redundant semantic relationships

in (𝑘 , Ψ)-NMC and thus (𝑘 , Ψ′)-NMC is preferred. Next, we formally

introduce our CSSH problem.

Problem 1. Given a star-schema HINH , a set of query vertices

𝑄 with the same type, and a positive integer 𝑘 , return a (𝑘 , Ψ)-NMC

such that it contains 𝑄 and Ψ satisfies the following properties:

1. Set non-nestedness: There does not exist any (𝑘 , Ψ′)-NMC such

that Ψ′ is formed by nested meta-paths of meta-paths in Ψ;
2. Size maximality: On the premise that Property 1 is satisfied,

the size of Ψ is maximized.

For simplicity, we call the type of vertices𝑄 target type. The first

property ensures that there is no other community whose semantic

relationships carried are nested in the relationships revealed by

meta-paths of Ψ. Intuitively, given two meta-path sets Ψ={P} and

Ψ′={P′} with P′ � P, if both (𝑘 , Ψ)-NMC and (𝑘 , Ψ′)-NMC exist,

then (𝑘 , Ψ′)-NMC should be preferred for modeling the community,

because the nested meta-path is shorter and the corresponding core

is more compact. As pointed out by many recent studies on meta-

paths [18, 45], long meta-paths often indicate weak relationships, so

shorter meta-paths with limited lengths are often more meaningful

and frequently used in practice. In line with these works, we can set

a limited length (e.g., 𝐿=4) for the meta-paths used. And CSSH prob-

lem is fixed-parameter tractable (FPT) with respect to parameter 𝐿.
The proof of the hardness of CSSH problem is in the appendix of

the technical report [28]. The second property guarantees that the

semantic relationships carried by the (𝑘 , Ψ)-NMC are rich. Without

any users’ given meta-paths, by maximizing the number of shared

meta-paths, the semantic relationships among the query vertices

can be well captured.

Example 3. In Figure 1 with P=(𝐴𝑃𝐴), P1=(𝐴𝑃𝑉𝑃𝐴), and P2=

(𝐴𝑃𝑇𝑃𝐴), if𝑄=(𝑎2, 𝑎3) and𝑘=3, then we will return the (3,Ψ)-NMC =
{𝑎2, 𝑎3, 𝑎4, 𝑎5}withΨ={P1,P2}. This is because forP1 andP2, which

are not nested with each other, we have B3,P1
={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} and

B3,P2
={𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}, so we take the intersection of two cores to

maximize the size of Ψ. Similarly, if 𝑄=(𝑎2, 𝑎3) and 𝑘=2, we will
return (2, Ψ)-NMC ={𝑎1, 𝑎2, 𝑎3} with Ψ={P}.

3 ONLINE ALGORITHMS

For simplicity, in the context without ambiguity, we write B𝑘,P and

(𝑘 , Ψ)-NMC as BP and Ψ-NMC, respectively. Recall that the CSSH

problem aims to maximize the number of shared meta-paths that

satisfies the property of non-nestedness. Thus, a straightforward

method to solve this problem performs three steps. First, we gener-

ate the set of all possible meta-paths X, which link the target type

and have the limited length, from the HIN schema, and enumerate

all nonempty subsets of X : Ψ1,Ψ2, · · · ,Ψ2|X|−1. Second, for each

subset Ψ𝑖 (1 � 𝑖 � 2 |X | − 1), we verify the existence of Ψ𝑖 -NMC.

Finally, we output the Ψ𝑖 -NMC, where Ψ𝑖 -NMC satisfies the proper-

ties of set non-nestedness and size maximality. One major drawback

of this method is that we need to verify 2 |X | − 1 possible Ψ𝑖 -NMCs.

For a large set of meta-paths X, the exponential computation cost

renders the method impractical. To improve efficiency, we propose a

novel two-step framework based on the anti-monotonicity property

of the shared meta-paths.

3.1 A Two-Step Framework

We begin with a lemma inspiring the design of our algorithms.

Lemma 2. (Anti-monotonicity) Given a star-schema HINH , a set

of vertices 𝑄 in H , a positive integer 𝑘 , and a set Ψ of meta-paths,

if there exists a Ψ-NMC containing 𝑄 , then for any subset Ψ
′
⊆ Ψ,

there will also exist a Ψ
′
-NMC containing 𝑄 .

Proof. Based on the definition of Ψ-NMC, ∀P ∈ Ψ, vertices
of Ψ-NMC can form a BP in H , s.t. ∀𝑣 ∈ BP , 𝑑P (𝑣,BP) ≥ 𝑘 .
Consider a new meta-path set Ψ

′
⊆ Ψ. For every P ∈ Ψ

′
, we can

easily conclude that P ∈ Ψ and the vertices of Ψ-NMC can form

a BP , s.t. ∀𝑣 ∈ BP , 𝑑P (𝑣,BP) ≥ 𝑘 . Also, note that 𝑄 ⊆ Ψ-NMC.

Therefore, there exists a Ψ
′
-NMC containing vertices in 𝑄 . �

The anti-monotonicity above allows us to stop examining all the

supersets of Ψ, once we have verified that Ψ-NMC does not exist,

thus saving much computational cost. Based on Lemma 2, we begin

with examining the set, S1, of size-1 candidate meta-path sets, each

of which contains a single meta-path in X. We then repeatedly

execute the following two key steps, to retrieve the size-2 (size-

3, · · · ) qualified meta-path subsets, until no qualified meta-path

subsets are found:

• Verification. For each candidate meta-path set Ψ in S𝑐 (ini-

tially 𝑐 = 1), mark Ψ as a qualified set if Ψ-NMC exists.

• Candidate generation. For any two size-𝑐 qualified meta-

path sets which only differ in one meta-path, union them as a

2310



newly expanded candidate with size-(𝑐 + 1), and put it into set S𝑐+1,
if all its subsets are qualified, by Lemma 2.

Based on the above discussions, we present our two-step frame-

work in Algorithm 1. We first invoke GenMetaPaths on the HIN

schema 𝑇H to get all the eligible meta-paths X with limited length

𝐿 (line 1), and the details of GenMetaPaths are in the technical

report [28]. Then, we initialize an integer 𝑐=1 and a hash map M𝑐

to store the corresponding community of every Ψ (line 2). S𝑐 is

initialized, in which each meta-path set contains a meta-path in X

(line 3). Next, the two key steps, verification and candidate gen-

eration, are repeated iteratively until we obtain the community

(lines 4-10). In each iteration, we first verify each candidate meta-

path set Ψ in S𝑐 sequentially (lines 5-8). The verification can be

completed by computing the Ψ-NMC (line 6), and we will elaborate

its algorithms extensively later. If there exists a valid community,

we put the community to the hash map M𝑐 (line 7); otherwise, we

will remove Ψ from S𝑐 since it is an invalid candidate (line 8). After

all candidates in S𝑐 are examined, we use GenCan to generate new

size-(𝑐 + 1) sets of meta-paths w.r.t. S𝑐 (line 9). GenCan generates
new candidates by combining two size-𝑐 qualified meta-path sets

as a new size-(𝑐 + 1) candidate via Lemma 2, and its details are in

our technical report [28]. Afterward, 𝑐 is increased by 1. The whole

loop will stop when there does not exist any valid meta-path set

(line 11). Finally, for every valid meta-path set with size 𝑐–1, we
simply get the corresponding community from M𝑐−1 (lines 12-14).

Algorithm 1: Our two-step framework

Input: H,𝑄 , 𝑘 , 𝐿
Output: Ψ-NMC with the maximum |Ψ |

1 X ← GenMetaPaths(𝑇H , target type, 𝐿);

2 initialize 𝑐 ← 1, M𝑐 ← ∅;

3 initialize S𝑐 ← {{P} |P ∈ X};

4 repeat

5 foreach Ψ ∈ S𝑐 do

6 Ψ-NMC ← compute the Ψ-NMC containing𝑄 from H;

7 if Ψ-NMC exists then M𝑐 .put(Ψ, Ψ-NMC) ;

8 else S𝑐 .remove(Ψ) ;

9 S𝑐+1 ← GenCan(S𝑐 );

10 𝑐 ← 𝑐+1;

11 until S𝑐 = ∅;

12 foreach Ψ-NMC in M𝑐−1 do

13 if Ψ satisfies property of set non-nestedness then

14 output Ψ-NMC;

Lemma 3. Algorithm 1 takes 𝑂 (
∑𝑐
𝑖=1

∑ |M𝑖 |
𝑗=1 Δ 𝑗 ) time, where 𝑐

denotes the max size of Ψ, M𝑖 denotes the hash map that stores

the corresponding community of every Ψ and Δ 𝑗 denotes the time

cost of Ψ-NMC computation, s.t. HomNMC (Algorithm 2) or FastNMC
(Algorithm 3).

Proof. In Algorithm 1, it needs
∑𝑐
𝑖=1 |M𝑖 | times of Ψ-NMC

computation. Hence, Lemma 3 holds. �

Example 4. Consider the HIN in Figure 1 and let 𝑄=(𝑎3, 𝑎4), 𝑘=3.
In Algorithm 1, we first use GenMetaPaths to generate all meta-

paths X = {𝐴𝑃𝐴,𝐴𝑃𝑇𝑃𝐴,𝐴𝑃𝑉𝑃𝐴} (assume 𝐿=4). Then we initialize

S1 with the size-1 candidates (i.e., Ψ0 = {𝐴𝑃𝐴}, Ψ1 = {𝐴𝑃𝑉𝑃𝐴},

Ψ2 = {𝐴𝑃𝑇𝑃𝐴}) and ∀Ψ ∈ S1, verify if Ψ-NMC exists. Clearly,

there are two Ψ-NMCs, i.e., Ψ1-NMC = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) and Ψ2-
NMC = (𝑎2, 𝑎3, 𝑎4, 𝑎5). After verifying all size-1 candidate sets, we use
GenCan to generate size-2 candidates and we have a candidate Ψ3 =
{𝐴𝑃𝑉𝑃𝐴,𝐴𝑃𝑇𝑃𝐴}. Since GenCan cannot generate size-3 candidates
and Ψ3 satisfies the properties of non-nestedness and maximality,

Ψ3-NMC will be returned as the community.

In our two-step framework, a key issue is how to efficiently verify

the existence of Ψ-NMC for each meta-path set Ψ, i.e., line 5 of

Algorithm 1. To tackle this issue, we first develop a naive algorithm

and then a fast algorithm in the following two subsections.

3.2 A Naive Algorithm to Compute Ψ-NMC

Here, we give a naive algorithm to compute the Ψ-NMC consists

of two steps. First, we derive a P𝑖 -graph HP𝑖
from H for each

P𝑖 ∈ Ψ, so we get a set of homogeneous graphs {HP𝑖
|1 ≤ 𝑖 ≤ |Ψ|},

which contain all the vertices with target type but have different

sets of edges. Second, we compute the 𝑘-cores simultaneously on

all homogeneous graphs by keeping peeling the vertices whose

degrees are less than 𝑘 in any P-graph, until all the vertices have

at least 𝑘 neighbors in each graph. We call this algorithm HomNMC.
Algorithm 2 presents the details of HomNMC. Given Ψ, we first

compute the set of induced homogeneous graphs {HP𝑖
|1 ≤ 𝑖 ≤

|Ψ|}, w.r.t. the meta-paths in Ψ (lines 2-3). Then, we assign𝑉 as the

intersection of each connected component containing 𝑄 in each

P-graph (line 5). Next, we keep peeling the vertex from 𝑉 if its

degree in any P-graph is less than 𝑘 (lines 6-7). We repeat the above

process until 𝑉 only contains one connected component (lines 4-8).

Finally, we return 𝑉 as the Ψ-NMC (line 9).

Algorithm 2: HomNMC (naive algorithm to get Ψ-NMC)

1 Function HomNMC(H,𝑄 , 𝑘 , Ψ):
2 foreach P𝑖 ∈ Ψ do

3 HP𝑖 ← compute the P𝑖 -graph from H;

4 repeat

5 𝑉 ←
⋂

P𝑖 ∈Ψ connected component in HP𝑖 containing𝑄 ;

6 while ∃𝑢 ∈ 𝑉 , P𝑖 ∈ Ψ, 𝑑P𝑖 (𝑢,𝑉 ) < 𝑘 do

7 remove 𝑢 from𝑉 and all P𝑖 -graphs;

8 until𝑉 is connected on all P𝑖 -graphs;

9 return𝑉 ;

Lemma 4. Algorithm 2 takes𝑂 (((𝑐 +1) ·𝑚+𝑐 ·𝑛1) · |Ψ| +
∑ |Ψ |
𝑖=1 (𝑛1 ·

𝑏1,2+𝑛1
∑𝐿
𝑖=2 𝑛𝑖 ·𝑏𝑖,𝑖+1)) time, where𝑚 denotes the maximum number

of edges in allHP𝑖
(P𝑖 ∈ Ψ), 𝑐 is the number of iterations in the loop,

𝑛𝑖 denotes the number of vertices with 𝑖-th vertex type in P and 𝑏𝑖,𝑖+1
denotes the maximum number of vertices with (𝑖+1)-th vertex type

that are connected to a vertex with 𝑖-th vertex type in P.

Proof. In the worst case, we need to remove all vertices with

the target type which takes 𝑂 (𝑚 · |Ψ|) time. In every loop, for all

HP𝑖
(P𝑖 ∈ Ψ), it takes 𝑂 (𝑛1 · |Ψ|) time to compute the degree of

each vertex and it takes 𝑂 (𝑚 · |Ψ|) time to compute a connected

component. Apart from this, at the beginning of the algorithm, it

takes𝑂 (
∑ |Ψ |
𝑖=1 (𝑛1 ·𝑏1,2+𝑛1

∑𝐿
𝑖=2 𝑛𝑖 ·𝑏𝑖,𝑖+1)) time to compute allHP𝑖

(P𝑖 ∈ Ψ). Hence, Lemma 4 holds. �

2311



3.3 A Fast Algorithm to Compute Ψ-NMC

Although the time complexity of HomNMC is almost linear to the size

of all homogeneous graphs {HP𝑖
}, it is still very costly because

building these homogeneous graphs involves much time and space

cost, dominating the overall cost. To improve the efficiency, we

optimize HomNMC from the following two observations:

(1) We observe that given previously computed Ψ-NMCs with

|Ψ|=𝑐 , we can quickly compute Ψ′-NMCs with |Ψ′|=𝑐+1.
(2) Inspired by an algorithm of computing (𝑘,P)-core [18], we

observe that it is unnecessary to find all the P-neighbors

for each vertex with target type, as we only need to know

whether a vertex has 𝑘 P-neighbors in (𝑘 , Ψ)-NMC.

To exploit the first observation, we show an interesting lemma.

Lemma 5. Given a star-schema HIN H and two sets Ψ1, Ψ2 of

meta-paths, if both Ψ1-NMC and Ψ2-NMC exist, then

(Ψ1 ∪ Ψ2)-NMC ⊆ Ψ1-NMC ∩ Ψ2-NMC. (1)

Proof. By definition of Ψ-NMC, ∀P ∈ Ψ1, vertices of Ψ1-NMC

can form a BP in H , s.t. ∀𝑣 ∈ BP , 𝑑P (𝑣,BP) � 𝑘 . Similar state-

ments also hold for Ψ2-NMC and (Ψ1 ∪ Ψ2)-NMC. Hence, it is easy

to conclude that vertices of (Ψ1 ∪Ψ2)-NMC can form a Ψ1-NMC, or

a Ψ2-NMC, so (Ψ1 ∪ Ψ2)-NMC is the subset of the intersection of

Ψ1-NMC and Ψ2-NMC, indicating that Lemma 5 holds. �

Lemma 5 implies that the vertex set of a Ψ′-NMC with |Ψ′|=𝑐+1
is actually a subset of the intersection of a few Ψ-NMCs with |Ψ|=𝑐 .
As a result, the homogeneous graphs for computing Ψ′-NMC can

be built on these vertices, rather than all the vertices with the target

type in the whole HIN as what HomNMC does.
Given a set of vertices by intersecting Ψ-NMCs, the second ob-

servation indicates that to compute a Ψ′-NMC, we actually do not

have to build the whole homogeneous graphs; instead, we can just

find up to 𝑘 P-neighbors for each vertex, during which it repeatedly

deletes vertices with less than 𝑘 P-neighbors and in the meantime

finds new P-neighbors incrementally if needed. In summary, by

utilizing the two observations above, we obtain a fast algorithm for

computing the Ψ-NMC, denoted by FastNMC.
Algorithm 3 presents FastNMC. First, we locate the Ψ-NMC in

a small vertex set 𝑉 by intersecting Ψ1-NMC and Ψ2-NMC stored

inM according to Lemma 5 (line 3). Next, we check whether the

vertex set contains query vertices, and if it does not, then there

does not exist a Ψ-NMC (line 4). Then for each P ∈ Ψ, we find up

to 𝑘 P-neighbors for every vertex in 𝑉 (line 8). If we cannot find

𝑘 P-neighbors, we will add this vertex 𝑣 to 𝑆 for deletion (line 9).

At the same time, we use the hash map R to record the neighbors

of each vertex (Φ) w.r.t. different P (line 10). Now we get a set

𝑆 of unqualified vertices which need to be deleted. Next, we first

delete vertices in 𝑆 and update R by calling function DeleteVertex
(line 12), which removes each vertex 𝑣 in 𝑆 from 𝑉 , incrementally

supplies new P-neighbors for 𝑣 ’s P-neighbors for all P in Ψ, and
if we cannot find 𝑘 P-neighbors for some P-neighbors of 𝑣 , we
put them into 𝑆 . The details of DeleteVertex are in the appendix

of the technical report [28]. Then, we get 𝑉 ′ as the intersection of

each connected component containing 𝑄 w.r.t. each P in Ψ (line

13). The vertices in 𝑉 \𝑉 ′ are added into 𝑆 and 𝑉 is updated by 𝑉 ′

(lines 14-15). The above process is repeated until 𝑉 is a connected

component w.r.t. all meta-paths in Ψ (line 16).

Algorithm 3: FastNMC (fast algorithm to get Ψ-NMC)

1 Function FastNMC(H,𝑄 , 𝑘 , Ψ, M):
2 𝑆 ← ∅, R ← an empty hash map;

3 𝑉 ← M[Ψ1 ] ∩ M[Ψ2 ] ; // Ψ1 ∪ Ψ2 = Ψ

4 if 𝑄 � 𝑉 then return ∅ ;

5 foreach P ∈ Ψ do

6 Φ ← ∅;

7 foreach vertex 𝑣 ∈ 𝑉 do

8 Φ[𝑣 ] ← find up to 𝑘 P-neighbors of 𝑣;

9 if |Φ[𝑣 ] | < 𝑘 then 𝑆 .add(𝑣) ;

10 R.put(P, Φ);

11 repeat

12 DeleteVertex(R, 𝑆, 𝑉 );

13 𝑉 ′ ← intersect components containing𝑄 ;

14 𝑆 ←𝑉 \𝑉
′
;

15 𝑉 ← 𝑉
′
;

16 until ∀P ∈ Ψ,𝑉 is a connected component w.r.t P;

17 return𝑉 ;

Lemma 6. Algorithm 3 takes𝑂 (
∑ |Ψ |
𝑖=1 (𝑛1 ·𝑏1,2+𝑛1

∑𝐿
𝑖=2 𝑛𝑖 ·𝑏𝑖,𝑖+1)+

𝑐 ·
∑ |Ψ |
𝑖=1 (

∑𝐿
𝑖=1 𝑛𝑖 · 𝑏𝑖,𝑖+1)) time, where 𝑐 is the number of iterations in

the loop.

Proof. In the worst case, we need to delete all the vertices with

the target type, which costs 𝑂 (
∑ |Ψ |
𝑖=1 (𝑛1 · 𝑏1,2 + 𝑛1

∑𝐿
𝑖=2 𝑛𝑖 · 𝑏𝑖,𝑖+1))

time. In every iteration, for every P in Ψ, it costs 𝑂 (
∑𝐿
𝑖=1 𝑛𝑖 ·

𝑏𝑖,𝑖+1) to compute a connected component on the homogeneous

graph. So the computation of all connected components costs𝑂 (𝑐 ·∑ |Ψ |
𝑖=1 (

∑𝐿
𝑖=1 𝑛𝑖 · 𝑏𝑖,𝑖+1)) time. Hence, Lemma 6 holds. �

4 INDEX-BASED ALGORITHMS

Generally, the online algorithms perform well on many HINs, but

they may be inefficient to process large-scale HINs. As we will

show later, they may take over 0.5 minutes to answer a CS query

on a million-scale HIN like DBLP, which is costly if the queries are

frequently issued. To alleviate this issue, we propose a novel space-

efficient index, relying on two key observations: First, the lengths

of frequently used meta-paths in practice are often limited [35,

40, 45, 47], as long meta-paths result in weak relationships [45].

Second, there are much repeated computations among different

queries when computing the cores. As the number of meaningful

meta-paths is often limited, we can pre-compute their (𝑘,P)-cores,

and compactly organize them into a tree structure, called Core

Meta-path tree or CM-tree. Based on the CM-tree, we propose a

query algorithm with elegant pruning techniques. Next, we first

give an overview of CM-tree, then present the index construction

algorithm, and finally show the index-based query algorithm.

4.1 Index Overview

The CM-tree index is built based on the key observations that the

(𝑘,P)-cores are nested with each other regarding to the parameters

𝑘 and P, respectively:

2312



P1 P2 P3

Figure 3: Three P-graphs induced by three meta-paths.

(a) Meta-path tree

P1

P2 P3

(b) CM-tree

Figure 4: Meta-path tree and the corresponding CM-tree.

(1) For parameter 𝑘 ≥1, Fang et al. [18] showed that B𝑘+1,P ⊆

B𝑘,P , as stated in Lemma 7.

(2) For parameter P, given two meta-paths P and P′, if P′ � P,

then B𝑘,P′ ⊆ B𝑘,P , as stated by Lemma 1.

Lemma 7. [18]. Given an HIN H , a positive integer 𝑘 and a meta-

pathP, the (𝑘 ,P)-cores are nested, i.e., for any (𝑘+1,P)-coreB𝑘+1,P ≠
∅, there must exist a (𝑘 , P)-core B𝑘,P such that B𝑘+1,P ⊆ B𝑘,P .

By carefully considering the nested properties, we can compactly

organize all the cores in a tree index, by exploiting the following

two compression methods:

• Meta-path-based compression (MC): Consider the tree in

Figure 4(a), which organizes all the meta-paths linked the target

type into a tree by using their nested relationships. Every node

in the meta-path tree has a parent node and a list of child nodes

(except for leaf nodes), where the meta-path in the parent node

is the nested meta-path of those in the child nodes. According to

Lemma 1, when 𝑘 is fixed, the (𝑘,P′)-core in the parent must be

contained by the (𝑘,P)-core in the child. Thus, to save space cost,

for each child node, we only store the vertices that are not contained

in its parent node.

• 𝐾-core-based compression (KC): Apart from MC, we can

also make use of the nestedness property of cores w.r.t. different 𝑘
values. According to Lemma 7, for a certain meta-path P, B𝑘+1,P ⊆

B𝑘,P . Hence, for each meta-path, we can use a hash map to record

mappings from core numbers to corresponding vertices, as the core

number 𝑐𝑜𝑟𝑒P (𝑣) is the largest 𝑘 such that 𝑣 ∈ B𝑘,P .

Notice that if only MC is used, the index will contain redundant

vertices for different 𝑘 values. Similarly, if only KC is used, the

index will be redundant for nested meta-paths. Fortunately, we can

combine them, and thus obtain an effective compression method,

called meta-path and 𝑘-core-based compression (MKC).

Specifically, for each meta-path P, we use 𝑉P [𝑘] to denote the

set of vertices in all (𝑘,P)-cores. Note that there may exist multiple

(𝑘,P)-cores in anHIN, as a core needs to be a connected component.

Based on Lemma 1, we have 𝑉P′ [𝑘] ⊆ 𝑉P [𝑘] for P′ � P. Based

P1

P2

(a) Homogeneous graph (b) Compress example

Figure 5: An example of MKC compression.

on Lemma 7, we have 𝑉P [𝑘 + 1] ⊆ 𝑉P [𝑘]. Thus, it is obvious that

𝑉P′ [𝑘 + 1] ⊆ 𝑉P [𝑘 + 1] ⊆ 𝑉P [𝑘], (2)

and

𝑉P′ [𝑘 + 1] ⊆ 𝑉P′ [𝑘] ⊆ 𝑉P [𝑘] . (3)

To apply MKC, we use the meta-path tree as the skeleton of our

CM-tree. For each CM-tree node TP , we store a hash map, whose

keys are the core numbers and the values are the sets of vertices

mapped to corresponding core numbers. By Eq. (2) and (3), we find

that 𝑉P [𝑘] always contains 𝑉P [𝑘 + 1] and 𝑉P′ [𝑘]. To reduce the
space cost, we let the set mapped to core number 𝑘 in node TP be:

TP .𝑚𝑎𝑝 [𝑘] = 𝑉P [𝑘] \ (𝑉P [𝑘 + 1] ∪𝑉P′ [𝑘]). (4)

We further illustrate MKC by Example 5 with Figures 4 and 5.

Example 5. Figure 5(a) shows two P-graphs induced by meta-

paths P1 and P2, where P1 � P2. Obviously, the P1-graph is the

subgraph of P2-graph. Figure 5(b) presents the MKC compression

process of these two graphs. Since the (3,P1)-core is the subset of other

five cores, we put vertices of this core to TP1
.𝑚𝑎𝑝 [3] first. Then for

both (2,P1)-core and (3,P2)-core, they contain all vertices in (3,P1)-

core. For TP1
.𝑚𝑎𝑝 [2] and TP2

.𝑚𝑎𝑝 [3], we only store {𝑒} since 𝑒 is
the only vertex that is not in the (3, P1)-core but contained in the

other two cores. Other CM-tree nodes can be built similarly.

Besides the hash map, each CM-tree node TP also needs to store

its parent and child list. To summarize, TP has three elements:

• map: it maps core numbers to corresponding sets of vertices;

• parent: the parent node of TP ;

• childList: a list of child nodes of TP .

Figure 4(b) depicts the CM-tree index for all the three homoge-

neous graphs in Figure 3, and its skeleton is the meta-path tree in

Figure 4(a). Based on the CM-tree, the following key operations used

by our query algorithms (Section 4.3), can be performed efficiently.

• Core finding. Given a positive integer 𝑘 and a meta-path P,

find a set of vertices that belong to (𝑘,P)-cores.

•Meta-path search.Given ameta-pathP, find the nestedmeta-

path of P, or the list of meta-paths within which P is nested.

2313



4.2 Index Construction

We now discuss the index construction algorithm. Since the meta-

path tree serves as the skeleton of the CM-tree, we first build a

meta-path tree according to the nested relationships of meta-paths

in the HIN schema. Then, we build all CM-tree nodes starting from

the root of the meta-path tree following the depth-first search (DFS)

order, as the hash map construction in the child node depends on

the result of the parent node according to Eq. (4).

Algorithm 4 presents the CM-tree construction algorithm. We

first obtain the set X of all valid meta-paths (line 3). Then we

pick the shortest meta-path P from X (line 4), and build the meta-

path tree starting from P by calling BuildMetaPathTree (line 6).
Finally, we invoke BuildCMnode to build each node of the CM-tree

following the DFS order (line 7).

Algorithm 4: CM-tree construction algorithm

1 Function BuildCMtree(H):
2 T ← ∅;

3 invoke GenMetaPaths to generate meta-path set X;

4 P ← the shortest meta-path in X;

5 build a tree node TP ;

6 BuildMetaPathTree(T, X, P);

7 BuildCMnode(TP , H);

8 return T;

9 Function BuildMetaPathTree(T , X, P):

10 foreach P
′
∈ X do

11 if P � P
′
and |P

′
| = |P | + 2 then

12 build a tree node T
P
′ ;

13 TP .𝑐ℎ𝑖𝑙𝑑𝐿𝑖𝑠𝑡 .add(TP′ ), T
P
′ .𝑝𝑎𝑟𝑒𝑛𝑡 ← TP ;

14 BuildMetaPathTree(T, X, P
′
);

15 Function BuildCMnode(TP , H):
16 induce HP from H;

17 𝑐𝑜𝑟𝑒P [] ← 𝑘-core decomposition on HP ;

18 foreach 𝑣 ∈ HP do TP .𝑚𝑎𝑝 [𝑐𝑜𝑟𝑒P [𝑣 ] ] .𝑎𝑑𝑑 (𝑣) ;

19 foreach 𝑘 ∈ TP .𝑚𝑎𝑝.𝑘𝑒𝑦𝑠𝑒𝑡 () do
20 TP .𝑚𝑎𝑝 [𝑘 ] ← TP .𝑚𝑎𝑝 [𝑘 ] \

⋃
P′�P TP′ .𝑚𝑎𝑝 [𝑘 ];

21 foreach T
P
′ ∈ TP .𝑐ℎ𝑖𝑙𝑑𝐿𝑖𝑠𝑡 do BuildCMnode(T

P
′ , H) ;

In BuildMetaPathTree, we build the meta-path tree by follow-

ing the DFS order. In each invoking of BuildMetaPathTree, we tra-

verse X to find meta-paths P
′
such that P � P

′
and |P

′
| = |P | + 2

(lines 10-14). For each P
′
, we build a new index node TP′ (line 12),

add TP′ to the child list of TP , let TP be the parent node of TP′

(line 13) and recursively build the child nodes of TP (line 14).

In BuildCMnode, we build each CM-tree node by following the

DFS order from the root of the meta-path tree. For every node,

we first derive the 𝑃-graph HP (line 16), and then do 𝑘-core de-
composition using the linear algorithm [1] to get the core num-

bers of all vertices 𝑐𝑜𝑟𝑒P [ ] (line 17). Next, we traverse all vertices

in HP and add 𝑣 to the hash map TP .𝑚𝑎𝑝 according to its core

number 𝑐𝑜𝑟𝑒P [𝑣] (line 18). For each core number 𝑘 in the keys of

TP .𝑚𝑎𝑝 , we also need to delete vertices that are in the union set

of TP′ .𝑚𝑎𝑝 [𝑘], where P
′
� P to avoid redundancy (lines 19-20).

After building TP , we traverse the child list of the current node and

call BuildCMnode to build child nodes recursively (line 21).

Lemma 8. Given a star-schema HIN H and a set of meta-paths

X = {P1,P2, . . . ,P|X | }, the CM-tree takes 𝑂 (
∑ |X |
𝑖=1 𝑡𝑖 ) space cost,

where 𝑡𝑖 is the total number of vertices with the type linked by P𝑖 .

Proof. If only KC is used, then for each P𝑖 , TP𝑖
stores 𝑡𝑖 vertices.

For MKC, according to Eq. (4), each TP𝑖
stores less than 𝑡𝑖 vertices

when TP𝑖
is not the root node of the index, so Lemma 8 holds. �

Lemma 9. Algorithm 4 takes𝑂 (
∑ |Ψ |
𝑖=1 (𝑛1 ·𝑏1,2+𝑛1

∑𝐿
𝑖=2 𝑛𝑖 ·𝑏𝑖,𝑖+1))

time.

Proof. It takes 𝑂 (
∑ |Ψ |
𝑖=1 (𝑛1 · 𝑏1,2 + 𝑛1

∑𝐿
𝑖=2 𝑛𝑖 · 𝑏𝑖,𝑖+1)) time to

compute allHP𝑖
(P𝑖 ∈ Ψ). And computing a 𝑘-core from a homo-

geneous graph costs linear time [1, 43]. Hence, Lemma 9 holds. �

4.3 Index-Based Query Algorithm

With CM-tree index, we propose a fast index-based query algorithm

to solve the CSSH problem based on the fast algorithm of computing

Ψ-NMC (FastNMC in Section 3.3). Specifically, we first introduce

a novel concept of nested meta-path set. Then, we design pruning

and early stop strategies to reduce the number of candidates to be

verified. Further, to verify each meta-path set, we use the CM-tree

to quickly locate the Ψ-NMC in a small subset of vertices. Next, we

first introduce the concept of nested meta-path set.

Definition 9. Nested meta-path set. Given a set of 𝑛 meta-

paths Ψ = {P1,P2, · · · ,P𝑛}, the nested meta-path set of Ψ is another

meta-path setΨ′ = (P
′

1,P
′

2, · · · ,P
′

𝑛), s.t.∀P ∈ Ψ, there existsP
′
∈ Ψ

′

such that P
′
� P.

For example, letP=(𝐴𝑃𝐴),P1=(𝐴𝑃𝑉𝑃𝐴), andP2=(𝐴𝑃𝑇𝑃𝐴). Then,
{P} is a nestedmeta-path set of both {P1} and {P2}. Next, we show

that the nested relationships also exists between a meta-path set

and its nested meta-path set.

Lemma 10. Given a star-schema HIN H , a positive integer 𝑘 , a
meta-path set Ψ and its nested meta-path set Ψ′, if there exists a

Ψ′-NMC, there must exist a Ψ-NMC, s.t. Ψ′-NMC ⊆ Ψ-NMC.

Proof. If there exists a Ψ′-NMC, then for each P′ in Ψ′, vertices

in the Ψ′-NMC can form a BP′ . By Lemma 1 and Definition 9, for

each P in Ψ, there exists a meta-path P′ ∈ Ψ′ and P′ � P, such

that the Ψ′-NMC (and also a (𝑘 , P′)-core) is contained by a (𝑘 ,
P)-core. Thus, there exists a Ψ-NMC s.t. Ψ′-NMC ⊆ Ψ-NMC. �

• Index-based pruning for candidates of meta-path sets.

Recall that in Algorithm 1, GenCan generates size-(𝑐 + 1) meta-path

set candidates only based on valid size-𝑐 sets, but there are still too
many size-(𝑐 + 1) candidates to be verified. We show that many of

them can be pruned by exploiting Lemma 10. Specifically, given

two meta-path sets Ψ and Ψ′ s.t. Ψ
′
is a nested meta-path set of Ψ,

if we have verified that Ψ
′
-NMC exists, then Ψ-NMC must exist as

well by Lemma 10. Hence, after verifying the existence of Ψ
′
-NMC,

we can get all meta-path sets Ψ that Ψ
′
is the nested meta-path set

of Ψ and mark them as valid meta-path set candidates. In this way,

we can reduce the number of candidates to be verified.

In order to generate all meta-path sets Ψ, of which Ψ′ is the

nestedmeta-path set, we design GenValidCan based on the CM-tree.

Specifically, for each P′ ∈ Ψ′, we get all P s.t. P′ � P by searching

2314



the CM-tree. Then, we select a meta-path from {P|P′ � P} for

each P′ in Ψ′, and combine them to get a meta-path set. The detail

of GenValidCan are in the appendix of technical report [28].

• Optimal candidate verification order. By Lemma 10, some

candidate meta-path sets can be pruned after their nested sets

are verified. As a result, the order to verify candidates affects the

number of candidates to be verified. To find the optimal order for

reducing the time cost, we introduce Lemma 11.

Lemma 11. Given several meta-path set candidates (Ψ1, Ψ2, · · · ,
Ψ𝑛), each of them has the same size, verifying each candidate set Ψ𝑖 in
ascending order by the length sum of all meta-paths in Ψ𝑖 minimizes

the number of candidates that need to be verified.

Proof. Based on the definition of nested meta-path set, for a

meta-path set Ψ and its nested meta-path set Ψ′, the length sum

of meta-paths in Ψ′ is less than that of Ψ, since |Ψ|=|Ψ′| and for

any meta-path P, it has the same or smaller length than its nested

meta-path. Then we conclude that in a list of same size candidate

sets of meta-paths, for any two candidate sets Ψ𝑖 and Ψ𝑗 , if Ψ𝑖 is the
nested meta-path set of Ψ𝑗 , the length sum of meta-paths in Ψ𝑖 must

be smaller than the length sum of meta-paths in Ψ𝑗 . Moreover, by

Lemma 10, if Ψ𝑖 is a valid meta-path set, then Ψ𝑗 is a valid meta-path

set without being verified. Hence, Lemma 11 holds. �

• Early stop strategy. We further boost the efficiency by intro-

ducing an early stop condition in Lemma 12.

Lemma 12. Given all meta-path sets with the same size Ψ1, Ψ2,
· · · , Ψ𝑛 , if there exists a Ψ𝑖 -NMC that Ψ𝑖 (1 ≤ 𝑖 ≤ 𝑛) is the nested
meta-path set of all Ψ𝑗 (1 ≤ 𝑗 ≤ 𝑛 and 𝑗 ≠ 𝑖), then Ψ𝑖 -NMC is the

community we need.

Proof. According to the property of set non-nestedness of meta-

paths, if Ψ-NMC is the result community, then there does not exist

a Ψ′-NMC s.t.Ψ
′
= (Ψ ∪ {P

′
}) \ {P} where P

′
� P. Thus, if

there exists a Ψ𝑖 -NMC that Ψ𝑖 is the nested meta-path set of all Ψ𝑗

(1 ≤ 𝑗 ≤ 𝑛 and 𝑗 ≠ 𝑖), then even if Ψ𝑗 -NMC exists, it is not the

result community because of set non-nestedness. For the meta-

path sets with larger size generated from Ψ𝑖 , there does not exist a
result community for the same reason. Hence, Lemma 12 holds. �

• Index-basedΨ-NMCcomputation.To verify each candidate

meta-path set Ψ, we need to compute the Ψ-NMC. With CM-tree,

we can locate the core in a small set by intersecting the (𝑘,P)-cores

where P ∈ Ψ, according to the following corollary.

Corollary 4.1. Given a star-schema HIN H , a positive integer 𝑘 ,
and a set Ψ of meta-paths, we have

Ψ-NMC ⊆
⋂

P∈Ψ

BP . (5)

Proof. The conclusion directly follows Lemma 5. �

In summary, we propose an index-based query algorithm, follow-

ing the two-step framework (verification and candidate generation).

We first generate the meta-path set X (line 1) and initialize 𝑐=1, a
hash map M𝑐 to store the corresponding community of every Ψ
(line 2). S𝑐 is initialized, in which each meta-path set contains a

meta-path in X (line 3). Then in the loop, we sort every Ψ ∈ S𝑐
in ascending order by the length sum of all meta-paths in Ψ (line

5), based on Lemma 11. Next, we initialize a set S∗
𝑐 to store the

valid size-𝑐 meta-path sets (line 6). For each Ψ ∈ S𝑐 , we verify the

existence of Ψ-NMC by IndexNMC (line 8). Specifically, for each

P ∈ Ψ, IndexNMC gets a BP with the help of CM-tree, computes

the intersection set of all BP , and calls function FastNMC (Algo-

rithm 3) to compute Ψ-NMC. The details of IndexNMC are in the

appendix of the technical report [28]. If Ψ-NMC exists, we use M𝑐

to record Ψ and its corresponding community (line 10), and call

function GenValidCan to generate a set of valid meta-path sets Y

based on Lemma 10 (line 11) to reduce the number of BΨ that needs

to be computed. If Ψ satisfies Lemma 12, then Ψ-NMC is the only

result community and we finish (line 12). To reduce unnecessary

verification of candidates, we add all meta-path sets in Y into S∗
𝑐

and remove them from S𝑐 (lines 13-14). After all candidates in S𝑐
are checked, we generate new size-(𝑐+1) meta-path sets via GenCan
(line 15), and 𝑐 is increased by 1. The whole loop is repeated until

there is no new candidate to be verified in S𝑐 (line 17). Finally, we

output all Ψ-NMCs inM𝑐−1 (line 18) as the communities.

Algorithm 5: Index-based query algorithm

Input: H, T,𝑄 , 𝑘
Output: Ψ-NMC with the maximum |Ψ |

1 invoke GenMetaPaths to generate meta-paths set X;

2 initialize 𝑐 ← 1, M𝑐 ← ∅;

3 initialize S𝑐 ← {{P} |P ∈ X};

4 repeat

5 sort all Ψ in S𝑐 in ascending order of
∑

P∈Ψ |P |;

6 S∗
𝑐 ← ∅;

7 foreach Ψ ∈ S𝑐 do

8 Ψ-NMC← IndexNMC(T, 𝑘 , Ψ,𝑄);

9 if Ψ-NMC exists then

10 M𝑐 .𝑝𝑢𝑡 (Ψ,BΨ) ;

11 Y ← GenValidCan(Ψ, T);

12 if Y = S𝑐 then output Ψ-NMC, return;

13 S∗
𝑐 ← S∗

𝑐 ∪ Y;

14 S𝑐 ← S𝑐 \ Y;

15 S𝑐+1 ← GenCan(S∗
𝑐 );

16 𝑐 ← 𝑐 + 1;

17 until S𝑐 = ∅;

18 foreach Ψ-NMC ∈ M𝑐−1 do output Ψ-NMC ;

Lemma 13. Algorithm 5 takes 𝑂 (
∑𝑐
𝑖=1

∑ |M𝑖 |
𝑗=1 ( |Ψ𝑗 | · (

1
2 · 𝐿 · 𝑛1 +∑𝐿

𝑘=1 𝑛𝑘 · 𝑏𝑘,𝑘+1) + Δ 𝑗 )) time, where Δ 𝑗 denotes the time cost of

FastNMC (Algorithm 3).

Proof. In Algorithm 5, it calls
∑𝑐
𝑖=1 |M𝑖 | times IndexNMC and

IndexNMC cost 𝑂 ( |Ψ𝑗 | · (
1
2 · 𝐿 · 𝑛1 +

∑𝐿
𝑘=1 𝑛𝑘 · 𝑏𝑘,𝑘+1) + Δ 𝑗 ) time

for each Ψ𝑗 . The details of IndexNMC are in the appendix of the

technical report [28]. Hence, Lemma 13 holds. �

5 EXPERIMENTS

We now present the experimental results. Section 5.1 discusses the

setup. We report the experimental results in Sections 5.2 and 5.3.

2315



Table 2: Datasets used in our experiments.

Dataset Vertices Edges
Vertex

types

Edge

types

Meta-

paths

PubMed 14,256 33,556 4 3 12

IMDB 854,616 3,898,144 4 3 12

DBLP 2,056,444 6,607,065 4 3 11

Foursquare 4,472,122 10,200,000 4 3 8

5.1 Setup

Datasets.Weuse four real star-schemaHINs: PubMed1 [51], IMDB2,

DBLP3 [49], and Foursquare4 [52, 53]. Table 2 shows their numbers

of vertices, edges, vertex types, and edge types. PubMed is a net-

work of genes, diseases, chemicals, and species, constructed from

PubMed5. IMDB contains the movie rating records since 2000, and

it has four types of vertices (authors, directors, writers and movies).

DBLP includes publication records in computer science areas, and

the vertex types are authors, papers, venues and topics. Foursquare

contains the check-in records in US, which has four types of vertices,

including records, users, venues, and categories.

Queries. For each dataset, we collect a set of meta-paths and its

size is reported in Table 2. Note that in line with existing works [18,

26, 45], we collect all the meta-paths with lengths at most four.

We generate 200 queries for each dataset. To generate a query,

we randomly select a meta-path and then select several vertices

with core numbers of 6 or more following [18], where the number

of selected vertices |𝑄 | varies from 2 to 5 with 2 as the default

value, which ensures that for every vertex in a query, there exists a

meaningful community containing it. By default, we set the value

of 𝑘 to 6 [18]. In the following reported results, each data point is

the average result for these 200 queries unless otherwise specified.

We implement all the algorithms in Java and run experiments on a

machine having an Intel(R) Xeon(R) Gold 6226R 2.90GHz CPU and

256GB of memory, with Ubuntu installed.

5.2 Effectiveness Evaluation

• Community compactness. To measure the community com-

pactness of communities, a commonly-used metric is the diam-

eter [18, 25]. To adapt it for communities in HINs, we use P-

distance [18], which is the minimum number of path instances

of P for linking two vertices (e.g., the P-distance between two

vertices linked by an instance of P is 1). We also compare CSSH

query with CSH query [18]. Specifically, we first run each CSSH

query and get the community with a set Ψ of shared meta-paths.

Then, for each P ∈ Ψ, we run the CSH query to get the community

with the same values of 𝑄 and 𝑘 .
We depict the average diameters for communities of CSSH and

CSH queries on four datasets in Figure 6(a). Clearly, the commu-

nities of CSSH queries have smaller diameters than those of CSH

queries, so our Ψ-NMC-based communities are more structurally

compact and their vertices tend to have closer relationships.

1https://github.com/yangji9181/HNE
2https://www.imdb.com/interfaces/
3https://www.aminer.cn/citation
4https://sites.google.com/site/yangdingqi/home/foursquare-dataset
5https://www.ncbi.nlm.nih.gov/pubmed/

(a) Community compactness (b) Member similarity

(c) Semantic richness (d) Relationships closeness

Figure 6: Results of effectiveness evaluation.

• Similarity of community members.We measure the simi-

larity of community members by PathSim [45]. Specifically, we first

find communities by CSH and CSSH queries, where the settings

of CSSH queries are similar to those in the experiment above, and

then compute the PathSim value for each pair of vertices in these

communities, respectively. Figure 6(b) shows the average PathSim

values on four datasets. Clearly, communities based on our Ψ-NMC

achieve higher similarity values than those based on (𝑘,P)-core

in the CSH queries, so our CSSH query is better to capture the

similarity among community members.

• Semantic richness. To measure the semantic richness of the

community, we count the number of meta-paths that the commu-

nity shares, by varying the size of the query vertex set (i.e., |𝑄 |).

Notice that in this experiment, the number of meta-paths that the

community shares is not simply the size of Ψ; instead, for a commu-

nity Ψ-NMC, we count the number of all meta-paths in Ψ, and also

the meta-paths whose nested meta-paths are in Ψ. For example, on

DBLP, if Ψ={𝐴𝑃𝐴}, then the number of meta-paths we count is 3,

since {𝐴𝑃𝐴} is nested in {𝐴𝑃𝑉𝑃𝐴} and {𝐴𝑃𝑇𝑃𝐴}. We report the

average results in Figure 6(c). Generally, as |𝑄 | becomes larger, the

number of shared meta-paths decreases, because a larger |𝑄 | means

that fewer (𝑘 , P)-cores can contain its vertices.

• Relationships closeness. To measure the relationships close-

ness of members of the community, we compute the average length

of meta-paths in the meta-path set Ψ, by varying |𝑄 |. We report

the average results in Figure 6(d). Clearly, as |𝑄 | becomes larger,

the average length of meta-paths increases, meaning that the rela-

tionships closeness becomes weak. This is because for a larger |𝑄 |,

we need longer meta-paths to form Ψ-NMCs containing 𝑄 .
•A case study.We run a CSSH query and two CSH queries [18]

on a small DBLP network with 50,663 vertices and 88,986 edges

(randomly extracted from the original network). In the CSSH query,

we set query vertex set 𝑄 = {Jiawei Han, Jeffrey Xu Yu, Yizhou

Sun} and 𝑘=4. We obtain a community where Ψ = {P1,P2}, where

P1 = (𝐴𝑃𝑉𝑃𝐴) andP2 = (𝐴𝑃𝑇𝑃𝐴). We draw it in Figure 9, where a

2316



(a) PubMed (b) IMDB (c) DBLP (d) FourSquare

Figure 7: Efficiency results of three query algorithms.

(a) PubMed (b) IMDB (c) DBLP (d) FourSquare

Figure 8: Scalability test for online query algorithms.

Figure 9: A community with 𝑄={Jiawei Han, Jeffrey Xu Yu,

Yizhou Sun} and 𝑘=4, where Ψ={(𝐴𝑃𝑉𝑃𝐴), (𝐴𝑃𝑇𝑃𝐴)}.

Table 3: Statistics of a case study on a small DBLP network.

Community Members PathSim Diameter

Ψ-NMC 18 0.153 4

(𝑘, P1)-core 96 0.0830 5

(𝑘, P2)-core 2,118 0.0142 7

yellow edge and a green edge mean two vertices linked by instances

of P1 and P2 respectively, and a blue edge means two vertices

linked by instances of both P1 and P2. In two CSH queries, we

use the same query vertex set and specify the query meta-path

as P1 and P2 respectively. Since their returned communities are

much larger, we do not draw them. Instead, we report the statistics

of three communities in Table 3. Clearly, our CSSH community

has the smallest community size as it needs to share the semantic

relationships of both P1 and P2. Besides, our CSSH community has

the largest value of PathSim and smallest diameter, so it is more

compact and has higher community member similarity.

5.3 Efficiency Evaluation

We now evaluate efficiency of both online and index-based query

algorithms, which are denoted by NaiveOnline, FastOnline, and
IndexQuery. In particular, the naive online algorithm NaiveOnline
and fast online algorithm FastOnline use HomNMC (Algorithm 2)

and FastNMC (Algorithm 3) to compute Ψ-NMC respectively.

• Online and index-based query algorithms. We show the

efficiency results of query algorithms by varying 𝑘 in Figure 7.

Clearly, FastOnline is up to two orders of magnitude faster than

NaiveOnline, since for each vertex with the target type, HomNMC
finds all its P-neighbors, while FastNMC only finds a small num-

ber of them. Meanwhile, as 𝑘 becomes larger, the running time

of FastOnline increases since a larger 𝑘 means finding more P-

neighbors, while the running time of NaiveOnline remains almost

stable as the main overhead comes from building the homogeneous

graphs. In addition, the index-based query algorithms are more

than two orders of magnitude faster than NaiveOnline and up to

one order of magnitude faster than FastOnline, indicating that

our CM-tree is effective for facilitating the queries.

• Scalability test. For each dataset, we randomly select 20%,

40%, 60%, 80% and 100% of its vertices and obtain five subgraphs

induced by these vertices respectively. Then, we run CSSH queries

using two online query algorithms and report the average efficiency

results in Figure 8. Generally, their time cost scales linearly with

the number of vertices in the graph, showing good scalability.

• Index space cost analysis. Recall that we propose three in-

dex compression strategies (i.e., MC, KC and MKC). To measure

their compression effectiveness, we adapt our CM-tree construction

algorithm by using three strategies respectively, and then count the

2317



Table 4: Results of index compression analysis.

Dataset 𝐿 (length) MKC KC MC

PubMed
2 5,348 5,348 331,706

4 15,712 16,044 3,661,457

IMDB
2 54,881 54,881 87,880

4 132,287 164,643 3,393,559

DBLP
2 785,104 785,104 3,891,749

4 2,348,595 2,355,312 7,647,951,943

FourSquare
2 129,039 129,039 129,039

4 382,357 387,117 588,368,051

(a) PubMed and IMDB (b) DBLP and FourSquare

Figure 10: Efficiency results of index construction.

total number of vertices stored in all index nodes. Table 4 shows the

results, where 𝐿 is the maximum length of all meta-paths. Clearly,

MKC is the most effective one for reducing the space cost.

• Index construction time analysis. To evaluate the index

construction algorithm, for each dataset, we randomly select 20%,

40%, 60%, 80% and 100% of its vertices and obtain five subgraphs

induced by these vertices respectively. Afterwards, for each dataset,

we set the max length of meta-path 𝐿=4 and randomly select a

target type, and report the efficiency results in Figure 10. We can

observe that the time cost is almost linear to the size of HINs, and

thus our index construction algorithm scales well on large HINs.

6 RELATEDWORK

The problems of network community retrieval contain two main

streams: community detection (CD) and community search (CS).

Community detection (CD). Earlier solutions [19, 36] mainly

employ link-based analysis to detect these communities. However,

most of them focus on homogeneous graphs, where vertices are

of the same type [16, 17, 37]. Some recent works [40, 41, 44, 46–

48, 61] focus on generating clusters/communities in HINs, which

can roughly be grouped into two classes according to vertex types in

the communities. The first class [4, 41, 44, 48] focuses on detecting

clusters, each of which contains objects with multiple types, while

the second class [46, 47, 61] aims to generate clusters of objects

with a specific type. In [46], Sun et al. proposed an algorithm to

generate clusters of a specific type of objects; in [47], a user-guided

algorithm is developed to cluster objects of a target type.

Community search (CS). CS aims to query densely connected

subgraphs containing a specific vertex or a set of vertices [11, 17,

18, 43, 54]. To measure the structure cohesiveness of a community,

people often use some cohesive subgraph models [17], like 𝑘-core
[1, 2, 8], 𝑘-truss [7, 9, 15, 29, 30, 58], 𝑘-clique [5, 10, 56] and 𝑘-edge
connected component [3, 22]. The 𝑘-core [1, 2, 8], which requires

each vertex having at least𝑘 neighbors within the community, is the

most frequently used one. For example, in [11], Cui et al. designed

a local search CS algorithm; in [16], Fang et al. used 𝑘-core for CS
on attributed graphs. Another group of CS works is based on the

𝑘-truss [7, 9, 15, 29, 30, 58]. For example, in [23, 25], the 𝑘-truss-
based community search is studied; in [6, 24], Huang et al. studied

CS using 𝑘-truss on attributed graphs. A recent survey of CS can

be found in [17].

While CS has been extensively studied, most of existing works

focus on conventional homogeneous networks and little attention

has been paid to the problem for HINs. Recently, researchers have

attempted to study CS over HINs [13, 18, 20, 27, 50, 54, 60]. In [18],

Fang et al. introduced a novel core model on HIN, which focuses on

a specific type of vertices and requires that each vertex is linked to

at least 𝑘 other vertices with the same type via meta-paths. In [27],

Jian et al. proposed the relational constraint that allows the user

to specify fine-grained connection requirements between vertices

and studied the problem of relational community search over HINs,

where the community involves nodes of multiple types. However,

all these existing studies suffer from several limitations, e.g., they

either require users to specify a meta-path or relational constraints.

Thus, how to effectively perform CS over HINs without specifying

these constraints is still an open question. To solve this problem, in

this paper we propose to study CS over the HIN with star-schema,

which is a representative type of HINs, without asking users to

specify these constraints, and also develop efficient solutions.

7 CONCLUSIONS

In this paper, we study the problem of Community Search over Star-

schema HINs (or CSSH problem in short), which aims to search

the most-likely community containing a set of query vertices 𝑄
from a star-schema HIN, without specifying the parameters like

meta-paths and relational constraints. To model the community

that can well capture the rich semantic relationships carried by

query vertices 𝑄 , we find the set of vertices under the meta-path-

based core model, by maximizing the set of shared meta-paths

satisfying the property of non-nestedness. We first develop efficient

online query algorithms. We further boost the query efficiency by

designing a novel compact index structure and an index-based query

algorithm. Our experimental results on four real large star-schema

HINs show that the proposed solutions are effective and efficient

for searching communities over large HINs. In the future, we will

study how to efficiently maintain the index on dynamic HINs, and

also use other cohesive subgraph models (e.g., clique-based models

[21, 57]) to formulate community models over HINs.

ACKNOWLEDGMENTS

Chunshan Li was supported by the National Key Research and

Development Program of China (No.2018YFB1700400), NSFC un-

der Grant 61902090, and the Major Scientific and Technological

Innovation Project of Shandong Province of China (2021ZLGX05,

2020CXGC010705). Yixiang Fang was supported in part by NSFC

under Grant 62102341, Basic and Applied Basic Research Fund in

Guangdong Province under Grant 2022A1515010166, and Shenzhen

Science and Technology Program ZDSYS20211021111415025. Xin

Cao was supported by ARC DE190100663.

2318



REFERENCES
[1] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[2] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

core decomposition. In Proceedings of the 2019 International Conference on Man-
agement of Data. 1006–1023.

[3] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-
based optimal algorithms for computing steiner components with maximum
connectivity. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 459–474.

[4] Lu Chen, Yunjun Gao, Yuanliang Zhang, Christian S Jensen, and Bolong Zheng.
2019. Efficient and incremental clustering algorithms on star-schema heteroge-
neous graphs. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 256–267.

[5] Lu Chen, Chengfei Liu, Xiaochun Yang, Bin Wang, Jianxin Li, and Rui Zhou.
2016. Efficient batch processing for multiple keyword queries on graph data.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1261–1270.

[6] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang.
2018. Maximum co-located community search in large scale social networks.
Proceedings of the VLDB Endowment 11, 10 (2018), 1233–1246.

[7] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, Jeffrey Xu Yu, and Jianxin Li. 2020.
Finding effective geo-social group for impromptu activities with diverse demands.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 698–708.

[8] Afzal Azeem Chowdhary, Chengfei Liu, Lu Chen, Rui Zhou, and Yun Yang. 2020.
Finding attribute diversified communities in complex networks. In International
Conference on Database Systems for Advanced Applications. Springer, 19–35.

[9] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report 16, 3.1 (2008).

[10] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online
search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. 277–288.

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of
communities in large graphs. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. 991–1002.

[12] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2vec:
Scalable Representation Learning for Heterogeneous Networks (KDD ’17). As-
sociation for Computing Machinery, New York, NY, USA, 135–144. https:
//doi.org/10.1145/3097983.3098036

[13] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.
Butterfly-core community search over labeled graphs. Proceedings of the VLDB
Endowment 14, 11 (2021), 2006–2018.

[14] Joel T Dudley, Tarangini Deshpande, and Atul J Butte. 2011. Exploiting drug–
disease relationships for computational drug repositioning. Briefings in bioinfor-
matics 12, 4 (2011), 303–311.

[15] Soroush Ebadian and Xin Huang. 2019. Fast algorithm for K-truss discovery on
public-private graphs. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence. 2258–2264.

[16] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective com-
munity search for large attributed graphs. Proceedings of the VLDB Endowment 9,
12 (2016), 1233–1244.

[17] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. The VLDB
Journal 29, 1 (2020), 353–392.

[18] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Ef-
fective and efficient community search over large heterogeneous information
networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867.

[19] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[20] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core decom-
position and densest subgraph in multilayer networks. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. 1807–1816.

[21] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan Chang, Aravind Sankar, Yixiang
Fang, and Brian YH Lam. 2019. Discovering maximal motif cliques in large
heterogeneous information networks. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 746–757.

[22] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.
Querying minimal steiner maximum-connected subgraphs in large graphs. In
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1241–1250.

[23] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying
k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[24] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.
Proceedings of the VLDB Endowment 10, 9 (2017), 949–960.

[25] Xin Huang, Laks VS Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approxi-
mate closest community search in networks. Proceedings of the VLDB Endowment

9, 4 (2015), 276–287.
[26] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis,

and Xiang Li. 2016. Meta structure: Computing relevance in large heterogeneous
information networks. In Proceedings of the 22nd ACM SIGKDD International
conference on knowledge discovery and data mining. 1595–1604.

[27] Xun Jian, YueWang, and Lei Chen. 2020. Effective and efficient relational commu-
nity detection and search in large dynamic heterogeneous information networks.
Proceedings of the VLDB Endowment 13, 10 (2020), 1723–1736.

[28] Yangqin Jiang, Yixiang Fang, Chenhao Ma, Xin Cao, and Chunshan Li.
2022. Effective community search over large star-schema heterogeneous
information networks (technical report). https://github.com/ZzMeei/CS-
StarSchemaHIN/blob/master/main.pdf (2022).

[29] Yuli Jiang, Xin Huang, and Hong Cheng. 2021. I/O efficient k-truss community
search in massive graphs. The VLDB Journal 30, 5 (2021), 713–738.

[30] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-
based community search over large directed graphs. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2183–2197.

[31] Linhao Luo, Yixiang Fang, Xin Cao, Xiaofeng Zhang, and Wenjie Zhang. 2021.
Detecting Communities from Heterogeneous Graphs: A Context Path-Based Graph
Neural Network Model. Association for Computing Machinery, New York, NY,
USA, 1170–1180. https://doi-org.eproxy.lib.hku.hk/10.1145/3459637.3482250

[32] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, and Xiaolin
Han. 2022. A Convex-Programming Approach for Efficient Directed Densest
Subgraph Discovery. In SIGMOD.

[33] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, Wenjie Zhang,
and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on
large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051–1066.

[34] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, Wenjie Zhang,
and Xuemin Lin. 2021. On Directed Densest Subgraph Discovery. TODS 46, 4
(2021), 1–45.

[35] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda
Zhang. 2015. Discovering meta-paths in large heterogeneous information net-
works. In Proceedings of the 24th International Conference on World Wide Web.
754–764.

[36] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

[37] You Peng, Song Bian, Rui Li, Sibo Wang, and Jeffrey Xu Yu. 2022. Finding Top-r
Influential Communities under Aggregation Function. In ICDE. IEEE.

[38] Paola Pesántez-Cabrera and Ananth Kalyanaraman. 2017. Efficient detection
of communities in biological bipartite networks. IEEE/ACM transactions on
computational biology and bioinformatics 16, 1 (2017), 258–271.

[39] Chuan Shi, Xiangnan Kong, Philip S Yu, Sihong Xie, and Bin Wu. 2012. Rele-
vance search in heterogeneous networks. In Proceedings of the 15th international
conference on extending database technology. 180–191.

[40] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2016), 17–37.

[41] Chuan Shi, Ran Wang, Yitong Li, Philip S Yu, and Bin Wu. 2014. Ranking-
based clustering on general heterogeneous information networks by network
projection. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. 699–708.

[42] Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S Yu, Gang Liu, and Bai Wang.
2012. Heterecom: a semantic-based recommendation system in heterogeneous
networks. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. 1552–1555.

[43] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and
how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 939–948.

[44] Yizhou Sun, Charu C Aggarwal, and Jiawei Han. 2012. Relation strength-aware
clustering of heterogeneous information networks with incomplete attributes.
Proceedings of the VLDB Endowment 5, 5 (2012), 394–405.

[45] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.

[46] Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, and Tianyi
Wu. 2009. Rankclus: integrating clustering with ranking for heterogeneous
information network analysis. In Proceedings of the 12th international conference
on extending database technology: advances in database technology. 565–576.

[47] Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S Yu, and Xiao Yu.
2013. Pathselclus: Integrating meta-path selection with user-guided object clus-
tering in heterogeneous information networks. ACM Transactions on Knowledge
Discovery from Data (TKDD) 7, 3 (2013), 1–23.

[48] Yizhou Sun, Yintao Yu, and Jiawei Han. 2009. Ranking-based clustering of
heterogeneous information networks with star network schema. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining. 797–806.

2319



[49] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: Extraction and Mining of Academic Social Networks. In KDD’08. 990–998.

[50] Ruby WWang and Y Ye Fred. 2019. Simplifying Weighted Heterogeneous net-
works by extracting h-Structure via s-Degree. Scientific reports 9, 1 (2019), 1–8.

[51] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous Network Representation Learning: A Unified Framework with Survey and
Benchmark. TKDE (2020).

[52] Dingqi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. 2015. Nation-
Telescope: Monitoring and visualizing large-scale collective behavior in LBSNs.
Journal of Network and Computer Applications 55 (2015), 170–180.

[53] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2015. Participatory cultural
mapping based on collective behavior in location based social networks. ACM
Transactions on Intelligent Systems and Technology (2015). in press.

[54] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective
and efficient truss computation over large heterogeneous information networks.
In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
901–912.

[55] Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan
Gu, Brandon Norick, and Jiawei Han. 2013. Recommendation in heterogeneous
information networks with implicit user feedback. In Proceedings of the 7th ACM
conference on Recommender systems. 347–350.

[56] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-
based densest clique percolation community search in networks. IEEE Transac-
tions on Knowledge and Data Engineering 30, 5 (2017), 922–935.

[57] Zhirong Yuan, You Peng, Peng Cheng, Li Han, Xuemin Lin, Lei Chen, and Wenjie
Zhang. 2022. Efficient k-clique Listing with Set Intersection Speedup. In ICDE.
IEEE.

[58] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and efficiency of truss main-
tenance in evolving graphs. In Proceedings of the 2019 International Conference on
Management of Data. 1024–1041.

[59] Yaping Zheng, Shiyi Chen, Xinni Zhang, Xiaofeng Zhang, Xiaofei Yang, and Di
Wang. 2020. Heterogeneous-Temporal Graph Convolutional Networks: Make
the Community Detection Much Better. arXiv:1909.10248 [cs.LG]

[60] Alexander Zhou, Yue Wang, and Lei Chen. 2020. Finding large diverse communi-
ties on networks: the edge maximum k*-partite clique. Proceedings of the VLDB
Endowment 13, 12 (2020), 2576–2589.

[61] Yang Zhou and Ling Liu. 2013. Social influence based clustering of heterogeneous
information networks. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. 338–346.

[62] Honglei Zhuang, Jing Zhang, George Brova, Jie Tang, Hasan Cam, Xifeng Yan,
and Jiawei Han. 2014. Mining query-based subnetwork outliers in heterogeneous
information networks. In 2014 IEEE International Conference on Data Mining.
IEEE, 1127–1132.

2320


