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ABSTRACT

A key prerequisite for the successful adoption of the Shapes Con-
straint Language (SHACL)—the W3C standardized constraint lan-
guage for RDF graphs—is the availability of automated tools that
efficiently validate targeted constraints (known as shapes graphs)
over possibly very large RDF graphs. There are already significant
efforts to produce optimized engines for SHACL validation, but they
focus on restricted fragments of SHACL. For unrestricted SHACL,
that is SHACL with unrestricted recursion and negation, there is no
validator beyond a proof-of-concept prototype, and existing tech-
niques are inherently incompatible with the goal-driven approaches
being pursued by existing validators. Instead they require a global
computation on the entire data graph that is not only computation-
ally very costly, but also brittle, and can easily result in validation
failures due to conflicts that are irrelevant to the validation targets.

To address these challenges, we present a ‘magic’ transformation—
based onMagic Sets as known from Logic Programming—that trans-
forms a SHACL shapes graph 𝑆 into a new shapes graph 𝑆 ′ whose
validation considers only the relevant neighbourhood of the tar-
geted nodes. The new 𝑆 ′ is equivalent to 𝑆 whenever there are no
conflicts between the constraints and the data, and in case the vali-
dation of 𝑆 fails due to conflicts that are irrelevant to the target, 𝑆 ′
may still admit a lazy, target-oriented validation. We implement the
algorithm and run preliminary experiments, showing our approach
can be a stepping stone towards validators for full SHACL, and that
it can significantly improve the performance of the only prototype
validator that currently supports full recursion and negation.
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1 INTRODUCTION

The Shapes Constraint Language (SHACL) was recently standard-
ized by the W3C as a formalism for checking the quality of RDF
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graphs; we refer to [15] for an introduction. In SHACL, the main
problem is to checkwhether a given RDF graph𝐺 validates a SHACL
shapes graph (𝐶,𝑇 ), where𝐶 is a set of constraints, each associated
to a so-called shape name, and𝑇 is a specification of nodes (targets)
from the data graph which should validate certain shapes from
𝐶 . For illustration, consider a SHACL shapes graph (𝐶,𝑇 ), where
𝐶 = {Queen← ∃married .⊤∧∃has.𝑐𝑟𝑜𝑤𝑛} contains one constraint
stating that eachQueenmust be married and have a crown, and in𝑇
we have the shape atomQueen(𝑆𝑖𝑠𝑠𝑖). HereQueen is a shape name,
married and has are data predicates, i.e., properties, and crown is a
constant. The graph𝐺 = {married (𝑆𝑖𝑠𝑠𝑖, 𝐹𝑟𝑎𝑛𝑧)} does not validate
(𝐶,𝑇 ), but the extended graph 𝐺 ′ = 𝐺 ∪ {has(𝑆𝑖𝑠𝑠𝑖, 𝑐𝑟𝑜𝑤𝑛)} does.

The standard specifies a syntax for expressing SHACL con-
straints and describes when they are validated by RDF graphs. It al-
lows for recursive constraints, that is, constraints that involve cyclic
dependencies, but their semantics is not defined in the specification
and left open to implementers. This hasmotivated some recent logic-
based proposals to formalize the semantics of full SHACL [4, 8].

All formalizations of SHACL validation—with and without
recursion—are based on assignments of shapes to nodes in the data
graph, which have to comply with the constraints and contain the
targets. Such assignments are global in the sense that they cover all
nodes in the data graph. For tractable fragments that restrict the
interaction of recursion and negation, it has been shown that valida-
tion under global (a.k.a. strict faithful) assignments coincides with
validation under a weaker form of faithful assignments that allow
to decide only some shape at some nodes, and to leave others unde-
fined. Moreover, such faithful assignments can be obtained starting
from the nodes mentioned in the targets and visiting only their
relevant neighbourhood, while deciding the value of assignments
only for the shape names occurring in the constraints.

Unfortunately, the picture is significantly different in the pres-
ence of negation and recursion, whose interaction may hinder the
existence of a valid shape assignment and thus make a data graph in-
consistent with a set of SHACL constraints. Consider the following
example shapes graph (𝐶,𝑇 ) and data graph 𝐺 :

𝐶 = {Crowned← ∃crownedBy.¬Crowned}
𝑇 = {Crowned(𝑆𝑖𝑠𝑠𝑖)}
𝐺 = {crownedBy(Sissi,Archbishop), crownedBy(Tim, Tim)}

Crowned(Sissi) satisfies the constraint for Crowned since Sissi is
crowned by the Archbishop, who himself is not Crowned. Although
one may expect the target to be valid, no valid global assignment
exists, since there is no consistent way to assign or not assign
node Tim to the shape name Crowned. This may not be desired
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Figure 1: UsingMagic Shapes for SHACL validation. The input set𝐶 and targets T are transformed into a (typically smaller and simpler) shapes

graph𝐶magic relevant for the targets, which can be validated with off-the-shelf validators

since the part of the data graph relevant to validating the target
Crowned(Sissi) is independent from Tim being crowned or not, and
indeed, a faithful assignment could leave Crowned(Tim) undefined.
This is a toy example, but in real life RDF graphs may be huge
and errors may be unavoidable. Simply discarding the entire graph
because of a problematic fact unrelated to our targets may be highly
undesirable. Moreover, finding a global assignment over the full
graph is costly. It makes the worst-case complexity of validation
to go up from P to NP-hard [8], and additionally, it is incompatible
with the target-guided top-down approaches. Indeed, recent and
ongoing efforts to implement scalable SHACL validators use this
type of goal-oriented approaches [7, 14], but focus on tractable
fragments of SHACL, and do not handle unrestricted SHACL, that
is with unrestricted recursion and negation. Existing algorithms
search for global assignment, and only one of them is implemented
in a proof-of-concept prototype [4]. To our knowledge, no target-
oriented way to compute faithful assignments looking only at the
relevant part of the graph has been proposed.

The focus of this work is SHACL validation in the presence of un-
restricted negation and recursion. We build on Magic Sets [2, 3, 6],
a well-known technique developed in the context of deductive
databases to combine the advantages of top-down and bottom-up
evaluation. In a nutshell, it uses the query goal to adorn the in-
put program with binding information, obtaining a new program
whose bottom-up evaluation, analogously to the top-down one,
involves only the part of the data relevant to answering the query.
We adapt this technique to SHACL shape graphs. Our main con-
tribution is a Magic Shapes technique that takes as input a shapes
graph 𝑆 = (𝐶,𝑇 ), and produces a new, potentially significantly
smaller ‘magic shapes graph’ 𝑆𝑚 = (𝐶magic,𝑇 ). On the one hand,
𝐶magic discards the constraints in 𝐶 that are not necessary for vali-
dating the target 𝑇 . At the same time, it generates a set of ‘magic
constraints’ that, in a nutshell, ensure that validation is always
restricted to a relevant fragment of the input data graph, starting
from the nodes directly mentioned in 𝑇 , and iteratively identifying
their relevant neighborhood. The output 𝑆𝑚 can then be passed
to existing validators instead of the input 𝑆 , see Figure 1. When-
ever the data graph is consistent with the constraints and a global
assignment exists, 𝑆𝑚 and 𝑆 are equivalent. Otherwise, if there is
no global assignment, the data graph may still validate the ‘magic
shapes graph’ if the problematic part of the data graph and set of
constraints is not relevant to the current target. In this way, we can
find faithful assignments that leave irrelevant shape adornments
undefined, enabling a more fine-grained validation than under cur-
rent semantics. For tractable fragments, it also provides an easy
way to do validation on a potentially much smaller fragment of the

input RDF graph, while ignoring constraints that do not affect vali-
dation of the targets, independently of the algorithms implemented
by the specific validator at hand.

Structure of the paper. In Section 2, we present the syntax of
SHACL and the notion of validation under both the classical (or
supported) and stable model semantics. We describe the Magic
Shapes algorithm in Section 3 and Section 4. To illustrate the gen-
eral ideas of the algorithm, we first concentrate in Section 3 on
the positive fragment of SHACL. The full algorithm for SHACL
constraints with arbitrary negation and recursion is described in
Section 4. Section 5 is dedicated to showing the correctness of the
Magic Shapes algorithm. We then discuss in Section 6 how the
Magic Shapes technique allows us to find faithful assignments and
define an inconsistency-tolerant version of the semantics. We im-
plemented the Magic Shapes technique and did some preliminary
experiments; the results are presented in Section 7.

Related Work. Logic-based proposals to formalize the semantics
of full SHACL—with recursive constraints—have emerged recently.
Andresel et al. [4] proposed a semantics based on the stable models
semantics for logic programs, stricter than the semantics based on
classical logic due to Corman el al. [8]. Both semantics coincide with
the official recommendation for non-recursive constraints. There
is a close connection between SHACL and the more established
family of Description Logics [5], which has been used to gain new
insights into SHACL (see, e.g., [16, 20]). There has also been in-
creasing interest in scalable SHACL validation. Shacl2Sparql [7]
is a validation engine that checks conformance of RDF graphs with
SHACL constraints by evaluating SPARQL queries against the data,
which optimizes the order in which shapes are processed. Further
optimization techniques are implemented in Trav-Shacl [14]. How-
ever, these works focus on tractable fragments of SHACL, and do
not handle unrestricted interaction of recursion and negation in con-
straints. To our knowledge, the only implementation that validates
unrestricted SHACL is the Shacl-Asp prototype from [4], which
translates SHACL constraints into answer set programs (ASP) [12]
and evaluates them using the DLV system [1]. Note that [7] pro-
poses an algorithm for unrestricted SHACL that involves a SAT
solver, but to our knowledge, with no available implementation.

OurMagic Shapes technique is inspired by thewell-knownMagic
Set transformation for optimizing evaluation of Datalog programs
in bottom-up systems [6, 18], and its extensions for Datalog with
disjunction [3, 9] and (possibly stratified) negation [2, 6, 13, 21]. In
paticular, we build on the ideas of the Magic Set method presented
in [13] for Datalog with unstratified negation, which goes beyond
optimization, and also addresses the challenge of meaningful se-
manics in the face of possible inconsistencies.
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2 PRELIMINARIES

We present here SHACL and the notion of validation by RDF graphs
under the supported model semantics and the stable model seman-
tics. We follow the formalization from [4].

Data graph Let N and P denote infinite, disjoint sets of nodes and
property names, respectively. A (data) graph𝐺 is a finite set of atoms
of the form 𝑝 (𝑎, 𝑏), where 𝑝 ∈ P and 𝑎, 𝑏 ∈ N. The set of nodes
appearing in 𝐺 is denoted with 𝑉 (𝐺).

Syntax of SHACL Let S be an infinite set of shape names, disjoint
fromN and P. A shape atom is an expression of the form 𝑠 (𝑎), where
𝑠 ∈ S and 𝑎 ∈ N. A path expression 𝐸 is a regular expression build
from the operators ∗, ·, ∪, and symbols 𝑝 or expressions 𝑝−, where
𝑝 ∈ P. A (shape) expression is an expression 𝜙 of the form:

𝜙 :=⊤ | 𝑠 | 𝑎 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ¬𝜙 |≥𝑛 𝐸.𝜙 | 𝐸 = 𝐸 ′,

where 𝑠 ∈ S, 𝑎 ∈ N, 𝑛 ∈ N, and 𝐸, 𝐸 ′ are path expressions. We use
the abbreviations ∃𝐸.𝜙 for ≥1 𝐸.𝜙 , and ≤𝑛 𝐸.𝜙 for ¬(≥𝑛+1 𝐸.𝜙).
A (shape) constraint is of the form 𝑠 ← 𝜙 , where 𝑠 ∈ S and 𝜙 is
a shape expression. We may sometimes call 𝑠 the head and 𝜙 the
body of the constraint. A target set (or simply target) is a set of
shape atoms of the form 𝑠 (𝑎) where 𝑠 ∈ S and 𝑎 ∈ N. A shapes
graph is a pair (𝐶,𝑇 ), where 𝐶 is a set of constraints and 𝑇 is a
target. The definition 𝜙𝑠,𝐶 of a shape name 𝑠 in a set of constraints
𝐶 is the disjunction of all shape expressions in the body of a shape
constraint in 𝐶 whose head shape is 𝑠 . That is, 𝜙𝑠,𝐶 =

∨
𝑠←𝜙 ∈𝐶 𝜙 .

If 𝐶 is clear from the context, we may simply write 𝜙𝑠 instead of
𝜙𝑠,𝐶 . For the theoretical part of this work, we only consider ground
targets given as shape atoms, since the other types of targets (like
the so-called class targets) can be converted to ground targets using
SPARQL queries. The SHACL recommendation1 provides a possible
definition in SPARQL for each target type.

Evaluation of shape expressions An assignment 𝐴 for a graph
𝐺 is a set of shape atoms such that 𝑣 ∈ 𝑉 (𝐺) for each 𝑠 (𝑣) ∈ 𝐴.
The set 𝐺 ∪𝐴 is called decorated graph for 𝐺 . The evaluation of a
(complex) shape expression w.r.t. a decorated graph 𝐼 is given in
Table 1 in terms of a function J·K𝐼 that maps a (complex) shape
expression 𝜙 to a set of nodes, and a path expression 𝐸 to a set of
pairs of nodes. Throughout the paper, when validating a graph 𝐺
against a shapes graph 𝑆 , we assume that all constants that occur
in 𝑆 also appear in 𝐺 .

Supported and stablemodel semanticsWe first present the sup-
ported model semantics introduced in [8].

Definition 2.1. Given a set of shape constraints 𝐶 , a decorated
graph 𝐼 is called a supported model of 𝐶 , if J𝜙𝑠,𝐶K𝐼 = J𝑠K𝐼 holds for
each shape name 𝑠 in 𝐶 . A graph 𝐺 validates a shapes graph (𝐶,𝑇 )
under the supported model semantics if there exists an assignment
𝐴 for 𝐺 such that (i) 𝐺 ∪𝐴 is a supported model, and (ii) 𝑇 ⊆ 𝐴.

The stable model semantics restricts the supported model se-
mantics by requiring that every shape atom of a decorated graph
has a (non-circular) justification. This is achieved by requiring the
existence of a level assignment [4].

1https://www.w3.org/TR/shacl/#targets

Table 1: Evaluation of shape expressions

J⊤K𝐼 = 𝑉 (𝐼 ) J𝑐K𝐼 = {𝑐 }

J𝑝K𝐼 = {(𝑣, 𝑣′) | 𝑝 (𝑣, 𝑣′) ∈ 𝐼 } J𝑝−K𝐼 = {(𝑣, 𝑣′) | 𝑝 (𝑣′, 𝑣) ∈ 𝐼 }

J𝐸 ∪ 𝐸′K𝐼 = J𝐸K𝐼 ∪ J𝐸′K𝐼 J𝐸 · 𝐸′K𝐼 = J𝐸K𝐼 ◦ J𝐸′K𝐼

J𝐸∗K𝐼 = {(𝑣, 𝑣) | 𝑣 ∈ 𝑉 (𝐼 ) } ∪ J𝐸K𝐼 ∪ J𝐸 · 𝐸K𝐼 ∪ J𝐸 · 𝐸 · 𝐸K𝐼 ∪ · · ·

J𝑠K𝐼 = {𝑣 | 𝑠 (𝑣) ∈ 𝐼 } J¬𝜙K𝐼 = 𝑉 (𝐼 ) \ J𝜙K𝐼

J𝜙1 ∨ 𝜙2K𝐼 = J𝜙1K𝐼 ∪ J𝜙2K𝐼 J𝜙1 ∧ 𝜙2K𝐼 = J𝜙1K𝐼 ∩ J𝜙2K𝐼

J≥𝑛 𝐸.𝜙K𝐼 = {𝑣 | | { (𝑣, 𝑣′) ∈ J𝐸K𝐼 and 𝑣′ ∈ J𝜙K𝐼 } | ≥ 𝑛}

J𝐸 = 𝐸′K𝐼 = {𝑣 | ∀𝑣′ : (𝑣, 𝑣′) ∈ J𝐸K𝐼 iff (𝑣, 𝑣′) ∈ J𝐸′K𝐼 }

Definition 2.2 (Level assignment). Let 𝐼 be supported model. A
level assignment for 𝐼 is a function level that maps tuples in {(𝜙, 𝑣) |
𝑣 ∈ J𝜙K𝐼 } to integers, and satisfies the following conditions:
(i) 𝑙𝑒𝑣𝑒𝑙 (𝜙1 ∧ 𝜙2, 𝑣) =𝑚𝑎𝑥 ({𝑙𝑒𝑣𝑒𝑙 (𝜙1, 𝑣), 𝑙𝑒𝑣𝑒𝑙 (𝜙2, 𝑣)})
(ii) 𝑙𝑒𝑣𝑒𝑙 (𝜙1 ∨ 𝜙2, 𝑣) =𝑚𝑖𝑛({𝑙𝑒𝑣𝑒𝑙 (𝜙1, 𝑣), 𝑙𝑒𝑣𝑒𝑙 (𝜙2, 𝑣)})
(iii) 𝑙𝑒𝑣𝑒𝑙 (≥𝑛 𝐸.𝜙, 𝑣) is the smallest 𝑘 ≥ 0 for which there exist 𝑛

nodes 𝑣1, 𝑣2, . . . , 𝑣𝑛 such that for all 1 ≤ 𝑖 ≤ 𝑛

(a) (𝑣, 𝑣𝑖 ) ∈ J𝐸K𝐼 , 𝑣𝑖 ∈ J𝜙K𝐼 , and
(b) 𝑙𝑒𝑣𝑒𝑙 (𝜙, 𝑣𝑖 ) ≤ 𝑘 .

Definition 2.3 (Stable Model Semantics). A decorated graph 𝐼 is a
stable model of a set𝐶 of constraints, if (i) 𝐼 is a supported model of
𝐶 , and (ii) there exists a level assignment such that for all 𝑠 (𝑣) ∈ 𝐼
𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 , 𝑣) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣). A set of shape constraints 𝐶 is called
consistent with 𝐺 under the supported (stable) model semantics if
there exists a supported (stable) model of 𝐶; otherwise 𝐶 is called
inconsistent with𝐺 (under the supported (stable) model semantics).

A data graph𝐺 validates a shapes graph (𝐶,𝑇 ) under the stable
model semantics if there exists an assignment 𝐴 such that (i)𝐺 ∪𝐴
is a stable model of 𝐶 , and (ii) 𝑇 ⊆ 𝐴.

Clearly, every stable model is also a supported model, but the
converse may not be the case. We illustrate this on an example.

Example 2.4. Consider a shapes graph (𝐶,𝑇 ) and a data graph𝐺
defined as follows:

𝐶 = {Queen← ∃married .King ∨ ∃has.crown,
King← ∃married .Queen ∨ ∃has.crown}

𝑇 = {King(Franz)}
𝐺 = {married (Harry,Meghan),married (Meghan,Harry),

married (Franz, Sissi),married (Sissi, Franz),
has(Franz, crown)}

Consider the following shape assignments:

𝐴1 = {King(Harry),Queen(Meghan),King(Franz),Queen(Sissi)}
𝐴2 = {King(Meghan),Queen(Harry),King(Franz),Queen(Sissi)}
𝐴3 = {King(Harry),Queen(Meghan),King(Sissi),Queen(Franz)}
𝐴4 = {King(Meghan),Queen(Harry),King(Sissi),Queen(Franz)}
𝐴5 = {King(Franz),Queen(Sissi)}
𝐴6 = {King(Sissi),Queen(Franz)}
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The decorated graphs 𝐼𝑖 = 𝐺 ∪ 𝐴𝑖 with 1 ≤ 𝑖 ≤ 6 all satisfy the
condition J𝜙𝑠K𝐼𝑖 = J𝑠K𝐼𝑖 for each shape name 𝑠 occurring in 𝐶 , and
hence, each 𝐼𝑖 is a supported model of𝐶 . The models 𝐼𝑖 with 1 ≤ 𝑖 ≤
4 have no level assignment that fulfills the conditions of Definition
2.3 item (ii), hence they are not stable models. However, 𝐼5 and 𝐼6
are stable models. To show that 𝐼5 is a stable model we give the
following level assignment, with 𝑣 ∈ {Harry,Megan, Franz, Sissi}:

𝑙𝑒𝑣𝑒𝑙 (⊤, 𝑣) = 0 𝑙𝑒𝑣𝑒𝑙 (∃has.crown, Franz) = 0
𝑙𝑒𝑣𝑒𝑙 (King, Franz) = 1 𝑙𝑒𝑣𝑒𝑙 (Queen, Sissi) = 1

Note that 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 , 𝑣) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣) for all 𝑠 (𝑣) ∈ 𝐺 ∪𝐴5 as required.
The level assignment for 𝐼6 is similar.

Brave and Cautious validation The above notions of validation
only check for the existence of a supported- or stable model, which
can be viewed as brave validation. Andresel et al. [4] also study
cautious validation, which aims to validate the targets that are true
in every stable model. We recall this notion for both semantics.

Definition 2.5. A data graph𝐺 cautiously validates a shapes graph
(𝐶,𝑇 ) under the supported (stable) model semantics if 𝑇 ⊆ 𝐴 for
every supported (stable) model 𝐺 ∪𝐴 of 𝐶 .

We illustrate brave and cautious validation with an example.

Example 2.6. Consider Example 2.4. The target 𝑇 is contained
in the supported models with assignment 𝐴1, 𝐴2 and 𝐴5, but not
𝐴3, 𝐴4 and 𝐴5. Hence, the data graph 𝐺 bravely, but not cautiously,
validates the shapes graph (𝐶,𝑇 ) under the supported model seman-
tics. For the stable model semantics there exist two models, namely
𝐺 ∪ 𝐴5 and 𝐺 ∪ 𝐴6. Since 𝑇 ⊆ 𝐴5, but 𝑇 ⊈ 𝐴6 the data graph 𝐺

bravely, but not cautiously validates the shapes graph (𝐶,𝑇 ) under
the stable model semantics.

To ease presentation, we use the following normal form for
SHACL constraints.

Definition 2.7 (Normal form for constraints). A constraint is in
normal form if it has one of the following forms:

(NF1) 𝑠 ← ⊤ (NF2) 𝑠 ← 𝑎 (NF3) 𝑠 ← 𝐸 = 𝐸 ′

(NF4) 𝑠 ← ¬𝑠 ′ (NF5) 𝑠 ← 𝑠1 ∧ · · · ∧ 𝑠𝑛 (NF6) 𝑠 ←≥𝑛 𝐸.𝑠 ′

It was shown in [4] (Proposition 4.2) that a set of constrains
𝐶 can be transformed in polynomial time into a normalized set
of constraints 𝐶 ′ such that for every graph 𝐺 and target set 𝑇 , 𝐺
validates (𝐶,𝑇 ) iff 𝐺 validates (𝐶 ′,𝑇 ) under supported- and stable
model semantics. Further, it can be shown that every model 𝐼 of
(𝐶,𝑇 ) can be transformed into a model 𝐼 ′ of (𝐶 ′,𝑇 ), so that both
brave- and cautious validation are preserved.

3 MAGIC SHAPES ALGORITHM FOR SHACL

Now we describe theMagic Shapes algorithm for SHACL validation.
For simplicity, we first present it for the positive fragment of SHACL,
that is, constraints in normal form that do not include expressions
of the form (NF4). In the next section, we extend it to constraints
with unrestricted use of negation. The transformation follows ideas
from the Magic Sets algorithm for Datalog¬ in [13].

We first identify the shape names that are reachable from a target
and the constraints that are relevant for validating it.

Definition 3.1. Given a shapes graph (𝐶,𝑇 ), where 𝐶 is positive,
we let reach(𝐶,𝑇 ) be the smallest set of shape names such that:
- if 𝑠 (𝑎) ∈ 𝑇 , then 𝑠 ∈ reach(𝐶,𝑇 ), and
- if 𝑠 ← 𝜙 ∈ 𝐶 and 𝑠 ∈ reach(𝐶,𝑇 ), then every shape name occur-
ring in 𝜙 is also in reach(𝐶,𝑇 ).

The set of constraints 𝐶𝑇 = {𝑠 ← 𝜙 ∈ 𝐶 | 𝑠 ∈ reach(𝐶,𝑇 )} is called
the module of 𝐶 w.r.t. 𝑇 .

Example 3.2. Consider a shapes graph (𝐶,𝑇 ), where 𝐶 contains:

𝑠1 ← 𝑠2 ∧ 𝑠3 𝑠2 ← ∃𝑟 .𝑠4 𝑠3 ← 𝑠2

𝑠4 ← ∃𝑟 𝑠5 ← 𝑠6 𝑠6 ← ∃𝑟 .𝑠2
and𝑇 = {𝑠1 (𝑎)}. Then, 𝑟𝑒𝑎𝑐ℎ(𝐶,𝑇 ) = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, resulting in the
module 𝐶𝑇 = {𝑠1 ← 𝑠2 ∧ 𝑠3, 𝑠2 ← ∃𝑟 .𝑠4, 𝑠3 ← 𝑠2, 𝑠4 ← ∃𝑟 }.

The algorithm takes as input a shapes graphs (𝐶,𝑇 ) and out-
puts a new optimized (𝐶magic,𝑇 ) against which data graphs can
be validated. The algorithm consists of four main steps, which are
summarized in Algorithm 1 and described in more detail below.

Input :SHACL shapes graph (𝐶,𝑇 )
Output :Optimized shapes graph (𝐶magic,𝑇 ).

1 begin

2 𝐶generate := {magic_𝑠 ← 𝑣 | 𝑠 (𝑣) ∈ 𝑇 } ;
3 𝐶𝑇 := {𝑠 ← 𝜙 ∈ 𝐶 | 𝑠 ∈ reach(𝐶,𝑇 )};
4 foreach 𝑠 ← 𝜙 ∈ 𝐶𝑇 do

5 𝐶generated := 𝐶generated∪ {Generate(𝑠 ← 𝜙)};
6 end

7 𝐶modified := {𝑠 ← magic_𝑠 ∧ 𝜙 | 𝑠 ← 𝜙 ∈ 𝐶𝑇 };
8 𝐶magic := 𝐶generated ∪𝐶modified;
9 return (𝐶magic,𝑇 );

10 end

Algorithm 1:Magic Shape Algorithm for positive SHACL

Modularize. The step modularize in line 3 extracts the set of con-
straints relevant for the targets, i.e. the module 𝐶𝑇 . Note that this
depends on the shape names in 𝑇 , but not on the targeted nodes.

Create magic seeds. In line 2, constraints of the formmagic_𝑠 ←
𝑣 , called magic seeds, are created for each shape atom 𝑠 (𝑣) in 𝑇 and
added to the set 𝐶generate of generated constraints.

Example 3.3. Consider again Example 3.2. The algorithm adds the
magic seed magic_𝑠1 ← 𝑎 in 𝐶generate. Intuitively, this constraint
says that the validation of 𝑠1 at 𝑎 is relevant.

Generate. The module 𝐶𝑇 is used to generate magic constraints in
lines 4-6 through the procedure Generate, described in Algorithm
2. In a nutshell, for each 𝑟 ∈ 𝐶𝑇 of the form 𝑠 ← 𝜙 and for each
shape name 𝑠 ′ in 𝜙 , it creates a new constraint with magic_𝑠 in the
body and magic_𝑠 ′ in the head. If in the constraint two shapes are
connected by a path expression 𝐸, then 𝐸 is inverted. Intuitively,
these constraints ‘mark’ the nodes and shapes that are relevant for
validating the current target. The constraint magic_𝑠 ′ ← magic_𝑠
can be read as ’if the 𝑠-assignment of a node 𝑣 is marked as relevant,
then the 𝑠 ′-assignment of 𝑣 is also marked as relevant’.
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1 function Generate(𝑠 ← 𝜙) is

2 if 𝜙 = 𝑠1 ∧ · · · ∧ 𝑠𝑛 then

3 return

{magic_𝑠1← magic_𝑠; . . . ; magic_𝑠𝑛← magic_𝑠}
4 if 𝜙 =≥𝑛 𝐸.𝑠 ′ then
5 return {magic_𝑠 ′ ←≥𝑛 𝐸− .magic_𝑠};
6 else

7 return ∅;
8 end

9 end

Algorithm 2: Generation

Example 3.4. In our running example, procedure Generate adds
four constraints to 𝐶generate, namely

magic_𝑠2 ← magic_𝑠1 magic_𝑠3 ← magic_𝑠1
magic_𝑠4 ← ∃𝑟− .magic_𝑠2 magic_𝑠2 ← magic_𝑠3

These constraints together with the magic seeds in Example 3.3
comprise now 𝐶generate.

Modification. In line 7, the body of each constraint in the module
𝐶𝑇 is enhanced with a magic version of the shape name in its head.
Intuitively, this ensures that the resoner does not continue with
the validation of shapes assignments at nodes that are not marked
as relevant by the magic rules, and restricts models to only the
relevant atoms.

Example 3.5. Consider again 𝐶𝑇 from Example 3.2. The set of
constraints 𝐶modified contains:

𝑠1 ← magic_𝑠1 ∧ 𝑠2 ∧ 𝑠3 𝑠2 ← magic_𝑠2 ∧ ∃𝑟 .𝑠4
𝑠3 ← magic_𝑠3 ∧ 𝑠2 𝑠4 ← magic_𝑠4 ∧ ∃𝑟

The output 𝐶magic of the magic shapes algorithm consists of the
union of the sets𝐶generated and𝐶modified, see line 8 of Algorithm 1.

Example 3.6. To demonstrate the magic shapes algorithm, con-
sider a data graph𝐺 = {𝑟 (𝑎, 𝑎), 𝑟 (𝑎, 𝑐)}. When validating𝐺 against
the shapes graph (𝐶,𝑇 ) from Example 3.2, there exists a stable
model 𝐺 ∪𝐴, with the assignment being

𝐴 = {𝑠1 (𝑎), 𝑠2 (𝑎), 𝑠3 (𝑎), 𝑠4 (𝑎), 𝑠5 (𝑎), 𝑠6 (𝑎),
𝑠1 (𝑐), 𝑠2 (𝑐), 𝑠3 (𝑐), 𝑠4 (𝑐)}.

The target 𝑠1 (𝑎) is in 𝐴, and therefore, 𝐺 validates (𝐶,𝑇 ). When
validating 𝐺 against the magic shapes graph (𝐶magic,𝑇 ), then we
get a supported model 𝐺 ∪𝑀 ∪𝐴′, with

𝑀 = {magic_𝑠1 (𝑎),magic_𝑠2 (𝑎),magic_𝑠3 (𝑎),magic_𝑠4 (𝑎)}
𝐴′ = {𝑠1 (𝑎), 𝑠2 (𝑎), 𝑠3 (𝑎), 𝑠4 (𝑎)}.

Again, it is the case that 𝑠1 (𝑎) ∈ 𝐴′. Note that the assignment
𝐴′ ⊆ 𝐴 contains only 4 shape atoms. Indeed, the module 𝐶𝑇 does
not contain the constraints regarding 𝑠5 and 𝑠6, which are not
reachable from the target, and hence, 𝑠5 (𝑎) and 𝑠6 (𝑎) are not in 𝐴′.
Moreover, the set 𝑀 , obtained from 𝐶generate and 𝐺 , discards the
irrelevant magic shape atoms concerning node 𝑐 , which together
with 𝐶modified, restrict the assignments of the shape names 𝑠1 to 𝑠4
to the relevant node 𝑎 only.

4 ALGORITHM TO SUPPORT NEGATION

The presence of arbitrary negation and recursion in SHACL con-
straints may cause inconsistency with the input data graph, making
every target inherently invalid as there cannot exist a stable- or
supported model that satisfies the constraints. E.g., for a constraint
of the form 𝑠 ← ¬𝑠 , there is no way to assign or not assign a node to
the shape name 𝑠 so that the constraint is satisfied. It is well-known
from the database literature [19] that parts of a logic program that
may give rise to inconsistency can be caused by this kind of cyclic
dependencies with an odd number of negated predicates. An analo-
gous situation arises in SHACL, where odd cycles may make some
assignments invalid. We need to identify such so-called dangerous
constraints that appear under the scope of negation, and if they
are relevant for validating the target, they should participate in the
magic algorithm. In this way, the magic shapes graph preserves all
valid shape assignments, and only allows validation of inconsistent
inputs if the contradictions don’t interact with validating the target.

Definition 4.1. [Dangerous constraints] Assume a set of con-
straints 𝐶 . The shape dependency graph of 𝐶 is the marked directed
graph𝐷𝐺𝐶 with an edge from 𝑠1 to 𝑠2 if there is a constraint 𝑠2 ← 𝜙

in 𝐶 such that 𝑠1 occurs in 𝜙 , and the edge (𝑠1, 𝑠2) is marked if
𝜙 = ¬𝑠2. A cycle of 𝐷𝐺𝐶 is a sequence of nodes 𝑆 = 𝑛1, . . . , 𝑛𝑘 , such
that 𝑛1 = 𝑛𝑘 , each 𝑛𝑖 for 1 < 𝑖 < 𝑘 occurs exactly once in 𝑆 , and
(𝑛𝑖 , 𝑛𝑖+1) for (1 ≤ 𝑖 < 𝑘) is an edge in 𝐷𝐺𝐶 . An odd cycle in 𝐷𝐺C
is a cycle, where an odd number of edges are marked.

A shape name 𝑠 is dangerous in 𝐶 if
(i) 𝑠 occurs in an odd cycle of 𝐷𝐺𝐶 , or
(ii) s occurs in 𝜙 for some constraint 𝑠 ′ ← 𝜙 ∈ 𝐶 such that 𝑠 ′ is

dangerous.
We say a constraint 𝑠 ′ ← 𝜙 is dangerous of 𝑠 ′ is dangerous.

Example 4.2. Consider the set of shape constraints 𝐶:

𝑠1 ← ¬𝑠1 ∧ 𝑠2 𝑠2 ← 𝑠3 𝑠3 ← ∃𝑟 .¬𝑠4
𝑠4 ← ∃𝑟 .¬𝑠3 𝑠5 ← 𝑠4 ∧ ¬𝑠6 𝑠6 ← 𝑠4 ∧ ¬𝑠5

This set has one odd cycle involving the shape name 𝑠1. Since 𝑠1 is
dangerous and affects 𝑠2, 𝑠2 affects 𝑠3, and 𝑠3 affects 𝑠4, the shape
names 𝑠1 to 𝑠4 are dangerous. The figure below shows the shape
dependency graph with its dangerous shapes and odd cycle in red.

s2

s3

s5

s6s4

s1

Extended modules For consistent sets of constraints and data
graphs, we want to ensure cautious and brave soundness and com-
pleteness, and for inconsistent ones, we want to ensure brave com-
pleteness and cautious soundness. For both cautious and brave
validation, the completeness property means that if 𝐺 validates
(𝐶,𝑇 ), then𝐺 validates (𝐶magic,𝑇 ), and soundness means that if𝐺
validates (𝐶magic,𝑇 ), then 𝐺 validates (𝐶,𝑇 ). Clearly, inconsistent
inputs trivially cautiously validate the shapes graph, and it may
be that𝐺 bravely validates (𝐶magic,𝑇 ). Thus brave soundness and
cautious completeness cannot be ensured for inconsistent inputs.

In the presence of unrestricted negation in constraints, it may
not be sufficient to consider reachability of shape names only from
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left to right as for the positive case. This may leave out some rele-
vant dangerous constraint which may be triggered by shape names
that are reachable from the target, and which can only be included
by propagating from right to left. It is important to detect and ap-
propriately include such constraints in the Magic Shapes algorithm.
We illustrate the problem with the following example.

Example 4.3. Consider the data graph 𝐺 = {𝑟 (𝑎, 𝑎)} and shapes
graph (𝐶,𝑇 ), where𝑇 = {𝑠4 (𝑎)} and𝐶 is the set of constraints from
Example 4.2. Note that for simplicity of presentation in this particu-
lar example the constraints are not in normal form, but can be easily
normalized. There are 2 supported models of 𝐶 and 𝐺 , which also
coincide with its stable models, namely 𝐼1 = {𝑟 (𝑎, 𝑎), 𝑠4 (𝑎), 𝑠5 (𝑎)}
and 𝐼2 = {𝑟 (𝑎, 𝑎), 𝑠4 (𝑎), 𝑠6 (𝑎)}. Thus𝐺 validates (𝐶,𝑇 ) both bravely
and cautiously. Note that 𝑠3 (𝑎) does not participate in any model
since they are filtered out by the first constraint.

Now let us consider the shapes graph resulting from the Magic
Shapes algorithm. The only shape name that is reachable from the
target shape name 𝑠4 is 𝑠3, and hence, the module𝐶𝑇 contains only
the constraints for these shape names, namely 𝑠3 ← ∃𝑟 .¬𝑠4 and
𝑠4 ← ∃𝑟 .¬𝑠3, which will participate in the algorithm. The result is
the set 𝐶magic consisting of the constraints:

magic_𝑠4 ← 𝑎,

magic_𝑠3 ← ∃𝑟− .magic_𝑠4,
magic_𝑠4 ← ∃𝑟− .magic_𝑠3,

𝑠3 ← magic_𝑠3 ∧ ∃𝑟 .¬𝑠4,
𝑠4 ← magic_𝑠4 ∧ ∃𝑟 .¬𝑠3

The only models of 𝐶magic are

𝐼 ′1 ={𝑟 (𝑎, 𝑎), magic_𝑠3 (𝑎), magic_𝑠4 (𝑎), 𝑠3 (𝑎)}, and
𝐼 ′2 ={𝑟 (𝑎, 𝑎), magic_𝑠3 (𝑎), magic_𝑠4 (𝑎), 𝑠4 (𝑎)}.

Of these two models, only 𝐼 ′1 contains the target shape atom 𝑠4 (𝑎),
so 𝐺 validates (𝐶magic,𝑇 ) bravely, but not cautiously.

There are also cases where 𝐺 bravely validates (𝐶magic,𝑇 ), but
not (𝐶,𝑇 ). For instance, consider again the graph𝐺 and the shapes
graph (𝐶,𝑇 ′), where 𝑇 ′ = {𝑠3 (𝑎)}. The module 𝐶𝑇 ′ remains the
same as 𝐶𝑇 , and thus the stable models 𝐼1 and 𝐼2 remain the same.
The target𝑇 ′ is neither contained in 𝐼1 nor in 𝐼2, therefore𝐺 neither
bravely nor cautiously validates the shapes graph (𝐶,𝑇 ′). When
applying the magic shape algorithm on (𝐶,𝑇 ′), the output 𝐶 ′magic
contains the same constraints as above, except for the magic seed,
which is now magic_𝑠3 ← 𝑎. Then the supported and the stable
models of 𝐶 ′magic are:

𝐼 ′3 = {𝑟 (𝑎, 𝑎),magic_𝑠3 (𝑎),magic_𝑠4 (𝑎), 𝑠4 (𝑎)} and
𝐼 ′4 = {𝑟 (𝑎, 𝑎),magic_𝑠3 (𝑎),magic_𝑠4 (𝑎), 𝑠3 (𝑎)}

Now the target 𝑇 ′ is contained in 𝐼 ′4, so 𝐺 bravely validates the
shapes graph (𝐶 ′magic,𝑇

′) although (𝐶,𝑇 ′) does not.

As illustrated through the above example, on consistent inputs,
the current version of theMagic Shapes algorithm for shapes graphs
with negation is not cautious-complete and brave-sound. In the
above example, the reason for the difference in validation with
the original shapes graph is the presence of the second model 𝐼 ′1
which contains 𝑠3. Intuitively, the first constraint of 𝐶 filters out

every model that contain a shape atom over the shape name 𝑠1, and
together with the second constraint do not allow also shape atoms
over 𝑠3. In fact, the first and second constraint are both dangerous.

To address this issue and to ensure both brave and cautious
validation (soundness and completeness) for consistent inputs, we
extend the notion of reachable shape names and module to take
into consideration dangerous constraints. If they are relevant for
validating the target, reachability should be propagated also from
the body to the head.

Definition 4.4. [Extended reachable set, module] Given a shapes
graph (𝐶,𝑇 ), exReach(𝐶,𝑇 ) is the set of extended reachable shape
names in 𝐶 from shape names in 𝑇 such that:
(i) if 𝑠 (𝑎) ∈ 𝑇 , then 𝑠 ∈ exReach(𝐶,𝑇 ),
(ii) if 𝑠 (𝑎) ∈ 𝑇 and there exists a directed path in 𝐷𝐺𝐶 from 𝑠 to

𝑠 ′, then 𝑠 ′ ∈ exReach(𝐶,𝑇 ), and
(iii) if 𝑠 ∈ exReach(𝐶,𝑇 ), 𝑠 ′ is dangerous and there exists a directed

path in 𝐷𝐺𝐶 from 𝑠 ′ to 𝑠 , then 𝑠 ′ ∈ exReach(𝐶,𝑇 ).
The set of constraints 𝐶𝑇 = {𝑠 ← 𝜙 ∈ 𝐶 | 𝑠 ∈ exreach(𝐶,𝑇 )} from
𝐶 is called a module of 𝐶 w.r.t. 𝑇 .

Complete Algorithm for SHACL with negation We now de-
scribe how to adapt the algorithm to take into account the effect
of dangerous constraints. The only function that is extended is
Generate, which will produce more constraints for dangerous con-
straints. Algorithm 1 will remain the same.

1 function Generate(𝑠 ← 𝜙) is

2 if 𝜙 =≥𝑛 𝐸.𝑠 ′ then
3 return magic_𝑠 ′ ←≥𝑛 𝐸− .magic_𝑠;
4 else

5 foreach shape name 𝑠 ′ in 𝜙 do

6 return magic_𝑠 ′ ← magic_𝑠;
7 end

8 end

9 if 𝑠 ← 𝜙 is dangerous then
10 if 𝜙 =≥𝑛 𝐸.𝑠 ′ then
11 return magic_𝑠 ←≥𝑛 𝐸.magic_𝑠 ′;
12 else

13 foreach shape name 𝑠 ≠ 𝑠𝑖 in 𝜙 do

14 return magic_𝑠 ← magic_𝑠𝑖 ;
15 end

16 end

17 end

Algorithm 3: Generation

Roughly, 𝐶generate now contains for each dangerous constraints
a set of ’magic’ constraints that consider all possible alternations
of the shape names in the head and the body of the constraint (see
Algorithm 3 lines 9-16). These constraints propagate in assignments
the mapping of nodes also from the shape names in the body to the
shape name in the head of constraints.

Example 4.5. Consider again Example 4.3. The new𝐶 ′′magic result-
ing from the complete Magic Shapes algorithm extends the set of
constraints𝐶magic from Example 4.3 with the following constraints
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generated by the extended procedure Generate from Algorithm 3:

magic_𝑠2 ← magic_𝑠1 magic_𝑠1 ← magic_𝑠2
magic_𝑠3 ← magic_𝑠2 magic_𝑠2 ← magic_𝑠3
magic_𝑠3 ← ∃𝑟 .magic_𝑠4 magic_𝑠4 ← ∃𝑟 .magic_𝑠3

𝑠1 ← magic_𝑠1 ∧ ¬𝑠1 ∧ 𝑠2 𝑠2 ← magic_𝑠2 ∧ 𝑠3
Note that 𝐶 ′′magic does not contain the constraints for 𝑠5 and 𝑠6
since they are not dangerous constraints. Indeed, they are not rele-
vant for validating the target. The unique stable model of 𝐶 ′′magic is
𝐼 = {𝑟 (𝑎, 𝑎), magic_𝑠4 (𝑎), magic_𝑠3 (𝑎), magic_𝑠2 (𝑎), magic_𝑠2 (𝑎),
𝑠4 (𝑎)}.

Hence, 𝐺 both cautiously and bravely validates (𝐶 ′′magic,𝑇 ) as it
does with the input shapes graph (𝐶,𝑇 ).

5 CORRECTNESS OF THE ALGORITHM

For a given data graph 𝐺 and a shapes graph (𝐶,𝑇 ), the Magic
Shapes algorithm outputs a new shapes graph (𝐶magic,𝑇 ), where
𝐶magic is composed of 𝐶generate and 𝐶modified. Recall that the con-
straints in 𝐶generate define the magic version of the adorned shape
names and 𝐶modified modifies constraints from the input 𝐶 by
adding in the body the magic version of the shape name that is in
the head of the constraint. Provided that𝐺 is consistent with𝐶 , we
want to ensure that 𝐺 validates (𝐶,𝑇 ) iff 𝐺 validates (𝐶magic,𝑇 ).
Otherwise, we want to guarantee cautious soundness and brave
completeness. To this aim, we start with a simple fact:

Lemma 5.1. Let𝐺 be a data graph and let (𝐶,𝑇 ) be a shapes graph.
Then there exists a unique assignment 𝐴 such that 𝐺 ∪𝐴 is a stable
model of 𝐶generate.

This holds because all the constraints in 𝐶generate are positive.
Analogously to normal logic programs, the stable model 𝑀 of
𝐶generate is the unique, minimal assignment that is a supported
model. Intuitively,𝑀 identifies the relevant universe of shape atoms
for validation, that is, it ‘marks’ with magic shapes all nodes of the
graph that can participate in the validation of the target 𝐶modify
under both the stable and supported model semantics. We will see
that a shapes graph and its magic output coincide on the shape
atoms that appear in𝑀 .

To show the correctness of the algorithm, we will show that
𝐶magic defines a kind of module that is independent from the rest
of 𝐶 and𝐺 . To this aim we rely on the notion of ground constraints,
which intuitively instantiate a constraint at a node or a pair of
nodes.

Definition 5.2. A ground constraint is a tuple (𝜌, 𝑣), if 𝜌 is a con-
straint of the form (NF1)-(NF5) and a tuple (𝜌, (𝑣, 𝑣 ′)), if 𝜌 is a
constraint of the form (NF6), where 𝑣, 𝑣 ′ are nodes from N. We may
say (𝜌, 𝑣) (or (𝜌, (𝑣, 𝑣 ′))) is the grounding of 𝜌 w.r.t. 𝑣 (or (𝑣, 𝑣 ′)).

Next we define the notion of the grounding of a set of constraints
w.r.t. an input data graph 𝐺 .

Definition 5.3. Given a data graph 𝐺 and a set of constraints 𝐶 ,
the grounding gr (𝐶,𝐺) of 𝐶 w.r.t. 𝐺 is a set of ground constraints
obtained for each 𝜌 ∈ 𝐶 , such that
• if 𝜌 is of the form (NF1)-(NF5), then (𝜌, 𝑣) is in 𝐶gr for each
𝑣 ∈ 𝑉 (𝐺),

• if 𝜌 is of the form (NF6), then (𝜌, (𝑣, 𝑣 ′)) is in 𝐶gr for each
𝑣, 𝑣 ′ ∈ 𝑉 (𝐺).

We lift the definition 𝜋𝑠 of 𝑠 in a set of constraints 𝐶 to ground
constraints, and then adapt the definition of supported and stable
models to ground constraints as follows.

Definition 5.4. A decorated graph 𝐼 is a supported model of a
set of ground constraints 𝐶gr if J𝜙𝑠K𝐼 = J𝑠K𝐼 for each shape name 𝑠
occurring in 𝐶gr and for each 𝑣 ∈ J𝑠K𝐼 there exists in 𝐶gr a ground
constraint (𝜌, 𝑣) or (𝜌, (𝑣, 𝑣 ′)) with 𝑠 in the head of 𝜌 . 𝐼 is a stable
model of 𝐶gr if it is a supported model of 𝐶gr , and there exists a
level assignment such that 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 , 𝑣) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣) for all 𝑠 (𝑣) ∈ 𝐼 .

From the above definitions, the following lemma immediately
holds. In particular, this is the case since the grounding gr (𝐶,𝐺) of
a set of constraints𝐶 w.r.t. a data graph𝐺 grounds every constraint
in 𝐶 with every node or every pair of nodes from 𝑉 (𝐺).

Lemma 5.5. Let𝐺 be a data graph and let𝐶 be a set of constraints.
Then 𝐼 is a supported (or stable) model of 𝐶 iff 𝐼 is a supported (or
stable) model of gr (𝐶,𝐺).

Independent constraintsWe now define the notion of indepen-
dence of a set of ground constraints w.r.t. another set of ground
constraints, which is similar to the same notion for ground ASP
programs defined by Eiter et al. in [11] and to splitting sets defined
by Lifschitz et al. in [17].

Definition 5.6. Given a set of ground constraints 𝐶gr , the shape
domain of𝐶gr , written as sdom(𝐶gr ), is the set of shape atoms 𝑠 (𝑣)
such that one of the following holds:
• (𝜌, 𝑣) is in 𝐶gr and 𝑠 occurs in the body or head of 𝜌 , or
• (𝜌, (𝑣, 𝑣 ′)) is in 𝐶gr and 𝑠 is the head of 𝜌 , or
• (𝜌, (𝑣 ′, 𝑣)) is in 𝐶gr and 𝑠 is in the body of 𝜌 .

Let 𝐶1 and 𝐶2 be sets of ground constraints. We say that 𝐶1 is
independent of𝐶2 if it is not the case that there is some shape name
𝑠 that occurs in the head of some ground constraint (𝜌, 𝑣) or of the
form (𝜌, (𝑣, 𝑣 ′)) in 𝐶2 such that 𝑠 (𝑣) occurs in sdom(𝐶1).

The above definition roughly states that𝐶1 is independent of𝐶2
if each ‘ground’ shape name that occurs in the head of a ground
constraint in 𝐶2 does not occur in any ground constraint (head or
body) in 𝐶1, hence the ground constraints in 𝐶1 may have some
effect on the ground constraints of 𝐶2, but this is not the case for
the other direction.

Theorem 5.7. Let 𝐺 be a data graph and let 𝐶gr = gr (𝐶,𝐺) be
the grounding of 𝐶 w.r.t. 𝐺 . Moreover, let 𝐶1 and 𝐶2 be such that
𝐶gr = 𝐶1∪𝐶2 and𝐶1 is independent of𝐶2. Let𝑀 = sdom(𝐶1). Then,
for every supported (or stable) model 𝐼 = 𝐺 ∪𝐴 of 𝐶gr it is the case
that 𝐺 ∪ (𝐴 ∩𝑀) is a supported (or stable) model of 𝐶1.

Proof. We show the claim first for the supported model seman-
tics and then for supported models with a level assignment. Let
𝐼 = 𝐺 ∪𝐴 be a supported model of 𝐶gr and let 𝐼𝑀 = 𝐺 ∪ (𝐴 ∩𝑀).
We need to show that 𝐼𝑀 is a supported model of 𝐶1, that is: 1)
that J𝜙𝑠K𝐼𝑀 = J𝑠K𝐼𝑀 for each shape name 𝑠 occurring in 𝐶1, and 2)
for each 𝑣 ∈ J𝑠K𝐼𝑀 there exists in 𝐶1 a ground constraint (𝜌, 𝑣) or
(𝜌, (𝑣, 𝑣 ′)) with 𝑠 in the head of 𝜌 . To see the latter, note that 𝑠 (𝑣)
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is in𝑀 , so there is some constaint with 𝑠 in the head or the body
and 𝑣 in the corresponding position, as in Definition 5.6. Note that
it cannot occur in a body only, since there must be some constraint
with 𝑠 in the head and grounded with 𝑣 in either of the 𝐶𝑖 , but as
𝐶1 is independent from 𝐶2, it cannot be in 𝐶2.

To show 1), we first note that since 𝐶1 is independent from 𝐶2,
for each node 𝑣 ∈ J𝑠K𝐼𝑀 it is the case that all the ground constraints
(𝜌, 𝑣) or (𝜌, (𝑣, 𝑣 ′)) with 𝑠 in the head of 𝜌 that appear in 𝐶gr will
also appear in 𝐶1. Thus there is a unique 𝜙𝑠 that is the definiton
of 𝑠 in both 𝐶gr and 𝐶1, which is in fact its definiton in 𝐶 . Now, let
𝑠 be an arbitrary shape name in 𝐶1 and let 𝑣 be an arbitrary node
in 𝑉 (𝐺). It is left to show that 𝑣 ∈ J𝜙𝑠K𝐼𝑀 if and only if 𝑣 ∈ J𝑠K𝐼𝑀 .
For the (⇒) direction, 𝑣 ∈ J𝜙𝑠K𝐼𝑀 implies 𝑣 ∈ J𝜙𝑠K𝐼 . Since 𝐼 is a
supported model of 𝐶gr , it follows that 𝑣 ∈ J𝑠K𝐼 . That is, there is
some ground constraint (𝜌, 𝑣) or (𝜌, (𝑣, 𝑣 ′)) with 𝑠 in the head of
𝜌 that appears in 𝐶gr , and hence, it also appears in 𝐶1. It follows
that 𝑠 (𝑣) is also in𝑀 , and hence also in 𝐼𝑀 . For the (⇐) direction,
let 𝑠 (𝑣) ∈ 𝐼𝑀 . This implies that 𝑠 (𝑣) ∈ 𝐴 and 𝑠 (𝑣) ∈ 𝑀 . The first
implies that 𝑣 ∈ J𝜙𝑠K𝐼 . Let 𝜙 be an arbitrary disjunct in 𝜙𝑠 such that
𝑣 ∈ J𝜙K𝐼 . It is left to show that 𝑣 ∈ J𝜙K𝐼𝑀 . The claim trivially holds
for 𝜙 as in (NF1), (NF2) or (NF3). If 𝜙 is of the form ¬𝑠 ′, as in (NF4),
then 𝑠 ′(𝑣) must not be in 𝐼 and hence it is not in 𝐴, which implies
that 𝑣 ∈ J¬𝑠 ′K𝐼𝑀 . If 𝜙 is a conjunction of shape names 𝑠1, . . . 𝑠𝑛 , as
in (NF4), then each 𝑠𝑖 (𝑣) is in 𝐴. Since (𝑠 ← 𝑠1 ∧ · · · ∧ 𝑠𝑛, 𝑣) is in
𝐶gr , then it must also be in𝐶1, which implies that each 𝑠𝑖 (𝑣) is also
in 𝑀 , and hence also in 𝐼𝑀 . Finally, for 𝜙 of the form ≥𝑛 𝐸.𝑠 ′, as
in (NF6), reasoning as in the previous case, there must be at least
𝑛 nodes 𝑣𝑖 with an 𝐸-path from 𝑣 such that 𝑠 ′(𝑣𝑖 ) in 𝐴. Since the
grounding is with respect to every node in 𝑉 (𝐺), for each such 𝑣𝑖
there is a ground constraint (𝑠 ← ≥𝑛 𝐸.𝑠 ′, (𝑣, 𝑣𝑖 )) in 𝐶gr , and since
𝐶1 is independent of 𝐶2, each such ground constraint is also in 𝐶1.
Hence, by the definition of the shape domain of 𝐶1, 𝑠 ′(𝑣𝑖 ) is in𝑀

for each such node 𝑣𝑖 . From these observations follows that 𝑠 ′(𝑣𝑖 )
is in 𝐴 ∩𝑀 for each 𝑣𝑖 , which shows that 𝑣 satisfies ≥𝑛 𝐸.𝑠 ′ in 𝐼𝑀 .

For the stable model semantics, it is clear that if 𝐼 has a level
assignment, then 𝐼𝑀 ⊆ 𝐼 also has a level assignment. □

Independence of Magic ConstraintsWe show that to compute
the models of a set of constraints 𝐶magic resulting from the magic
algorithm, it suffices to consider the models of the grounding of
the module 𝐶𝑇 obtained by grounding every constraint with the
nodes of the shapes atoms with ‘magic’ as prefix from 𝐶generate.

Lemma 5.8. Let 𝐺 be a data graph, let (𝐶,𝑇 ) be a SHACL shapes
graph and let 𝐺 ∪ 𝑀 be the stable model of 𝐶generate. For each
shape name 𝑠 such that magic_𝑠 appears in 𝑀 we let 𝑁𝑠 = {𝑣 |
magic_𝑠 (𝑣) ∈ 𝑀}. Let𝐶𝑇,gr be the set of ground constraints obtained
by grounding every constraint 𝜌 in 𝐶𝑇 as follows:

• if 𝜌 is of the form (NF1) to (NF5), then (𝑠 ← 𝜙, 𝑣) ∈ 𝐶𝑇,gr for
each 𝑣 ∈ 𝑁𝑠 ,
• if 𝜌 is of the form 𝑠 ←≥𝑛 𝐸.𝑠 ′, that is (NF6), then (𝑠 ←
𝜙, (𝑣, 𝑣 ′)) ∈ 𝐶𝑇,gr for each 𝑣, 𝑣 ′ with 𝑣 ∈ 𝑁𝑠 and 𝑣 ′ ∈ 𝑁𝑠′ ,

Then, the following hold under supported and stable model semantics:

(1) if 𝐼 is a model of 𝐶magic, then 𝐼 \𝑀 is a model of 𝐶𝑇,gr , and
(2) if 𝐼 is a model of 𝐶𝑇,gr , then 𝐼 ∪𝑀 is a model of 𝐶magic.

Proof. We use the term model instead of supported or stable
model. For (1), let 𝐼 be a model of 𝐶magic and let 𝑠 be an arbi-
trary shape name occurring in 𝐶modified. Then, it is the case that
J𝜙𝑠 ∧ magic_𝑠K𝐼 = J𝑠K𝐼 and J𝑠K𝐼 ⊆ 𝑁𝑠 . Clearly, 𝑠 ← 𝜙𝑠 is also the
definition of 𝑠 in 𝐶𝑇 and by construction, for each 𝑣 ∈ 𝑁𝑠 and for
each constraint 𝑠 ← 𝜙 in𝐶𝑇 , there is a ground constraint (𝑠 ← 𝜙, 𝑣)
or (𝑠 ← 𝜙, (𝑣, 𝑣 ′)) in 𝐶𝑇,gr . By the definition of models of ground
constraints, it follows that 𝐼 \𝑀 is also a model of𝐶𝑇,gr . For (2), let 𝐼
be a model of𝐶𝑇,gr . Then, J𝜙𝑠K𝐼 = J𝑠K𝐼 and J𝑠K𝐼 ⊆ 𝑁𝑠 . Since 𝑁𝑠 con-
tains all the nodes appearing in atoms over magic_𝑠 in𝑀 , follows
that 𝐼 ∪𝑀 is a model for 𝐶generate and for 𝐶modified. For the stable
model semantics, the existence of a level assignment for 𝐼 \𝑀 in
item (1) is trivial. For (2), it is left to show that if 𝐼 = 𝐺∪𝐴 has a level
assignment, then 𝐼 ∪𝑀 has a level assignment. Since 𝐺 ∪𝑀 is the
stable model of 𝐶generate, there is a level assignment for the atoms
with magic as prefix such that 𝑙𝑒𝑣𝑒𝑙 (𝜙magic, 𝑣) < 𝑙𝑒𝑣𝑒𝑙 (magic_𝑠, 𝑣)
for every magic_𝑠 (𝑣) ∈ 𝑀 , with magic_𝑠 ← 𝜙magic a constraint in
𝐶generate. Let 𝐿𝐺 be such an assignment, where the atoms from 𝐺

are assigned integer 0, and let ℓ be the integer of the highest ranked
shape atom in 𝐿𝐺 . Furthermore, let 𝐿′ be a level assignment for 𝐼 .
We define 𝐿𝑀 which assigns to each shape atom 𝛼 in 𝐴 an integer
𝑖 + ℓ , where 𝑖 is the level assigned to the atom 𝛼 in 𝐿′. Clearly, the
level assignment composed of 𝐿𝐺 and 𝐿𝑀 is as desired. □

The set of ground constraints 𝐶𝑇,gr obtained from 𝐶magic is in-
dependent of the rest of the grounding.

Lemma 5.9. Let 𝐺 be a data graph and let 𝐶gr = gr (𝐶,𝐺) be the
grounding of 𝐶 w.r.t. 𝐺 . Then, 𝐶𝑇,gr is independent of 𝐶gr \𝐶𝑇,gr .

Proof. Towards a contradiction, let 𝑠 be a shape name that
occurs in the head of a constraint 𝜌 with (𝜌, 𝑣) (or (𝜌, (𝑣, 𝑣 ′))) in
𝐶gr \𝐶𝑇,gr and assume 𝑠 (𝑣) ∈ sdom(𝐶𝑇,gr ). By Lemma 5.8 follows
that magic_𝑠 (𝑣) is in𝑀 , where𝐺∪𝑀 is the stable model of𝐶generate,
and there is some constraint with 𝑠 in the head or body that appears
ground in 𝐶𝑇,gr with 𝑣 in the expected position. It follows that the
constraint 𝜌 should also appear in 𝐶𝑇 since 𝑠 will also be adorned
by the algorithm and by Lemma 5.8 this constraint should also
have been grounded in 𝐶𝑇,gr with the node 𝑣 , that is (𝜌, 𝑣) (or
(𝜌, (𝑣, 𝑣 ′))) should be in 𝐶𝑇,gr , thus deriving a contradiction to the
initial assumption. □

Before we present the main lemma that puts everything together,
we need to adapt the notion of dangerous constraints for ground
constraints by considering shape atoms rather than shape names.

Definition 5.10. Assume a set of ground constraints 𝐶gr . The
ground shape dependency graph of 𝐶gr is a marked directed graph
𝐺𝐷𝐺𝐶gr , where there is an edge from node 𝑠1 (𝑣) to node 𝑠2 (𝑣) if
there is a ground constraint (𝑠2 ← 𝜙, 𝑣) in 𝐶 such that 𝑠1 occurs
in 𝜙 , an edge from node 𝑠1 (𝑣 ′) to node 𝑠2 (𝑣) if there is a ground
constraint (𝑠2 ← 𝜙, (𝑣, 𝑣 ′)) in𝐶gr such that𝜙 is of the form ≥ 𝐸𝑛 .𝑠1,
and the edge is marked if 𝜙 = ¬𝑠2. Cycles and odd cycles of𝐺𝐷𝐺𝐶gr

are defined exactly as for𝐷𝐺𝐶 . Let𝐶gr be a set of ground constraints.
A shape atom 𝑠 (𝑣) is dangerous if (1) 𝑠 (𝑣) occurs in an odd cycle of
𝐺𝐷𝐺𝐶gr , or (2) 𝑠 occurs in 𝜙 for some constraint (𝑠 ′ ← 𝜙, 𝑣) ∈ 𝐶gr
or (𝑠 ′ ← 𝜙, (𝑣 ′, 𝑣)) such that 𝑠 ′ is dangerous. A ground constraint
(𝑠 ′ ← 𝜙, 𝑣) or (𝑠 ′ ← 𝜙, (𝑣, 𝑣 ′) is dangerous if 𝑠 ′(𝑣) is dangerous.
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We observe that if a ground constraint (𝜌, 𝑣) or (𝜌, (𝑣, 𝑣 ′)) in
gr (𝐶,𝐺) is dangerous, then 𝜌 is also dangerous in 𝐶 .

Lemma 5.11. Let 𝐺 be a data graph and let (𝐶,𝑇 ) a SHACL docu-
ment. Assume𝐺∪𝑀 is the stable model of𝐶generate and𝑀 ′ = {𝑠 (𝑣) |
magic_𝑠 (𝑣) ∈ 𝑀}. Then, the following hold under supported- and
stable model semantics:

(1) if 𝐼 = 𝐺 ∪𝐴 is a model of 𝐶 , then 𝐼 ′ = 𝐺 ∪𝑀 ∪𝐴′ is a model of
𝐶magic, where 𝐴′ = 𝐴 ∩𝑀 ′, and

(2) if𝐶 is consistent with𝐺 and 𝐼 ′ = 𝐺 ∪𝑀 ∪𝐴′ is a model of𝐶magic,
then there exists an 𝐴 such that 𝐼 = 𝐺 ∪ 𝐴 is a model of 𝐶 and
𝐴′ = 𝐴 ∩𝑀 ′.

Proof. For item (1), we show the claim for supported models
and then for models with a level assignment. By Lemma 5.5 it
follows that 𝐼 is a model of 𝐶gr . By Lemma 5.9 follows that 𝐶𝑇,gr is
independent of𝐶gr \𝐶𝑇,gr , where𝐶𝑇 is the module of𝐶 w.r.t.𝑇 and
𝐶𝑇,gr is the grounding of 𝐶𝑇 w.r.t. the stable model 𝑀 as defined
in Lemma 5.11. The latter and Theorem 5.7, item (1), imply that
𝐺 ∪ (𝐴 ∩𝑀 ′) is a model of 𝐶𝑇,gr , which together with Lemma 5.8,
item (2), imply that 𝐼 ′ = 𝐺 ∪ (𝐴 ∩ 𝑀 ′) ∪ 𝑀 is a model of 𝐶magic.
For the stable model semantics, it is left to show that 𝐼 ′ has a level
assignment if 𝐼 has a level assignment. This is done analogously to
the proof of Lemma 5.8 item (2), arguing that we can combine the
level assignments for 𝐺 ∪𝑀 and 𝐼 into a level assingment for 𝐼 ′.

For item (2), similarly as above, we first show the claim for sup-
ported models and argue about the exsitence of a level assignment.
Let 𝐼 ′ = 𝐺 ∪ 𝑀 ∪ 𝐴′ be a model of 𝐶magic. By Lemma 5.8, item
(1), follows that 𝐼 ′ \ 𝑀 is a model of 𝐶𝑇,gr . Let 𝐶𝐴′ be the set of
ground constraints ((𝑠 ← 𝑣), 𝑣) for each 𝑣 such that 𝑠 (𝑣) ∈ 𝐴′.
Since 𝐶𝑇,gr is independent from (𝐶gr \𝐶𝑇,gr ), then we know that
we can replace 𝐶𝑇,gr by each of its models, and the models of 𝐶gr
are preserved. That is, if there exists some 𝐴 such that 𝐼 = 𝐺 ∪𝐴
is a model of 𝐶gr with 𝐴′ = 𝐴 ∩𝑀 ′, then 𝐼 would also a model of
(𝐶gr \𝐶𝑇,gr ) ∪𝐶𝐴′ . Clearly,𝐴′ would be contained in 𝐼 . So, it is only
left to show that such an 𝐴 exists, which we argue similarly as in
the proof of Theorem 3.4 in [13]: in a nutshell, we show that there
is no constraint participating in an odd cycle in 𝐶 ′ = 𝐶gr \ 𝐶𝑇,gr
that will ‘kill’ the assignment 𝐴′ of 𝐶𝑇,gr .

To this aim, let 𝐶odd denote the set of all the ground constraints
in 𝐶 ′ that are dangerous, that is 𝐶odd contains all the ground con-
straints from 𝐶 ′ with a dangerous head that is in an odd cycle,
reachable from an odd cycle, or reaches an odd cycle. It follows that
the shape domain sdom(𝐶odd ) ∩ sdom(𝐶 ′ \𝐶odd ) = ∅. Moreover,
we show that sdom(𝐶odd ) ∩ sdom(𝐶𝑇,gr ) = ∅, which implies that
sdom(𝐶odd ) ∩ sdom(𝐶𝐴′) = ∅. By Definition 5.6, there is no ground
constraint (𝜌, 𝑣) or (𝜌, (𝑣, 𝑣 ′)) in 𝐶odd with 𝑠 in the head of 𝜌 such
that 𝑠 (𝑣) ∈ sdom(𝐶𝑇,gr ) since 𝐶𝑇,gr is independent of 𝐶 ′ and 𝐶odd
is contained in 𝐶 ′. Assume towards a contradiction that there is a
ground constraint (𝜌, 𝑣) or (𝜌, (𝑣 ′, 𝑣)) in𝐶odd with 𝑠 in the body of
𝜌 such that 𝑠 (𝑣) ∈ sdom(𝐶𝑇,gr ). First, we observe that since such
a ground constraint in 𝐶gr is dangerous, then 𝜌 must also also be
dangerous in 𝐶 , and by definition, the shape name 𝑠 occurring in
the body of 𝜌 is also dangerous. Since 𝑠 (𝑣) ∈ sdom(𝐶𝑇,gr ), then by
Definition 5.6, there is a constraint 𝜌 ′ such that at least one of the
following holds:
• (𝜌 ′, 𝑣) is in 𝐶𝑇,gr and 𝑠 occurs in the body or head of 𝜌 ′, or

• (𝜌 ′, (𝑣, 𝑣 ′)) is in 𝐶𝑇,gr and 𝑠 is the head of 𝜌 ′, or
• (𝜌 ′, (𝑣 ′, 𝑣)) is in 𝐶𝑇,gr and 𝑠 is in the body of 𝜌 ′.

Thus 𝜌 ′ contains a dangerous shape name 𝑠 in the body or in
the head. Hence, by Definition 4.4, 𝜌 should also be present in
the module 𝐶𝑇 and by Definition 5.2, the ground constraint (𝜌, 𝑣)
or (𝜌, (𝑣 ′, 𝑣)) should also be contained in 𝐶𝑇,gr and not in 𝐶odd ,
deriving a contradiction. From the above observations it follows
that the shape domain of 𝐶odd has no intersection with the shape
domain of the rest of the constraints in 𝐶gr . Since 𝐶gr is consistent,
it follows that there exists a model of 𝐶odd . Let 𝐺 ∪𝐴odd be such a
model. Note that the rest of the set of ground constraints, that is
(𝐶gr \ (𝐶𝑇,gr ∪𝐶odd )) ∪𝐶𝐴′ does not contain any odd cycles. It is
known from answer set programming that programs that do not
contain any odd cycle are consistent [10], that is they admit a model.
This result can be lifted to SHACL by results from Andresel et al.
in [4], which showed that a SHACL shapes graph can be translated
into a logic program with negation that preserves validation under
the stable and supported model semantics. These transformation
does not change the parity of negation in cyclic dependencies of
shape names. That is, a shape name 𝑠 appears in a cycle with an odd
number of negative edges if and only if the corresponding unary
atom over 𝑠 in targeted program appears in a cycle with an odd
number of negative edges. So, as (𝐶gr \ (𝐶𝑇,gr ∪𝐶odd )) ∪𝐶𝐴′ has
no odd cycles, we know it has a model. Let𝐺 ∪𝐴′ ∪𝐴rest be such a
model. It then follows that 𝐺 ∪𝐴′ ∪𝐴rest ∪𝐴odd is a model of 𝐶gr .
By Lemma 5.5 and since 𝑇 ⊆ 𝐼 ′, it follows that the desired model 𝐼
of𝐶 is 𝐼 = 𝐺 ∪𝐴 where 𝐴 = 𝐴′ ∪𝐴rest ∪𝐴odd . Either 𝐴odd nor 𝐴res
have any atoms from𝑀 ′, so 𝐴′ = 𝐴 ∩𝑀 ′. This finishes the proof
for the supported model semantics.

For the stable model semantics, it remains to argue that there is
a level assignment for 𝐼 , which is not hard to do, since we know
there are level assingment exists for each of 𝐺 ∪ 𝐴rest , 𝐺 ∪ 𝐴odd
and𝐺 ∪𝐴. As𝐴rest and𝐴odd are disjoint, and they are both disjoint
from 𝐴′, we can combine them into a level assignment for 𝐼 . □

Intuitively, if we ignore the ‘magic’ prefix and the shape atoms
with the ‘magic’ prefix, the above lemma states that, for consistent
inputs, the set of models of 𝐺 and 𝐶 restricted to the shape atoms
resulting from 𝐶generate is equivalent to the set of the models of
𝐺 and 𝐶magic. For inconsistent inputs, there may exist a model of
𝐺 and 𝐶magic even if there is no assignment that satisfies all the
constraints in 𝐶 . This gives us the desired correctness result:

Theorem 5.12. Let 𝐺 be a data graph and let (𝐶,𝑇 ) be a shapes
graph. The following hold under supported and stablemodel semantics:

(1) If𝐺 bravely validates (𝐶,𝑇 ), then𝐺 bravely validates (𝐶magic,𝑇 ).
(2) If𝐺 cautiously validates (𝐶magic,𝑇 ), then𝐺 cautiously validates
(𝐶,𝑇 ).

(3) If 𝐶 is consistent with 𝐺 , then 𝐺 validates (𝐶magic,𝑇 ) iff 𝐺 vali-
dates (𝐶,𝑇 ), under both brave and cautious validation.

Proof. We show the proof for stable models; it is identical for
supported models. For (1), suppose 𝐼 = 𝐺 ∪𝐴 is a stable model of𝐶
such that 𝑇 ⊆ 𝐴. By Lemma 5.11, item 1, it follows that there is an
𝐼 ′ of the form𝐺 ∪𝑀 ∪𝐴′ that is a model of𝐶magic, where𝐺 ∪𝑀 is
the stable model of𝐶generate and𝐴′ = 𝐴∩𝑀 ′. It is left to show that
𝑇 ⊆ 𝐴′. This follows by construction of 𝐶generate which contains a
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magic seed for each shape atom in the target, and thus, for every
𝑠 (𝑣) ∈ 𝑇 , magic_𝑠 (𝑣) is in𝑀 , and hence, 𝑠 (𝑣) ∈ 𝑀 ′ ∩𝐴.

For (2), the claim trivially holds for the case where 𝐶 is not
consistent with𝐺 . Otherwise, assume 𝐶 is consistent with𝐺 and
suppose 𝐺 cautiously validates 𝐶magic. Then, either (a) 𝐶magic is
not consistent with 𝐺 , which by Lemma 5.11 item (1), it follows
that 𝐶 is not consistent with𝐺 , and thus the claim follows, or (b)
𝐶magic is consistent with 𝐺 and 𝑇 ⊆ 𝐼 ′ for each stable model 𝐼 ′ of
𝐶magic. For (b), let 𝐼 ′ = 𝐺 ∪𝑀 ∪𝐴′ be an arbitrary stable model of
𝐶magic such that 𝑇 ⊆ 𝐴′. By Lemma 5.11 item (2), there is a stable
model 𝐼 = 𝐺 ∪𝐴 of 𝐶 that contains 𝐴′, which implies 𝑇 ⊆ 𝐴.

For (3), that 𝐶 is consistent with 𝐺 implies 𝐶magic is consistent
with 𝐺 . It is left to show (i) if𝐺 bravely validates (𝐶magic,𝑇 ), then
𝐺 bravely validates (𝐶,𝑇 ), and (ii) if 𝐺 cautiously validates (𝐶,𝑇 ),
then 𝐺 cautiously validates (𝐶magic,𝑇 ). Since there is a one to one
correspondence between stablemodels for𝐶 and for𝐶magic, arguing
as above using Lemma 5.11, item 1 and 2, the claim easily follows
for both brave and cautious validation. □

6 INCONSISTENCY-TOLERANT SEMANTICS

As has been observed in previous sections, the Magic Shapes algo-
rithm may output a shapes graph (𝐶magic,𝑇 ) which is consistent
with the data graph although the input shapes graph (𝐶,𝑇 ) is not.
This suggests that the constraints and the part of the data graph
causing the inconsistency are not relevant for validating the target.
Such situations in the context of SHACL may arise very often due
to the large RDF triplestores, which may inevitably, have faulty
facts. The 2-valued semantics that we have considered until now,
which requires the existence of a global assignment, may be too
restrictive in this setting. Corman et al. [8] address this drawback
of the 2-valued supported model semantics by proposing the notion
of faithful assignments, which may leave some shape atoms as un-
defined. We propose a similar inconsistency-tolerant semantics for
the stable- and supported model semantics, based on the models of
our magic transformation. To this aim, we first define a new notion
of assignments which may contain negated shape atoms.

Definition 6.1. A literal assignment 𝐴 for a graph 𝐺 is a set of
shape atoms of the form 𝑠 (𝑣) or ¬𝑠 (𝑣) where 𝑠 ∈ S and 𝑣 ∈ 𝑉 (𝐺).

If for a shape name 𝑠 appearing in 𝐶 and a node 𝑣 ∈ 𝑉 (𝐺) we
have {𝑠 (𝑣),¬𝑠 (𝑣)} ∩𝐴 = ∅, then we say that 𝑠 (𝑣) is undefined in 𝐴.

Definition 6.2. Assume a set of shape constraints 𝐶 and a literal
assignment 𝐴 for 𝐺 . Then, 𝐼 = 𝐺 ∪𝐴 is called a 3-valued supported
model of𝐶 if for each 𝑣 ∈ 𝑉 (𝐺) and for each constraint 𝑠 ← 𝜙 in𝐶 :
• if 𝑠 (𝑣) ∈ 𝐼 , then 𝑣 ∈ J𝜙K𝐼 , and
• if ¬𝑠 (𝑣) ∈ 𝐼 , then 𝑣 ∉ J𝜙K𝐼 .

If there is a level assignment for 𝐼 , then 𝐼 is 3-valued stable model
of 𝐶 . A graph 𝐺 validates a shapes graph (𝐶,𝑇 ) under the 3-valued
supported model semantics (or 3-valued stable model semantics) if
there exists a 3-valued supported model (or 3-valued stable model)
𝐼 of 𝐶 such that 𝑇 ⊆ 𝐴.

Note that each supported (or stable) model 𝐺 ∪ 𝐴 of a set of
constraints𝐶 can be seen as a 3-valued supported (or stable) model
𝐺 ∪ 𝐴′ where no shape atom remains undefined: simply let 𝐴′
extend 𝐴 with the negated version of each shape atom 𝑠 (𝑣) ∉ 𝐴

with 𝑠 a shape name appearing in 𝐶 and 𝑣 a node in 𝑉 (𝐺).

While 3-valued validation is highly desirable, to our knowledge
no algorithm that allows to decide the existence of a 3-valued stable
model for a given (𝐶,𝑇 ) thatmay contain unrestricted recursion and
negation had been proposed until now, neither under the supported
nor under the stable semantics. Our magic transformation, however,
is an effective way to do 3-valued validation. Indeed, we can see the
models of the magic as 3-valued models where only the relevant
atoms identified by 𝐶generate are defined to be true or false, and
where all the remaining atoms, which play no role in the validation
of the target, are left undefined.

Lemma 6.3. Let𝐺 be a data graph, let𝐶 be a shapes graph, and let
𝐼 ′ = 𝐺 ∪𝑀∪𝐴′ be a supported (stable) model of𝐶magic, where𝐺 ∪𝑀
is the stable model of 𝐶generate. Let 𝑀 ′ = {𝑠 (𝑣) | magic_𝑠 (𝑣) ∈ 𝑀}.
Then, 𝐼 = 𝐺 ∪𝐴 is a 3-valued supported (stable) model of 𝐶 , where

𝐴 = 𝐴′ ∪ {¬𝑠 (𝑣) | 𝑠 (𝑣) ∈ 𝑀 ′ \𝐴′}

Proof. In order to show that 𝐼 = 𝐺 ∪𝐴 is a 3-valued supported
model we need to show that (i) if 𝑠 (𝑣) ∈ 𝐼 , then 𝑣 ∈ J𝜙K𝐼 , and (ii)
if ¬𝑠 (𝑣) ∈ 𝐼 , then 𝑣 ∉ J𝜙K𝐼 . Let 𝐼 ′ = 𝐺 ∪ 𝑀 ∪ 𝐴′ be a supported
model of𝐶magic, it follows that J𝑠K𝐼

′
= Jmagic_𝑠K𝐼

′ ∩ J𝜙K𝐼
′
for each

constraint 𝑠 ← magic_𝑠 ∧ 𝜙 ∈ 𝐶magic. Note that the evaluation of
shape expressions is not affected by additional negated shape atoms
(see Table 1), hence the equality J𝜙K𝐼 = J𝜙K𝐼

′
holds. For positive

shape atoms 𝑠 (𝑣) ∈ 𝐼 , we know that 𝑠 (𝑣) ∈ 𝐴′, which implies that
𝑣 ∈ J𝜙K𝐼 . For the negated shape atoms of the form ¬𝑠 (𝑣) ∈ 𝐴, we
know that 𝑠 (𝑣) is in𝑀 ′ but not in 𝐴′, which implies that 𝑣 ∉ J𝜙K𝐼 .

To prove it for the 3-valued stable model semantics it is left
to show that 𝐼 has a level assignment such that for all 𝑠 (𝑣) ∈ 𝐼

it holds that 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 , 𝑎) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑎). Let 𝐼 ′ be a stable model of
𝐶magic, then it has a level assignment where 𝑙𝑒𝑣𝑒𝑙 (magic_𝑠 ∧𝜙𝑠 ) =
𝑚𝑎𝑥 ({𝑙𝑒𝑣𝑒𝑙 (magic_𝑠), 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 )}) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣) for all 𝑠 (𝑣) ∈ 𝐼 ′.
From this observation follows that 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 ) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣) for all
𝑠 (𝑣) ∈ 𝐼 ′. By construction of 𝐼 every 𝑠 (𝑣) in 𝐼 is also in 𝐼 ′, therefore
for all 𝑠 (𝑣) ∈ 𝐼 it holds that 𝑙𝑒𝑣𝑒𝑙 (𝜙𝑠 ) < 𝑙𝑒𝑣𝑒𝑙 (𝑠, 𝑣). □

Theorem 6.4. Consider a data graph𝐺 and a shapes graph (𝐶,𝑇 ).
If 𝐺 validates (𝐶magic,𝑇 ) under the supported (stable) model seman-
tics, then 𝐺 validates (𝐶,𝑇 ) under the 3-valued supported (stable)
model semantics.

Proof. Let 𝐼 = 𝐺 ∪ 𝑀 ∪ 𝐴′ be a stable model of 𝐶magic and
𝑇 ⊆ 𝐴. Then 𝐺 is valid against a shapes graph (𝐶,𝑇 ) under the
3-valued supported model semantics (or stable model semantics)
if (i) 𝐼 is a 3-valued supported- or stable model and (ii) 𝑇 ⊆ 𝐴. By
Theorem 6.3 (i) holds, since𝐺 ∪𝐴 is a 3-valued supported model (or
stable model) of 𝐶 , where 𝐴 = 𝐴′ ∪ {¬𝑠 (𝑣) | 𝑠 (𝑣) ∈ 𝑀 ′ \ 𝐴′} and
𝑀 ′ = {𝑠 (𝑣) | magic_𝑠 (𝑣) ∈ 𝑀}, and (ii) holds by assumption. □

The converse does not hold, as we show in the following example.
Our magic technique provides a stronger inconsistency-tolerant
validation than arbitrary 3-valued models.

Example 6.5. Consider (𝐶,𝑇 ) and 𝐺 , where 𝐶 = {𝑠 ← 𝑠 ′ ∧
¬𝑠, 𝑠 ′ ← ∃𝑟 }, 𝑇 = {𝑠 ′(𝑎)} and 𝐺 = {𝑟 (𝑎, 𝑎)}. The set 𝐺 ∪ {𝑠 ′(𝑎)}
is a 3-valued stable and supported model that validates the target,
but it is not a 2-valued stable or supported model of𝐶magic. Since 𝑠
occurs in an odd cycle, the constraint 𝜌 = 𝑠 ← 𝑠 ′∧¬𝑠 is dangerous,
and since 𝑠 ′ occurs in its body, by Definition 4.4, 𝜌 also occurs in
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Table 2: Constraints used in our experiments. We use =𝑛 𝑟 to abbreviate ≥𝑛 𝑟∧ ≤𝑛 𝑟 , and ∃𝑟 to abbreviate ∃𝑟 .⊤.
𝐶1 = { Actor← Person ∧ (∃starring− .Movie ∨ ∃𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛.𝑎𝑐𝑡𝑜𝑟 ) Famous← ∃knownFor

Director← Person ∧ ∃director− .Movie AwardWinning← ∃award
Location← ∃country Anarchy← Location ∧ ¬∃leaderTitle
Movie←=1 imdbId ∧ ∃starring.Actor LivingLanguage← ∃spokenIn.Location
TranslatedMovie← Movie∧ ≥2 language.LivingLanguage Musician← Person ∧ ∃instrument
Person←=1 birthPlace.Location Employee← ∃employer
WorkingPerson← Person ∧ Employee Parent← Person ∧ ∃child
WorkingClass← Person ∧ ∃child− .WorkingParent WorkingParent← Parent ∧WorkingPerson }

𝐶2 = (𝐶1 \ {Employee← ∃employer}) ∪ {Employee← ∃employer .¬Employee}

Table 3: Results of experiments with the shacl-asp validator for𝐶1 and𝐶2, and targets𝑇 over single nodes or classes with a number of nodes

specified in the second column. For 𝐶1, the column ‘valid2,3’ indicates the number of valid nodes under both 2- and 3-valued semantics (the

same before and after magic). For𝐶2, the 2-valued semantics always fails, and ‘valid3’ shows the number of targeted nodes that are validated

under 3-valued semantics using magic. Evaluation times before magic 𝑡 and after magic 𝑡𝑚 are measured in seconds. For each 𝑖 ∈ {1, 2}, |𝐶𝑖𝑚 |
is the number of constraints after magic and 𝑁𝑖𝑚 is the number of graph nodes appearing in the magic shape names in the model of𝐶𝑖 generate.

Targets 𝐶1 𝐶2
𝑇 nodes valid2,3 𝑡 𝑡m |𝐶1m | 𝑁1m valid3 𝑡 𝑡m |𝐶2m | 𝑁2m
Musician(mozart) 1 0 783 243 6 1 0 860 231 6 1
Musician(Actor) 4.872 0 958 253 6 6908 0 957 240 6 6908
Musician(Person) 2267445 5248 894 410 6 2396852 5248 936 407 6 2396852
Actor(cameron) (1) 1 1 768 384 8 3 1 894 404 8 3
Actor(Actor) 4872 614 905 450 8 253606 614 929 441 8 253606
Actor(Person) 2267445 16645 975 620 8 2567841 16645 933 642 8 2567841
Movie(Film) 143121 2449 882 474 8 302030 2449 999 448 8 302030
TranslatedMovie(Film) 143121 5 849 491 12 303021 5 905 508 12 303021
Employee(bill) 1 1 868 42 2 1 nm 936 45 4 3
Employee(mark) 1 0 785 39 2 1 0 831 43 4 1
Employee(Actor) 4872 6 825 42 2 4872 6 977 44 4 4879
Employee(Person) 2267445 9290 868 86 2 2267445 nm 880 145 4 2273847
WorkingPerson(bill) 1 1 846 241 8 2 nm 981 259 10 2
WorkingPerson(mark) 1 0 795 234 8 2 0 879 249 10 2
WorkingPerson(Actor) 4872 2 864 250 8 6908 2 997 294 10 6915
WorkingPerson(Person) 2267445 2959 906 410 8 2396852 nm 970 488 10 2403194
WorkingClass(bill) 1 0 734 258 14 2 0 890 283 16 2
WorkingClass(mark) (2) 1 1 822 291 14 7 1 942 285 16 7
WorkingClass(Actor) 4872 0 906 278s 14 7055 0 979 313 16 7056
WorkingClass(Person) 2267445 40 887 445 14 2396883 40 985 588 16 2397188

𝐶𝑇 , and hence, the constraint 𝑠 ← magic_𝑠 ∧ 𝑠 ′ ∧ ¬𝑠 will be in the
output of the magic algorithm. Since there is no consistent way to
assign or not assign node 𝑎 to shape name 𝑠 , there is no 2-valued
stable or supported model of 𝐶magic.

7 IMPLEMENTATION AND EXPERIMENTS

We implemented a prototype of the Magic Shapes algorithm and
analysed its effect on the performance of Shacl-Asp, the only
existing validator for full SHACL. The source code of the prototype
and all files used for the experiments are available online.2

Setting. The experiments were performed on a Linux server with
a 24 core Intel Xeon CPU running at 2.20 GHz and 264 GB of RAM.

2https://github.com/biziloehnert/magicSHACL.

We used the Shacl-Asp validator with an Apache Jena TDB3 as an
RDF triple store to access the data graph.

Data Graph. The data for the experiments was obtained from DB-
Pedia (latest-core, version 2021-12)4. More precisely, we used the
datasets ‘PersonData’, ‘Instance Types’, ‘Labels’, ‘Mappingbased
Literals’ and ‘Mappingbased Objects’. The datasets are in Turtle
syntax and contain about 119 million triples (15.4 GB). The Shacl-
Asp validator extracts from this graph all triples that mention the
data predicates in the shapes graphs, and transforms them into
a set 𝐺asp of ASP facts. For our test cases, 𝐺asp has almost 7 mil-
lion facts and 4 million constants (graph nodes). To assess our
inconsistency-tolerant validation, we added a few facts to 𝐺asp.
Specifically, we added employer (bill, bob), employer (bob, jim), and
3https://jena.apache.org/documentation/tdb/
4https://www.dbpedia.org/resources/latest-core/
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employer (jim, bill) to create an employer cycle over three individu-
als, we also added a birthPlace for each of them.

ShapesGraph.We created two sets of shape constraints describing
persons and their professions, in the spirit of the test cases in [7].
We show them—in abstract syntax—in Table 2. Note that 𝐶2 can
result in inconsistency if the data graph has cycles over the relation
employer .𝐶1 and𝐶2 were combined with different targets to obtain
40 different shapes graphs. We are using class targets: the target
𝑠 (𝐶) is a shortcut for the set of targets containing 𝑠 (𝑣) for each
node 𝑣 that has type 𝐶 in 𝐺 . The number of nodes in the graph
that are targeted in our shapes graphs ranges from one to over two
million, see the second column of Table 3.

Results. Table 3 summarizes the results of our experiments. The
average time (in seconds) of running the validator five times on the
original shapes graph and five times on its magic variant for each
test case is shown in the 𝑡 and 𝑡m columns. The Magic Shapes algo-
rithm improves the performance of the DLV validator significantly,
by at least 30% in our test cases.

The constraints in 𝐶1 are recursive: there is a cycle between
shape names Actor andMovie. As𝐶1 is always consistent–the mild
form of negation in 𝐶1 does not break consistency–the number
of targeted nodes that are validated under the 2- and 3-valued
semantics coincides, independently of the magic. Their total can be
seen in the column ‘valid2,3’.

In contrast, the additional constraint with negation in 𝐶2 is dan-
gerous, as it creates a marked self-loop to the dangerous shape
name Employee in the dependency graph 𝐷𝐺𝐶2 of𝐶2. In fact,𝐶2 is
inconsistent with 𝐺asp independently of any targets 𝑇 : due to the
mentioned employer cycle, there is no way to neither assign nor
omit Employee for each of bill, bob and jim, and there is no stable-
or supported model. As a consequence, none of the targeted nodes
can be validated with the 2-valued semantics. However, usingmagic,
we can validate under the 3-valued semantics all expected nodes
for the 16 targets that are not related to these individuals being or
not employees, see column ‘valid3’. The magic versions of 𝐶2 over
the shape names Musician, Actor, Movie, or TranslatedMovie co-
incide with the corresponding versions of𝐶1, and they are positive.
This is reflected in the results in Table 3, which are identical, and
only 𝑡 and 𝑡𝑚 may be slightly higher for 𝐶2 as it has an additional
constraint. For the rest of the targets, the dangerous constraint
participates in 𝐶2m (hence there are two more constraints than in
𝐶1m, one for 𝐶2generate and one for 𝐶2modified. We remark that the
constraint for Employee will not participate in the magic version in
𝐶1generate, but the new version will be in 𝐶2generate. This explains
why 𝑁2𝑚 may be slightly larger than 𝑁1𝑚 . However, the danger-
ous constraint will only cause inconsistency if bill, bob, or jim is
adorned withmagic_Employee by𝐶2generate. In our tests, this is the
case for Employee(bill), Employee(Person), WorkingPerson(bill),
andWorkingPerson(Person). For the rest of the targets in Table 3,
the dangerous constraint will behave as the positive constraint for
Employee in 𝐶1, validating the same number of nodes.

Finally, we observe that in some cases recursion may eliminated
by the magic algorithm (e.g., for𝐶1 with aMusician target, since the
shape names responsible for recursion are not reachable), or nega-
tion (e.g., for𝐶2 withMusician, Actor,Movie, and TranslatedMovie

Table 4: Experiments on reduced data graphs. The times in the first

colum are for validating the original𝐶𝑖 over𝐺asp, and in the second

column for the magic version𝐶𝑖m over𝐺𝑖m.

𝐶,𝐺asp 𝐶m,𝐺𝑖m 𝑁𝑖m |𝐺𝑖m |
𝐶1,(1) 768s 0.13s 3 461
𝐶1,(2) 822s 1.87s 7 26069
𝐶2,(2) 942s 2.31s 7 26069

targets). In principle, this could enable the use other validators for
SHACL fragments, like Shacl2Sparql and Trav-Shacl.5

Unfortunately, the current shacl-asp does not easily allow us
to fully leverage the fact that the subgraph identified as relevant
may be several order of magnitudes smaller, and it loads the full
𝐺asp with its millions of nodes even when only a handful of them
are relevant in the validation. To explore the potential for further
reducing the data graph, we hand-picked three shape graphs with
single nodes as targets, and dropped from𝐺asp all facts not mention-
ing nodes in 𝑁𝑖𝑚 . Even though the resulting 𝐺𝑖m may still contain
thousands of facts (since for example, some locations may occur
in thousands of birth place facts), the execution times dropped by
a couple of orders of magnitude. This observation suggests that it
would be promising to optimize shacl-asp to work with a better
approximation of 𝐺𝑖m.

8 CONCLUSIONS AND OUTLOOK

Adapting the Magic Set technique, we have proposed amagic trans-
formation for unrestricted SHACL validation. It takes as input
a shapes graph (𝐶,𝑇 ) and produces a new (𝐶magic,𝑇 ). The new
𝐶magic not only discards shape constraints that are irrelevant for
validating the target, but also identifies the relevant parts of the data
graph, thus enabling a target-oriented validation. The new shapes
graph can be equivalently used for validation on every graph that is
consistent with 𝐶 . In case of inconsistency, 𝐶magic may still admit
partial, target-oriented validation. To our knowledge, no practical
approaches for such inconsistency tolerant validation were avail-
able to date. We implemented our magic transformation and ran
experiments with Shacl-Asp, the only SHACL validator that can
support unrestricted recursion and negation, and showed that the
simpler shapes graphs produced by the Magic Shapes algorithm
are evaluated significantly more efficiently than the original ones.

We are currently exploring possible ways to exploit the Magic
Shapes technique in a more efficient and robust SHACL validator.
Specifically, we want to develop an improved SHACL validator
which does not require to load huge graphs as sets of facts, but
instead uses a SPARQL end-point (in the style of Shacl2Sparql
and Trav-Shacl) to access only the potentially much smaller data
graph that the magic algorithm identifies as relevant.
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