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ABSTRACT
The diversity and complexity of modern data management appli-
cations have led to the extension of the relational paradigm with
syntactic and semantic support for User-Defined Functions (UDFs).
Although well-established in traditional DBMS settings, UDFs have
become central in many application contexts as well, such as data
science, data analytics, and edge computing. Still, a critical limi-
tation of UDFs is the impedance mismatch between their evalu-
ation and relational processing. In this paper, we present YeSQL,
an SQL extension with rich UDF support along with a pluggable
architecture to easily integrate it with either server-based or em-
bedded database engines. YeSQL currently supports Python UDFs
fully integrated with relational queries as scalar, aggregator, or
table functions. Key novel characteristics of YeSQL include easy
implementation of complex algorithms and several performance
enhancements, including tracing JIT compilation of Python UDFs,
parallelism and fusion of UDFs, stateful UDFs, and seamless integra-
tion with a database engine. Our experimental analysis showcases
the usability and expressiveness of YeSQL and demonstrates that
our techniques of minimizing context switching between the re-
lational engine and the Python VM are very effective and achieve
significant speedups up to 68x in common, practical use cases com-
pared to earlier approaches and alternative implementation choices.
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1 INTRODUCTION
Modern trends in data processing are characterized by a diversity
of data sources and complex processing tasks running on large
volumes of data. This falls naturally within the scope of relational
databases, which are extremely powerful data storage and process-
ing engines. Many such tasks, however, cannot be expressed in SQL
and require additional expressive power, achieved via User-Defined
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Figure 1: Performance of a scalar UDF on a string column

Functions (UDFs), typically written in C++, Java, or Python, which
is the focus of this work. Python is the UDF language of choice
for many data analysts and data scientists, as it is easy to learn
and convenient to use, offering a rich feature set for data-intensive
tasks, including automatic memory management, dynamic typing,
and an extensive module ecosystem.

Python UDFs are supported bymost data processing systems, but
currently have several limitations on their usability, expressiveness,
and performance [29, 37, 68]. For example, MonetDB [59] natively
supports vectorized Python UDFs using Numpy[49], but these re-
quire static definition of their return schema, as only table UDFs
may return multiple rows. In terms of performance, no standard
booster such as a Just-In-Time (JIT) compiler is used. The functions
run on Python’s interpreter and in case Numpy does not support the
desired functionality, extra data structure transformations must be
applied in order to proceed in CPython. Likewise, PostgreSQL [53]
also supports Python UDFs without a JIT compiler. UDFs can be
stateful using a dictionary that is passed as a parameter, but look-
ing up the dictionary adds overhead. The functions are not fully
polymorphic; it is possible to create a function that specifies its
output based on the types of its input but not based on the data,
e.g., a table function that parses and imports an external file.

In this paper, we present YeSQL1, an SQL extension and its im-
plementation that provides more usable, more expressive, and more
perfomant Python UDFs and can be integrated into both server-
based and embedded DBMSs. It enriches SQL with a functional
syntax that unifies the expression of relational and user-defined
functionality and optimizes the execution of both in a seamless
fashion, assigning processing tasks to the DBMS or the UDF host
language VM accordingly and employing efficient low-level imple-
mentation techniques.

In more detail, the contributions of this work come in the form
of the following YeSQL characteristics:

Usability and expressiveness. YeSQL extends SQL with an alterna-
tive, equivalent syntax that affords compact expressions of many

1Stands for “You extend SQL” and is pronounced “YES Q L”.
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relational queries and also facilitates the uniform expression of com-
plex compositions of multiple UDFs and relational functions. This
reduces significantly the programmer’s time needed to compose
a new algorithm or pipeline. Key characteristics of the YeSQL lan-
guage that enhance usability and expressiveness include (a) stateful,
parametric, and polymorphic UDFs, (b) dynamically typed UDFs,
(c) scalar and aggregate UDFs returning arbitrary table forms, and
(d) UDF pipelining.

Performance. YeSQL improves Python UDF performance by re-
ducing the main UDF-call bottlenecks: (i) data conversions and
copies when UDF input and output is translated from and to SQL
and (ii) overheads of running complex analysis on CPython’s in-
terpreter (i.e., the default and most widely used implementation
of the Python language). It does this by employing (a) seamless
data exchange between the UDF and the DBMS, (b) JIT-compiled
UDFs, (c) UDF parallelization, (d) stateful UDFs, and (e) UDF fusion.
The latter combines multiple UDFs into one, thereby reducing data
conversions, copies, and context switches between different execu-
tion environments. Moreover, it allows different UDFs to run in the
same execution trace, reaping the benefits of tracing JIT2. YeSQL
uses PyPy [6] as its tracing JIT compiler and CFFI [61] to interact
with the C language. The latter’s support of both CPython and PyPy
enables execution of UDFs in C with either one transparently. UDF
fusion also opens up query optimization opportunities, which are
part of our future work.

For a sneak preview of the performance benefits of YeSQL, we
present an example comparison of a UDF running on PostgreSQL
with PL/Python, MonetDB/NumPy, SQLite, a popular commer-
cial distributed column-store DBMS (denoted dbX), Tuplex [68],
Spark/PySpark, Pandas, and YeSQL extensions to MonetDB and
SQLite with CPython and PyPy. Figure 1 shows that JIT-compiled
YeSQL implementations allowMonetDB and SQLite to run 6x to 68x
faster than the other candidates (bars show time, labels show gain).
We present more details and extensive experiments in Section 6.

Portability. YeSQL is designed to work in synergy with existing
systems. It is implemented on top of SQLITE API, originally intro-
duced in SQLite, but now commonly used in embedded DBMSs
such as BerkeleyDB, DuckDB, and Monetdbe. The YeSQL architec-
ture extends this functionality to server-based architectures and
is also compatible with works such as Hustle [55], a recent effort
that introduces a query acceleration path for analytics in SQLite3,
utilizing Apache Arrow[1] as an in-memory columnar storage layer
to transform SQLite into a hybrid database system.

Deployment. YeSQL is currently used in production by Ope-
nAIRE3, a technical infrastructure co-designed and co-developed
in the context of a consortium of 65 European universities, re-
search centers, and other institutions, offering services that were
invoked 42M times last year in the context of 1M visits. OpenAIRE
data scientists use YeSQL daily to harvest research output from
>1000 connected data providers and classify [22], text mine Open
Access publications, and extract links to funders [21], software,
citations [19], datasets, bioentities, and other information. To date,
129M publications, 2M datasets, 85K research software artifacts, and

2This is more evident with trace-compilers that produce optimized machine code at
the level of traces (a series of instructions commonly executed in sequence). Exposing
longer sequences of instructions enables more optimization in the Python execution.
3https://www.openaire.eu, https://explore.openaire.eu

1.5M research projects from 23 different national and international
funders have been harvested using over 150 YeSQL UDFs.

Based on the above, we believe that YeSQL is a significant step
forward in the direction of enhancing the usability and improving
the performance of user-defined functionality inside DBMSs. Its
design and implementation can serve as good starting points for
future data processing environments.

The structure of the paper is as follows. Section 2 reviews prior
art and its advantages and limitations. Section 3 presents an overview
of YeSQL. Section 4 describes the YeSQL language, its functionality
and syntax support. Section 5 explains our design choices to boost
YeSQL performance. Section 6 demonstrates the large potential of
YeSQL through a series of experiments, micro-benchmarks and a
comparison with the state of the art. Section 7 concludes the paper
and discusses potential future directions.

2 RELATEDWORK
Recent data processing trends have favored moving much of the
computation inside user-defined operators. Many data processing
systems support Python UDFs. Moreover, several works target to
speed up Python via compilation or translation. Here, we discuss
prior work on optimizing Python code such as compilers and tran-
spilers, and data processing systems with support of Python UDFs.

2.1 Python Compilers and Transpilers
Compilers. GraalPython [26] is an experimental implementation of
Python3. It uses the Truffle [33] language interpreter to generate
JVM bytecode for JIT compilation. It supports Scipy [64] and opti-
mizes pure Python code (i.e., without C extensions) when embedded
into Java. Numba [39] JIT-compiles Python only when it can infer
the data types, and targets array-structured data from libraries such
as NumPy. Thus, it does not properly work with dynamic typed
Python neither it supports importing external libraries. Pyston [43]
implements a tracing JIT Python compiler using LLVM, but it is
only 20% faster than CPython in real scenarios [44].

Transpilers. These works translate Python into other languages.
Cython [2] translates Python code into C. However, it requires
declaring the data types to obtain significant optimization benefits,
thus sacrificing much of its performance benefits if used with exist-
ing Python code. Nuitka [48] compiles Python to C++, however, it
suffers from slow compilation time, which is important in case of
using it to create and execute UDFs in a data processing system.

Our experimental evaluation demonstrates that YeSQL offers
superior performance than popular compiler and transpiler ap-
proaches for boosting Python UDFs (we discuss this in Section 6.3.1).

2.2 Data Processing Systems
Most commercial and open source data processing systems, includ-
ing the open-source MonetDB and PostgreSQL, support Python
UDFs. However, as we discussed, these implementations currently
have significant restrictions w.r.t expressiveness and performance.
The research community has recognized the problem and has pro-
posed some approaches to improve Python UDF performance.

Tuplex [68] is a research prototype of a JIT compiler focusing on
Python, with excellent performance that outperforms several pop-
ular data processing system. Tuplex lacks expressiveness features
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that would render the approach more practical in many real-world
applications. For example, functions are not fully parametric, they
get a dictionary parameter containing the whole tuple and the de-
sired column is selected inside the UDF. They are stateless and
without side-effects, and do not support exception handling. The
latter would also be a performance issue, as exceptions are handled
in a different execution context with Python’s interpreter, often
making it a significant overhead when processing dirty data. Still,
we find Tuplex [68] as the work most relevant to ours. Our focus
is on improving Python UDFs in DBMS, but even so we find it
challenging to compare against an optimized, end-to-end tracing
JIT compiler that comes without any (positive or negative) DBMS
luggage. Besides its shortcomings related to expressiveness and
usability, we also have distinct differences in the architecture de-
sign and implementation. We discuss these in the rest of the paper
and present a thorough comparison in the experiments, using the
dataset and queries used by Tuplex [68].

Kläbe et al. [37] compare different compilation frameworks for
Python UDFs and analyze techniques to optimize their execution
inside a DBMS. This work focuses on assessing the following tech-
niques (a) compilation using different frameworks (i.e., Cython, Nu-
itka, Numba), (b) vectorized UDF execution [36], (c) parallelization
via multiprocessing, and compares these compilation frameworks
against interpreted CPython UDFs. The initial prototype integrates
the Cython compilation framework into the Actian Vector database.
Although the work is still at a very early stage, a preliminary eval-
uation of end-to-end query performance shows promising results
and corroborates our assessment as well.

Blacher et al. [5] propose the translation of pure Python code into
SQL showing how algorithmic primitives of procedural languages
can be mapped to PostgreSQL’s declarative syntax. However, the
automatic translation of imperative Python code to SQL remains
future work. The paper presents simple translations including vari-
ables, functions, conditions, loops, and errors –most of which are
based on heavy use of WITH syntax. In terms of expensiveness and
usability, the translated SQL snippets may be rather complicated for
the casual user. In terms of performance, it shows results of running
a gradient descent-based logistic regression on NumPy, HyPer [34],
and PostgreSQL. Interestingly, HyPer dominates NumPy due to its
dynamic tuple-wise parallelization scheme and the ability of the
database engine to optimize SQL code as a whole (in a pipelined
fashion) and not executing it as individual parts as in NumPy. This
result is entirely in sync with our motivation and findings as well.

Another line of work introduces abstractions to transparently
define and execute Python UDFs in data processing systems. Griz-
zly [30] is a front-end framework that exposes a Pandas interface
and translates Pandas operations into SQL queries with Python
UDFs. AIDA [14] targets mainly linear algebra and provides ab-
stractions for in-database analytics with Python UDFs. It exposes
interfaces similar to popular Python statistic packages and trans-
lates them intoMonetDBNumpyUDFs to support fast linear algebra
operations. YeSQL could fit well with such approaches, offering
faster UDF execution, richer abstractions given its expressiveness
and usability enhancements, and integrations with additional data
processing systems due to YeSQL’s modularity.

Several prior works target the translation of UDFs to semanti-
cally equivalent SQL statements and/or the optimization of UDFs

written in SQL using techniques such as compilation, inlining etc. to
minimize the context switches between the declarative SQL and the
imperative UDF [12, 14, 16, 17, 30, 32, 60, 63, 66]. There is also work
on direct embedding of UDFs in native query execution engines [62].
Often such a translation though is not possible or result into deep,
complex operator trees, which are hard to execute efficiently [60].

Although these approaches do not relate to Python UDFs, still
we find the techniques they use relevant to our work. Froid [60]
(a.k.a. MS SQL Server’s Scalar UDF Inlining) transforms loop-less
T-SQL UDFs to relational algebraic expression and embeds them
into SQL. It reports performance deficiencies with T-SQL UDFs and
examines solutions tailored for scalar UDFs containing constructs
such as variable declaration, select, if/else, and recursive functions.
The compiler optimizations it explores include dynamic slicing,
constant folding, dead code elimination, and parallelization. Its re-
sult advocate huge performance benefits with simple techniques
such as ‘if a function is simple enough, compile its statements into
a SQL subquery that can run inlined into its containing query’. Ag-
gify [28] build on this technology to optimize loops in UDFs. Duta
et al. [17] moves into a similar path towards turning interpreted
functions into regular subqueries that could be evaluated along
with their embracing queries, thus reducing PL/SQL - SQL context
switches. It considers a few practical transformations, including
compiling iterations into SQL-level recursion. Schüle et al. [63]
extends the PostgreSQL grammar to allow lambda expressions and
subqueries as table function’s arguments and presents a modifi-
cation of PostgreSQL’s JIT compiler framework to inline lambda
expressions in table functions. These works identify significant
performance concerns with UDFs and move towards solutions to
open up user-defined-functions to the SQL executor and optimizer.

UDF fusion has also been explored in various contexts (e.g., loop-
fusion [35]). GOLAP [31] fuses external pipelines modifying their
source code to eliminate overheads derived from serialization and
deserialization steps. Weld [50] translates UDFs into a common
intermediate representation (WeldIR) so that they run fused. In-
termediate representations (IRs) are also used by HorsePower [11]
with HorseIR [10], and MLIR [40]. However, all these techniques
support only specific libraries (e.g., matlab, numpy) as they require
the libraries to be rewritten in the intermediate representation. In
contrast, our work fully supports Python constructs and libraries
without any limitation or need to translate the code into an interme-
diate representation. Still, YeSQL is complementary to these works
and could also support their IRs (e.g., through decorator functions).

3 YeSQL OVERVIEW
Python UDFs are commonly used in many application scenarios
employing either beefy database servers or minuscule edge devices.
A data analyst or a data scientist is more probable to be served by
running their complex, resource demanding UDF on a server-based
DBMS. On the other hand, several applications in edge computing
would benefit from a function-shipping paradigm, which brings the
computation closer to a data collector [65]; e.g., a small compute
device (e.g., a RaspberryPi) placed in a wind turbine generator to
monitor vital metrics and perform data reducing computations. In
such scenarios, a UDF running on an embedded system, both in the
same process, could be a preferable design choice.
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Figure 2: YeSQL: Architecture options

3.1 System Architecture
YeSQL is designed to serve both application scenarios. It can be
integrated with either a server-based DBMS (e.g., MonetDB) or
an embedded DBMS (via SQLITE API). Figure 2 shows the core
components of our architecture on top of both DBMS types.

We distinguish two user roles. Application users (e.g., data ana-
lysts, data scientists) submit their queries or workflows to the Appli-
cation front-end, which in turn propagates them to the Connection
and Function Manager. UDF developers create their user-defined
functions (gray boxes in Figure 2) and YeSQL registers them in the
DBMS. Naturally, the same person may act in either user role.

The Connection and Function Manager (CFM) receives YeSQL
queries, transforms them into SQL, and pass them to the DBMS for
execution. Note, that using YeSQL syntax is optional. SQL queries
using standard SQL syntax simply pass through; still, they benefit
from all performance improvements detailed shortly. When inte-
grated with a server-based DBMS, CFM first compiles the UDFs
so that they are accessible by the DBMS’s UDF manager as an in-
process embedded library, and then it submits their declarations
directly to the DBMS to run on-demand. When integrated with
an embedded DBMS, it submits the UDFs using the Python CFFI
wrapper. In this case, the UDFs are executed in the same process
with the CFM layer and the DBMS as well.

YeSQL inherits the typical UDF classification into scalar, aggre-
gate, and table functions. The Python CFFI wrapper is the layer
that crosses the boundaries between Python and the database en-
gine. With a server-based DBMS, it seamlessly calls the Python
UDFs linking the shared library where they are included. With an
embedded DBMS, the Python CFFI wrapper submits the UDFs as
callback functions and assures the seamless data exchange between
the database engine and the Python UDF. SQLITE API natively
supports extended-SQL functionality through C UDFs.

3.2 Modularity
YeSQL works as a modular addition to a DBMS, offering easy in-
stallation and compatibility with all popular operating systems.
Given a data processing system which offers an API to create C
UDFs and an ODBC, YeSQL can be integrated and work in synergy
with this system with modifications in the Python CFFI wrapper
component to meet the specific details of the supported C UDFs
(e.g., syntax of CREATE FUNCTION, the way that arguments are passed
etc.). YeSQL’s UDFs run in the same process with the C-UDF API of
the DBMS inheriting its characteristics. Thus, if the DBMS runs its
native C UDFs out-of-process, then the YeSQL UDFs would also run

separately from the query engine. For a server-based DBMS, YeSQL
leverages the DBMS’s execution model. For example, in MonetDB
that has a vectorized execution model, the data is passed via CFFI
with one function call as array pointers.

With an embedded database, we exploit SQLITE API’s internal
streaming architecture and in particular, the Python generators,
a powerful language pattern that allows co-routines via a yield

statement. A Python program can be written as if it is in control of
iteration (e.g., iterate over an external data source), yet yield values
on demand, with control transferred to the database engine for each
produced value. In more detail, a generator function returns a lazy
iterator, which however does not store its content in memory. This
resembles a regular function that uses yield instead of return, and
instead of exiting the function after return, the state of the function
(e.g., variable bindings, internal stack, instruction pointer, exception
handling) is remembered. Yield suspends a function and returns
the yielded value to the caller. A generator can resume function
execution picking back up right after yield. This mechanism allows
putting together data pipelines to handle large datasets efficiently.

Our architecture allows integration of UDFs written in other
languages, not only Python, as long as they have a fast foreign func-
tion interface and a tracing JIT compiler. For example, UDFs in Lua
JIT [41] could also be effectively supported within our architecture.

4 USABILITY AND EXPRESSIVENESS
YeSQL aims at promoting the handling of data-related tasks within
an extended relational model. To support diverse data sources,
YeSQL operators automatically adapt their schema and data types
to the incoming data. YeSQL extends standard SQL with additional
syntax and user-defined functions. Currently, all UDFs are written
in Python and can use pre-existing Python libraries (e.g., numpy,
nltk) via import, thus inheriting features that are commonly used
by data scientists. This section aims at showcasing the usability
and the expressiveness of YeSQL; for space considerations we avoid
describing in detail the language constructs. For more details, we
refer the interested reader to YeSQL specs [18].

4.1 Functionality
The keystone principle of YeSQL is to enable data scientist develop
and run algorithms in SQL seamlessly. Let us consider a simple
example. Given a table with all NSF project grant identifiers (these
are 7-digit strings), we need to pre-process and text mine the fulltext
of a corpus of publications to identify which publications are funded
by NSF and create a link to the specific project. Using YeSQL, a
simplified implementation could be as follows:
select var(`pos`,(select toregex(term) from positives));

select texts.id, projects.id
from (select id, textwindow(keywords(text),10, 1, 5, '\d{7}')

from (sample 100 file 'publications.json') as input_pubs)
as texts, projects

where texts.middle = projects.grantid and
regexprmatches($pos, lower(texts.prev||" "||texts.next));

The first query uses a table named ‘positives‘. This table contains
terms that are often used by the authors when they acknowledge an
NSF project (e.g., “funded by NSF”, “this work is supported”). Using
an aggregate UDF (toregex(term)) these terms are transformed into
a regular expression. Function ‘var‘ stores the regular expression in
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a variable named ‘pos‘. This variable is stored in Python’s execution
context and it is accessible by the stateful UDFs.

The second query creates a (virtual) table from a JSON file that
stores publications data (file ’publications.json’) and samples
100 lines from the file (sample ’100’). Its returned schema depends
on the stored data. In this case, it returns 2 columns: ‘id‘ and ‘text‘. It
processes each text with scalar function keywords (keywords(text)),
which removes punctuation marks using a precompiled pattern. It
runs a sliding window over the text (textwindow(keywords(text),
10, 1, 5, ’\d{7}’)). This function returns three columns and one
row per each existence of a seven digit string (NSF project ids) in its
input text. The first column ‘prev‘ consists of 10 tokens before the
seven digit match, the second column ‘middle‘ contains the match,
and the third column ‘next‘ consists of 5 tokens after the match. The
result of the above subqueries is joined against the projects table
on ‘middle‘ and ‘grantid‘ fields to find occurrences of project grant
identifiers in the input texts. Next, the context around the match
(columns ‘prev‘ and ‘next‘) is matched against variable ‘pos‘ using
regular expression matching to return the grant id occurrences
with positive words nearby.

Texts input, sampling, text processing and pattern matching is
implemented in Python and executed by a Python VM (CPython
or PyPy). Joins and filters are implemented and executed by the
DBMS’s query execution engine. Note that, with a few additional
rules (e.g., terms positioning) to capture corner-cases but with
the same easy-to-follow syntax, such a query achieves over 99.5%
precision (true positives) in OpenAIRE, a real-world application.

4.1.1 Language features. The example shows various kinds of
UDFs illustrating through them three hallmark features and novel
contributions of YeSQL.

Rich support for polymorphic Python UDFs. file and sample are
polymorphic table functions; their output is indistinguishable from a
regular table as far as the rest of the query is concerned. textwindow
is a scalar function; it runs once per row of the input table, although
it may produce multiple rows (and multiple columns, per its output
schema). toregex is an aggregate function; it provides alternatives
to standard SQL aggregation, i.e., collapsing multiple rows into one.

UDF fusion. Here, textwindow runs directly on the output of func-
tion keywords, and the same happens with the sample and file

functions. In such cases, YeSQL creates at runtime a new function
that fuses the two UDFs in an effort to minimize context switch-
ing and data conversion. Moreover, running on a tracing JIT (i.e.,
PyPy) exposing longer sequences of instructions enables better
optimization of the UDF execution itself. Having more than one
UDF running in sequence is a common scenario. In this example
with text processing there could be many preprocessing steps (e.g.,
stopword removal, stemming, tokenization, pattern matching, etc.)
implemented as UDFs running one after another.

Syntax inversion. YeSQL offers syntactic support for the conve-
nient use and composition of UDFs in a functional language style.
The query fragment: “sample 100 file ’publica tions.json’” first
reads the file containing the publications and then gets a random
sample with 100 rows. We elaborate on this shortly in Section 4.2.

4.1.2 Supported UDF types. YeSQL supports three UDF types, namely
scalar functions, aggregate functions, and table functions.

Scalar functions take as input one or more columns from a row
and produce one value or a nested table. An example of a YeSQL
statement using a scalar function would be:
select detectlang('Il en est des livres comme du feu de nos foyers');
>> Results output: french

The detectlang function detects the language of a text snippet by
analyzing its statistical properties. The example snippet is a Voltaire
quote, and the correct answer from detectlang is that it is in French.

Aggregate functions capture arbitrary aggregation functionality
beyond SQL built-ins such as AVG, COUNT, etc. They produce a single
value or a nested table. An example of a YeSQL statement using an
external aggregate function would be:
select concatterms(a) from

(select ``term1+term2'' as a UNION
select ``term2 term3'' as a);

>> Result output : term1+term2 term2 term3

The concatterms aggregate function concatenates strings of terms
together, while keeping the terms disjoint.

Polymorphic Table functions dynamically produce tables that can
be used indistinguishably from normal tables in an SQL query. This
yields significant flexibility and expressive power. With polymor-
phic table functions, YeSQL can integrate many heterogeneous data
sources in a query. Example sources of table datasets are files, SQL
query resultsets, or even the output of external programs. Table
functions can be used in a variety of ways. The simplest is as a
parametric table. For example, in the following query file reads
the tab-separated file “continents.tsv” as a table.
select * from file('./demo/continents.tsv');

4.2 Syntactic Inversion
Elevating user-defined functions to first-class citizens inside a rela-
tional query requires syntactic support. YeSQL offers support for
table function chaining. We call this feature syntax inversion.

Let us consider an example UDF integration into an existing
DBMS. The following PostgreSQL query uses three UDFs: (a) xmlparse,
to parse an XML data source and return text rows, (b) rowidvt, to
add a row-id column to the resulting table, and (c) sample, to pro-
duce a random subset of the input rows.
select * from
sample(10000, 'select * from

rowidvt(''select * from
xmlparse(''''select xml from table'''')'')');

This syntax is quite cumbersome. The need for complex quoting
alone is a strong deterrent from practical use of chained UDFs.
YeSQL offers an alternative to writing a nested subquery for each
table returning UDF and using syntax inversion allows us to express
the query as follows:
sample 10000 rowidvt xmlparse select xml from table;

Hence, YeSQL allows table UDFs to bewritten as a space-delimited
sequence, denoting that each UDF is passed as a parameter to the
UDF on its intermediate left. The syntax of a table function (e.g.,
myUDF) would be: "myUDF 'p1' 'p2' ... np1:val_np1 ... SQL_query".
The UDF accepts (optional) positional parameters (p), named pa-
rameters (np) with their values (val_np), and is applied to the result
of a SQL query. At the translation, CFM converts this syntax into:
select * from myUDF('p1','p2',...,'np1:val_np1',...,'query:SQL_query');

Type declaration. Some DBMSs require an up-front schema dec-
laration; i.e., each UDF needs to declare a single-typed schema for
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its result (e.g., [54]). YeSQL UDFs do not need to declare a schema
for output data. Their return type is dynamically determined by the
structure of the data. Thus, UDFs are naturally polymorphic; a UDF
may have different output types (e.g., text vs. arithmetic data) when
it is used over different data. For example, the YeSQL UDF jpath
parses JSON input and produces text or arithmetic output depend-
ing on what is contained in the JSON text input. The output data
types of jpath do not need to be known in advance or declared in
any way. For SQLITE API, this is achieved with using virtual table
interface and each polymorphic function is internally implemented
using a virtual table. For a DBMS such as MonetDB, polymorphic
functions are implemented using Python loader functions to load
data into an in-memory temporary table without previously defin-
ing their output columns and types.

4.3 Code Generation
Support of YeSQL language takes place at the CFM layer. Currently,
this layer is written in Python. CFM consists of the following com-
ponents: (a) function manager, (b) parser, and (c) code generator.

4.3.1 Functionmanager. It submits UDFs to theDBMS. TheUDFs are
categorized according to their types (i.e., scalar, aggregates or poly-
morphic tables) and are placed into Python files inside YeSQL’s UDF
directory. The function manager accesses the packages which con-
tain the UDF definitions and submits them into the DBMS. Submis-
sion of the UDF is implemented differently, depending on whether
YeSQL is integrated with an embedded or a server DBMS. In the
first case, the submission is done via SQLITE API functions [69];
i.e., a Python UDF is wrapped using CFFI and then submitted as a
function callback using the sqlite3_create_function function [8].
When running on a server-based DBMS, the submission of a UDF
is done using SQL CREATE FUNCTION statements. For example, in
MonetDB we use the existing C/C++ UDFs [47]; i.e., a Python UDF
is JIT-embedded into a C UDF using CFFI functions and then sub-
mitted using a CREATE FUNCTION statement. When the C code is
invoked, it calls a function pointer which in turn calls the Python
function [9]. We work similarly for any DBMS supporting C UDFs.

4.3.2 Parser. It parses the YeSQL language before submitting the
query to the DBMS. If the query does not involve any YeSQL UDFs
the parser submits the query as is. Otherwise, (a) it converts sub-
queries written with YeSQL’s inverted syntax to standard SQL for-
mat, and (b) it propagates polymorphic UDFs to the code generator
that converts them to the appropriate SQL code.

4.3.3 Code generator. Its core functionality is to support polymor-
phic UDFs. The code generation is engine-specific depending on
the underlying DBMS. For example, UDFs that return polymorphic
schema are implemented with loader functions in MonetDB and
with virtual tables when integrated with the SQLITE API. Hence,
the example polymorphic UDF: select * from file('data.csv'');

in MonetDB is converted into:
create temp table temp_name from loader file('data.csv') on commit drop;
select * from temp_name;

and with the SQLITE API would be:
create virtual table if not exists

temp.vt_name using file('data.csv','automatic_vtable:1');
select * from temp.vt_name;
drop table if exists temp.vt_name;

where the time goes

...

select udf(c1), udf1(c1), udf2(udf3(c2)) from table;select extractpcode(postal_code) as k, extractbds(facts_and_features) as n, extractid(lowerize(url)) from zillow on commit preserve rows;
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Figure 3: Largest factors in boosting Python UDF execution

Note, that in both cases the intermediate results are not materi-
alized on the disk. In MonetDB, the intermediate result is stored
in a memory resident, temporary table. With the SQLITE API, in-
termediate results are defined as a lazily evaluated virtual table.
A query containing more than one UDF is converted into mul-
tiple subqueries each with their own temp/virtual tables, which
are executed recursively. When the subqueries terminate, the cor-
responding temp/virtual tables (by default) are dropped. Loader
functions and virtual tables are used to support polymorphic table
UDFs. For table UDFs with static returned schema, YeSQL follows
a faster path using the table functions that most DBMSs support.
Implementing polymorphic UDFs without intermediate queries is
interesting future work, which would enable optimizing the whole
workflow at once. One approach would be to JIT-create the wrapper
function according to the current query and data types.

5 PERFORMANCE ENHANCEMENTS
The performance enhancements in YeSQL aim at avoiding the
impedance mismatch between the relational (SQL) evaluation and
the procedural (Python) execution. This mismatch causes two ma-
jor overheads. (a) Context switching overhead: one facility needs to
invoke the other through various levels of indirection. This is po-
tentially expensive when performed frequently. (b) Data conversion
overhead: data is represented differently in the two environments
and need to be wrapped/unwrapped or checked (e.g., for overflow)
and encoded/decoded. To remove these overheads, we employ five
techniques: tracing JIT compilation, seamless integration with the
DBMS, UDF fusion, parallelism, and support for stateful UDFs.

5.1 Where the Time Goes
To put things in a perspective (and to answer why these techniques),
we discuss amicro-benchmark showcasing the additional overheads
incurred by this mismatch. Let us consider a query with four UDFs:
select udf1(postal_code), udf2(facts_and_features), udf3(udf4(url))
from zillow;

These are three functions that extract the postal_code, bds, and id

from the Zillow dataset, and udf4 is a string manipulation function
converting url to lower case. We run the query first as a spawned
CPython process as tuple-at-a-time. Next, to remove these over-
heads, we try the boosting techniques one at a time, as follows:
(a) vectorized execution using embedded NumPy, (b) tracing JIT-
compilation with PyPY, (d) employ parallelism with multi-threaded
execution, (e) UDF fusion on JIT, and (f) stateful UDF execution.
Figure 3 presents a performance breakdown illustrating the extent
that each technique contributes to query performance.

Although any of these techniques in isolation helps boosting UDF
execution, applying them all and in a specific order increases the
optimization opportunities and improves performance by a factor
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of 33x starting from a spawned, tuple-at-a-time CPython process,
which resembles an out-of-the-box execution on PostgreSQL with
PL/Python (our experience shows that many data scientists do
start here, either on PostgreSQL or on Spark with PySpark, etc.)
and 10x from an embedded vectorized execution, which will be a
better starting point should someone pick a tool with improved
support for Python UDFs (e.g., MonetDB, DuckDB [15]). Some of
these techniques are orthogonal to each other, whereas others such
as parallelization need to be performed in the right order; e.g.,
applying parallelism before JIT would not have a significant overall
effect as we see in Section 6.3.4. Similarly, applying fusion before
JIT and parallelization would miss the chance to execute the fused
components on a single trace and in parallel. And applying JIT
before vectorization will have less impact as then tracing would
operate on a single tuple, instead of tracing a batch of a tuples in
vectorized execution (see also Section 6.3).

5.2 Tracing Just-In-Time
JIT compilation boost performance of programs by compiling parts
of a program to machine code at runtime. In contrast to method-
based JIT compilers that translate one method at a time, tracing
JIT uses frequently executed loops (“hot loops”) as their unit of
compilation. This has an excellent fit to UDFs, as they execute
frequent complex calculations iteratively through the tuples of a
table. Thus, in theory, they can benefit from a tracing JIT compiler.

We employ the PyPy dynamic compiler (a.k.a. JIT compiler), a
high-performing engine for Python program execution. The YeSQL
query compilation meshes well with PyPy compilation and can be
viewed as a pre-optimization step, in much the same way as loop
unrolling or inlining enable a multitude of other optimizations in
a traditional static compiler. By fusing UDFs and exposing larger
chunks of Python code, YeSQL allows PyPy to perform better com-
pilation. This is especially the case since PyPy is a trace-compiler: it
produces optimized machine code at the level of traces, i.e., series of
instructions commonly executed in sequence4. Thus, by exposing
longer sequences of instructions, especially for relatively simple
UDFs, we enable more optimization in the Python execution itself.

PyPy has some extra advantages: (a) it supports the standard
Python library [57] and most of the popular packages [56], whereas
new packages are regularly added as it is an active project; (b)
it optimizes already existing dynamically typed Python code and
packages without any editing, and does not require a-priori compi-
lation; (c) it supports exception handling same as in CPython, thus
in YeSQL UDFs exceptions are handled inside the UDF wrapper; and
(d) it offers CFFI, a foreign function interface to efficiently interact
with C code. Moreover, CFFI supports CPython as well allowing the
use of CPython interpreter for UDFs that import (currently) not sup-
ported packages e.g., scikit-learn. This is not a limitation, as PyPy
optimizes Python code and not supported packages are packages
mainly implemented in C and thus, are also fast in CPython.

4 The sequential execution of a translated trace is guarded dynamically. A guard is
checked at every branch instruction. If execution diverges from the trace, the compiled
code branches to an interpreter (or to a different compiled trace, if one exists and if
overlapping traces are supported) and continues executing the appropriate off-trace
instructions in interpreted mode.

PyPy also facilitates the integration with a DBMS. Let us con-
sider for example the case of MonetDB. CFFI’s internal array rep-
resentation is compatible with Numpy, which fits well with Mon-
etDB’s Python support [59]. In our implementation, such an array
is seamlessly passed to CPython UDFs as a numpy array using
the numpy.frombuffer function that interprets a buffer as an one-
dimensional array without data copies. When running on MonetDB
that supports vectorized UDFs, the pointer to the whole column is
passed with one function call, minimizing multiple foreign function
calls overheads. Moreover, since PyPy enables its own vectorization
these conversions are transparent to the UDF developer [52].

The UDF that the user writes runs per tuple but it is optimized
by the tracing JIT. The example below shows the low level imple-
mentation of a scalar UDF in MonetDB that counts string length:
@ffi.def_extern()
def lenstr_wrapped(input,insize,result):

for i in range(insize):
result[i] = lenstr(ffi.string(input[i]))

return 1

def lenstr(val):
return len(val)

The lenstr_wrapped function is embedded (i.e., decorated with
ffi.def_extern()) and called by the DBMS. Under the hood, we
obtain a cdata pointer-to-function object, which can be passed
to C code and then works like a callback: when the C code calls
this function pointer, the Python function is called [9]. This is
also a wrapper that makes the appropriate conversions using CFFI
before and/or after calling the UDF. The results are assigned to
the preallocated result array which is a cdata object. The lenstr

function is the UDF that the UDF developer actually implements.
The CFFI wrapper works a little differently with an embedded

DBMS. It submits the UDF as a function callback with the appropri-
ate conversions and the function is called by the database.

5.3 Seamless Integration with DBMS
YeSQL supports seamless integration with the DBMS. For doing
so, UDFs are wrapped using embedded CFFI [7]. During the exe-
cution of a UDF, data is transferred to CFFI as pointers to cdata
objects without any data copies. Integers and float columns are
used directly by Python. For string columns, we have three options:
(a) ffi.string, which transforms the string to a format that is un-
derstandable by PyPy (or CPython), (b) ffi.buffer, which returns
a Python memoryview without copying the string; memoryview can be
seen in Python as an array of characters and is also supported by sev-
eral Python modules including the regular expression package, and
(c) direct pass, passing directly the pointer to the C string enables
low level optimizations manipulating the pointer in a C manner.

5.4 UDF Fusion
Producing small and reusable UDFs is a common practice as it
enhances productivity. For example in text mining, a UDF which to-
kenizes the input text can be reusable in many different workflows.
According to the workflow it is usual to mix multiple UDFs to-
gether; e.g., tokenization, stemming, stopwords removal, and other
normalization algorithms are called one after the other.

A performance enhancement comes with UDF fusion. When
more than one UDF run in sequence and can be fused, the fusion

2276



takes place at the level of the CFFI wrapper function. A newwrapper
function is created just-in-time and pipelines the UDFs. This has
two benefits: (a) the CFFI conversions are eliminated, and (b) since
the UDFs are called by the DBMS they run on a different trace. By
fusing them, we expose longer sequences of instructions so more
optimization is enabled by the tracing JIT.

When two UDFs are fusable (i.e., the second UDF’s input data is
the same as the first UDF’s output and the argument data types are
available in the query plan), the CFFI wrapper creates a new UDF
pipelining the two UDFs involved. Let us consider these two UDFs:
def multiply(input):

return len(input)

def add(input):
return add+1

If they are fusable according to the query plan of a specific query,
the CFFI wrapper creates a wrapper UDF like the following:
@ffi.def_extern()
def fused_add_multiply(input, count, result):

for i in range(count):
val = ffi.string(input[i])
result[i] = add(multiply(val))

return 1

Hence, with fusion: (a) The conversions from/to C data objects
(e.g., with the ffi.string function) run once to provide the input to
the first UDF of the sequence, and once at the end to return the final
result. Without fusion, the DBMS would call two UDFs incurring
unnecessary conversions and context switches. (b) We provide
longer traces to the tracing JIT and also achieve loop fusion [35];
both UDFs are called in the same loop, avoiding the need for two
loops, one per UDF.

Similarly fusion of aggregate and table UDFs that run in a pipeline,
still eliminates context switches between the DBMS and the UDF
language and produces larger traces. Loop fusion is a little more
complicated in this case. For example, we also achieve loop fu-
sion with a scalar function running before an aggregate by defin-
ing the aggregate UDFs as a Python class with 3 functions (init,
aggregate, and finalize). This is not new, several existing systems
are modelling aggregate UDFs in a similar way [67, 70, 75]. Thus,
an aggregate UDF that calculates average is written as follows:
class Average:

def __init__(self):
self.count = 0
self.sum = 0

def aggregate(self, val):
self.count+=1
self.sum += val

def finalize(self):
return self.sum/self.count

If this UDF can be fused with an upstream scalar UDF, the JIT
wrapper function would combine both UDFs in the same loop:
@ffi.def_extern()
def fused_average_scalar(input, count, result):

avg = Average()
avg.init()
for i in range(count):

avg.aggregate(scalar(input[i]))
result = avg.finalize()
return 1

5.5 Parallelism
In most cases, parallelism improves the performance and scalability
of a program. Most DBMSs exploit multi-threaded execution to
run independent operators. However, when these operators are
Python UDFs their performance when run in parallel is limited by
the Python Global Interpreter Lock (a.k.a. GIL). GIL is a mutex (or a
lock) allowing only a single thread to hold the control of the Python
interpreter and thus, only a single thread is allowed to be executed
at any given time. GIL prevents deadlocks and by itself it does not
add too much overhead. Still, it causes a significant performance
bottleneck in CPU-bound and multi-threaded code.

GIL is also enabled during the creation of a Python Object (i.e.,
this happens when the database data are translated to be used by a
Python UDF). GIL is released when a C function is called and then
acquired to create the Python object. Releasing and acquiring GIL is
also a costly operation. While transforming a data input to be used
by a Python UDF, GIL takes place once per input value. However,
in PyPy, the creation of a Python object is faster as less memory
is required to create and store a PyObject. Moreover, PyPy allows
for optimized releasing and acquiring GIL. In CFFI, GIL is released
lazily, i.e., the thread doing the call to C just marks GIL as released
by setting a global variable, with no synchronization [25].

5.6 Stateful UDFs
Most data processing systems supporting Python UDFs support
stateless UDFs, i.e., only their output lives beyond the end of the
UDF. For example, Tuplex [68] uses a slab allocator to provision
memory from a thread-local, pre-allocated region for new variables
within the UDF, and frees the entire region after the UDF returns
and Tuplex has copied the result. Still, stateful UDFs open up many
interesting opportunities for algorithm development in areas such
as data analysis and data science. Besides this, stateful UDFs may
enable some specific performance optimizations as well, e.g., pre-
compiling a pattern instead of compiling it once per each row.

When running UDFs on an embedded DBMS the UDFs are by
default stateful, i.e., they can access states defined outside their
code definition. When running on a server based DBMS such as
MonetDB, the state is also available during the processing of dif-
ferent rows since the whole column is passed to the CFFI wrapper.
Moreover, the state is also shared across different UDFs. The UDF
developer provides her UDF as a python module with functions;
i.e., it may import and setup packages in the global layer. The Func-
tion Manager creates a CFFI embedded function that wraps these
functions and at run time, it calls them from the pre-imported mod-
ule. This is important for performance, as the developer may run
costly operations (e.g., using nltk data downloaders or assign pre-
compiled regex patterns) once at global scope. For example, the
following UDFs are equivalent but the left one imports the package
and pre-compiles the pattern at global scope.
import re
getint = re.compile(r'(\d+)')
def returnint(val):
match = getint.search(val)
if match:
result[i] = int(match.group(0))
else:
result[i] = 0

def returnint(val):
import re
match = search(r'(\d+)',val)
if match:
result[i] = int(match.group(0))

else:
result[i] = 0
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6 EVALUATION
The YeSQL codebase is ∼66K lines of Python and C++, including
1̃8.5K lines for the code definitions of 150+ Python UDFs currently
supported. We evaluate YeSQL with three representative, data sci-
ence pipelines and micro-benchmarks of specific design features.

6.1 Experimental Setup
6.1.1 Hardware and Software. We run all experiments on an Intel
Core (Ivy Bridge E) i7-4930K processor with 3.40GHz and 6 cores /
12 CPUs. The server has 64GBmain memory and runs Ubuntu 20.04.
Unless otherwise stated, we executed all measurements with cold
caches on SSD disks, and report the average of 5 executions.We com-
pared YeSQL against Tuplex [68], MonetDB (v.11.41.11), PostgreSQL
(v.12.9), the latest version of a commercial distributed analytic data-
base engine (dbX), Pandas (v.1.3.5) and Spark (PySpark, v.2.4.7). In
the experiments we also used Cython (v.0.29.25), Numba (v.0.54.1),
Nuitka (v.0.6.19.1) and Compiled_UDF_engine [13]. YeSQL’s exten-
sions to MonetDB and SQLite employed PyPY (v.7.3.6 with GCC
7.3.1), CFFI (v.1.14.6), CPython (v.3.8.10), and SQLite (v.3.31.11).

6.1.2 Datasets. We measured YeSQL’s end-to-end pipeline perfor-
mance using three pipelines: zillow, flights and text-mining.

The zillow and flights pipelines are obtained fromTuplex’s github
repository and they are the same used in the Tuplex paper [68]. The
zillow data snapshot we use contains listings from the Boston, MA
area. It contains 10 columns and three size variations: 1GB/5.6M
rows, 5GB/28.6M rows, and 10GB/56M rows. The flights data origi-
nated from a Trifacta tutorial [27] and the Tuplex team extended
it by joining it with airport and airline data from other sources
[51, 73]. It contains 110 columns and we use three size variations:
1.6GB/5M rows, 3.2GB/10M rows, and 6.4GB/20M rows.

The text mining pipeline comes from a real-world application,
OpenAIRE. It runs on the plain texts of open access research publi-
cations and its purpose is to produce links between publications and
projects. The workflow involves two pre-processing operators, i.e.,
tokenization and stopwords removal, and a pattern extraction op-
erator implemented as UDFs. The result of the pattern extraction

is joinedwith a database table. Finally, a pattern matching operator
runs on the join results to filter out false positives.

6.2 End-to-end Pipelines
6.2.1 Zillow. Figure 4 presents the results of the zillow pipeline on
different systems, and varying data sizes and degree of parallelism.
This pipeline involves 8 compute operators and 3 filters.

YeSQL with tracing JIT on MonetDB (mdb.pypy) outperforms the
other candidates in both single-threaded and multi-threaded ex-
ecutions. MonetDB with CPython (mdb.python) suffers from slow
parallelism due to GIL that is released and acquired each time a
Python UDF is involved. mdb.pypy has also GIL but it benefits from
multi-threaded execution as GIL is released lazily during CFFI con-
versions (see also 5.5). In-process UDF execution enables faster
execution than Spark/PySpark (spark), which spawns a main Java
process and separate Python processes. Our implementation differs
from Tuplex (tuplex) in terms of parallelism. Tuplex achieves paral-
lelism via data partitioning, which adds an extra overhead to create
the partitions and merge back the result. MonetDB parallelizes the

query operators without necessarily requiring the data to be parti-
tioned. Overall, YeSQL is on average 45% and 28% faster than tuplex,
in multi-threaded and single-threaded execution, respectively.

SQLite (sqlt) supports only single-threaded execution; still, it
remains competitive in this pipeline as the UDFs run in the same
process with the DBMS. However, due to its tuple-at-a-time ex-
ecution model it does not support vectorization and this slows
down its execution for two reasons: (a) the Python UDF calls are
made once per tuple, which adds an extra overhead and especially
here that we have foreign function calls, and (b) it provides short
traces (just 1 tuple) to the tracing JIT. MonetDB provides the whole
vector to the tracing JIT, so it enables better optimization. Hence,
tracing JIT speeds up MonetDB’s multi-threaded execution by 10x
(single-threaded by 6x), and SQLite only by 3x.

6.2.2 Flights. Figure 5 presents the results of the flight pipeline on
different systems, and varying data sizes and degree of parallelism.
This dataset differs from zillow, as it contains a large number of
columns (110), two small tables used in joins, and more operators,
23 operators on the larger table, 3 joins, and 1 filter.

The results reveal very similar trends with the zillow experi-
ments. YeSQL with tracing JIT on MonetDB (mdb.pypy) outperforms
the other candidates. MonetDBwith CPython (mdb.python) does not
perform well in multi-threaded execution, as there are much more
UDFs running in parallel and the inter-communication overheads
are significant. Tracing JIT seems to be fixing this issue at a rea-
sonable extent. Here, Tuplex (tuplex) performance is on par with
YeSQL in single-threaded execution. The reason is that this pipeline
involves 6 UDFs running on the largest table and return strings.
Tuplex is an end-to-end JIT engine and the entire flow runs in the
same execution context. However, MonetDB interns its strings us-
ing a hash dictionary, which hurts single-threaded UDF execution.
String interning is a useful optimization feature for filters/joins on
string columns but such operations do not exist in this pipeline.
YeSQL with JIT outperforms tuplex in multi-threaded execution
(on average 53% faster), for the same reasons we explained earlier.
The results of Spark and SQLite resemble a lot our findings in the
zillow experiments, which strengthens our observations.

6.2.3 Text mining. This is a real-world pipeline with the charac-
teristic that the tuples involved contain the fulltext of publications.
We selected this pipeline to access the performance of heavy UDFs
running on smaller tables but with larger values.

Figure 6 presents the results of this pipeline with varying data
sizes and with various implementations, i.e., CPython, Numpy, and
PyPy JIT on a server-based engine, MonetDB, and an embedded
one, SQLite. A key finding in this experiment is that vectorization
in Python UDFs does not makes any difference in this use case.
Instead, SQLite implementations with CPython run similarly and
a little faster than MonetDB. Note, that in this experiment we
used an index in SQLite to help with the join; MonetDB does not
create a physical secondary index but decides internally which
column search accelerator(s) to create and use [46]. Having smaller
columns means that there are not many foreign function calls per
UDF execution, thus the function calls overhead is negligible and
largely dominated by the overhead of the heavy python UDFs.
On the other hand, the tracing JIT works better with vectorized
execution, which confirms our claim that providing larger traces
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Figure 4: Zillow pipeline for varying data sizes and parallelization
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Figure 5: Flights pipeline for varying data sizes and parallelization
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Figure 6: Text mining pipeline (time in log scale)

to the tracing JIT enables more optimization, which in YeSQL is
achieved via vectorization and UDF fusion.

Finally, with YeSQL’s extension to MonetDB to support tracing
JIT, we achieve significantly faster execution than MonetDB’s stan-
dard Numpy UDFs for 2 reasons: (a) Numpy UDFs in MonetDB do
not allow parallelism and this is illustrated in the execution times,
and (b) for string parameters, MonetDB transforms the C strings
into Python Objects (CPython) and loads a Numpy array with those
objects. This is heavier than in the tracing JIT Python’s compiler,
which uses utf-8 internally for unicode strings [58] as MonetDB
also represents its strings with utf-8 [45].

6.3 Scrutinizing YeSQL
Here, we present a series of micro-experiments to delve into imple-
mentation details that impact the performance of YeSQL. Unless
otherwise stated, in these experiments we use the flights pipeline.

6.3.1 Tracing JIT. First, we investigate the effect of tracing JIT
(PyPy in YeSQL) into the UDF execution. To evaluate the perfor-
mance of PyPy in UDF execution we run an experiment with a
UDF that splits a string and compute the average word length on
TPC-H [71] partsupp table at SF-10 (i.e., this is the exact samemicro-
benchmark presented in [37]). We compare the UDFs running on
YeSQL’s implementation with PyPy and CPython on MonetDB,
against the native Python, Cython, Nuitka, and Numba implemen-
tations obtained by [37]. Figure 7a shows that YeSQL’s implemen-
tation with PyPy as tracing JIT and CFFI to interact with C, UDF
execution outperforms the other alternatives. Specifically, using the
tracing JIT the UDF runs 3x faster than our CPython implementa-
tion, while Cython is able to speedup the UDFs by 2x compared to
CPython. Tracing JIT UDFs in YeSQL run 1.7x faster than Cython.
Interestingly, the other alternative transpiler (Nuitka) and compiler
(Numba) options do not seem to perform better. Although they
speed up CPython interpreted UDFs by 2.4x and 1.9x, they are still
much slower than YeSQL. But more importantly, these approaches
suffer from high compilation times, which in combination with the
significant limitations we discussed in Section 2 for Cython, Nuitka
and Numba, renders them unsuitable for UDF execution in DBMS.

6.3.2 Seamless integration with a DBMS. We examine various as-
pects of the integration, including performance affecting designs
such as UDF execution vs. vanilla SQL and string transfer alterna-
tives, but also performance across various data processing engines.

Experiment 1. To illustrate the benefits of seamless integration,
we run on MonetDB an experiment with the following SQL query
and its incarnation as a Python UDF.
[SQL:] select case

when depdelay='' then 0
else cast(cast (depdelay as float) as int)

end as airtime
from flights;

[UDF:] @ffi.def_extern()
def toint_wrapped(input,count,result):

for i in range(count):
result[i] = toint(ffi.string(input[i]))

return 1

def toint(val):
return int(float(x)) if x else 0

select toint(depdelay) as depdelay from flights;

Running on 80M rows from the flights dataset, the SQL query runs
in 12.6 sec and the PyPy UDF runs in 8.7 sec. This is an interesting
result showing that UDFs appropriately orchestrated using tracing
JIT, a CFFI wrapper, and the seamless integration design, when
running on a DBMS may achieve similar or even better perfor-
mance with the native SQL queries, which presumably constitute
an optimal implementation for DBMS. This result raises a question
about whether we need to translate UDF code to an intermediate
representation (see Section 2 for a discussion about works convert-
ing UDFs to IR) if we can match optimal performance with careful
optimization and tuning. Numpy UDFs are much slower in this
query (31.6 sec) as expected, since they spend cycles to convert
strings to PyObjects to fill the Numpy array. Figure 7b presents
results of this experiment with data sizes span 40M, 80M, and 160M
rows. The trends we described are consistent in all three cases.

Experiment 2. We evaluate the overhead of transferring string
columns using ffi.string compared to direct pass (i.e., processing
directly on the c data object). The following code gets a string
column and extracts the part of the string after the comma. The
text snippet ‘input[i]+j+1‘ moves the pointer j+1 positions.
@ffi.def_extern()
def parsestr_wrapped(input,insize,result):

for i in range(insize):
result[i] = parsevalue(input[i])

return 1

def parsevalue(val):
j = 0
while True:
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Figure 7: Evaluating the performance of a single UDF, seamless integration, and various setups

if val[j] == ',':
break

j+=1
return val+j+1

The following UDF achieves the same functionality by transforming
the input to Python strings.

@ffi.def_extern()
def parsestr_wrapped(input, insize, result):

tmpstrs = [parsevalue(ffi.string(input[i]).decode()).encode()
for i in range(insize)]

for i in range(insize):
result[i] = ffi.from_buffer(memoryview(tmpstrs[i]))

return 1

def parsevalue(val):
return val[val.rfind(',')+1:]

Running on a column from the flights pipeline (average value
length: 13) with varying data sizes, the first UDF is faster on average
by 1.9x due to the applied data transformations. For example, for
10M rows the first UDF runs in 1 sec and the second in 2 sec.
These executions times include the following MonetDB specific
operations: (a) the returned strings are first inserted in a malloced
intermediate result array; and (b) the strings are then copied and
inserted into a hash dictionary before the result array is freed.

Experiment 3. We examine the impact of various setups: cold
(c) vs. hot (h) caches; SSD (sd) vs. HDD (hd) vs. shared memory
(tmpfs) (mm); with parallelization (m) or not. In this experiment, we
compare the fastest implementations of YeSQL and tuplex on the
flights pipeline (10M rows). Our findings are consistent with the
results in Section 6.2. Specifically, tuplex performance is on par with
YeSQL in single-threaded execution. However, in multi-threaded
execution YeSQL is faster in all cases at a factor that varies between
1.56x to 3.37x, according to the setup. Tuplex is highly affected by
the execution setup (i.e., its execution times varies from 18.6 sec to
91 sec), and achieves its best performance with hot caches. On the
contrary, YeSQL’s implementation on a columnar database engine
runs efficiently in all setups, with times varying between 11.9 sec
to 27 sec. Figure 7c shows the results of the various combinations.

Experiment 4. Concluding the micro-experiments on the inte-
gration with a DBMS, we revisit the comparison presented in Fig-
ure 1. This experiment evaluates a single UDF on popular DBMSes
that support Python UDFs: PostgreSQL with PL/Python, MonetDB
with NumPy, SQLite, a popular commercial parallel and distributed
column-store DBMS (denoted dbX), Sparkwith PySpark, Pandas, Tu-
plex, and YeSQL extensions to MonetDB and SQLite with CPython
and PyPy. The query uses real estate data from zillow, returns 7M
single-column rowswith descriptions of apartments (example value:
’2 bds, 1.0 ba, 856 sqft’), and includes a scalar Python UDF that ex-
tracts an integer representing the number of bedrooms. YeSQL’s
extensions to MonetDB with either CPython or PyPy outperform
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Figure 8: UDF fusion

all alternatives. PostgreSQL, Spark, and dbX run in CPython’s in-
terpreter as a separate process involving also inter-process commu-
nication overheads, and so, they run 68x, 45x, and 38x, respectively,
slower than YeSQL. Pandas is 10x slower than YeSQL, as Pandas is
generally optimized for numeric operations and not for strings [72].
The performance of Tuplex (6x slower) and Numpy (8x slower) fol-
lows here as well the trends explained in the previous experiments.
YeSQL extensions to MonetDB are faster than those on SQLite due
to the vectorized execution model; the data is passed to the UDF
through one function call whereas SQLite calls the foreign function
once per tuple. Notably, YeSQL on SQLite as an embedded database
with PyPy (mostly) and CPython remains competitive, showing
that YeSQL, besides its application alongside server-based DBMSs,
is also an excellent implementation for lightweight architectures
and for a broad variety of applications (e.g., edge-computing).

6.3.3 UDF fusion. We run this experiment using 10 million text
snippets from the text mining dataset. Figure 8 shows the execution
times for the following query (and also different combinations of
the involved UDFs) which runs with and without UDF fusion:
select extractnumber(lower(remove_small_words(text))) from texts;

This query first removes the words with less than three char-
acters (rw), then converts the input to lower case (lc), and at last
extracts an integer number using regular expressions (ext). As
shown, in all cases fusion enables more optimization, and when fus-
ing all three UDFs the query executes 2.26x faster. With UDF fusion
the CFFI conversions and the context switches between the DBMS
and the UDF are eliminated. However, fusion may have different
performance gains according to the characteristics of the UDFs.
Specifically, when the fused UDF has string output and can be fused
the gain is larger. For example, the execution time of fuzed ext and
lc is 3.6s, while the execution time of lc alone is 8.1s. This happens
because MonetDB interns its strings using a hash dictionary that
adds an extra overhead, which however is optimized out as the UDF
is fused with one that returns a numeric value.

6.3.4 Parallelism. We experiment with the execution times of
9 UDFs from the flights pipeline using our implementation of PyPy
and CPython UDFs, and also MonetDB’s default Numpy UDFs. We
run the UDFs in single-threaded and multi-threaded executions.
Figure 9a shows that Python implementations are faster when no
threads are used due to the limitations derived from releasing and
acquiring GIL (see also Section 5.5). Vectorized MonetDB’s Numpy
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(c) Resource usage: YeSQL, Tuplex, PySpark with cold and hot caches

Figure 9: Evaluating UDF fusion, parallelism, and resource utilization

UDFs also do not get any significant speedup from multi-threaded
execution. However, when running on PyPy we reap benefits from
multi-threaded execution running 50% faster than a single thread.

6.3.5 Stateful UDFs. We investigate the effect of stateful UDFs
by running a pattern extraction UDF on MonetDB, with both a
stateful and a stateless implementations, on 56 million string values
from the zillow pipeline (average length: 24 characters). The first,
stateful UDF executes in 7 sec while the second requires 14.6 sec.
The speed up is explained as follows. The stateful UDF enables
precompiling the pattern using re.compile at global scope, while
the stateless UDF runs the pattern extraction per tuple without
using any precompiled pattern.

6.3.6 Scalability. We evaluate the scalability of YeSQL and tuplex,
the twomost scalable solutions in our analysis, using the flights data
(20M). We try 1 to 12 execution threads (the maximum allowed in
our setup). Figure 9b shows that YeSQL achieves a speedup up to 4x
for 8 threads, which is the sweet spot of our server. Tuplex follows
with a speedup up to 2.4 but it reaches a plateau at 4 threads. YeSQL
incurs a lower performance degeneration 7% to 50% (tuplex goes
up to 81%), which renders it a good fit for multi-core environments.

6.3.7 Resource Usage. We profile resource usage (CPU, memory,
and disk) of YeSQL with PyPy, Tuplex, and PySpark. We monitor
metrics such as total CPU (%), memory/cache (GB’s), and disk read
i/o (MB/s). We run an experiment with the flight dataset (10M rows),
multi-threaded execution, and cold/hot caches (see Figure 9). While
running on cold caches, YeSQL finishes in 12 sec, with fast loading
in 3 sec, moderate use of memory and CPU. Interestingly, YeSQL
starts processing before loading finishes. Tuplex finishes in 36 sec,
with slow loading (1̃8 sec), aggressive use of memory and cache,
and excellent CPU usage while not loading. PySpark finishes in
246 sec, with very slow loading (8̃2 sec), aggressive use of memory
and cache, and moderate CPU usage when loading completes. On
hot caches, YeSQL finishes in 10 sec with moderate use of memory.
However, it starts with moderate CPU usage (most UDFs run at
the beginning and they are affected by GIL), and continues with
high CPU usage when the joins kick in. Tuplex is improved with
hot cache. It finishes in 21 sec, still with high memory and cache
usage, and fully utilized CPU. PySpark finishes in 189 sec, with
high memory and cache usage (similar to Tuplex), and moderate
CPU utilization. Note that YeSQL outperforms Tuplex and Spark
while using significantly less memory. YeSQL’s implementation on
a columnar DBMS helps loading and processing only the required
columns avoiding unnecessary overheads.

6.4 YeSQL in Practice
The usability and expressiveness of our YeSQL language was put
to the test with an assignment given to 380 undergrad students,
with little experience with SQL. They were asked to develop two
algorithms: (a) Document similarity with TF-IDF and (b) Document
classification using a preexisting training set with weighted terms,
in two implementations: (a) in YeSQL and (b) in Python and SQL but
without UDFs, and report on their experience. 328 (86.3%) students
completed successfully the task and 165 (43.4%) scored an excellent
grade. The success rate was higher than past years, when the assign-
ment did not include YeSQL. Most students found programming
with YeSQL easy and liked that their YeSQL code was smaller and
more concise than their Python and non-UDF SQL code.

Besides the in-house experience where YeSQL is the core tool
of trade for the OpenAIRE data scientists, external practitioners
and data scientists have also been using YeSQL (including its first
incarnation named madIS) to facilitate their research. To the best
of our knowledge, to date the YeSQL language has been used by
professionals in several domains such as geospatial ontologies [3,
4, 23, 38], text mining and information extraction [20, 42], data
cleaning and exploration [24], and medical machine learning [74].

7 CONCLUSIONS
In this paper, we have presented YeSQL, an SQL extension with rich
UDF support along with a pluggable architecture to easily integrate
it with either server-based or embedded database engines. YeSQL
supports Python UDFs fully integrated with relational queries as
scalar, aggregator, or table functions. The YeSQL language has
been designed to increase the productivity of data scientists and
analysts in developing complex algorithms within an extended
relational model. YeSQL outperforms alternative implementations
due to its several performance enhancements, including tracing
JIT compilation of Python UDFs, parallelism and fusion of UDFs,
stateful UDFs, and seamless integration with a database engine.

YeSQL has been deployed in production and is being used by data
scientists in several domains. We actively pursue various future
directions including extensions to federated, heterogeneous systems
and optimization opportunities in UDF fusion and query rewriting.
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