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ABSTRACT
Hybrid Hash Join (HHJ) has proven to be one of the most effi-
cient and widely-used join algorithms. While HHJ’s performance
depends largely on accurate statistics and information about the
input relations, it may not always be practical or possible for a
system to have such information available.

HHJ’s design depends on many details to perform well. This
paper is an experimental and analytical study of the trade-offs in
designing a robust and dynamic HHJ operator. We revisit the design
and optimization techniques suggested by previous studies through
extensive experiments, comparing them with other algorithms de-
signed by us or used in related studies.

We explore the impact of the number of partitions on HHJ’s
performance and propose a new lower bound for the number of
partitions. We design and evaluate different partition insertion
techniques to maximize memory utilization with the least CPU cost.
Additionally, we consider a comprehensive set of algorithms for
dynamically selecting a partition to spill and compare the results
against previously published studies. We then present and evaluate
two alternative growth policies for spilled partitions.

These algorithms have been implemented in the context of
Apache AsterixDB and evaluated under different scenarios such as
variable record sizes, different distributions of join attributes, and
different storage types, including HDD, SSD, and Amazon Elastic
Block Store (Amazon EBS).
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1 INTRODUCTION
As one of the most popular and expensive DBMS operators, the join
operator can significantly impact the performance of a DBMS. HHJ
[15, 40] has shown superior performance in computing the equijoin
of two datasets among other kinds of join operators. In a nutshell,
HHJ groups the records of each dataset into disjoint partitions.
A hash table is created to hold one of the partitions in memory
(memory-resident partition), while the rest will be written (spilled)
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to disk to be processed in the next rounds of HHJ. The number of
partitions and the selection of the memory-resident partition are
static decisions made at compile time for an HHJ operator. While
previous studies [23, 40] have suggested various cost models and
optimization techniques for enhancing such decisions, these studies
have two shortcomings: (1) They assume a uniform distribution for
join attribute values. (2) Their cost models rely on having accurate
statistical information such as input sizes prior to query execution.

Unfortunately, collecting and accessing or predicting such infor-
mation may not always be feasible. For example:

• Many data management systems process external data that
resides outside their storage for which they have little or
no information. (Examples include: Apache AsterixDB [3],
Apache Spark [4], and Oracle external tables [7].)

• The accurate sizes of join inputs may not be known if they
result from other operators instead of being base relations.

• Newly developed DBMSs may not have statistics available
until they become more mature in other dimensions.

Not having sufficient statistics can be detrimental to the perfor-
mance of operators whose designs depend on such information.
[35] has proposed Dynamic HHJ to address the unbalanced distribu-
tion of join attribute values by dynamically destaging the partitions
at the runtime of a join query.

Investigating the Dynamic HHJ algorithm reveals several design
questions that must be explored carefully, as they may impact the
system’s overall performance:

• Number of partitions: How many partitions should the
records be hashed into if the sizes of inputs are unknown
or inaccurate?

• Partition Insertion: How canwe find a "good" page (memory
frame) within a partition for inserting a new record?

• Victim Selection Policy: How can we select a "good" parti-
tion to spill in the case of insufficient memory?

• Growth Policy: How many memory frames should a spilled
partition be allowed to occupy?

With this motivation, this paper is an experimental survey of the
trade-offs in designing a robust Dynamic HHJ algorithm. We an-
swer the questions above through a comprehensive evaluation of
different design aspects of the Dynamic HHJ algorithm and eval-
uate the alternative options through extensive experimental and
model-based analyses. First, we propose a new lower bound for the
number of partitions for Dynamic HHJ. We show that our proposed
lower bound, while simple, can reduce the total amount of I/O by
up to a factor of three in some investigated scenarios. Second, we
study different partition insertion algorithms to efficiently find a
frame with enough space in the target partition. We evaluate the ef-
fectiveness of these algorithms on partition compactness (fullness)
and total I/O reduction. Additionally, we propose and evaluate two
policies for allocating memory frames to spilled partitions. Finally,
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Figure 1: Workflow of (a)- Hybrid Hash Join (left) and (b)- Dynamic HHJ (right)

we propose and implement various dynamic destaging (victim selec-
tion) strategies and evaluate them under different scenarios such as
different record size distributions, join attribute value distributions,
and combinations thereof. The suggested optimization techniques
and algorithm variants have been implemented in the Apache As-
terixDB system and evaluated on different storage types, including
HDD, SSD, and Amazon EBS.

The remainder of the paper is organized as follows: Section 2 pro-
vides background information on Apache AsterixDB and the work-
flow of the HHJ and Dynamic HHJ operators. Section 3 discusses
previous work related to this study. In Section 4, we discuss the
lower bound on the number of partitions to use in practice. Section
5 introduces and evaluates different partition insertion algorithms.
In Section 6, two policies for the growth of spilled partitions are
discussed and evaluated. Section 7 discusses and evaluates various
destaging partition selection policies. In Section 8, we study the per-
formance tradeoffs between single-core and multi-core execution
of Dynamic HHJ. Section 9 summarizes the paper.

2 BACKGROUND
2.1 Hybrid Hash Join
Like other hash-based join algorithms, HHJ uses hashing to stage
large inputs to reduce record comparisons during the join. HHJ has
been shown to outperform other join types in computing equijoins
of two datasets. It was designed as a hybrid version of the Grace
Hash Join and Simple Hash Join algorithms [15, 40]. All three men-
tioned hash join algorithms consist of two phases, namely "build"
and "probe". During the build phase, they partition the smaller input,
which we refer to as "build input", into disjoint subsets. Similarly,
the probe phase divides the larger input, which we refer to as "probe
input", into the same number of partitions as the build input. While
all three algorithms share a similar high-level design, they differ in
their details, making each of them suitable for a specific scenario.

Grace Hash Join partitions the build and probe inputs consec-
utively, writing each partition back to disk in a separate file. This
partitioning process continues for each partition until it fits into
memory. A hash table is created to process the join once a parti-
tion is small enough to fit in memory. Grace Hash Join performs
best when the smaller dataset is significantly larger than the main
memory.

In Simple Hash Join, records are hashed into two partitions: a
memory-resident and a disk (spilled) partition. A portion of memory
is used for a hash table to hold the memory-resident partition’s
records. Simple Hash Join performs well when memory is large
enough to hold most of the smaller dataset. In Grace Hash Join,
the idea is to use memory to divide a large amount of data into
smaller partitions that fit into memory, while Simple Hash Join
focuses on the idea of keeping some portion of data in memory to
reduce the total amount of I/O, considering that a large amount of
memory is available. In the following, we discuss the details of the
HHJ operator and compare its design with its parent algorithms.

Like Grace Hash Join, HHJ uses hash partitioning to group each
input’s records into "join-able" partitions to avoid unnecessary
record comparisons. Like Simple Hash Join, HHJ uses a portion of
memory to keep one of the partitions and its hash table in memory,
while the rest write to disk. Keeping data in memory reduces the
total amount of I/O, and utilizing a hash table lowers the number
of record comparisons.

During the build phase of HHJ, the records of the smaller input
are scanned and hash-partitioned based on the values of the join
attributes (Figure 1-(a)-1). The hash function used for partitioning
is called a "split function." The records mapped to the memory-
resident partition remain in memory (Figure 1-(a)-2), while the rest
of the partitions are written (frame by frame) to disk (Figure 1-(a)-3).
Pointers to the memory-resident partition’s records are inserted
into a hash table at the end of the build phase (Figure 1-(a)-4).

After the build phase ends, the probe phase starts by scanning
and hash-partitioning the records of the larger input. The same
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split function used during the build phase is used for this step.
The records that map to the memory-resident partition are hashed
using the same hash function used in the build phase to probe the
hash table. All other records are written (frame by frame) to their
partition’s probe file on disk (Figure 1-(a)-5).

After all records of the probe input have been processed, the
pairs of spilled partitions from the build phase and probe phase are
processed as inputs to the next rounds of HHJ (Figure 1-(a)-6). The
initial execution of build and probe inputs is considered round 1,
and round n consists of joining a set of spilled partitions pairs from
round(n-1) using HHJ recursively.

2.2 Dynamic Hybrid Hash Join
Dynamic HHJ was first introduced in [35], where the authors used
dynamic destaging instead of the static predefinedmemory-resident
partition method. As Figure 1-(b)-1 shows, the build phase starts by
reading the records of the build input frame by frame into memory.
In Dynamic HHJ, as opposed to HHJ, all partitions in the build
phase have an equal chance to grow as long as enough memory
frames are available. This flexibility in acquiring frames may cause
some partitions to receive more frames than others if join attribute
values are skewed. Every time that all of the memory frames are
allocated, one of the partitions will be dynamically selected to be
written to disk (Figure 1-(b)-2). This dynamic destaging is especially
useful when the build input size or the distributions of join attribute
values are unknown or inaccurate.

After partitioning the build dataset’s records, pointers to the
records of the memory-resident partitions are hashed and inserted
into the hash table to be probed (Figure 1-(b)-3 and Figure 1-(b)-4).
Once the build phase is over and the hash table is created, the probe
phase starts by reading the probe dataset into memory one frame
after another. All of the incoming records will be hashed using
the same split function used during the build phase to find out
if their corresponding partition from the build phase is a disk or
an in-memory partition with the assistance of a bit vector (Figure
1-(b)-5). The records mapping to a disk-resident partition will be
written to disk using an output frame. The records that belong to an
in-memory partition will be hashed using the same hash function
used during the build phase in order to find their potential matches
by probing the hash table. As the last step (Figure 1-(b)-6), once
the probe phase is over, the spilled partitions from the build phase
along with their corresponding partitions from the probe phase
will be processed in a similar way in the next round of the HHJ
operator (Steps 1 through 6 in Figure 1-(b)).

2.3 AsterixDB
Apache AsterixDB [3, 8, 29] is an open-source, parallel, shared-
nothing big data management system (BDMS) built to support
the storage, indexing, modifying, analyzing, and querying of large
volumes of semi-structured data. Figure 2 shows the logical archi-
tecture of AsterixDB. The Cluster Controller node is the entry point
for the user requests and compiles and transforms the requests into
executable jobs. The Node Controllers are the worker nodes that
execute the jobs sent by Cluster Controller. One Node Controller
also serves as the Meta Data Controller Node and provides access
to AsterixDB’s metadata. Each Node Controller manages one or

more data partitions. An instance of each query will be executed
in parallel on each data partition that the query needs to access.
Throughout this paper and for simplicity, we use one Node Con-
troller with one data partition, unless otherwise mentioned.

The unit of data that is transferred within AsterixDB, as well
as between AsterixDB and disk, is called a "frame". A frame is a
fixed-size and configurable set of contiguous bytes. AsterixDB uses
Dynamic HHJ, whose design and optimization is the main topic of
this paper. In AsterixDB, a single thread is used per data partition
during the build and probe phase. AsterixDB supports different
join algorithms such as Block Nested Loop Join, Dynamic HHJ,
Broadcast Join, and Indexed Nested Loop Join. However, Dynamic
HHJ is the default and primary join type in AsterixDB for processing
equi-joins due to its superior and robust performance.

Cluster
Controller

Node 
Controller

Node 
Controller

Node 
Controller

Node 
Controller

…

Data Partitions

Figure 2: AsterixDB Architecture

We chose Apache AsterixDB as our primary platform for im-
plementing and evaluating our proposed techniques for several
reasons. First, it is an open-source platform that allows us to share
our techniques and their evaluations with the community. More
importantly, AsterixDB is a parallel big data management system
for managing and processing large amounts of semi-structured
data with a declarative language. Finally, its similarity in structure
and design to other NoSQL and NewSQL database systems and
query engines makes our results and techniques applicable to other
systems as well.

3 RELATEDWORK
HHJ was first proposed in [15]. It was shown to have superior
performance compared to other types of joins using simple cost
models, especially if a large amount of memory is available[40]. In
[23], the authors provided a more detailed cost model to determine
the optimal buffer allocation for various join types.

One of the key problems in configuring HHJ for execution is to
choose the number of partitions into which to hash the records. In
[40], the author provided an equation for calculating the number
of partitions based on the memory and build input size. In [31],
the authors derived an upper bound on the number of partitions
and then merged smaller partitions to reduce the fragmentation
in each partition, which is helpful when the join attribute values
are skewed. Our paper introduces a lower bound for the number
of partitions and shows how it can significantly reduce the total
amount of I/O in some cases.

Another challenge for executing HHJ is to efficiently find a frame
with sufficient space in the target partition for each incoming record.
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This problem is similar to the Bin-Packing problem [16, 32]. The
problem has also been widely studied in the operating system and
the DBMS literature [34, 41] for managing free disk space. This
paper will examine those algorithms and a few more for inserting
records in partitions during HHJ. The difference between our work
and disk-related studies is that in our work records will not reside
in the partitions long term, and no deletion apart from partition
spilling happens in this case.

The authors of [35] proposed a dynamic destaging scheme where
the partition written to disk is selected dynamically during exe-
cution. In [19], Graefe et al. detailed the optimization techniques
and the design of Dynamic HHJ variant in Microsoft SQL Server.
Those two studies are closely related to our work; both choose the
largest partition to be written to disk. Despite some reasoning, the
authors discuss no other options, nor do they evaluate them. Our
study defines 13 different possibilities and evaluates them under
various record sizes and join attribute value distributions.

In a concurrent study, the authors in [10] have investigated how
and when to use radix join instead of the non-partitioned hash
join in a main memory DBMS. Regarding AsterixDB [3, 8, 29], the
details of its default Dynamic HHJ can be found in [29].

4 NUMBER OF PARTITIONS
The first step in configuring the HHJ operator is to determine the
number of the partitions for partitioning the input datasets.

There are two main constraints to be considered when choosing
the number of partitions: (1) An HHJ operator needs at least two
partitions to divide the input dataset into smaller subsets. (2) Each
partition needs at least one output frame in order not to spill less
than half-full frames to disk.

As such, the number of partitions for an HHJ should be chosen
from the range of:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = [2, #𝑜 𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑓 𝑟𝑎𝑚𝑒𝑠] (1)

In [40], the author offers the following equation to calculate the
number of partitions for an HHJ operator.

𝐵 =

⌈
|𝑅 | ∗ 𝐹 − |𝑀 |

|𝑀 | − 1

⌉
(2)

|R| represents the size of the build input in frames, F is a fudge
factor, |M| represents the size of the memory in frames available to
this join operator, and B is the number of disk-resident partitions.
Based on this equation, the HHJ operator will use B+1 partitions
(including a memory-resident partition) and finish in B+1 rounds.

While this equation calculates the number of partitions in a way
that minimizes the total amount of I/O and rounds in HHJ, any
inaccuracy in estimating its input parameter, |R|, can introduce
fluctuations in the performance of HHJ as the amount of available
memory varies. This is especially true when only a few partitions
are created (large memory). In this case, data is distributed among
just a few partitions, causing a high penalty for spilling a partition
as a large amount of data will be written to disk. The purpose of
this section of the paper is to provide a lower bound on the number
of partitions to prevent excessive spilling due to inaccuracy of the
provided information.

Figure 3 shows the result of a simulation study that explores
the impact of the number of partitions on the total amount of I/O

during the execution of an HHJ operator. Final result writing is
excluded from this measurement. Both the build and probe inputs
contain the same size of data for simplicity and the amount of
memory is set to 10GB in all cases. In Figure 3-(a), a fixed number
of partitions have been used for all rounds of HHJ. The black dia-
monds on each line show the number of partitions suggested by
Eq. 2 given accurate parameter values. As Figure 3-(a) shows, if
accurate input values such as input dataset sizes were provided, Eq.
2 can accurately calculate the minimum number of partitions that
minimizes the total amount of I/O for HHJ. However, if there is no
a priori information or if the provided information is inaccurate
and the build input is larger than anticipated, Eq. 2 will suggest a
smaller number of partitions than needed and cause extra I/O. As
Figure 3-(a) shows, choosing a small number of partitions can lead
to a large amount of unnecessary I/O and degrade the system’s
performance. We can, however, use Eq. 2 to calculate the number of
partitions for the subsequent rounds of HHJ as the sizes of spilled
partitions are known. Figure 3-(b) shows how using the spilled
partition sizes to calculate the number of partitions for the next
rounds of an HHJ can reduce the total amount of spilling of the
HHJ operator.

We recommend using 20 as the minimum number of partitions
instead of 2 when accurate a priori information is not available
for the HHJ operator. As Figures 3-(a) and 3-(b) show, the amount
of I/O drops dramatically before 20 partitions. By having a lower
bound of 20, each spilled partition spills no more than 5% of the
data, so the potential for significant “spilling error” is low.

As we saw so far, choosing too few partitions leads to a handful
of large-sized partitions causing extra rounds of HHJ and a large
amount of spilling to disk. On the other hand, while using a larger
number of partitions can reduce the total amount of spilling, it can
make the join’s I/O pattern more random due to frequent writings
of partitions containing just a few frames. Fragmentation within
frames is another downside of having a very large number of parti-
tions. In [31], the authors defined an upper bound for the number
of partitions in order to reduce fragmentation and random writes
due to too many single-frame partitions. However, to the best of
our knowledge, no lower bound on the number of partitions has
been suggested to improve the performance of the HHJ algorithm.

Additionally, we have studied the impact of frame size on the
amount and pattern of I/Os happening during the execution of
the HHJ operator. Figure 3-(c) shows the impact of the number
of partitions on the amount of I/O when the frame size is set to
128KB. By comparing Figures of 3-(b) and 3-(c), we can see that
changing the size of memory frames from 32KB to 128KB does not
change the total amount of I/O occurred during the join execution.
Figures 4-(a) and 4-(b) show the percentage of writes (excluding
final result writing) that are conducted randomly when the memory
frame size is 32KB and 128KB, respectively. As these figures show,
using either 32KB or 128KB leads to a similar I/O pattern since for
each spilling the first write is random and the rest of the data is
written sequentially regardless of being a large frame or several
small frames. Lastly, a lower bound of 20 partitions does not cause
too many random I/Os since data will be written to only a few (at
most 20) files on the disk. A modest filesystem cache can turn many
of these random writes into sequential ones (Elevator Algorithm).

2260



0 20 40 60 80 100
No. of Partitions

0

4,000

8,000

0 20 40 60 80 100
No. of Partitions

0

2,000

4,000

6,000

8,000

0 20 40 60 80 100
No. of Partitions

0

10,000

20,000

To
ta

l I
O

 (G
B

)
     Memory Size = 10GB
Build Size / Memory Size =

2X
5X
10X
15X

20X
30X
40X
50X

(a) (b) (c)

Figure 3: Impact of number of partitions on the total amount of I/O in Dynamic HHJ (excluding final result write). (a) Fixed
number of partitions used in all rounds of Dynamic HHJ (Frame Size=32KB) - (b,c) Fixed number of partitions used in the first
round, Eq. 2 used for rounds +2.((b). Frame Size = 32KB, (c). Frame Size = 128KB).

0 20 40 60 80 100
No. of Partitions

60

80

100

To
ta

l R
an

do
m

 W
rit

e 
(%

)

100,000 200,000 300,000
No. of Partitions

     Memory Size = 10GB
Build Size / Memory Size =

2X
5X
10X

15X
20X
30X

40X
50X

0 20 40 60 80 100
No. of Partitions

60

80

100

20,000 40,000 60,000 80,000
No. of Partitions

(a) (b)

     Memory Size = 10GB
Build Size / Memory Size =

2X
5X
10X

15X
20X
30X

40X
50X

Figure 4: Ratio of random writes over total amount of writes reported in percentages (excluding writing the final results)- (a)
Frame Size = 32KB, (b) Frame Size = 128KB

As Figure 4 shows, choosing a very large number of partitions can
cause the majority of the writes to disk to be random.

5 PARTITION INSERTION
After choosing the number of partitions (P), the build phase starts
by reading its input into memory one frame after another. The split
function is applied to each incoming record’s join attribute(s) to
find their destination partition. Once the partition is known, we
need to search for a frame with sufficient space within the desti-
nation partition to hold the record. If all of the records have the
same or similar sizes, all of the previously allocated frames apart
from the last frame will be similarly full. In this case, we only
need to check if the last frame can hold the record or a new frame
should be allocated. However, if records are variable in size, then
each allocated frame may have a different amount of leftover space.
Thus, for each incoming record, we need to search for a frame with
enough space to hold it. Note that leftover space in frames can also
happen when records are fixed-size (i.e. when the frame size is not
divisible by the record size), but then all of the frames will have
the same amount of free space. The search starts from the newest
allocated frame and proceeds towards the oldest one. If this search
is unsuccessful, a new frame will be allocated and appended to this
partition’s in-memory frames array if enough memory is available.
However, if the available memory is not sufficient for a new frame
allocation, one of the memory-resident partitions will be selected
for spilling to release some memory space. This choice is called
victim selection and will be discussed in Section 7.

Problem Definition. Our goal for partition insertion is to make
each partition as non-fragmented as possible by choosing the desti-
nation frame for each incoming record in such a way that minimizes
the free space in each frame to avoid unnecessary I/O. On the other
hand, searching for a proper frame for each record could be CPU-
time-consuming. Our goal is to find a destination frame efficiently
while making the partition as compact as possible. Two influen-
tial factors should be considered for designing partition insertion
algorithms. First, there will be no record deletions to cause frag-
mentation in this scenario; only a complete partition will be written
to disk in case of insufficient memory. Second, records can come
in many different sizes. This variation in record sizes adds to the
complexity of partition insertion for two reasons. First, the space
required for each record is different from other records. Second,
the insertion of variable-sized records in fixed-size frames leaves
a different amount of free space in each frame. Placing variable-
sized objects in a fixed-size space is known as an "online object
placement" or "online organization" problem. It is an example of
the online bin-packing problem, a well-known NP-hard problem.
Some object placement strategies have been studied and optimized
for free space management on disk for permanent placement of
objects [34]; however, they may not exhibit similar performance
characteristics when used for memory space management.

In the following, we present and evaluate different algorithms for
partition insertion. The algorithms considered here are presented in
Table 1 and their detailed description can be found in an extended
version of this paper [28].
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Table 1: Partition Insertion Algorithm Descriptions

Algorithm Start Point Search Direction Stopping Criteria

Append(8)1 Newest frame Towards the oldest frame 8 frames checked or finding a frame with enough space
First-Fit Newest frame Towards the oldest frame Finding a frame with enough space
Best-Fit Newest frame Towards the oldest frame All frames should be checked
Next-Fit Last insertion frame Guided2 Finding a frame with enough space
First-Fit(10%)1 Newest frame Towards the oldest frame 10% ×𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠 checked or finding a frame with enough space
Random(10%)1 Random Random 10% ×𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠 checked or finding a frame with enough space

1 [28] explains how the parameter values are chosen for these algorithms.
2 Search will be towards the newest frames if the current record is larger than the previously inserted record; otherwise, it will be towards the
oldest frames.

5.1 Dataset and Experiment Design
We use an updated and modified version of the Wisconsin Bench-
mark [14] data to evaluate the partition insertion algorithms. Its
attributes and datasets’ high tunability and selectivitymake theWis-
consin Benchmark’s dataset a good synthetic benchmark dataset
for evaluating and benchmarking join queries.

We use variable-length records, one of the modifications added
to the Wisconsin Benchmark data in [27], to introduce two groups
of small-sized and large-sized records with a specific ratio between
these two groups. We use what we call the 1-Large Record Coexist,
3-Large Record Coexist, and All Small Records datasets in this
study, each of which is 1 GB in size. Each memory frame is 32KB
in size. The names of 1-Large Record Coexist and 3-Large Record
Coexist come from the number of large records that can fit in one
frame. Variable-length records are used for small and large records
to represent a more realistic scenario. We consider two specific
ranges for large records (1-Large and 3-Large record coexist) to
study the impact of semi-large and extra-large record sizes fitting
in one frame to cover the two ends of the spectrum of large record
sizes. Table 2 contains the details of the datasets used.

Each experiment is conducted using an AsterixDB cluster con-
sisting of a Cluster Controller and a Node Controller with one data
partition executing on two different nodes of the same AWS type.
Each query runs in isolation and utilizes one CPU core. All instances
are chosen from US-West-2 availability zone of Amazon AWS and
have 4 vCPUs and 30.5GB of RAM. The d2.xlarge instance type was
used for the HDD experiments, while i3.xlarge and r4.xlarge were
used for the SSD and EBS experiments, respectively.

Table 2: Dataset Specifications

Dataset Small Records Large Records

1-Large Record Coexist 700 B - 1500 B 18 KB - 20 KB
3-Large Records Coexist 700 B - 1500 B 8 KB - 10 KB
All Small Records 700 B - 1500 B None

5.2 Partition Insertion Algorithms’ Evaluation
This section evaluates the performance of the described partition
insertion algorithms for fixed- and variable-sized records.

5.2.1 Small Records Experiment. In our first experiment, both
the build and probe datasets are 1GB in size and follow the All Small
Records dataset configuration. In this experiment, we are interested
in comparing the partition insertion algorithms with respect to
the average frame fullness (compactness) and the query execution
time to evaluate the efficiency of each algorithm in reaching this

degree of frame fullness. The query execution time is the time
that it took for a query to execute, excluding the time for query
compilation and result returning. Since queries were running in
an isolated setting with no other queries running concurrently, the
execution time includes zero wait time. In these experiments, we
consider different ratios of record sizes over the memory frame
size. Since memory frames and records can come in many different
sizes, the ratio of their sizes is the important factor here. Similarly,
we consider various ratios between the data and memory sizes to
study the performance trends of the various algorithms. Figure 5(a)
shows the average frame fullness as a function of the ratio of the
build dataset size to the amount of available memory. The Y-axis
starts from 80% for a better visualization. As this figure shows, all
algorithms deliver a high and similar average frame fullness when
the records are small. This is because small records can easily fit in
most frames and increase the average frame fullness by minimizing
the leftover space in each frame.

Next, we analyze the performance of the different partition in-
sertion algorithms in reaching their reported frame compactness.
Figure 5(b) exhibits the execution time of the partition insertion
algorithms for three storage types of HDD, SSD, and Amazon EBS.
We use different storage types to study the impact of the difference
in frame compactness of different partition insertion algorithms
(which can lead to differences in the amount of disk I/O) on the
execution time for each storage type.

The similarity in the size of the records makes the frames, espe-
cially the older ones, similarly full. Additionally, suppose a previous
record could not find a frame by checking all of the partition’s
frames due to similarity in record sizes. In that case, it is likely that
the next record will not fit in those frames either.

As Figure 5(b) shows, the CPU cost due to extensive searching in
Best-Fit significantly degrades its performance in all three storage
types. Random(10%) is the second-worst algorithm with a slightly
higher execution time than the others. Although Random(10%) ben-
efits from the additional stopping criteria, the high time-overhead
of the Random function and the high frequency of calling it de-
grades its performance. First-Fit is the third-worst algorithm in
our experiments. First-Fit has a higher execution time than the
algorithms with a guided search method (Next-Fit) or additional
stopping criteria. This is due to the extensive search of First-Fit.
However, the performance of First-Fit is much better than Best-Fit,
another extensive search algorithm, as First-Fit stops if it finds a
suitable frame. This "first find" strategy has a high impact, espe-
cially in this experiment, as all of the records are small and have a
good chance to fit in even a relatively full frame.
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Figure 5: Partition Insertion - Small Record Sizes (a) Average frame fullness (b) Execution time on different storage types

Next-Fit and First-Fit(10%) perform similarly here with rela-
tively low execution times. Next-Fit’s different starting point and
its guided search improve its performance. The early termination
due to stopping criteria in First-Fit(10%) makes it one of the best-
performing algorithms here. Append(8), however, seems to be the
best algorithm in this experiment. As Figures 5(a) and 5(b) show,
Append(8) reaches a similar average frame fullness as the other
alternatives with the least amount of search effort. (For each record,
at most 8 frames are checked.)

5.2.2 Variable Size Records. This section evaluates the perfor-
mance of different partition insertion algorithmswith input datasets
containing records of various sizes.

We use the 3-Large Record Coexist dataset for this experiment.
The large records versus small records ratio varies between 10%,
50%, and 90%. As Figure 6-(a) shows, increasing the percentage of
large records lowers the average frame fullness in all algorithms
and minimizes their differences in frame compactness. Inserting
large records in a frame may leave a large leftover space that can
only be filled with small records. If the small records are limited in
number (higher percentage of large records), these leftover spaces
remain unfilled and decrease the average fullness. Additionally,
the difference between the average frame fullness of the various
algorithms diminishes if most of the records are large since only a
few frames may have enough space for large records.
As Figure 6-(b) shows, Best-Fit again has the highest execution time
since for each record insertion it searches all of the in-memory
frames of the partition. Furthermore, a higher number of records
leads to more searching and thus to a higher execution time for
Best-Fit. This rationale is true for the Random algorithm, too, since
the random function will be called for 10% of the frames per record
insertion. In all of these experiments, Append(8) has the lowest
execution time; doing the least amount of work, it still achieves a
similar frame fullness to the more intelligent and search-intensive
algorithms.While the algorithms other than Append(8) and Best-Fit
perform similarly, the algorithms with a stopping criteria perform
slightly better. Storage-wise, the overall execution time is higher
for HDD than for SSD and Amazon EBS due to its longer time for
I/O operations. The impact of the difference in the amount of I/O
on the execution times of the different algorithms is greater in HDD
due to the efficiency of SSD in handling I/O and the high network
latency in Amazon EBS.

Append(8) was seen to have the lowest execution time for both
small and variable sized records, so we will use Append(8) as the
partition insertion algorithm for the rest of this study. We also used

1-Large Record Coexist for another variation of this experiment
whose results can be found in [28]. Append(8) also did well there.

6 SPILLED PARTITIONS’ GROWTH POLICIES
In the case of insufficient memory, some of the partitions must be
written to disk to open up space for additional incoming records.
We will consider several victim selection policies - policies which
select a memory-resident partition to spill - under two variations
of how the memory allocation to spilled partitions is managed:

(1) No Grow-No Steal (NG-NS): There are two main rules for
this policy:
• No Grow: A spilled partition can only have one frame

to be used as its output buffer once it has spilled.
• No Steal: Only unspilled partitions are selected as vic-

tims in case of insufficient memory. A spilled partition
writes its output buffer to disk only if the next record
hashed to that partition requires more space.

(2) Grow-Steal (G-S): This growth policy consists of two main
rules as well:
• Grow: Spilled partitions may grow as large as the avail-

able memory lets them.
• Steal: Spilled partitions have a higher priority to be cho-

sen as a victim partition in cases of insufficient memory.
While more growth policies could be considered for future work
(e.g., spill only the full frames of a victim partition), we chose to
study these two growth policies as the two ends of the spectrum.

6.1 Analytical I/O Study for NG-NS and G-S
In this section, we look at the I/O differences between the two
growth policies for spilled partitions from an analytical point of
view. It is important to realize that both policies perform almost the
same amount of I/O; however, they differ from one another in their
use of random versus sequential I/O. In the following equations, R
represents the size of the build input in frames, M is the number of
available memory frames, P is the number of partitions, and x is
the number of spilled partitions.

Let us assume that records are similar in size and that there is no
skew in join attribute values. Using this assumption, all partitions
are similar in size, in the number of frames, and in the number
of records. The following equation calculates the amount of tem-
porary results (build phase only) written to disk in a random and
sequential fashion under the NG-NS growth policy:
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Figure 6: Partition Insertion - 3-Large Record Coexist (a) Average frame fullness (b) Execution time on different storage types
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The following equation calculates the number of I/Os for G-S:

𝑥∑︁
𝑖=1

(
lim
𝑃→∞

1
1 − 1

𝑃

(
𝑀 − 𝑖 + 1
𝑃 − 𝑖 + 1

)
Seq. I/O

)
+

(
𝑀 − 𝑖 + 1
𝑃 − 𝑖 + 1

Seq. I/O
)

(4)

The first term in Eq. 4 shows that in G-S, each spilled partition
writes the rest of its data to disk sequentially. This I/O behavior is
different from NG-NS (Eq. 3), in which the rest of a partition’s data
is written to disk frame by frame once it first spills. More detailed
explanations of these two cost formulas can be found in [28].

6.2 Experimental Analysis of Growth Policies
Based on the cost functions we developed in the previous subsec-
tion, we showed that the NG-NS policy leads to more randomwrites
due to using one output buffer allocation per spilled partition. On
the other hand, G-S allows the spilled partitions to acquire more
than one frame, so its I/O pattern becomes more sequential. Turn-
ing random writes into sequential ones can improve performance,
especially in systems utilizing HDD. This section compares these
two algorithms empirically to verify our expectations from the cost
analysis. We used a single join query for which the build and probe
datasets contain identical data generated based on the All Small
Record dataset configuration. In this experiment, the available mem-
ory for the join is a fixed value of 1024MB, while the size of the
build and probe inputs varies from 1.2GB, 2GB, 10GB, 20GB, to
100GB. A hard disk is used as the storage device in this experiment.

This experiment compares the two growth policies for spilled
partitions under two variations of writing to disk: direct or through
the filesystem cache. Some database management systems disable
the filesystem cache and manage the buffer cache memory them-
selves. We use the IO_DIRECT library [5] for directly writing data
to disk and bypassing the filesystem cache in Linux systems. Fig-
ures 7-d and 7-h show that G-S and NG-NS do the same amount
of writing regardless of using or bypassing the filesystem cache.
However, as Figures 7-c and 7-g show, G-S does up to 120x more
sequential writes than NG-NS, while NG-NS does up to 120x more
random writes than G-S (Figures 7-e and 7-f). This difference in the
I/O patterns of the G-S and NG-NS while writing the same amount
of data to disk aligns with our results from the previous subsection.
Increasing the input sizes causes more spilling to disk, making the
difference between these two policies even more significant.

Next, we study the performance of these growth policies with
and without filesystem cache being present. Figure 7-e shows the
execution time of G-S and NG-NS policies when data is written
directly to disk (disabled filesystem cache). In this case, NG-NS takes
a longer time than G-S to finish due to performing more random
writes. The impact of random writes of NG-NS on its performance
becomes more significant as the size of the data relative to memory
increases; this is because more data is written randomly and the
storage device is an HDD. However, Figure 7-a shows that using
a filesystem cache minimizes the difference in execution times of
these two policies. This is because the filesystem cache collects
write requests and orders them based on their target file location on
disk (Elevator Algorithm) before sending them to disk; as a result,
many of the random writes turn into sequential ones in NG-NS.
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Figure 7: Spilled Partition Growth Policies. (a,b,c,d) - Statistics of GS and NG-NS policies with filesystem cache in use. (e,f,g,h) -
Statistics of GS and NG-NS policies with filesystem cache disabled.

Based on our results, choosing the preferred growth policy de-
pends on whether the DBMS performs its own caching or uses
the filesystem cache. In AsterixDB, we decided to use NG-NS for
two reasons: (1) The filesystem cache is used. (2) NG-NS does not
fully utilize its given memory. In future work, we intend to use this
leftover memory for other operators of the same query or other
queries under a more global memory management policy.

7 VICTIM SELECTION POLICIES
One or more memory-resident partitions must be written to disk
to regain enough space for the incoming records if the available
memory is insufficient. In-memory partitions may have different
sizes if records have variable sizes or if their distribution between
partitions is unbalanced due to skew in join attribute values. In the
case of variable-sized partitions, we must decide which partition(s)
should spill to disk, considering that we do not know how much
data is left to be processed. The partition selected for spilling is
called a victim partition, and the policy based on which victim
partitions are selected is called the victim selection policy.

In the original HHJ algorithm [15, 40], one partition is selected
upfront (before query execution) as the in-memory partition, while
the rest of the partitions are disk partitions. To ensure that the
chosen partition can indeed remain in memory, we must know the
sizes of the inputs and the distribution of join attribute values.

As mentioned earlier, the authors of [35] and [19] instead use
dynamic destaging to choose victim partitions at runtime. They
always select the largest memory-resident partition as the victim
partition and limit the spilled partitions to acquiring a maximum
of one frame, following the NG-NS growth policy. Neither of these

studies considers other victim selection policies or spilled-partition
growth policies. Additionally, they do not provide any experiments
to show the superiority of their approach.

In the following, we consider 13 possible policies for selecting
the next victim partition among non-spilled partitions. These victim
selection policies are designed for the NG-NS growth policy.

The design space for these policies is based on data size and frame
fragmentation considerations. Largest Size, Largest Records, Me-
dian Size, Median Records, Smallest Size, Smallest Records, Record
Size Ratio, Half Empty, and Low High are designed with respect to
the data size. The Largest Records and Largest Size are expected to
perform well when a large portion of the build dataset is left to be
processed. In contrast, the Smallest Records and Smallest Size are
expected to perform well when a small portion of the build input
remains to be processed. Record Size Ratio considers the number
of records in choosing a large partition as victim and is expected
to perform well when a large portion of the build input remains to
be processed. Half Empty, Low High, Median Size, Random, and
Median Records are designed to take a middle ground and are ex-
pected to have an average but stable performance for various cases.
Least Fragmentation considers the frames’ fragmentation to choose
a victim and is expected to have an average amount of spilling
since it may choose a partition of any size to spill. Smallest Size Self
Victim and Largest Size Self Victim are policies which take both
the frame fragmentation and data size into consideration and are
expected to have an average amount of spilling since the victim
partition can be of any size when it is the inserting partition itself.

The overall input dataset sizes are unknown to the DBMS dur-
ing these experiments. The following list describes the considered
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victim selection policies:
Largest Size: Choose the partition with the largest size in memory
as a victim to maximize sequential writes and to defer the next
spill(s) as long as possible.
Largest Records: Choose the partition with the maximum number
of records to spill.
Largest Size Self Victim: Choose the partition into which the
record is hashed if it has at least one frame. Otherwise, choose the
largest partition to spill.
Median Size: Choose the partition with the median size among all
of the memory-resident partitions as the victim partition.
Median Records: Choose the partition with the median number
of records to spill.
Smallest Size: Choose the smallest partition with at least one mem-
ory frame as the victim partition to avoid overspilling.
Smallest Records: Choose the memory-resident partition with
the minimum number of records (>=1) for spilling.
Smallest Size Self Victim: Choose the partition into which the
record is hashed to spill if it has any frames. Otherwise, the smallest-
size partition will be selected as the victim.
Random: Choose randomly any of the memory-resident partitions
as the victim partition.
Half Empty: This victim selection policy starts optimistically by
guessing that the remainder of the build input is small and spills
the smallest partition. However, it acts pessimistically and spills
the largest partition if more than half of the partitions have spilled.
Least Fragmentation: Choose those partitions that have the least
amount of fragmentation in their frames, thus trying to reduce I/O.
Low High: Alternate between spilling the smallest and the largest
partition.
Record Size Ratio: Choose a partition that holds the smallest num-
ber of records among partitions whose size is equal to or exceeds
80% of the largest partition size (low ratio of the number of records
to the partition size); this expedites record processing by storing
more records in the memory.

7.1 Victim Selection Policy Experiments
This section studies the impacts of join attribute value skew and
record size variation on the victim selection policies.

7.1.1 Impact of Join skew. In our first experiment, we study
the impact of join attribute value skew on the 13 different victim
selection algorithms. In Figure 8-a, both the build and probe datasets
use the All Small Record configuration, and the join attribute values
are unique integers (Non Skewed join attribute value case).

In Figure 8-b, the join attribute values of the build dataset are
integers drawn from a Normal Distribution to make them skewed,
while the probe dataset uses unique integers as its join attribute
(Skewed join attribute value case). Both relations are 1GB in size
and contain 985, 000 records. The authors of [12, 38] used a Normal
Distribution in which 99% of the join attribute values are coming
from 5% of the possible values, justifying this as similar to the skew
found in real-world data. To achieve this data skew, we use a Normal
Distribution on an integer attribute with the mean of 492500 (equal
to half of the cardinality), a standard deviation of 8208, and a range
of possible values varying from 1 to the dataset cardinality.
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Figure 8: Impact of Join Attribute Value Skew in Victim Se-
lection Policies. (a) - No skew. (b) - Skewed.

The metric used in Figure 8 is the ratio of the amount of spilled
data over the ideal amount of spilling. The ideal amount of spilling
is the minimum amount of data that must be spilled to disk during
the build phase. We determine this ideal amount by using a simple
simulation program. This simulator minimizes the data spilling
by maximizing the memory used in each round of HHJ by the in-
memory partition. Eq. 2 with accurate a priori information and
with a fudge factor of 1.4 is used in this simulator to ensure that
the amount of spilling is minimal.

As Figure 8-a shows, all of the algorithms have a similar perfor-
mance if records are similar in size and the join attribute values are
uniformly distributed. Figure 8-b shows that skew in the join at-
tribute values can cause different spilling behavior for some victim
selection policies. In Figure 8-b, the Largest-Size and Largest-Record
policies overspill when data is slightly larger than the available
memory. However, as the data size increases, spilling the larger par-
titions releases more frames, saving other partitions from spilling.

The Smallest-Size and Smallest-Record policies, which spill less
data initially, will spill more when the ratio of data to memory is
higher. All other policies show a spilling behavior that lies between
these two categories of policies. However, the overall difference
between most of the policies is almost insignificant.

7.1.2 Impact of Variable-Sized Records. Next, we study the
impact of variable-sized records on the performance of the victim se-
lection policies. We used a set of 1GB relations based on the 1-Large
Record Coexist and 3-Large Record Coexist dataset configurations.
As Figures 9 and 10 show, most of the policies perform similarly as
the ratio of data over memory is increased in both experiments. The
Largest-Size and Largest-Record policies spill less data and fewer
partitions to disk than the other victim selection policies in most
of the data points. This is because the number of frames that larger
partitions free can save more partitions from spilling.

In both Figures 9 and 10, increasing the population of large
records leads to a larger difference between victim selection policies.
The variations in the size of the records and the high impact of large
records on the partitions’ sizes, compared to fixed sized records
in Figure 8-a, make it possible to see differences between these
victim selection policies. In both 1-Large Record Coexist and 3-
Large Record Coexist cases (Figures 9 and 10), the Largest-Size,
Largest-Records, and in some cases Largest-Size-Smallest-Record
policies spill the least amount of data and the fewest number of
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Figure 9: Impact of Variable Record Size (1-Large Record Coexist) in Victim Selection Policies. (a,b,c) - Spilled Data Ratio when
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Figure 10: Impact of Variable Record Size (3-Large Records Coexist) in Victim Selection Policies. (a,b,c) - Spilled Data Ratio
when 10%, 50%, and 90% of the records are large, respectively.

partitions in most of the data points by spilling the largest partitions
first. This difference between policies in the 3-Large Record Coexist
experiment is less obvious since the large records are 1/3 of the size
of the large records in 1-Large Record Coexist dataset. In Figure
9-a most policies perform similarly as there are fewer large records
thus, less opportunity for these policies to perform differently.

7.1.3 Impact of Join Skew & Variable-Sized Records. In this
experiment, we study the impact of the combination of join attribute
value skew and variable-sized records on the proposed victim se-
lection policies. The Normal distribution discussed in Section 7.1.1
is used for making the build dataset skewed. The record sizes are
chosen from the same distribution used for 1-Large Record Coexist
(Figure 11) and 3-Large Record Coexist (Figure 12) cases. The probe
inputs have the same cardinality and record size distribution as the
build input, while their join attributes are unique integers.

Similar to the previous experiment, Largest-Size and Largest-
Record are two well-performing policies when larger records have
a lower population. The Median Size and Median Records policies
perform well by taking a middle route if data is skewed and most of
the records are large. The skew in data makes some partitions get
more records; partitions with more records will have larger sizes
if records are mostly large-sized, and thus the Largest-Size and
Largest-Record algorithms can overspill. In the case of very limited
memory for the 1-Large Record Coexist case (the first data point
in Figure 11-a, 11-b, and 11-c), Smallest-Records and Smallest-Size
are two of the best performing policies. Since most of the data is
located in a few partitions, there are many small partitions with
only a few frames. As such, Smallest-Records and Smallest-Size can
avoid overspilling by spilling these small partitions when data is
just slightly larger than memory.

In the 3-Large Records Coexist case, the victim selection policies’
performance is similar to the 1-Large Record Coexist case with the

difference that algorithms such asMedian Records also performwell
in this case due to the smaller sizes of large records. Largest-Size
and Largest-Records tend to write larger numbers of frames se-
quentially, while others such as Smallest-Size and Smallest-Records
write a smaller number of frames in a more random manner. As our
experiments for G-S and NG-NS showed, this difference in their
I/O patterns may not impact performance as much as otherwise
expected if filesystem caching is enabled.

7.2 Results for Victim Selection Policy
Based on our experiments in the previous subsection, the Largest-
Size and Largest-Record policies result in less I/O in most cases than
the other alternative policies. Our results confirm the conjecture of
[19, 35] that the Largest-Size policy (as well as the Largest-Record
policy, based on our results) is a good selection policy for the fol-
lowing two reasons: (1) Larger partitions release many frames; thus,
they save other partitions from spilling to disk. (2) Writing larger
partitions leads to more sequential and less random writes.

However, our results also show that the difference in the amount
of spilled data makes only a slight difference in performance. The
gained benefits for having a more sequential pattern by spilling
larger partitions are diminished if filesystem caching is enabled.

8 SINGLE CORE VS. MULTI-CORE
So far all of our experiments have used one thread for executing join
queries in one data partition. In this section, we study the impact
of the number of partitions and threads (and hence the cores) on
the performance of Dynamic HHJ for various storage types.

For these experiments, both the build and probe datasets contain
1GB of data following the All Small Records dataset design. We
used one Node Controller with 1,2, and 4 data partitions to utilize
1,2, and 4 CPU cores respectively. All joins use Append(8) as the
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Figure 11: Impact of Skew & Variable Record Sizes (1-Large Record Coexist) in Victim Selection Policies.
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Figure 12: Impact of Skew & Variable Record Sizes (3-Large Records Coexist) in Victim Selection Policies.

partition insertion algorithm and NG-NS and Largest Size as their
Growth and Victim Selection policies, respectively. Figure 13 shows
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Figure 13: Impact of number of cores on the performance of
Dynamic Hybrid Hash Join (a)- HDD, (b) - SSD, (c) - EBS

the execution time of a single join executed on HDD, SSD, and
Amazon EBS. As this figure shows, increasing the number of cores
(threads) causes disk contention and degrades the performance
for HDD. On the other hand, SSD and Amazon EBS benefit from
more worker threads due to the efficiency of SSD storage device in
handling random I/Os. The overall execution time of Amazon EBS
is higher than that of SSD due to the network latency associated
with over-the-network storage.

9 CONCLUSION AND FUTURE DIRECTIONS
Our experimental study has investigated different policies to de-
sign a robust Dynamic HHJ operator when no accurate a priori
information about the input datasets is available.

Although previous studies have suggested an upper bound for
the number of partitions, no lower bound for this parameter has
been proposed to the best of our knowledge. Not having a reason-
able lower bound can lead to having too few partitions, causing

detrimental overspilling. Based on a simulation study, we recom-
mend using 20 as a minimum number of partitions so that each
spilled partition writes only 5% or less of the build input to disk.

Furthermore, we have explored different partition insertion al-
gorithms for incoming records to find a frame with enough space
among a partition’s in-memory frames. Append(8) showed the best
performance among the partition insertion algorithms.

Next, we considered two potential post-spilling growth policies
for spilled partitions, Grow-Steal and No Grow-No Steal. Our cost
model showed that Grow-Steal should perform better than No
Grow-No Steal due to doing more sequential I/O. However, our
experiments showed that a modest file system cache can mitigate
this difference by turning most random I/Os into sequential ones.

Additionally, we designed and evaluated 13 different victim se-
lection policies. Our results confirmed the conjecture in previous
work that the Largest Size policy is one of the best policies in most
cases. However, this difference was not large enough to significantly
impact overall system performance.

As a future direction, we would like to compare the performance
of Dynamic HHJ with the radix join algorithm suggested in [10].
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