
Density-optimized Intersection-free Mapping and Matrix
Multiplication for Join-Project Operations

Zichun Huang
SKLP, Institute of Computing Technology, CAS

huangzichun21s@ict.ac.cn

Shimin Chen*

SKLP, Institute of Computing Technology, CAS
chensm@ict.ac.cn

ABSTRACT
A Join-Project operation is a join operation followed by a duplicate
eliminating projection operation. It is used in a large variety of
applications, including entity matching, set analytics, and graph
analytics. Previous work proposes a hybrid design that exploits the
classical solution (i.e., join and deduplication), and MM (matrix
multiplication) to process the sparse and the dense portions of the
input data, respectively. However, we observe three problems in
the state-of-the-art solution: 1) The outputs of the sparse and dense
portions overlap, requiring an extra deduplication step; 2) Its table-
to-matrix transformation makes an over-simplified assumption of the
attribute values; and 3) There is a mismatch between the employed
MM in BLAS packages and the characteristics of the Join-Project
operation.

In this paper, we propose DIM3, an optimized algorithm for the
Join-Project operation. To address 1), we propose an intersection-free
partition method to completely remove the final deduplication step.
For 2), we develop an optimized design for mapping attribute values
to natural numbers. For 3), we propose DenseEC and SparseBMM
algorithms to exploit the structure of Join-Project for better effi-
ciency. Moreover, we extend DIM3 to consider partial result caching
and support Join-𝑜𝑝 queries, including Join-Aggregate and MJP
(Multi-way Joins with Projection). Experimental results using both
real-world and synthetic data sets show that DIM3 outperforms pre-
vious Join-Project solutions by a factor of 2.3×-18×. Compared to
RDBMSs, DIM3 achieves orders of magnitude speedups.

PVLDB Reference Format:
Zichun Huang and Shimin Chen. Density-optimized Intersection-free
Mapping and Matrix Multiplication for Join-Project Operations. PVLDB,
15(10): 2244 - 2256, 2022.
doi:10.14778/3547305.3547326

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/schencoding/JoinProject-DIM3.

1 INTRODUCTION
A Join-Project operation is a join operation followed by a duplicate
eliminating projection operation [1]. Given two tables 𝑅(𝑥,𝑦) and

*Shimin Chen is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547326

𝑆 (𝑧,𝑦), the Join-Project operation can be written as follows:

Π𝑥,𝑧 (𝑅(𝑥,𝑦) Z𝑦 𝑆 (𝑧,𝑦)) (1)

It joins 𝑅 and 𝑆 with 𝑦 as the join key, then projects and deduplicates
(𝑥 ,𝑧) tuples. Π denotes the duplicate eliminating projection.

Example: In the HetRec2011 data set [7], U(userID, bookID,
tagID) table contains tags given by users to books that they read,
and B(bookID, tagID, weight) table records books and their possible
tags with weights. The following SQL query recommends books to
users based on the tags recorded in users’ reading history:

SELECT DISTINCT U.userID, B.bookID
FROM U, B
WHERE U.tagID = B.tagID

This Join-Project operation joins U and B on tagID, then projects
and deduplicates using SELECT DISTINCT. The results can be
stored by the application for quick user-specific recommendations.

The Join-Project operation is used in a large variety of appli-
cations [10], including entity matching, set analytics, and graph
analytics. The above is an example of entity matching. Similar ex-
amples include finding users who have seen the same movies in the
MovieLens data set [15], and discovering co-authors in the DBLP
data set [44]. Moreover, if tuple (𝑥 ,𝑦) represents that set 𝑥 contains
element 𝑦, then the Join-Project operation using 𝑦 as the join key ob-
tains all the pairs of sets that intersect with each other. Furthermore,
if we interpret tuple (𝑥 ,𝑦) as an edge between two vertices 𝑥 and 𝑦

in a graph, then the Join-Project operation can be used to compute
all pairs of vertices that are indirectly connected.

1.1 Previous Solutions

Classical Solution. The classical solution to compute the Join-
Project in RDBMSs is to first perform the join operation [2, 24, 34],
then deduplicate the projected join results using hash tables [25]
or other types of indices [14, 17, 26]. The time complexity of the
classical solution is Θ(|𝑅 | + |𝑆 | + |𝑂𝑈𝑇𝐽 |), where |𝑅 |, |𝑆 |, and |𝑂𝑈𝑇𝐽 |
denote the sizes of input table 𝑅, table 𝑆 , and the join results before
deduplication, respectively. This cost is reasonable when the number
of duplicates is low. However, the solution is less efficient when
|𝑂𝑈𝑇𝐽 | is much larger than the size |𝑂𝑈𝑇𝑃 | of the final results after
deduplication. For example, |𝑂𝑈𝑇𝐽 | is 3.7x as large as |𝑂𝑈𝑇𝑃 | in
the HetRec2011 example, while |𝑂𝑈𝑇𝐽 | is 24x larger than |𝑂𝑈𝑇𝑃 |
in the MovieLens data set. Let |𝑋 |, |𝑌 | and |𝑍 | denote the number of
distinct values in column 𝑥 , 𝑦, and 𝑧 in Eqn 1, respectively. Consider
the case where |𝑋 |=|𝑌 |=|𝑍 |=𝑛. |𝑂𝑈𝑇𝐽 | can be O(𝑛3) in the worst
case, while |𝑂𝑈𝑇𝑃 | is only O(𝑛2). In other words, the classical solu-
tion can spend a lot of time generating the |𝑂𝑈𝑇𝐽 | join results and
then processing them to remove a large number of duplicates.

2244

https://doi.org/10.14778/3547305.3547326
https://github.com/schencoding/JoinProject-DIM3
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547326
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Breakdown of DHK run time.

Matrix Multiplication. Alternatively, the Join-Project operation
can be computed using MM. The basic idea is to represent ta-
bles 𝑅(𝑥,𝑦) and 𝑆 (𝑧,𝑦) as two matrices R𝑥×𝑦 and S𝑦×𝑧 . Specif-
ically, R𝑥𝑖 ,𝑦𝑘 = 1 if and only if tuple (𝑥𝑖 ,𝑦𝑘)∈ 𝑅 (similarly for
𝑆). Then the multiplication of R𝑥×𝑦 and S𝑦×𝑧 gives matrix C𝑥×𝑧 ,
where C𝑥𝑖 ,𝑧 𝑗 =

∑ |𝑌 |
𝑘=1 R𝑥𝑖 ,𝑦𝑘 S𝑦𝑘 ,𝑧 𝑗 . A non-zero element C𝑥𝑖 ,𝑧 𝑗 > 0

in the matrix corresponds to a tuple (𝑥𝑖 ,𝑧 𝑗) in the final output of
the Join-Project operation. Compared to the classical solution, MM
performs the join and the deduplication together. There are efficient
MM implementations in BLAS (Basic Linear Algebra Subprograms)
packages with advanced techniques [9, 27, 38]. Moreover, there
are sub-cubic MM algorithms in theory. The best known is the
Coppersmith-Winograd algorithm with O(𝑛2.373) complexity [12].
Hybrid Solution. Recent studies [1, 10] combine the classical solu-
tion and the MM solution based on the observation that the classical
solution performs better when the data is sparse, while MM per-
forms better when the data is dense. Amossen et al. [1] propose an
algorithm to partition the data into dense and sparse parts according
to degrees of 𝑥 , 𝑦, and 𝑧. Then dense MM is employed for the dense
parts and the classical solution is used for the remaining parts.

Deep, Hu, and Koutris [10] correct errors in the cost analysis
of [1] and implement the algorithm for experimental comparison.
We call this state-of-the-art algorithm DHK. DHK has been shown
to significantly outperform the classical solution. However, the fol-
lowing problems reduce the efficiency and practicality of DHK:
• Overlapping outputs between sparse and dense parts: The Join-

Project results computed from the sparse and from the dense
parts can overlap. Consequently, a final deduplication step
is necessary to deduplicate the overlapping results. Figure 1
shows the breakdown of the run time of DHK for five data
sets (cf. Section 5). For all these data sets, DHK partitions the
input data into dense and sparse parts. It performs the final
deduplication step, incurring significant overhead.

• Over-simplified assumption for table-to-matrix transformation:
The DHK implementation assumes that the input columns 𝑥 ,
𝑦, and 𝑧 contain consecutive natural numbers starting from
0. Thus, it directly uses their values as row or column ids in
the matrices. However, in reality, database attribute values are
rarely natural numbers. A step is missing: mapping values of
input columns to consecutive natural numbers.

• Caveats of MM Implementation: DHK invokes MM in BLAS
packages (e.g., Intel MKL [43]) as a black box. On the one
hand, BLAS packages typically implement the O(𝑛3) MM
algorithm. It would be interesting to investigate sub-cubic MM
algorithms. On the other hand, the MM invocation as a black
box cannot exploit the characteristics of the Join-Project oper-
ations for performance improvement.

1.2 Our Solution: DIM3

In this paper, we propose an efficient and practical Join-Project
algorithm, DIM3 (Density-optimized Intersection-free Mapping and
Matrix Multiplication). We address the above problems as follows:
• Intersection-free partitioning: We propose a novel partitioning

method that divides matrix S𝑦×𝑧 into subsets of rows based on
the density of 𝑧 𝑗 rows and then chooses different evaluation
strategies for the dense rows and the sparse rows. Since the
results (𝑥𝑖 ,𝑧 𝑗) of the two parts have different 𝑧 𝑗 s, this method
is guaranteed to be intersection-free. Hence, DIM3 completely
removes the final deduplication step required by DHK.

• Optimized mapping design: We investigate the design of the
mapping step in DIM3. First, we identify cases (e.g., auto in-
crement, dictionary encoding) where columns contain roughly
natural numbers and thus the mapping step can be skipped. Sec-
ond, we exploit the mapping of the shared join key columns to
perform a semi-join like optimization to discard tuples with-
out matches. Finally, we design a cache-optimized hash-based
algorithm to efficiently compute the mappings.

• Optimized MM algorithms: We obtain and evaluate an imple-
mentation of the sub-cubic Strassen algorithm [41] in a re-
cent study [3]. However, our results show that it cannot beat
Intel MKL (cf. Section 5.2). Therefore, we focus on O(𝑛3)
algorithms in DIM3. For the dense rows, we observe that the
computation C𝑥𝑖 ,𝑧 𝑗 =

∑ |𝑌 |
𝑘=1 R𝑥𝑖 ,𝑦𝑘 S𝑦𝑘 ,𝑧 𝑗 can stop early as soon

as there is a non-zero R𝑥𝑖 ,𝑦𝑘 S𝑦𝑘 ,𝑧 𝑗 . We design the DenseEC
(Dense MM with Early stopping Checking) algorithm. For
the sparse rows, we design the SparseBMM (Sparse Boolean
MM) algorithm that leverages the CSR (Compressed Sparse
Row) [23] format of matrix S𝑦×𝑧 as a hash table on the join key
𝑦 with NO hash conflicts. We also introduce a way to reduce
the cost for initializing the deduplication vector.

In addition to addressing the three problems, we extend the Join-
Project solution in the following two directions:
• Partial Result Caching: We observe that in real-world data sets,

computing results for different 𝑧 𝑗 values often take widely
different amounts of time. This motivates us to investigate
if caching results for a subset of 𝑧 𝑗 values is profitable. We
consider caching either the original or the complement set
of 𝑥’s given a 𝑧 𝑗 . The caching decision for 𝑧 𝑗 is based on a
score computed from the computation time and the required
result space. Our experiments show that partial result caching
can effectively reduce the Join-Project computation time with
reasonable space cost for most data sets.

• Support for Join-Op Queries: We discuss different types of re-
lational operations 𝑜𝑝, and investigate whether we can lever-
age the Join-Project algorithm to support Join-𝑜𝑝 queries. We
study two interesting 𝑜𝑝s in depth: 1) For Join-Aggregate
queries [18], we show that DIM3 can be applied with simple
modifications; and 2) For MJP (Multi-Way Joins with Projec-
tion) queries, a.k.a. conjunctive queries with projection [11],
we develop a dynamic programming algorithm to find the op-
timal query plan that considers pushing down deduplication
operations to after the join operations.

2245

1.3 Contributions
The main contributions of this paper is threefold. First, we propose
DIM3 with intersection-free partitioning, optimized mapping, and
DenseEC and SparseBMM algorithms to address the three problems
in the state-of-the-art solution (cf. Section 2). Second, we propose
partial result caching for the Join-Project algorithm (cf. Section 3)
and generalize DIM3 to support Join-𝑜𝑝 queries (cf. Section 4).
Third, we perform extensive experimental evaluation using both real-
world and synthetic data sets (cf. Section 5). Experimental results
show that DIM3 outperforms previous Join-Project solutions by
a factor of 2.3×-18×. Compared to commercial and open-source
RDBMSs, DIM3 achieves orders of magnitude speedups.

2 DIM3 FOR JOIN-PROJECT
In this section, we first overview the DIM3 algorithm in Section 2.1.
Then, we explain the components of the algorithm in detail. Specifi-
cally, we present the mapping phase in Section 2.2, intersection-free
partitioning in Section 2.3, SparseBMM in Section 2.4, and DenseEC
in Section 2.5. Finally, we analyze the algorithm and describe the
strategy selection criteria in Section 2.6. (An extended version of the
paper provides time complexity analysis for our solutions [20].)

2.1 Overview
The DIM3 algorithm is depicted in Figure 2 and listed in Algorithm 1.
We perform the Join-Project operation on two tables 𝑅(𝑥,𝑦) and
𝑆 (𝑧,𝑦). Without loss of generality, suppose 𝑅 is the larger table and
𝑆 is the smaller table.

DIM3 begins by selecting either the classical or the hybrid solu-
tion for evaluating the Join-Project operation. This allows completely
avoiding the mapping step, which can have significant cost for highly
sparse data. DHK [10] uses a rule-of-thumb condition to choose the
classical solution. In comparison, our strategy selection function
𝑓1 makes better decisions based on the estimated run times of the
classical and the hybrid solutions (cf. Section 2.6 and 5.2).

In the hybrid strategy, the first step is to map columns 𝑥 , 𝑦, and
𝑧 to consecutive natural numbers. In this way, an (𝑥 , 𝑦) tuple in
𝑅 (similarly (𝑦, 𝑧) tuple in 𝑆) can be converted to an element at
row 𝑥 and column 𝑦 in matrix R𝑥×𝑦 . DHK [10] makes the over-
simplified assumption that the input columns contain consecutive
natural numbers. We delve into the design of the mapping step to
provide general-purpose support for all attribute types.

The second step converts table 𝑅 to CSR [23] format, then parti-
tions 𝑆 to 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 and 𝑆𝑑𝑒𝑛𝑠𝑒 . We propose an intersection-free parti-
tion method so that the Join-Project results of 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 and 𝑆𝑑𝑒𝑛𝑠𝑒 can
be simply combined without the final deduplication step required by
DHK [10]. The partition method uses function 𝑓2 to decide which 𝑧

row is dense. 𝑓2 will be described in Section 2.6.
The third step designs SparseBMM and DenseEC algorithms for

processing the sparse and dense data, respectively. SparseBMM com-
putes the Join-Project 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑝𝑎𝑟𝑠𝑒 on 𝑅𝐶𝑆𝑅 and 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 . DenseEC
multiplies 𝑅𝐶𝑆𝑅 with 𝑆𝑑𝑒𝑛𝑠𝑒 to obtain 𝑅𝑒𝑠𝑢𝑙𝑡𝑑𝑒𝑛𝑠𝑒 . In DenseEC,
function 𝑓3 is used to choose the best method for intersecting two
bitmaps. The computation of 𝑓3 will be discussed in Section 2.6.

The final step is to merge 𝑅𝑒𝑠𝑢𝑙𝑡𝑀𝑀 and 𝑅𝑒𝑠𝑢𝑙𝑡𝐸𝐶 to obtain the
final results. Because of intersection-free partitioning, there is no
need to perform an extra deduplication step.

Figure 2: DIM3 for Join-Project.

Algorithm 1: DIM3

Input: Table 𝑅 (𝑥, 𝑦) and Table 𝑆 (𝑧, 𝑦)
Output: List of result tuples (𝑥, 𝑧)

1 Estimate 𝑂𝑈𝑇𝐽 ;
2 if 𝑓1 (|𝑅 |, |𝑆 |, |𝑂𝑈𝑇𝐽 |) > 0 then /* Classical is better */
3 return Use classical solution;
4 Mapping column values to consecutive natural numbers;
5 𝑅𝐶𝑆𝑅 ← Create CSR for 𝑅 (𝑥, 𝑦);
6 Intersection-free partition 𝑆 by 𝑆.𝑧; /* dense if 𝑓2 (𝑧)>0 */
7 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ← Save the sparse part of 𝑆 as CSR;
8 𝑆𝑑𝑒𝑛𝑠𝑒 ← Save the dense part of 𝑆 as Bitmap array;
9 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑝𝑎𝑟𝑠𝑒 ← SparseBMM(𝑅𝐶𝑆𝑅 , 𝑆𝑠𝑝𝑎𝑟𝑠𝑒);

10 𝑅𝑒𝑠𝑢𝑙𝑡𝑑𝑒𝑛𝑠𝑒 ← DenseEC(𝑅𝐶𝑆𝑅 , 𝑆𝑑𝑒𝑛𝑠𝑒);
11 return 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑝𝑎𝑟𝑠𝑒 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑑𝑒𝑛𝑠𝑒 ;

2.2 Mapping
The mapping step maps columns 𝑥 , 𝑦, and 𝑧 to consecutive natural
numbers. This can be achieved with a baseline hash-based algorithm.
Given a column, the algorithm looks up the values of the column
one by one in a hash table. If a value 𝑣 does not exist in the hash
table, it inserts (𝑣 , the next consecutive number) into the hash table.
As a result, every distinct value in the column is assigned a natural
number. We can repeat this algorithm for 𝑥 , 𝑦, and 𝑧.

This mapping algorithm can be costly. It creates three hash tables
for 𝑥 , 𝑦, and 𝑧, and performs up to 2(|𝑅 | + |𝑆 |) hash table lookups
and/or inserts. Compared to the hash join of 𝑅(𝑥,𝑦) and 𝑆 (𝑧,𝑦),
which performs |𝑅 | + |𝑆 | hash table accesses, the mapping algorithm
pays twice as much cost for hash table visits. This can be a significant
additional overhead for the Join-Project algorithm when the join
result size is not much larger than the input sizes.

In the following, we consider three opportunities to optimize the
baseline algorithm. Then, we extend the mapping to support a wider
range of Join-Project operations.

Optimization 1: Skip Mapping. First of all, DIM3 chooses the clas-
sical solution for highly sparse data sets as shown in Figure 2. This
completely avoids the mapping step. Second, it is possible to skip
mapping for columns that already contain natural numbers. There are
two common cases in database systems. (i) Columns declared with
auto increment (e.g., AUTO_INCREMENT in Oracle, IDENTITY in
SQLServer and DB2, SERIAL in PostgreSQL, AUTOINCREMENT
in MySQL) contain consecutive natural numbers. (ii) String columns

2246

Figure 3: Comparing the partition methods in DHK [10] and
DIM3. (A tuple in a table is displayed as an edge in graphs and
an element in matrices. Red: dense, blue: sparse)

can be encoded by dictionary encoding [22] and stored as natural
numbers in database systems (e.g., SAP HANA and MonetDB).
Optimization 2: Reduce Computation with Join Key Mapping.
The naïve way to map 𝑦 is to use 𝑅.𝑦 ∪ 𝑆.𝑦 as the mapping input.
We observe that only 𝑅.𝑦 ∩ 𝑆.𝑦 contributes to the equality join re-
sults. Therefore, we can employ a semi-join like idea, and optimize
the mapping of 𝑦 as follows. Since 𝑆 is the smaller table, we first
compute the mapping of 𝑆.𝑦 using a hash table. Then we map tuples
in 𝑅 using the same hash table. If 𝑦𝑘 ∈ 𝑅.𝑦 but 𝑦𝑘 ∉ 𝑆.𝑦, then the
corresponding 𝑅 tuple can be safely discarded because it does not
have any matches in 𝑆 . Note that we choose not to pay the cost of
re-scanning 𝑆 to remove 𝑆 tuples with 𝑦𝑘 ∈ 𝑆.𝑦 but 𝑦𝑘 ∉ 𝑅.𝑦. As
shown in Figure 2, the first and third 𝑅 tuples are filtered out.
Optimization 3: Optimize Hash Table Performance. When a hash
table is larger than the CPU cache, hash table accesses result in
expensive random memory accesses with poor CPU cache behavior.
A hash table visit may probe multiple locations, and dereference
pointers (e.g., in the case of chained hash table), incurring significant
overhead. Therefore, we employ the following designs to improve
the hash table performance in the mapping algorithm. First, we
estimate the hash table size for a column (e.g., based on statistics
of the number of distinct keys). If the size exceeds the last-level
CPU cache, we employ cache partitioning. We use the last 𝑘 bits of
the hash value to divide the data into 2𝑘 partitions so that the hash
table of each partition fits into the last-level CPU cache. Then, we
compute the mapping for each partition. Second, we employ a linear
probing hash table design to avoid pointer dereference. We tune the
number of slots and the maximum probing distance to reduce the
cost of hash table accesses. If no available slots are found for a given
column value, we employ a stash hash table (Flat_hash_map [40] in
our implementation) to store the overflow data.
Supporting Wider Range of Join-Project Operations. We can map
not only single attribute but also multiple attributes to consecutive
numbers. For instance,

Π𝑎,𝑏,𝑐,𝑑,𝑒 (𝑅(𝑎, 𝑏, 𝑐, 𝑑) Z𝑐,𝑑 𝑆 (𝑐, 𝑑, 𝑒, 𝑓))
can be treated as

Π𝑥,𝑧 (𝑅(𝑥,𝑦) Z𝑦 𝑆 (𝑧,𝑦))
where 𝑅.𝑥 = {𝑎, 𝑏}, 𝑆.𝑧 = {𝑐, 𝑑, 𝑒}, and 𝑅.𝑦 = 𝑆.𝑦 = {𝑐, 𝑑}. In this
way, we can support any combinations of join keys and projection
columns, including operations that contain the join key in the output.

2.3 Intersection-Free Partitioning
Figure 3 compares the partition methods of DHK [10] and DIM3.
DHK makes separate decisions on 𝑥 , 𝑦 and 𝑧 according to their

degrees (i.e. the number of tuples of the same attribute value). An (𝑥 ,
𝑦) tuple is added to the dense part only if both its 𝑥 and 𝑦 attributes
are considered as dense (shown as red color in the figure).

In comparison, we propose an intersection-free partition method1

as shown in Figure 3. It examines table 𝑆 and ensure that all tuples
with the same 𝑆.𝑧 value are in the same partition. Note that table
𝑅 will not be partitioned. Essentially, we partition matrix 𝑆 by its
columns. Our partitioning method has the following benefits.

First, the Join-Project results generated by the sparse and dense
parts do not intersect. Given a result (𝑥 ,𝑧), if 𝑧 is judged as dense,
this result must be generated by the dense part. Otherwise, it is
generated by the sparse part. In contrast, this property does not hold
in DHK. As shown in Figure 3, the result (𝑥2, 𝑧2) is generated both
in the dense part by joining (𝑥2, 𝑦1) and (𝑦1, 𝑧2), and in the sparse
part by joining (𝑥2, 𝑦3) and (𝑦3, 𝑧2). Therefore, while DHK must
deduplicate the results from the two parts, DIM3 can eliminate this
final deduplication step.

Second, DIM3 may apply dense MM to more tuples. DHK con-
siders a tuple as dense only if both its attributes are judged as dense.
In comparison, DIM3 makes the partitioning decision based solely
on 𝑆.𝑧. Since its dense criteria tend to be more flexible, DIM3 can
employ dense MM under more scenarios, as illustrated in Figure 3.

Third, the selection based on 𝑧 simplifies the Join-Project com-
putation. In DHK, it is costly (spatially) to record the per-tuple
density decisions. Therefore, DHK does not save them. Instead,
when processing the sparse part, DHK uses the degree thresholds
to re-compute whether a tuple is dense and should be skipped. In
comparison, DIM3 avoids this complexity. As shown in Figure 2,
table 𝑆 is divided into the sparse and the dense parts based on 𝑆.𝑧.
Hence, there is no need to re-evaluate the density criteria any more.

Finally, the cost for computing the partition decision in DIM3

is lower compared to DHK. DHK makes |𝑅 | + |𝑆 | decisions on all
input tuples. In comparison, DIM3 makes |𝑍 | decisions on 𝑆.𝑧. The
number of decisions to make is much smaller. Consider the case
where |𝑋 |=|𝑌 |=|𝑍 |=𝑛. In the worst case, the cost is O(𝑛2) in DHK,
but only O(𝑛) in DIM3. Moreover, DHK performs binary search to
determine the density threshold, which incurs additional cost.

2.4 SparseBMM
The classical hash-based solution is often used to process the sparse
part of the data. We propose a SparseBMM algorithm with two main
optimization techniques, as shown in Algorithm 2.

First, we observe that hash table accesses are often one main
cost of the classical hash-based computation. Interestingly, since the
column values are mapped to natural numbers, the CSR (Compressed
Sparse Row) [23] format of matrix S𝑦×𝑧 is essentially a hash table
on the join key 𝑦 with NO hash conflicts. The original CSR structure
consists of three arrays: 𝑉𝑎𝑙 [], 𝐶𝑜𝑙 [], and 𝑅𝑜𝑤𝑃𝑡𝑟 []. 𝑉𝑎𝑙 [] and
𝐶𝑜𝑙 [] contain the value and the column index of non-zero elements
in the matrix, respectively. 𝑅𝑜𝑤𝑃𝑡𝑟 [] points to the row starts in𝑉𝑎𝑙 []
and 𝐶𝑜𝑙 []. In the case of Join-Project, 𝑉𝑎𝑙 [] contains all 1’s and
can be omitted. Therefore, we have two arrays 𝐶𝑜𝑙 [] and 𝑅𝑜𝑤𝑃𝑡𝑟 [].
We employ matrix S𝑦×𝑧 as the hash table. Given 𝑦𝑘 , we locate

1Previous work proposes an intersection-free partition method in the context of query
enumeration algorithms [11]. It divides the data into two sets with roughly equal number
of join results. The method optimizes enumeration delays rather than end-to-end query
run times. It is not directly applicable to the Join-Project operation.

2247

Algorithm 2: SparseBMM (for sparse data).
Input: CSR-stored 𝑅𝐶𝑆𝑅 and CSR-stored 𝑆𝑠𝑝𝑎𝑟𝑠𝑒

Output: List of result tuples (𝑥, 𝑧)
1 SPA[0.. |𝑍 |-1]=−1;
2 for 𝑐𝑢𝑟𝑥 ← 0 to |𝑋 | do
3 foreach 𝑐𝑢𝑟𝑦 related to 𝑐𝑢𝑟𝑥 in 𝑅𝐶𝑆𝑅 do
4 foreach 𝑐𝑢𝑟𝑧 related to 𝑐𝑢𝑟𝑦 in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 do
5 if SPA[𝑐𝑢𝑟𝑧]!=𝑐𝑢𝑟𝑥 then
6 SPA[𝑐𝑢𝑟𝑧]=𝑐𝑢𝑟𝑥 ;
7 Result.append((𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧));

8 return Result;

all non-zero element S𝑦𝑘 ,𝑧 𝑗 by visiting entries 𝐶𝑜𝑙 [𝑅𝑜𝑤𝑃𝑡𝑟 [𝑦𝑘]] ..
𝐶𝑜𝑙 [𝑅𝑜𝑤𝑃𝑡𝑟 [𝑦𝑘+1]-1]. In fact, 𝑅𝑜𝑤𝑃𝑡𝑟 serves as the hash bucket
header, and 𝐶𝑜𝑙 [𝑅𝑜𝑤𝑃𝑡𝑟 [𝑦𝑘]] .. 𝐶𝑜𝑙 [𝑅𝑜𝑤𝑃𝑡𝑟 [𝑦𝑘+1]-1] contain the
hash entries in bucket 𝑦𝑘 . In this way, we avoid the hash function
computation and hash conflicts in common hash table designs.

Second, DHK performs deduplication using a 𝑧-vector. For each
𝑥𝑖 , it initializes the 𝑧-vector to all zeros. Then, it checks all (𝑥𝑖 ,
𝑦𝑘)s to compute the join results. For every result (𝑥𝑖 , 𝑧 𝑗), DHK
increments the corresponding element in the 𝑧-vector. Hence, the
non-zero elements in the 𝑧-vector indicate the deduplicated Join-
Project results. However, the initialization cost is O(|𝑍 |), while the
number of non-zero 𝑧’s can be small for the sparse part of the data.
Consequently, the initialization of the 𝑧-vector is often a main cost of
the deduplication computation. We remove this per-𝑥 initialization
cost with a monotonically increasing flag for different 𝑥 . As shown
in Algorithm 2, the 𝑆𝑃𝐴 array is the 𝑧-vector. We initialize the
𝑆𝑃𝐴 array only once before any computation. The 𝑐𝑢𝑟𝑦 and 𝑐𝑢𝑟𝑧
loops (Line 3–7) compute the join results for the given 𝑐𝑢𝑟𝑥 . For a
newly computed join result (𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧), we set 𝑆𝑃𝐴[𝑐𝑢𝑟𝑧] to 𝑐𝑢𝑟𝑥 .
If there are multiple duplicate (𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧), 𝑆𝑃𝐴[𝑐𝑢𝑟𝑧] is set only
once for the first instance. In this way, for the next 𝑐𝑢𝑟𝑥 + 1, the
previous content of 𝑆𝑃𝐴 is automatically invalid. This saves the cost
of initializing 𝑆𝑃𝐴 in every 𝑐𝑢𝑟𝑥 loop iteration.

We consider the time and space complexity of SparseBMM.
Line 5 of Algorithm 2 runs |𝑂𝑈𝑇𝐽 | times. Thus, the time complexity
is Θ(|𝑅 | + |𝑆 | + |𝑂𝑈𝑇𝐽 |). While this is the same as the classical hash-
based solution, SparseBMM reduces the constant factor, accelerating
hash table visits and deduplication. Moreover, SparseBMM requires
Θ(|𝑅 | + |𝑆 | + |𝑍 |) space if the final output is consumed by upper
level operators. While hash-based deduplication requires Θ(|𝑂𝑈𝑇𝑃 |)
space for the hash table, SparseBMM allocates only Θ(|𝑍 |) space
for 𝑆𝑃𝐴, which is often much smaller than Θ(|𝑂𝑈𝑇𝑃 |).

2.5 DenseEC
To compute C𝑥𝑖 ,𝑧 𝑗 =

∑ |𝑌 |
𝑘=1 R𝑥𝑖 ,𝑦𝑘 S𝑦𝑘 ,𝑧 𝑗 , standard dense MM enu-

merates all pairs of R𝑥𝑖 ,𝑦𝑘 and S𝑦𝑘 ,𝑧 𝑗 . We observe that the compu-
tation can stop early as soon as there is a non-zero R𝑥𝑖 ,𝑦𝑘 S𝑦𝑘 ,𝑧 𝑗 .
Therefore, we propose a DenseEC algorithm to leverage this obser-
vation, as listed in Algorithm 3.

In Algorithm 3, the first two for-loops enumerate all the pairs of
𝑅.𝑥 and 𝑆.𝑧. Line 4–11 use one of two methods to check if there
is any common 𝑦 between 𝐵𝑖𝑡𝑚𝑎𝑝𝑥 and 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 . The first method
uses SIMD to compute the bit-wise AND of 𝐵𝑖𝑡𝑚𝑎𝑝𝑥 and 𝐵𝑖𝑡𝑚𝑎𝑝𝑧
(e.g., using _mm256_testz_si256). The second method examines

Algorithm 3: DenseEC (for dense data).
Input: CSR-stored 𝑅𝐶𝑆𝑅 and bitmap array 𝑆𝑑𝑒𝑛𝑠𝑒
Output: List of result tuples (𝑥, 𝑧)

1 for 𝑐𝑢𝑟𝑥 ← 0 to |𝑋 | do
2 𝐵𝑖𝑡𝑚𝑎𝑝𝑥 ← Save the 𝑦 in the 𝑐𝑢𝑟𝑥 row as bitmap;
3 foreach 𝑐𝑢𝑟𝑧 in 𝑆𝑑𝑒𝑛𝑠𝑒 do
4 if 𝑓3 (𝑚𝑥 ,𝑚𝑧 , |𝑌 |)>0 then /* SIMD is better */
5 if SIMD_AND(𝐵𝑖𝑡𝑚𝑎𝑝𝑥 ,𝐵𝑖𝑡𝑚𝑎𝑝𝑧) not all 0 then
6 Result.append((𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧));
7 else
8 foreach 𝑦 related to 𝑐𝑢𝑟𝑥 in 𝑅𝐶𝑆𝑅 do
9 if the 𝑦th bit in 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 == 1 then

10 Result.append((𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧));
11 Break;

12 return Result;

each 𝑦 related to 𝑐𝑢𝑟𝑥 in 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 using a random memory access. If
any common𝑦 is found, both methods stop early. Generally speaking,
the SIMD method performs better when the 𝑐𝑢𝑟𝑥 row has a large
number of 𝑦. We determine which method to use with function 𝑓3,
which will be discussed in Section 2.6.

Apart from the time saving due to early stopping, DenseEC saves
memory space compared to dense MM. DenseEC represents every
element as a single bit rather than a 4-byte integer or floating point
value in BLAS packages. Moreover, a dense MM invocation would
require space to save the temporary output matrix. In comparison,
DenseEC never generates the output matrix.

2.6 Evaluation Path Section Functions
We compute the three functions used in the DIM3 algorithm to select
different evaluation paths. Table 1 lists the symbols used in this
subsection. All the listed parameters can be measured in advance.
Strategy Selection (𝑓1). DHK chooses the classical solution using
a rule-of-thumb condition: |𝑂𝑈𝑇𝐽 | ≤ 20 · 𝑁 , where 𝑁 = |𝑅 | =
|𝑆 |. In comparison, DIM3 determines whether to use the classical
solution or the hybrid solution with function 𝑓1. As the classical
solution is beneficial only when the data is sparse, we compare
mapping+SparseBMM and the classical solution to compute 𝑓1.
When 𝑓1 > 0, the classical solution is faster and will be chosen.

𝑓1 (|𝑅 |,|𝑆 |, |𝑂𝑈𝑇𝐽 |) = (𝑇𝑚𝑎𝑝𝑝𝑖𝑛𝑔 +𝑇𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑀𝑀) − (𝑇𝑗𝑜𝑖𝑛 +𝑇𝑑𝑒𝑑𝑢𝑝)
= 𝑇𝑚𝑎𝑝𝑝𝑖𝑛𝑔 + (𝑇𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑀𝑀 −𝑇𝑗𝑜𝑖𝑛) −𝑇𝑑𝑒𝑑𝑢𝑝
≈ 2(|𝑅 | + |𝑆 |)𝑡𝑚𝑎𝑝 + |𝑂𝑈𝑇𝐽 |𝑡𝑟𝑎𝑛𝑑𝑅𝑊 − |𝑂𝑈𝑇𝐽 |𝑡ℎ𝑎𝑠ℎ (2)

Here, 𝑇𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 2(|𝑅 | + |𝑆 |)𝑡𝑚𝑎𝑝 from Section 2.2. To estimate
𝑇𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑀𝑀 −𝑇𝑗𝑜𝑖𝑛 , we see that generating join results with CSR
in SparseBMM has smaller or similar cost compared to hash joins.
Hence, the difference is mainly the deduplication cost of SparseBMM.

Table 1: Symbols used in Section 2.6.
Symbol Description
𝑡𝑠𝑒𝑞𝑅 time for sequential memory read
𝑡𝑟𝑎𝑛𝑑𝑅 time for random memory read
𝑡𝑟𝑎𝑛𝑑𝑅𝑊 time for random memory read-modify-write
𝑡ℎ𝑎𝑠ℎ time of a lookup or insertion to plain hash table
𝑡𝑚𝑎𝑝 time to access the optimized hash table for mapping
𝑡𝐸𝐶𝑠 time of a non-SIMD comparison in DenseEC
𝑡𝐸𝐶𝑑 time of a SIMD comparison in DenseEC

2248

This is |𝑂𝑈𝑇𝐽 | ∗ 𝑡𝑟𝑎𝑛𝑑𝑅𝑊 because SparseBMM performs a ran-
dom access to the 𝑆𝑃𝐴 array per join result. Finally, 𝑇𝑑𝑒𝑑𝑢𝑝 =

|𝑂𝑈𝑇𝐽 |𝑡ℎ𝑎𝑠ℎ because the classical solution performs a hash table
access for deduplicating every join output tuple.

Bitmap Comparison in DenseEC (𝑓3). Line 4 of Algorithm 3 uses
function 𝑓3 to choose the SIMD or non-SIMD method for comparing
𝐵𝑖𝑡𝑚𝑎𝑝𝑥 and 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 . The bitmaps have |𝑌 | bits. Suppose there are
𝑚𝑥 and𝑚𝑧 1’s in 𝐵𝑖𝑡𝑚𝑎𝑝𝑥 and 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 , respectively.

In the non-SIMD method, the comparison stops as soon as a check
hits a set bit in 𝐵𝑖𝑡𝑚𝑎𝑝𝑧 . The probability that the check hits a set bit
is 𝑝𝑠 =

𝑚𝑧

|𝑌 | . The number of checks follows a geometric distribution
with probability 𝑝𝑠 , and the method performs at most 𝑚𝑥 checks.
Hence, the expected number of checks is calculated as:

𝐶ℎ𝑒𝑐𝑘𝑛𝑜𝑛𝑠𝑖𝑚𝑑 =

𝑚𝑥∑︁
𝑖=1

𝑖 (1 − 𝑝𝑠)𝑖−1𝑝𝑠 +𝑚𝑥 (1 − 𝑝𝑠)𝑚𝑥 =
1−(1−𝑝𝑠)𝑚𝑥

𝑝𝑠

In the SIMD method, every SIMD comparison checks 256 bits
in the two bitmaps. When the bits at the same position in the two
bitmaps are both set, the comparison returns true and the process
stops. The probability that an SIMD comparison returns true is
𝑝𝑑 = 1 − (1 − 𝑚𝑥𝑚𝑧

|𝑌 |2)
256. The number of SIMD checks follows a

geometric distribution with probability 𝑝𝑑 , and the method performs

up to |𝑌 |256 checks. Hence, the expected 𝐶ℎ𝑒𝑐𝑘𝑠𝑖𝑚𝑑= 1−(1−𝑝𝑑)
|𝑌 |
256

𝑝𝑑
.

Then, we can compute 𝑓3 as follows. When 𝑓3 > 0, the SIMD
method is preferred. Otherwise, the non-SIMD method is selected.

𝑓3 (𝑚𝑥 ,𝑚𝑧 , |𝑌 |) = 𝐶ℎ𝑒𝑐𝑘𝑛𝑜𝑛𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑠 −𝐶ℎ𝑒𝑐𝑘𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑑 (3)

We can reduce the computation overhead of 𝑓3 as follows. Note that
𝑚𝑥 and |𝑌 | are constants in the for-loop at line 3 of Algorithm 3.
𝑓3 (𝑚𝑥 ,𝑚𝑧 , |𝑌 |) is monotonically increasing with𝑚𝑧 . Therefore, an
optimization is to use binary search to find the threshold value of
𝑚𝑧𝑡 so that 𝑓3 (𝑚𝑥 ,𝑚𝑧𝑡 , |𝑌 |) = 0. Then, we can select the SIMD
method if 𝑚𝑧 > 𝑚𝑧𝑡 . Moreover, we find that multiple 𝑅.𝑥’s can
share the same𝑚𝑥 . Since𝑚𝑧𝑡 is determined for a given𝑚𝑥 , we can
cache the pairs of𝑚𝑥 and𝑚𝑧𝑡 , then reuse the computed𝑚𝑧𝑡 to avoid
redundant binary searches. In this way, the time for computing all 𝑓3
thresholds is at most 1.15ms for the real-world data sets in Section 5,
which is less than 0.5% of the total run time.

Dense vs. Sparse Partitions (𝑓2). At line 6 in DIM3 (Algorithm 1),
intersection-free partitioning uses function 𝑓2 to determine if 𝑆.𝑧
column is dense or sparse.

For column 𝑧, the number of join results can be estimated as
𝑚𝑧

|𝑆 | |𝑂𝑈𝑇𝐽 |, where 𝑚𝑧 is the number of 𝑆 tuples in column 𝑧. We
denote this value as 𝑂𝑈𝑇𝐽 ,𝑧 . We estimate the cost of processing
column 𝑧 using either SparseBMM and denseEC.

The cost of SparseBMM for 𝑧 is computed as follows:

𝑇𝑠𝑝𝑎𝑟𝑠𝑒𝐵𝑀𝑀 =
(2 |𝑋 |+ |𝑅 |)𝑡𝑠𝑒𝑞𝑅+2 |𝑅 |𝑡𝑟𝑎𝑛𝑑𝑅

|𝑍 | +𝑂𝑈𝑇𝐽 ,𝑧 (𝑡𝑠𝑒𝑞𝑅 +𝑡𝑟𝑎𝑛𝑑𝑅𝑊)

The first component computes the cost of the two for-loops at Line 2–
3 amortized to one of |𝑍 | columns. The second component estimates
the cost of Line 4–7. For DenseEC, we know that the cost for each
pair of 𝑥 and 𝑧 from the above. Then we can sum this up to obtain
𝑇𝑑𝑒𝑛𝑠𝑒𝐸𝐶=

∑ |𝑋 |
𝑖=1𝑚𝑖𝑛(𝐶ℎ𝑒𝑐𝑘𝑛𝑜𝑛𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑠 ,𝐶ℎ𝑒𝑐𝑘𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑑).

Finally, we can compute 𝑓2 as follows. When 𝑓2 > 0, we consider
column 𝑧 as dense.

𝑓2 = 𝑇𝑠𝑝𝑎𝑟𝑠𝑒𝐵𝑀𝑀 −𝑇𝑑𝑒𝑛𝑠𝑒𝐸𝐶 (4)

0% 25% 50% 75% 100%

Percentage of z

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) HetRec data set.

0% 25% 50% 75% 100%

Percentage of z

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) MV2 data set.

Figure 4: CDF of computation cost.

3 PARTIAL RESULT CACHING
We observe that computing Join-Project results for different 𝑧 values
can take widely different amounts of time for real-world data sets.
Figure 4 depicts the CDF (Cumulative Distribution Function) of
computation cost for two representative real-world data sets. In
HetRec, the top 1% of 𝑧 values take 60% of the total time. In MV2,
the top 10% of 𝑧 values contribute to 23% of the total cost. This
motivates us to study caching the results of a subset of 𝑧 values
to improve Join-Project performance. Note that our technique is
different from materialized views [29] or query result cache [28],
where the full query results are cached.
DIM3 with Cached Partial Results. We choose to cache results
based on 𝑧 values because the intersection-free partitioning method
divides table 𝑆 according to the 𝑆.𝑧 values. Hence, it is easy to
integrate the cached partial results into the DIM3 algorithm.

Suppose 𝑍𝑐𝑎𝑐ℎ𝑒𝑑 is the subset of 𝑆.𝑧, whose Join-Project re-
sults are cached. That is, the cached partial results are 𝑅𝑐𝑎𝑐ℎ𝑒𝑑 =
{(𝑥, 𝑧) | (𝑥, 𝑧)∈ Π𝑥,𝑧 (𝑅(𝑥,𝑦) Z𝑦 𝑆 (𝑧,𝑦)) ∧𝑧 ∈ 𝑍𝑐𝑎𝑐ℎ𝑒𝑑 }. In Figure 2,
we can simply omit any 𝑧 ∈ 𝑍𝑐𝑎𝑐ℎ𝑒𝑑 when generating 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 and
𝑆𝑑𝑒𝑛𝑠𝑒 , then keep the other steps of DIM3 unchanged. Finally, we
output 𝑅𝑐𝑎𝑐ℎ𝑒𝑑 in addition to the results computed by DIM3.
Caching Score. Given a caching space budget 𝐵 for a Join-Project
query, we rank 𝑧 values for caching with the following score:

𝐶𝑎𝑐ℎ𝑒𝑆𝑐𝑜𝑟𝑒 (𝑧) = 𝑐𝑜𝑠𝑡 (𝑧)
𝑠𝑝𝑎𝑐𝑒 (𝑧)

𝑠𝑝𝑎𝑐𝑒 (𝑧) is the cache space required to store the (𝑥 ,𝑧) results for
the given 𝑧. The cache content is (𝑧, 𝑠𝑖𝑧𝑒, 𝑥1, 𝑥2, ..., 𝑥𝑘). When 𝑘 is
small, 𝑠𝑖𝑧𝑒=𝑘>0, and we cache the original results. When 𝑘>0.5|𝑋 |,
we store the complement set of 𝑥’s to save space, and set 𝑠𝑖𝑧𝑒 =

𝑘 − |𝑋 |<0. Hence, 𝑠𝑝𝑎𝑐𝑒 (𝑧)=2+𝑚𝑖𝑛(𝑘, |𝑋 | − 𝑘).
𝑐𝑜𝑠𝑡 (𝑧) is the time for computing (𝑥 ,𝑧) results for the given 𝑧.

This is the benefit from caching 𝑧. Since the processing related to 𝑧

is distributed into many inner loops in SparseBMM and DenseEC,
we cannot directly measure 𝑐𝑜𝑠𝑡 (𝑧). Instead, we collect statistics and
estimate the cost as follows:
𝑐𝑜𝑠𝑡 (𝑧) = 𝑛𝑠𝑝𝑎𝑟𝑠𝑒 (𝑡𝑠𝑒𝑞𝑅 + 𝑡𝑟𝑎𝑛𝑑𝑅𝑊) + 𝑛𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑑 + 𝑛𝑛𝑜𝑛𝑠𝑖𝑚𝑑𝑡𝐸𝐶𝑠

where 𝑛𝑠𝑝𝑎𝑟𝑠𝑒 is the number of times that 𝑧 is checked in the inner
loop of the SparseBMM algorithm, 𝑛𝑠𝑖𝑚𝑑 and 𝑛𝑛𝑜𝑛𝑠𝑖𝑚𝑑 are the
number of times that 𝑧 is encountered in the SIMD and non-SIMD
part of the inner loop of the DenseEC algorithm, respectively.

𝐶𝑎𝑐ℎ𝑒𝑆𝑐𝑜𝑟𝑒 (𝑧) shows the benefit per unit space for caching 𝑧.
The higher the 𝑐𝑜𝑠𝑡 (𝑧), the lower the 𝑠𝑝𝑎𝑐𝑒 (𝑧), the more beneficial
to cache 𝑧. Interestingly, a 𝑧 value with high 𝑐𝑜𝑠𝑡 (𝑧) may produce a
large number of results. This actually leads to small 𝑠𝑝𝑎𝑐𝑒 (𝑧) when
the complement result set is saved.

2249

Practical Considerations. We discuss several practical issues for
using the partial result caching. First, database users can enable
Join-Project caching dynamically. We see in experiments that the
statistics collection and computation for 𝑐𝑜𝑠𝑡 (𝑧) and 𝑠𝑝𝑎𝑐𝑒 (𝑧) do not
incur significant overhead for DIM3. Hence, after caching is enabled,
the first run of DIM3 can compute 𝐶𝑎𝑐ℎ𝑒𝑆𝑐𝑜𝑟𝑒 (𝑧) and populate the
partial result cache. Then, subsequent runs of DIM3 on the same
tables can leverage the cached results to improve performance. Sec-
ond, when the underlying tables are modified by insert/delete/update,
we can simply invalidate the cache and let the next run of DIM3 to
re-populate the result cache. Note that updating the cached results
(similar to the view maintenance problem [4]) is beyond the scope
of this work. Finally, we can use the cached result to support filter
predicates on 𝑥 and/or 𝑧. However, if there are filter predicates on 𝑦,
we have to run DIM3 without the cached result.

4 SUPPORT FOR JOIN-OP QUERY TYPES
In the above, we focus on the Join-Project operation. Join-Project
is a special case of Join-𝑜𝑝 queries, where 𝑜𝑝 is a common SQL
operation. An interesting question arises: Is it possible to apply DIM3

to Join-𝑜𝑝 queries in general? We consider 𝑜𝑝 other than projection
in the following:
• Group-by Aggregation: The group-by operation inherently re-

moves duplicates. A join followed by a group-by aggregation
operation, which we call Join-Aggregate for simplicity, im-
plicitly performs a Join-Project operation. We describe how to
extend DIM3 to support Join-Aggregate in Section 4.1.

• Join: Multiple join operations are followed by a duplicate elimi-
nating projection. One strategy to evaluate this type of queries
is to employ Join-Project to deduplicate the results of the last
join operation. But can we do better? We consider how and
when to push the deduplication down in the query plan of MJP
in Section 4.2.

• Selection or Sorting: As Join-Selection or Join-Sorting do not
require deduplication, there is no need to employ Join-Project
for these types of queries in general. However, in special cases
where there are too many duplicates, an alternative evaluation
strategy can be more efficient. We compute Join-Project and
keep the duplicate count for each generated join result tuple.
Then, the selection or sorting operation processes the much
smaller, deduplicated join result, thereby achieving better per-
formance. Finally, we output the correct number of duplicates
based on the per-tuple duplicate counts.

• Intersection/Difference/Union: First, the computation of intersec-
tion is similar to a join operation. Hence, for Join-Intersection,
we can employ MJP. Second, set difference can be evaluated
as a left-outer join followed by deduplication. We can modify
DIM3 to compute Outer-Join-Project for Join-Difference. To
support outer-joins, DIM3 can be extended with a bitmap for
𝑥 (𝑧). It sets a bit if the corresponding 𝑥 row (𝑧 column) has
generated join results. In this way, the modified DIM3 can com-
pute 𝑥 (𝑧) with no matches for outer-joins. Finally, Join-Union
requires the deduplication of the outputs from two joins. We
can push the deduplication operation down in the query plan,
and apply similar considerations as in Section 4.2.

4.1 Join-Aggregate
Our DIM3 algorithm can be applied to Join-Aggregate operations
with slight modifications. Without loss of generality, we divide Join-
Aggregate operations into two categories based on the group by
attributes: i) group-by attributes are from both tables, and ii) group-
by attributes come from one table.
Group-by Attributes from Both Tables. For instance, given tables
𝑅(𝑥,𝑦, 𝑣) and 𝑆 (𝑧,𝑦,𝑢), we want to compute

𝑥,𝑧G𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑓 (𝑅.𝑣,𝑆 .𝑣)) (𝑅(𝑥,𝑦, 𝑣) Z𝑦 𝑆 (𝑧,𝑦, 𝑣))
This task is similar to the original Join-Project operation. The main
difference is that it computes 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑓 (𝑅.𝑣, 𝑆 .𝑢)) on the join
results with the same (𝑥 , 𝑧) rather than deduplicating the results.

We modify DIM3 to support this task. In SparseBMM, we change
the 𝑆𝑃𝐴 array to contain the aggregate for each 𝑐𝑢𝑟𝑧 . 𝑆𝑃𝐴 is initial-
ized in each outer-loop iteration. Line 5–7 is modified to accumulate
the aggregate for group (𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧). In DenseEC, bitmaps cannot
support the aggregates. Therefore, we use a plain dense MM, while
computing aggregates for each pair of (𝑐𝑢𝑟𝑥 , 𝑐𝑢𝑟𝑧).
Group-by Attributes from One Table. Given tables 𝑅(𝑥,𝑦) and
𝑆 (𝑧,𝑦), we want to compute the following query. If the group-by
attribute is from 𝑆 , we switch table 𝑅 and 𝑆 .

𝑥G𝑎𝑔𝑔𝑟 (𝑧) (𝑅(𝑥,𝑦) Z𝑦 𝑆 (𝑧,𝑦))
We can rewrite the query as follows:

𝑥G𝑎𝑔𝑔𝑟 ”(𝑧′) (𝑅(𝑥,𝑦) Z𝑦 (𝑦G𝑎𝑔𝑔𝑟 ′ (𝑧) (𝑆 (𝑧,𝑦))))
We first compute the group-by aggregate on 𝑆 with 𝑦 as the group-
by key. If 𝑎𝑔𝑔𝑟 is 𝑠𝑢𝑚, 𝑚𝑖𝑛, or 𝑚𝑎𝑥 , then 𝑎𝑔𝑔𝑟 ′ and 𝑎𝑔𝑔𝑟” are the
same. For 𝑐𝑜𝑢𝑛𝑡 , 𝑎𝑔𝑔𝑟 ′ is 𝑐𝑜𝑢𝑛𝑡 and 𝑎𝑔𝑔𝑟” is 𝑠𝑢𝑚. For 𝑎𝑣𝑔, the 𝑎𝑔𝑔𝑟 ′

consists of both 𝑠𝑢𝑚 and 𝑐𝑜𝑢𝑛𝑡 . Then 𝑎𝑔𝑔𝑟” accumulates the two
components, and finally computes a division to obtain the 𝑎𝑣𝑔. We
denote the resulting table as 𝑆𝐺 (𝑦, 𝑧′), where 𝑧′ is the intermediate
aggregate value(s) for 𝑦. Note that |𝑆𝐺 | = |𝑍 | is often much smaller
than |𝑆 |. 𝑆𝐺 is highly sparse because there is no duplicate 𝑦’s in the
table. Therefore, we employ the classical hash-based algorithm to
join 𝑅 and 𝑆𝐺 then compute the final group-by aggregates.

4.2 MJP (Multi-Way Joins with Projection)
So far, we have been focusing on Join-Project on two tables. In this
subsection, we study deduplication on the results of joining multiple
tables. This is also called conjunctive queries with projection [11].
For example, the line join projection with 𝑛 tables is expressed as:

Π𝑥1,𝑥𝑛+1 (𝑅1 (𝑥1, 𝑥2) Z𝑥2 𝑅2 (𝑥2, 𝑥3) Z𝑥3 ... Z𝑥𝑛 𝑅𝑛 (𝑥𝑛, 𝑥𝑛+1))
Figure 5 illustrates the query plan tree for evaluating a MJP query.

The deduplication operation (Π) can be pushed down to after each
join operation. While it incurs extra overhead, deduplication reduces
the intermediate result size, thereby reducing the cost of subsequent
join operations. There are two baseline execution plans. The first
plan computes all the joins and then deduplicate the final join results.
The second plan deduplicates the results immediately after each join.
However, it is easy to construct cases to show neither plan is optimal.
Therefore, we need to judiciously place the deduplication operations
into the query plan tree.

In the following, we develop a DP (Dynamic Programming) al-
gorithm to find the optimal query plan. To limit the scope of our
investigation, we make the following assumptions.

2250

Figure 5: The deduplication placement problem.

(1) The join order is given by the query optimizer. We focus on
the deduplication placement problem. For ease of presenta-
tion, we number the tables in the join order as 𝑅1, ..., 𝑅𝑘 . The
problem of optimizing both join order and deduplication
placement is beyond the scope of this work.

(2) The query plan is in the form of a left-deep tree [21, 39].
Left-deep or right-deep trees are widely used in RDBMSs
to process multi-way joins. If a solution produces left-deep
trees, it is easy to modify it to support right-deep trees.

(3) Estimated |𝑂𝑈𝑇𝐽 𝑖 | and |𝑂𝑈𝑇𝑃𝑖 |, where 𝑖=2,...,𝑘, are avail-
able. (Please refer to recent work on cardinality esitmation
for details [6, 16, 31, 37].) Here, |𝑂𝑈𝑇𝐽 𝑖 | = |𝑅1 Z · · · Z 𝑅𝑖 |
denotes the size of the intermediate results after joining the
first 𝑖 tables without deduplication. |𝑂𝑈𝑇𝑃𝑖 | = |Π(𝑂𝑈𝑇𝐽 𝑖) |
denotes the size of the intermediate results after deduplica-
tion. For simplicity, we define |𝑂𝑈𝑇𝑃1 | = |𝑂𝑈𝑇𝐽 1 | = |𝑅1 |.

(4) Adding deduplication to the 𝑖-th join reduces the final join
result by a factor of |𝑂𝑈𝑇𝑃𝑖 |

|𝑂𝑈𝑇𝐽 𝑖 | . That is, |Π(𝑅1 Z · · · Z 𝑅𝑖) Z

· · · Z 𝑅𝑘 | ≈
|𝑂𝑈𝑇𝑃𝑖 |
|𝑂𝑈𝑇𝐽 𝑖 | |𝑂𝑈𝑇𝐽 𝑘 |. This is reasonable since the

join input size to the (𝑖 + 1)-th join is reduced by a factor
of |𝑂𝑈𝑇𝑃𝑖 |
|𝑂𝑈𝑇𝐽 𝑖 | . This assumption simplifies the estimation of

the final result size after inserting a deduplication operation.
More precise estimation requires collecting more statistics,
and may incur much higher cost.

We use 𝐷𝑃𝑖 to denote the optimal time for computing Π(𝑅1 Z
· · · Z 𝑅𝑖). We observe that if we already add deduplication to the
𝑖-th join, the deduplicated result 𝑂𝑈𝑇𝑃𝑖 does not change if more
deduplication operations are added to the joins before the 𝑖-th join.
Therefore, we have the following equations.

𝐷𝑃𝑖 =

{
0, 𝑖 = 1
min𝑖−1

𝑗=1 (𝐷𝑃 𝑗 +
∑𝑖−1
ℎ=𝑗+1 𝐽𝑜𝑖𝑛𝐶𝑜𝑠𝑡ℎ + 𝐽𝑃𝐶𝑜𝑠𝑡𝑖), 𝑖 > 1

The formula inside 𝑚𝑖𝑛 computes the case where a deduplication is
added to the 𝑗-th join and there is no deduplication from the (𝑗+1)-th
to (𝑖 − 1)-th join. The total cost of this case has three components: (i)
𝐷𝑃 𝑗 , which is the optimal time for computing 𝑂𝑈𝑇𝑃 𝑗 ; (ii) the cost
of the subsequent joins, i.e., the (𝑗 + 1)-th to (𝑖 − 1)-th join; and (iii)
the cost of the final join project operation. Note that when 𝑗=1, there
is no deduplication before the 𝑖-th join.

Based on assumption (3), we estimate the input table size for
component (ii) and (iii). Specifically, 𝐽𝑜𝑖𝑛𝐶𝑜𝑠𝑡ℎ is the cost of joining
Π(𝑅1 Z · · · Z 𝑅 𝑗) Z · · · Z 𝑅ℎ−1 and 𝑅ℎ . The size of the former

is estimated as |𝑂𝑈𝑇𝑃 𝑗 |
|𝑂𝑈𝑇𝐽 𝑗 | |𝑂𝑈𝑇𝐽 ℎ−1 |. Moreover, 𝐽𝑃𝐶𝑜𝑠𝑡𝑖 is the cost

of the Join-Project operation at the 𝑖-th join. The sizes of the two

input tables to the Join-Project operation are |𝑂𝑈𝑇𝑃 𝑗 |
|𝑂𝑈𝑇𝐽 𝑗 | |𝑂𝑈𝑇𝐽 𝑖−1 | and

|𝑅𝑖 |. The intermediate join result in the Join-Project operation can
be estimated as |𝑂𝑈𝑇𝑃 𝑗 |

|𝑂𝑈𝑇𝐽 𝑗 | |𝑂𝑈𝑇𝐽 𝑖 | and the final output size is |𝑂𝑈𝑇𝑃𝑖 |.
Given the sizes of the input tables, the intermediate join result, and
the final output, we can use the formulas in Section 2.6 to estimate
the cost of the Join-Project operation.

For a MJP query on𝑛 tables, the path to get𝐷𝑃𝑛 in the DP process
gives the optimal deduplication placement. The time complexity of
this algorithm is Θ(𝑛3). As 𝑛 is often not large, the overhead of this
DP algorithm is small.

5 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed solu-
tions using both real-world and synthetic data sets.

5.1 Experimental Setup
Machine Configuration. All experiments are performed on a ma-
chine with Intel Core i7-9700 CPU (3.00GHz, Turbo Boost 4.70
GHz, 8 cores/8 threads, 12MB last level cache) and 32 GB RAM,
running Ubuntu 18.04.5 LTS with Linux 5.4.0-81 kernel. All code is
written in C/C++ and compiled with g++ 7.5.0 using –std=c++11,
-O3, and -mavx flags. MKL (Intel Math Kernel Library) is used in
DHK. By default, we run single-threaded experiments. In the parallel
experiments, we use OpenMP for parallelization.

Datasets. We use six real-world datasets with different input size,
|𝑂𝑈𝑇𝐽 |, and |𝑂𝑈𝑇𝑃 | in our experiments, as shown in Table 2. Ama-
zon [32] data set records the frequently co-purchased products on
Amazon website. The Join-Project queries help to find potential
products that can be co-purchased. Slashdot [33] is a technology-
related news website. The data set contains friend/foe links between
users of Slashdot. The query computes the indirectly connected pairs
of users. The data set and the query of HetRec [7] follow the motivat-
ing example in Section 1. MV1 and MV2 are two MovieLens [15]
data sets. They contain user ratings for movies. Similarly, Jokes [13]
contains user ratings for jokes. The Join-Project queries on Movie-
Lens and Jokes data sets find users that have rated the same objects.
Friendster [45] is a social network dataset that contains the retweet
relationship between users. We use this data set to study MJP, which
computes the multi-hop connections between users.

We also conduct experiments on the TPC-H data set with SF=10.
A representative query joins LineItem and Orders, then projects on
CUSTKEY and SUPPKEY to attain the purchase relationship be-
tween customers and suppliers. However, since this join is a primary-
foreign key join, |𝑂𝑈𝑇𝐽 | is similar to the size of LineItem. Both
DIM3 and DHK choose the classical solution, showing the same
performance. Hence, we do not study TPC-H further.

In contrast, |𝑂𝑈𝑇𝐽 | and |𝑂𝑈𝑇𝑃 | in the other data sets are much
larger than their input sizes. The higher the 𝑝𝑛𝑧, the denser the
dataset, and thus the more intermediate join results. As we do not
assume any special sort order in the input tables of Join-Project, we
randomly shuffle the data sets before the experiments.

Solutions to Compare. We compare two categories of solutions:
stand-alone Join-Project algorithms, and full-fledged RDBMSs.

We compare the following stand-alone implementations. (1) Clas-
sical: The classical solution performs the Radix join [2] then a

2251

Table 2: Real-world data sets used in experiments.
Data set |𝑅 | |𝑆 | 𝑝𝑛𝑧 (𝑅) 𝑝𝑛𝑧 (𝑆) |𝑂𝑈𝑇𝐽 | |𝑂𝑈𝑇𝑃 |
Amazon 1.2M 1.2M 0.0018% 0.0018% 14M 11M
Slashdot 905K 905K 0.02% 0.02% 118M 81M
HetRec 487K 438K 0.02% 0.03% 125M 34M
MV1 500K 500K 2.2% 2.2% 204M 29M
MV2 1M 1M 4.5% 4.5% 816M 35M
Jokes 617K 617K 25% 25% 10B 622M
Friendster 1.8B 4.2 × 10−7 – –
Note: 𝑝𝑛𝑧 (𝑀) is the percentage of non-zero elements in matrix 𝑀 .

hash-based deduplication using a flat_hash_map [40]. (2) MKL: The
state-of-the-art dense MM in Intel MKL is used to evaluate Join-
Project. We implement the baseline mapping algorithm as described
in Section 2.2. (3) DHK: We obtained the DHK code from the au-
thors of the DHK paper [10]. Algorithm 3 in DHK chooses the
classical solution when |𝑂𝑈𝑇𝐽 | ≤ 20 · 𝑁 , where 𝑁 = |𝑅 | = |𝑆 |.
We find this feature is missing in the DHK code, and implement
the feature. The code assumes the input contains consecutive natu-
ral numbers. Hence, we add the baseline mapping algorithm. The
code leaves the final deduplication unimplemented. Thus, we add
a deduplication step that checks every result (𝑥 ,𝑧) from the sparse
part against the matrix C𝑥×𝑧 computed in the dense part. (4) DIM3:
Our proposed solution follows the description in Section 2. We also
study the individual components of DIM3. For the MM component,
we compare DenseEC, SparseBMM, MM in MKL, and a sub-cubic
MM [3] based on the Strassen algorithm [41].

In addition to the stand-alone algorithms, we compare DIM3

with four full-fledged RDBMSs. (5) DBMSX: one of the best per-
forming commercial RDBMSs. (6) PostgreSQL version 13.3 and (7)
MariaDB version 10.5.11: two popular open-source RDBMSs. (8)
MonetDB version 11.39.17: a representative analytical main memory
RDBMS. We set the configuration parameters of the RDBMSs to
ensure that they make full use of the memory. For each experiment,
we run the same query on the target data set twice. The first run
warms up the RDBMSs so that the input tables are loaded into main
memory. Then we measure the performance of the second run.

Our comparison between DIM3 and RDBMSs is meaningful.
One concern is that RDBMSs pay additional cost, including socket
communication, SQL parsing, query optimization. (Note that we
compute a final count to avoid returning a large number of query
results from RDBMSs.) We quantify this additional cost by mea-
suring the execution time of the same queries on a very small data
set. The result is 1–3ms. In comparison, our reported run times on
RDBMSs are from 7s to about 1 hour. Hence, the extra cost of 1–3ms
is negligible. Our reported run times indeed correspond to the cost
of Join-Project query processing in RDBMSs.

Unless otherwise noted, we focus on single-threaded performance
in the experiments. The scalability results report multi-threaded
performance to show that our proposed algorithms are amenable to
parallelization. Partial result caching is disable by default. Every
experiment is run five times. We report the average of the five runs.

5.2 Evaluation for Join-Project Operations
Performance of Stand-alone Solutions on Real-World Data Sets.
Figure 6(a) compares DIM3 with stand-alone Join-Project algorithms
on real-world data sets. We see that DIM3 achieves the best per-
formance among all stand-alone algorithms with or without result

(a) Comparison with stand-alone Join-Project algorithms.

Amazon Slashdot HetRec MV1 MV2 Jokes

10
0

10
1

10
2

10
3

R
u

n
n

in
g

 t
im

e
 (

s
)

DBMSX PostgreSQL MariaDB MonetDB DIM
3

12 27 24 48 506 >2385

(b) Comparison with RDBMSs.

Figure 6: Join-Project on real-world datasets. (By default, the
algorithms count then discard the result tuples. Subscript ’M’
denotes a version of an algorithm that materializes the result
tuples in memory. ’X’ shows when MKL/Classical runs out of
memory and fails. We label speedups of DIM3 over DHK in (a),
and over the best RDBMS solution in (b).)

materialization. Compared to DHK, the state-of-the-art algorithm,
DIM3 achieves 2.3×-18× improvements. For all the six data sets,
DIM3 chooses the hybrid strategy. In contrast, for Amazon, DHK
chooses the classical solution. The speedup of DIM3 over DHK
for Amazon shows that our strategy selection function 𝑓1 is more
accurate than the rule-of-thumb condition of DHK.

Moreover, DIM3 has smallest memory footprints among all algo-
rithms, as shown in Table 3. We use ’/usr/bin/time -v’ to measure the
peak memory usage (i.e., maximum resident set size). Typically, the
final Join-Project results will be consumed by upper-level operators,
and therefore we do not allocate space for storing the final results.
Compared to Classical, when the data sets are dense, DIM3 saves
80%–99% memory because it chooses the hybrid strategy and saves
the space required by hash-based deduplication in Classical. The
memory usage of Gemm(MKL) is mainly determined by the matrix
sizes. MKL runs out of memory for the two sparsest data sets (i.e.,
Amazon and Slashdot). When the datasets are dense, DIM3 saves
68%–99% memory of Gemm(MKL) because DenseEC saves the
space of the output matrix, and uses one bit per element rather than
4-byte integers in MKL. As for DHK, one main source of its memory
usage is the input and output matrices for dense MM invocation. In
comparison, DenseEC significantly saves this memory.

Comparison with RDBMSs on Real-World Data Sets. Figure 6(b)
compares DIM3 with RDBMSs. We see that DIM3 outperforms all
the RDBMSs. For data sets with |𝑂𝑈𝑇𝐽 | ≫ |𝑅 | + |𝑆 |, DIM3 achieves
one to three orders of magnitudes of speedups.

We examine the query plans generated by the RDBMSs and see
that they all essentially employ the Classical solution, i.e., a join
followed by a deduplication of the intermediate results. Among the
RDBMSs, MonetDB is the best when memory is sufficient. However,
its performance drops sharply when the required space exceeds the
memory size (for MV2 and Jokes). In the case of Jokes, all the
RDBMSs fail to perform the deduplication operation entirely in

2252

Table 3: Memory usage of stand-alone Join-Project algorithms.
Amazon Slashdot HetRec MV1 MV2 Jokes

DIM3 86MB 64MB 32MB 39MB 72MB 47MB
DHK 426MB 70MB 168MB 68MB 132MB 2.4GB
Gemm(MKL) >32GB >32GB 7.1GB 211MB 227MB 2.4GB
Classical 426MB 3.0GB 1.5GB 789MB 1.5GB 24GB

Slashdot HetRec MV1 MV2 Jokes

0.5

1

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM3

DHK

4.5s

(a) Performance with 8 threads.

1 2 3 4 5 6 7 8

#Thread

1

2

3

4

5

6

S
p

e
e

d
u

p

DIM3

DHK

(b) Scalability on the HetRec data set.

1 2 3 4 5 6 7 8

#Thread

1

2

3

4

5

6

S
p

e
e

d
u

p

DIM3

DHK

(c) Scalability on the MV1 data set.

Figure 7: Multi-threaded performance.
memory. The queries take much longer time because of the disk
I/Os for storing and accessing the intermediate results. We stop the
queries when they took longer than 1 hour. The figure reports the
lower bound (i.e., 3600s) for RDBMSs on the Jokes data set.

As RDBMSs implement the classical solution, we focus on the
comparison with stand-alone solutions in the rest of this subsection.
Scalability. We implement the multi-threaded DIM3 with OpenMP
by modifying around 20 lines of code. Specifically, we parallelize the
outer for-loop in SparseBMM and DenseEC. Since every outer loop
iteration focuses on a specific 𝑥 , there is no dependence or contention
among the execution of different outer-loop iterations. While more
involved changes may better parallelize the algorithm, we find that
such simple modifications can already achieve promising results.

We compare DIM3 with DHK using 8 threads in Figure 7(a). We
see that DIM3 achieves 2.6×-20× speedups over DHK. Figure 7(b)–
(c) show the scalability of the two algorithms. The Y-axis reports
the speedup compared to the single-threaded execution of the same
algorithm. We see that DIM3 shows good scalability as the number
of threads increases from 1 to 8.
Sensitivity Analysis with Synthetic Data Sets. We use synthetic
data sets to investigate the Join-Project performance for a wide range
of situations. The default parameters in these experiments are as
follows. All input columns are generated with uniform distributions.
|𝑅 | = |𝑆 | = 106, and |𝑋 | = |𝑌 | = |𝑍 | = 𝑛 = 104. We study the
performance impact varying𝑛, data skews, and selectivity in Figure 8.
Overall, we see that DIM3 performs the best in all the cases.

(1) Varying 𝑛. Figure 8(a) varies 𝑛, the number of distinct 𝑥 /𝑦/𝑧,
while keeping the number of non-zero elements (i.e. |𝑅 | and |𝑆 |)
fixed. As 𝑛 increases, the input data sets become more and more
sparse, and |𝑂𝑈𝑇𝐽 | decreases from 109 to 106. Classical runs faster
for more sparse data sets. Gemm(MKL) sees a sharp increase of run
time as the matrix dimensions (i.e., 𝑛) increase. DIM3 wisely selects
evaluation strategies based on data density. It employs DenseEC for
all data when 𝑛<104, SparseBMM when 𝑛 ∈ [104, 4 × 105], and the
classical solution when 𝑛>4 × 105. In this way, DIM3 achieves the
best performance in all cases.

DHK has good performance in the middle range in Figure 8(a) and
switches to Classical in the higher range. However, its performance

10
3

10
4

10
5

10
6

|X|, |Y|, |Z|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM
3

DHK

Gemm(MKL)

Classical

(a) Varying 𝑛 (|𝑋 | = |𝑌 | = |𝑍 | = 𝑛).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM3

DHK

Gemm(MKL) >8s

Classical > 2.8s

(b) Zipf on 𝑅.𝑥 and 𝑆.𝑧.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM3

DHK

Gemm(MKL)

Classical

(c) Zipf on 𝑅.𝑦 and 𝑆.𝑦.

1 2 3 4 5 6 7 8 9 10

|R| 106

0

20

40

60

80

100

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM3

DHK

Gemm(MKL)

Classical

(d) R-mat.

0 0.2 0.4 0.6 0.8 1

Selectivity

0.0

0.5

1.0

1.5

2.0

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM
3

DHK

Gemm(MKL)

Classical

(e) Varying selectivity of 𝑅.𝑥 and 𝑆.𝑧.

0.00 0.02 0.04 0.06 0.08 0.10

Selectivity

0.00

0.02

0.04

0.06

0.08

0.10

R
u

n
n

in
g

 t
im

e
 (

s
)

DIM
3

DHK

Gemm(MKL)

Classical

(f) Zoom in to bottom left of (e).

Figure 8: Sensitivity analysis of DIM3.
is worse than Gemm(MKL) in the lower range. To understand the
reason, we look into the DHK code and find that DHK restricts the
degree thresholds (i.e., Δ1 and Δ2 [10]) to have Δ2 =

|𝑅 |Δ1
|𝑂𝑈𝑇𝑃 | in order

to reduce the threshold search space. Unfortunately, this narrows the
range of considered thresholds. For the lower range when the data is
very dense, DHK fails to put all data into the dense part, and thus
performs worse than Gemm(MKL). In comparison, DIM3 does not
suffer from this problems. DIM3 makes the partition decision based
on 𝑧, which is simple and less error-prone to compute.

(2) Varying data skews. In Figure 8(b), we generate 𝑅.𝑥 and 𝑆.𝑧

using the Zipf distribution, and vary the parameter 𝛼 from 0 to
1. As 𝑅.𝑥 and 𝑆.𝑧 become more skewed, |𝑂𝑈𝑇𝐽 | stays around 108,
while the deduplicated result size |𝑂𝑈𝑇𝑃 | decreases from 6 × 107 to
1.4 × 107. DIM3 partitions the more skewed 𝑧’s into the dense part
as 𝛼 increases, and achieves a speedup of ∼1.5× compared to DHK.

In Figure 8(c), we generate the join attribute, 𝑅.𝑦 and 𝑆.𝑦, using
Zipf distribution, and vary 𝛼 from 0 to 1. As 𝑅.𝑦 and 𝑆.𝑦 become
more skewed, the number of intermediate join results (|𝑂𝑈𝑇𝐽 |) in-
creases sharply from 108 to 4.3 × 109, and the data sets become
increasingly dense. Classical runs slower as the data sets become
denser. Gemm(MKL) sees a flat curve because the matrix dimensions
are the same. DHK suffers from the threshold search space problem
for very dense data sets. DIM3 achieves the best performance in
all cases. There is a dip in the DIM3 curve at 𝛼=1 because early
stopping effectively reduces DenseEC computation in this case.

In Figure 8(d), we use R-mat [8] to generate skew data so that the
two columns in a table are correlated. We use the R-mat parameters
in Graph500 [35] (i.e., 𝑎 = 0.57, 𝑏 = 0.19, 𝑐 = 0.19, and 𝑑 = 0.05).
We generate a directed graph with 𝑛 vertices and |𝑅 | edges. The Join-
Project finds 2-hop paths in the graph. As R-mat requires 𝑛 to be a
power of 2, we set 𝑛 = 214, which is close to the default 104. We vary

2253

103 104 105 106

|X|, |Y|, |Z|

0.00

0.05

0.10

0.15

0.20

R
u
n

n
in

g
 t

im
e

 (
s
)

Optimized Mapping

flat_hash_map

std::unordered_map

(a) Mapping step varying 𝑛.

1 2 3 4 5 6 7 8 9 10

|R|, |S| 106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u

n
n

in
g

 t
im

e
 (

s
)

Optimized Mapping

flat_hash_map

std::unordered_map

(b) Mapping step varying |𝑅 | = |𝑆 |.

1000 2000 3000 4000 5000 6000

|X|, |Y|, |Z|

0.0

0.5

1.0

1.5

2.0

R
u

n
n

in
g

 t
im

e
 (

s
)

DenseEC

Gemm(MKL)

STRASSEN

SparseBMM

(c) DenseEC varying 𝑛.

103 104 105 106

|X|, |Y|, |Z|

0.0

0.5

1.0

1.5

2.0

2.5

3.0
R

u
n

n
in

g
 t

im
e

 (
s
)

SparseBMM

Classical

Spmm(MKL)

(d) SparseBMM varying 𝑛.

Figure 9: Effectiveness of DIM3 Components.

|𝑅 | from 106 to 107. From Figure 8(d), we see that DIM3 performs
significantly better than the other algorithms. As |𝑅 | increases, the
data set becomes increasingly dense. Classical, Gemm(MKL), and
DHK curves show similar trends as in Figure 8(c).

(3) Varying selectivity. In Figure 8(e), we consider the cases
where there are filtering predicates on both 𝑅.𝑥 and 𝑆.𝑧. We vary
their selectivity at the same time from 0 to 1. Figure 8(f) zooms in to
the bottom left of the Figure 8(e). As the selectivity decreases, both
the input sizes and the output size decrease. Hence, all the algorithms
run faster. From the figure, we see that DIM3 performs the best in all
cases. Note that when the selectivity is very small (less than 0.03),
DIM3 switches to the classical solution. When the selectivity is less
or equal than 0.2, DHK switches to the classical solution.
Effectiveness of DIM3 Components. In the following, we use
synthetic data sets with the same default parameters as the above.

(1) Mapping step. We compare our optimized mapping solution
with the baseline using std::unordered_map, and an improved base-
line using flat_hash_map. In Figure 9(a), we fix |𝑅 |=|𝑆 |=106 while
varying 𝑛 from 103 to 106. The hash table size increases as 𝑛. When
𝑛 < 4 × 105, the hash table fits into the L3 cache, and thus we
do not perform cache partitioning. Our solution has similar perfor-
mance compared to flat_hash_map. When 𝑛 ≥ 4× 105, we use cache
partitioning to reduce expensive CPU cache misses, thereby signifi-
cantly out-performing flat_hash_map. As for std::unordered_map, it
is much slower because of chained hashing.

In Figure 9(b), we fix 𝑛=106 while varying |𝑅 |=|𝑆 | from 106 to
107. The size of the hash table is fixed. The number of hash visits
increases. Hence, we see the increasing trends for all curves. Overall,
our optimized mapping solution performs the best.

Moreover, we compare DIM3 (with optimized mapping) and
DIM3 with baseline std::unordered_map for the Amazon data set.
The mapping step takes 54.9% of the Join-Project run time for
DIM3 with baseline mapping. Replacing the baseline mapping with
optimized mapping, DIM3 achieves an improvement of 1.5x.

(2) DenseEC. In Figure 9(c), we vary 𝑛 from 1000 to 6000, where
the data sets are relatively dense and thus dense MM makes sense.
We compare DenseEC with dense MM implementations.

We investigate sub-cubic fast MM algorithms. While the best
known O(𝑛2.373) algorithm [12] is considered impractical because

0% 20% 40% 60% 80% 100%

Cache Percentage

0.0

0.2

0.4

0.6

0.8

1.0

R
u

n
 t

im
e

 (
n
o

rm
a

liz
e
d

)

Slashdot

Hetrec

MV1

MV2

Jokes

(a) Run time on real-world data sets.

0% 20% 40% 60% 80% 100%

Cache Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
p

a
c
e

 (
n
o

rm
a

liz
e
d

)

Slashdot

Hetrec

MV1

MV2

Jokes

(b) Space cost on real-world data sets.

0% 20% 40% 60% 80% 100%

Cache Percentage

0.0

0.2

0.4

0.6

0.8

1.0

R
u

n
 t

im
e

 (
n
o

rm
a

liz
e
d

)

Zipf-0

Zipf-0.25

Zipf-0.50

Zipf-0.75

Zipf-1.0

(c) Run time on Zipf data.

0% 20% 40% 60% 80% 100%

Cache Percentage

0.0

0.2

0.4

0.6

0.8

1.0

R
u

n
 t

im
e

 (
n
o

rm
a

liz
e
d

)

|R|=106

|R|=3 106

|R|=6 106

|R|=107

(d) Run time on R-mat data.

Figure 10: Partial result caching. (★ shows the point where
cached result size = input data size.)

of its huge constant factors [30, 36], recent work aims to make
the Strassen algorithm practical [3]. We obtain and evaluate this
STRASSEN implementation [3]. Our initial results show that it is
slower than Intel MKL. One potential reason is that the original
STRASSEN supports only floating point MM, while the MKL run
uses integer MM. Since the STRASSEN code calls BLAS as the
underlying MM sub-routine, it is straight-forward to modify the
code to call MKL’s integer MM. The resulting integer STRASSEN
indeed runs slightly faster, but it is still slower than MKL. Figure 9(c)
shows the performance of the improved integer STRASSEN.

Overall, DenseEC out-performs dense MM implementations be-
cause early stopping can effectively reduce computation cost.

(3) SparseBMM. In Figure 9(d), we vary 𝑛 from 103 to 106.
The generated data sets become more and more sparse, and there-
fore sparse MM and Classical are more suitable. We compare
SparseBMM with Classical and MKL’s sparse MM. From the figure,
we see that SparseBMM performs the best.

We also plot the SparseBMM curve in Figure 9(c). The crossing
point of SparseBMM and DenseEC is around 4000. This shows why
DIM3 chooses between DenseEC and SparseBMM with function 𝑓2.

5.3 Evaluation for Partial Result Caching
We evaluate partial result caching for DIM3 using both real-world
and synthetic data sets, as shown in Figure 10. The synthetic data
sets use the same default parameters as in Section 5.2. Our solution
retrieves cached partial results and performs JoinProject between 𝑅

and {(𝑧,𝑦) | (𝑧,𝑦)∈ 𝑆 ∧ 𝑧 ∉ 𝑍𝑐𝑎𝑐ℎ𝑒𝑑 }. The X-axis varies the percent-
age of 𝑧 values that are cached. The Y-axis reports either the run
time normalized to DIM3 without caching, or the cached result size
normalized to the size of the total JoinProject results.

Figure 10(a) and 10(b) show the run time and the cached result
size on real-world data sets, respectively. For Slashdot and HetRec,
the computation time distributions for 𝑧 values are very skewed.
The space cost is relatively high because most results are cached
by their original values. Caching a relatively small percentage (e.g.,
20%) of 𝑧 values can significantly speedup DIM3. On the other hand,
the denser data sets (i.e., MV1, MV2, and Jokes) see less skewed
computation time distributions for 𝑧 values. As the number of results

2254

for the same 𝑧 is often large, our technique to cache the complement
set of result vectors can drastically reduce the cached result size. For
example, the space at 100% (i.e., for caching all results) is only 12%,
6%, and less than 1% of the total result sizes for MV1, MV2, and
Jokes, respectively. Thus, we can use a small amount of cache space
to achieve significant speedups. Overall, if we cache either 20% of
𝑧 values or up to the input data size, partial result caching achieves
3.3x–20x improvements over DIM3 without caching.

Figure 10(c) shows the run time on synthetic data sets where 𝑅.𝑥
and 𝑆.𝑧 follow Zipf distribution. When Zipf parameter 𝛼 = 0, the
data is uniformly distributed, and the benefits of caching is low. As
𝛼 increases from 0.25 to 1, the computation time distribution for 𝑧
values becomes more skewed and caching is more helpful. Caching
only 10% of 𝑧 values reduces the run time by 13% to 57%.

Figure 10(d) shows the run time on R-mat data varying the input
table size |𝑅 | from 106 to 107. If we limit the cache space to the
size of the input table, partial result caching reduces the run time of
DIM3 by 25%–67%.

5.4 Evaluation for Join-OP Query Types
Join-Aggregate. Figure 11(a) compares the Join-Aggregate per-
formance of DIM3 with RDBMSs and the stand-alone hash-based
solution on MV1, MV2, and Jokes. We focus on the more complex
case where the group-by attributes are from both tables. As described
in Section 4.1, if the group-by attributes are from one table, we can
rewrite the query and employ the classical solution for efficient eval-
uation. We compute aggregates on the ratings for the MovieLens
and Jokes data sets. (We omit Slashdot and HetRec in this set of
experiments because they do not have natural value columns to ex-
press the aggregation.) We see that DIM3 performs the best among
all solutions. Compared with the hash-based solution, DIM3 obtains
a speedup of 18–24×. Compared with the fastest RDBMS solution,
DIM3 obtains a speedup of as least 30×.
MJP. We evaluate the effectiveness of our proposed DP algorithm.

We compare three DIM3 variants with RDBMSs: 1) DIM3(DP) runs
DP to find the optimal query plan; 2) DIM3(EagerDedup) places a
deduplication after every join; and 3) DIM3(LazyDedup) performs
only one deduplication after all the joins.

In this set of experiments, we use the Friendster data set [45] and
compute multi-hop connections between users. Since the original
Friendster data set is large and very sparse, as shown in Table 2, we
construct subsets of the data set using a parameter 𝑟𝑎𝑛𝑔𝑒. Given a
𝑟𝑎𝑛𝑔𝑒, we filter out any tuples whose attributes are both larger than
𝑟𝑎𝑛𝑔𝑒. From the remaining tuples, we randomly extracted 10 tables,
each with 106 tuples, then perform a 10-way join with projection. We
set 𝑟𝑎𝑛𝑔𝑒= 5× 105, 7× 105 or 9× 105. Note that the larger the 𝑟𝑎𝑛𝑔𝑒,
the sparser the input tables. For the three sub data sets, the final
output size |𝑂𝑈𝑇𝑃 | is 46M, 18M, and 8M, and DIM3(DP) decides
to place 4, 3, and 2 deduplication operations, respectively.

As shown in Figure 11(b), all DIM3 variants run faster than
RDBMSs because of the better Join-Project performance of DIM3.
Compared with the hash-based solution with EagerDedup strategy,
DIM3(DP) obtains a speedup of 4.9–7.4×. When 𝑟𝑎𝑛𝑔𝑒= 5 × 105,
DIM3(DP) gains a 10x speedup compared to LazyDedup. When
𝑟𝑎𝑛𝑔𝑒= 7 × 105, DP are 11% and 39% better than EagerDedup
and LazyDedup, respectively. When 𝑟𝑎𝑛𝑔𝑒= 9 × 105, DP is 1.9x as
fast as EagerDedup. However, DP is slightly (i.e., 5%) slower than

MV1 MV2 Jokes

10
0

10
1

10
2

10
3

R
u

n
n

in
g

 t
im

e
 (

s
)

DBMSX PostgreSQL MariaDB MonetDB Hash DIM3

X

(a) Join-Aggregate. (𝑥,𝑧G𝑎𝑣𝑔 (|𝑅.𝑣−𝑆.𝑣 |) (𝑅 (𝑥, 𝑦, 𝑣) Z𝑦 𝑆 (𝑧, 𝑦, 𝑣)))

Range=5 10
5

Range=7 10
5

Range=9 10
5

10
0

10
1

10
2

R
u

n
n

in
g

 t
im

e
 (

s
)

DBMSX PostgreSQL MariaDB MonetDB

Hash(EagerDedup) DIM3(EagerDedup) DIM3(LazyDedup) DIM3(DP)

(b) MJP.

Figure 11: Evaluation for Join-𝑜𝑝 query types.(Hash: stand-
alone implementation using flat_hash_map for join, aggregation,
and deduplication. ’X’: Hash runs out of memory and fails.)
LazyDedup. In this case, DP places a deduplication after the first
join. The hope is that the amount of computation in subsequent
joins will be proportionally reduced, but the actual reduction is not
as significant. Overall, we see that DIM3(DP) performs the best
among the three variants. This confirms the effectiveness of the DP
algorithm for finding the optimal plan for evaluating MJP.

6 CONCLUSION AND FUTURE WORK
In this paper, we propose DIM3 that combines intersection-free
partitioning, optimized mapping, and DenseEC and SparseBMM
algorithms to improve the state-of-the-art DHK solution. Moreover,
we investigate partial result caching and extend DIM3 to efficiently
compute Join-𝑜𝑝 queries. Our results show that DIM3 is a promising
solution for the widely used Join-Project operation.

Several promising future directions remain to be explored. The
first is out-of-core computation. When the input table 𝑅 and 𝑆 are
too large to fit in the allocated memory, one way is to perform I/O
partitioning for 𝑅 and 𝑆 according to 𝑅.𝑥 and 𝑆.𝑧, respectively. Then,
we load each pair of 𝑅.𝑥 partition and 𝑆.𝑧 partition into memory
and employ DIM3 to compute the results. An alternative way is
to partition the tables according to the join key 𝑦. However, a final
deduplication step is necessary because the intermediate results from
different partitions may contain duplicates.

The second direction is to study caching for multiple queries
when partial result caching is enabled. In addition to traditional con-
siderations, such as query access statistics, the cache space allocated
to a Join-Project query becomes a tunable parameter. This adds a
new dimension in the design of the caching strategy.

Last but not least, it is interesting to exploit new hardware to accel-
erate database operations. For example, GPUs (Graphics Processing
Units) [5] and TPUs (Tensor Core Units) [19] can significantly ac-
celerate matrix multiplication in Join-Project. NVM (Non-Volatile
Memory) provides an interesting combination of persistence, capac-
ity, and performance, which can be used to speed up queries with
huge memory consumption [42].

ACKNOWLEDGMENTS
This work is partially supported by Natural Science Foundation of
China (62172390). Shimin Chen is the corresponding author.

2255

REFERENCES
[1] Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster join-projects and sparse

matrix multiplications. In Proceedings of the 12th International Conference on
Database Theory. 121–126.

[2] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu. 2013. Multi-
core, main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB
Endowment 7, 1 (2013), 85–96.

[3] Austin R Benson and Grey Ballard. 2015. A framework for practical parallel fast
matrix multiplication. ACM SIGPLAN Notices 50, 8 (2015), 42–53.

[4] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. 1986. Efficiently
Updating Materialized Views. In Proceedings of the 1986 ACM SIGMOD Inter-
national Conference on Management of Data, Washington, DC, USA, May 28-30,
1986. ACM Press, 61–71.

[5] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. 2014. Gpu-accelerated database systems: Survey and open challenges.
In Transactions on Large-Scale Data-and Knowledge-Centered Systems XV.
Springer, 1–35.

[6] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality
estimation: Tighter upper bounds for intermediate join cardinalities. In Proceed-
ings of the 2019 International Conference on Management of Data. 18–35.

[7] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. Second workshop on
information heterogeneity and fusion in recommender systems (HetRec2011). In
Proceedings of the fifth ACM conference on Recommender systems. 387–388.

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[9] Steven Dalton, Luke Olson, and Nathan Bell. 2015. Optimizing sparse ma-
trix—matrix multiplication for the gpu. ACM Transactions on Mathematical
Software (TOMS) 41, 4 (2015), 1–20.

[10] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2020. Fast join project query
evaluation using matrix multiplication. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1213–1223.

[11] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2021. Enumeration Algorithms
for Conjunctive Queries with Projection. In 24th International Conference on
Database Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus (LIPIcs),
Ke Yi and Zhewei Wei (Eds.), Vol. 186. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 14:1–14:17.

[12] François Le Gall and Florent Urrutia. 2018. Improved rectangular matrix multi-
plication using powers of the Coppersmith-Winograd tensor. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
1029–1046.

[13] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigen-
taste: A constant time collaborative filtering algorithm. information retrieval 4, 2
(2001), 133–151.

[14] Goetz Graefe and Harumi Kuno. 2011. Modern B-tree techniques. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 1370–1373.

[15] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[16] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering. In 11th Conference on Innovative
Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online
Proceedings. www.cidrdb.org.

[17] VanPhi Ho and Dong-Joo Park. 2016. A survey of the-state-of-the-art b-tree
index on flash memory. International Journal of Software Engineering and Its
Applications 10, 4 (2016), 173–188.

[18] Xiao Hu and Ke Yi. 2020. Parallel Algorithms for Sparse Matrix Multiplication
and Join-Aggregate Queries. In Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems. 411–425.

[19] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2021. TCUDB: Accelerating
Database with Tensor Processors. arXiv preprint arXiv:2112.07552 (2021).

[20] Zichun Huang and Shimin Chen. 2022. Density-optimized Intersection-free Map-
ping and Matrix Multiplication for Join-Project Operations (extended version).
arXiv e-prints arXiv:2206.04995.

[21] Yannis E Ioannidis and Younkyung Cha Kang. 1991. Left-deep vs. bushy trees:
An analysis of strategy spaces and its implications for query optimization. In
Proceedings of the 1991 ACM SIGMOD international conference on Management
of data. 168–177.

[22] Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. 2017. Practical string
dictionary compression using string dictionary encoding. In 2017 International

Conference on Big Data Innovations and Applications (Innovate-Data). IEEE,
1–8.

[23] Jeremy Kepner and John Gilbert. 2011. Graph algorithms in the language of
linear algebra. SIAM.

[24] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. hash revisited: Fast join implementation on modern multi-core CPUs.
Proceedings of the VLDB Endowment 2, 2 (2009), 1378–1389.

[25] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the walkers accelerating index traver-
sals for in-memory databases. In 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 468–479.

[26] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[27] Jakub Kurzak, Wesley Alvaro, and Jack Dongarra. 2009. Optimizing matrix
multiplication for a short-vector SIMD architecture–CELL processor. Parallel
Comput. 35, 3 (2009), 138–150.

[28] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MTCache: Trans-
parent Mid-Tier Database Caching in SQL Server. In Proceedings of the 20th
International Conference on Data Engineering, ICDE 2004, 30 March - 2 April
2004, Boston, MA, USA. IEEE Computer Society, 177–188.

[29] Per-Åke Larson and H. Z. Yang. 1985. Computing Queries from Derived Rela-
tions. In VLDB’85, Proceedings of 11th International Conference on Very Large
Data Bases, August 21-23, 1985, Stockholm, Sweden, Alain Pirotte and Yannis
Vassiliou (Eds.). Morgan Kaufmann, 259–269.

[30] François Le Gall. 2012. Faster algorithms for rectangular matrix multiplication.
In 2012 IEEE 53rd annual symposium on foundations of computer science. IEEE,
514–523.

[31] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling..
In Cidr.

[32] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics
of viral marketing. ACM Trans. Web 1, 1 (2007), 5. https://doi.org/10.1145/
1232722.1232727

[33] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.

[34] Priti Mishra and Margaret H Eich. 1992. Join processing in relational databases.
ACM Computing Surveys (CSUR) 24, 1 (1992), 63–113.

[35] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[36] Marco Pegoraro, Merih Seran Uysal, and Wil MP van der Aalst. 2020. Efficient
time and space representation of uncertain event data. Algorithms 13, 11 (2020),
285.

[37] Yuan Qiu, Yilei Wang, Ke Yi, Feifei Li, Bin Wu, and Chaoqun Zhan. 2021.
Weighted Distinct Sampling: Cardinality Estimation for SPJ Queries. In Proceed-
ings of the 2021 International Conference on Management of Data. 1465–1477.

[38] Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. 2013. Performance evalua-
tion of sparse matrix multiplication kernels on intel xeon phi. In International
Conference on Parallel Processing and Applied Mathematics. Springer, 559–570.

[39] Donovan A Schneider and David J DeWitt. 1990. Tradeoffs in processing complex
join queries via hashing in multiprocessor database machines. University of
Wisconsin-Madison. Computer Sciences Department.

[40] Malte Skarupke. 2017. I Wrote The Fastest Hashtable.
https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/.

[41] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13
(1969), 354–356.

[42] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing non-volatile memory in database systems. In Proceedings of the 2018
International Conference on Management of Data. 1541–1555.

[43] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167–188.

[44] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[45] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

2256

https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1232722.1232727

