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ABSTRACT

Serving deep learning models from relational databases brings sig-
nificant benefits. First, features extracted from databases do not
need to be transferred to any decoupled deep learning systems
for inferences, and thus the system management overhead can be
significantly reduced. Second, in a relational database, data man-
agement along the storage hierarchy is fully integrated with query
processing, and thus it can continue model serving even if the
working set size exceeds the available memory. Applying model
deduplication can greatly reduce the storage space, memory foot-
print, cache misses, and inference latency. However, existing data
deduplication techniques are not applicable to the deep learning
model serving applications in relational databases. They do not
consider the impacts on model inference accuracy as well as the
inconsistency between tensor blocks and database pages. This work
proposed synergistic storage optimization techniques for duplica-
tion detection, page packing, and caching, to enhance database
systems for model serving. Evaluation results show that our pro-
posed techniques significantly improved the storage efficiency and
the model inference latency, and outperformed existing deep learn-
ing frameworks in targeting scenarios.
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1 INTRODUCTION

In the life cycle of deep learning, serving models for inferences is
a vital stage and usually incurs significant operational costs. An
Amazon user study found that model serving is responsible for 45-
65% of the total cost of ownership of data science solutions [7]. One
important reason is that most of today’s platforms that serve deep
neural network (DNN) models, such as Nexus [64], Clipper [24],
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Pretzel [45], TensorFlow Serving [62], and Rafiki [70], are stan-
dalone systems that are totally decoupled from the data manage-
ment systems. From the perspective of end-to-end applications, this
decoupling incurs significant costs as follows:

(1) Existing deep learning serving frameworks are compute-focused
and require each tensor fit in memory, otherwise the system fails.
For large models with weight tensors [1], this problem significantly
impacts the availability of a model serving system.

(2) The physical decoupling of data serving and model serving
introduces management complexity and extra latency to transfer
input features from the databases where input features are extracted
to the deep learning frameworks.

Therefore, it is imperative to investigate the serving of deep
learning models natively from the relational database management
system (RDBMS) [14, 27, 36, 39, 40, 43, 61, 71, 74]. RDBMS has a long
history of optimizing the memory locality, whether the working
set size exceeds memory capacity or not, through effective buffer
pool management. It also eases the management of data through
data independence, views, and fine-grained authorization. All of
these capabilities, if leveraged for model serving, will significantly
reduce the operational costs and simplify system management for a
broad class of real-world workloads [63], such as credit-card fraud
detection, targeting recommendation, and conversational-AI for
customer supports. In such applications, the features are extracted
from various historical transaction records or customer profiles,
which are stored in RDBMS.

Model deduplication in RDBMS for Serving. Managing multi-
ple similar models at the serving stage, such as for model roll-back,
versioning, personalization, A/B tests, and ensemble inference, has
become a common pattern of DNN model serving [23, 24, 60]. Such
DNN models contain abundant similar tensor blocks. Careful se-
lection of similar tensor blocks for deduplication may not signifi-
cantly affect the accuracy and may significantly reduce the storage
space, memory footprint, and cache misses, and thus may reduce
the inference costs and latency. However, existing deduplication
techniques for tensors [68], files [12, 26, 48, 58, 69, 78], relational
data [10, 13, 16, 28, 34, 72, 73], and MapReduce platforms [22, 41, 42],
are not applicable to model serving from RDBMS because: (1) They
do not consider the impacts on model inference accuracy; (2) They
do not consider how existing database storage functionalities, in-
cluding indexing, page packing, and caching, should be enhanced to
better support the inference and the deduplication of DNN models.
The challenges that we focus on in this work include:

1. How to leverage indexing to efficiently detect similar parameters
that can be deduplicated without hurting the inference accuracy?
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2. A database page can contain multiple tensor blocks. How to
pack tensor blocks into pages to maximize page sharing across
multiple models and minimize the total number of needed pages
for representing all tensors?

3. How to augment the caching policy to increase the data locality
for deduplicated model parameters, so that pages that are needed
by multiple models have a higher priority to be kept in memory?

To address these challenges, in this work, we propose a novel
RDBMS storage design optimized for tensors and DNN inference
workloads. Deep learning computations are mapped to relational
algebra expressions [74]. A tensor is partitioned and stored as a set
of tensor blocks of equivalent shape, where each block contains
the metadata that specifies its position in the tensor. A tensor is
similar to a relation and a tensor block is similar to a tuple. A DNN
model inference is represented as a relational algebra graph, as
detailed in Sec. 2. This high-level abstraction is also consistent
with many popular systems that integrate database and machine
learning, such as SystemML [14], Spark MLIib [57], SciDB [66],
SPORES [71], LaraDB [36], among others.

Similar to the classical physical representation of a relation, we
store a tensor as a set of database pages, with each page containing
multiple tensor blocks. The difference is that each tensor relation
consists of a set of private pages, and an array of references to
shared pages that belong to more than one tensor, as detailed in
Sec. 3. On top of such physical representation, we propose novel
and synergistic indexing, paging, and caching techniques as follows:

Tensor block index for fast duplication detection (Sec. 4).
It is widely observed that a small portion of model parameters
(e.g., weights, bias) are critical to prediction accuracy. Deduplicat-
ing these parameters will lead to a significant reduction in accu-
racy [44]. To address the problem, different from existing tensor
deduplication works [68], we propose to first measure each tensor
block’s sensitivity to prediction accuracy based on weight mag-
nitude or other post-hoc analysis [33], and thus avoid deduplicat-
ing accuracy-critical blocks. Because pair-wise similarity-based
comparison across tensor blocks exhibits inhibitive overhead, we
used the Locality Sensitive Hash (LSH) based on Euclidean (L2)
distance [37, 77], to facilitate the nearest neighbor clustering.

Packing distinct tensor blocks to pages for minimizing stor-
age size (Sec. 5). The problem is a variant of the Set Basis prob-
lem [29] with a new constraint on the size of each set that belongs
to the Set Basis (i.e, page size limit). To address this problem, we
propose a concept called equivalent class so that blocks that
are owned by the same set of tensors will be assigned to the same
class. Then, we propose a two-stage algorithm that first packs ten-
sor blocks in each equivalent class to pages respectively, and then
repacks the tensor blocks from non-full pages.

Deduplication-aware buffer pool management (Sec. 6). Exist-
ing deduplication-aware cache replacement strategies [48, 69] do
not consider the locality patterns of different sets of pages, which
are important for model inference where the input/output of each
layer have different locality patterns. However, existing locality-
aware buffer pool management [21, 82, 83] do not distinguish pri-
vate pages and shared pages. To address this problem, we propose a
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cost model for locality-aware page eviction, which gives pages that
are shared by more tensors higher priority to be kept in memory.

The key contributions of our work are as follows:

1. We are the first to systematically explore the storage optimization
for DNN models in RDBMS, with an overall goal of supporting deep
learning model serving (i.e., inferences) natively from RDBMS.

2. We propose three synergistic storage optimizations: (a) A novel
index based on L2 LSH and magnitude ordering to accelerate the
discovery of duplicate tensor blocks with limited impacts on the
accuracy; (b) A two-stage strategy to group tensor blocks to pages
to minimize the number of pages that are needed to store all tensors;
(c) A novel caching algorithm that recognizes and rewards shared
pages across locality sets. It is noteworthy that our optimization
can work together with other compression techniques such as prun-
ing [32, 33] and quantization [38] to achieve a better compression
ratio, as detailed in Sec. 7.6.2.

3. We implement the system in an object-oriented relational data-
base based on our previous work of PlinyCompute [80-83], called
netsDB !. We evaluate the proposed techniques using the serving of
(1) multiple customized Word2Vec embedding models; (2) multiple
versions of text classification models; (3) multiple specialized mod-
els for extreme classification; (4) multiple models of heterogeneous
architectures. The results show that our proposed deduplication
techniques achieved 2.7X to 3.6x reduction in storage size, speeded
up the inference by 1.1X to 4.7X, and improved the cache hit ratio
by up to 1.6X. The results also show that netsDB outperformed
TensorFlow for these workloads.

2 BACKGROUND

2.1 Fundamentals of Deep Learning Inferences

A deep learning model usually consists of multiple layers. During
the inference process, one layer’s output will be the next layer’s
input features. We give two examples of layers: fully-connected
layer and embedding layer, which are widely used in DNNs running
on features extracted from relational data.

1. Fully-connected layer. The left part of Fig. 1 illustrates the
example of a fully connected neural network (FFNN) that consists
of multiple fully-connected layers. Each layer has a weight matrix,
such as Wy, where each weight (e; ;) is associated with an edge that
connects one neuron (N;) and one input feature (x;). At a fully-
connected layer, the weight tensor (e.g., Wp) is multiplied with the
input feature vector (or a tensor that represents a batch of inputs)
(XT). The output is added to the bias vector (bias), and then applied
with an activation function (o), such as ReLU and Sigmod. Then the
final output is sent to the next layer as input.

2. Embedding layer. An embedding layer [31] can be used to
convert a token into an embedding vector. It is widely used in
natural language processing, recommendation, etc. An embedding
layer is usually stored as an n X d matrix, where n represents the
size of the dictionary of words, and d represents the dimension
size of a word embedding vector. As illustrated in Fig. 2, there are
usually two approaches to look up an embedding for one token. One
approach is to represent the token as a one-hot vector and multiply

Uhttps://github.com/asu-cactus/netsdb. Related documentation can be found in
https://github.com/asu-cactus/netsdb/tree/master/model-inference/.
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2.2 Inferences as Relational Queries

Existing works [14, 39, 51, 57, 74] propose to: (1) Abstract the tensor
as a set of tensor blocks; (2) Encode local linear algebra computation
logics that manipulate single or a pair of tensor blocks, in user
defined functions (UDFs), also called as kernel functions, such as
matrix multiplication, matrix addition, etc.; (3) Apply the relational
algebra operators nested with these UDFs for performing linear
algebra computations.

For example, matrix multiplication is a join followed by
aggregation [14, 39, 51, 74]. The join pairs two blocks from the
two tensors if the first block’s column index equals the second’s
row index. Then each joined pair of tensor blocks is applied with
a UDF that multiplies these two tensor blocks. An output block
has its row index being the first block’s row index and its column
index being the second block’s column index. Then all tensor blocks
output from the transformation are grouped by their row and col-
umn indexes, and all tensor blocks in the same group will be added
up in an aggregate/reduce UDF. Similarly, matrix addition is a
join. In addition, as described in more detail in Tensor Relational
Algebra (TRA) [74], other types of neural networks can also be
represented in relational algebra. For example, matrix transpose
is a transform; activations such as ReLU, tanh, and Sigmoid are
transforms; softmax and normalization can be represented as
an aggregation followed by a transform.

Therefore, as illustrated in Fig. 1, a fully-connected feed-forward
network (FFNN) can be represented in relational algebra [39, 51].

Similarly, the two approaches of embedding lookup relying on
vector-matrix multiplication and filtering can also be easily repre-
sented in relational algebra respectively.
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3 SYSTEM OVERVIEW

Leveraging tensor relational algebra [39, 74], a tensor is represented
as a set of tensor blocks. Without deduplication, the set is physically
stored in an array of pages of equivalent size, where each page
consists of multiple tensor blocks. With deduplication, certain pages
will be shared by multiple tensors. These shared pages are stored
separately in a special type of set. Each tensor not only stores an
array of private pages, but also maintains a list of page IDs that
points to the shared pages that belong to the set.

Given a set of models, we propose a novel deduplication pro-
cess, as illustrated in Fig. 3 and described below:

(1) An LSH-based index is incrementally constructed to group
tensor blocks based on similarity, so that similar tensor blocks can
be replaced by one representative tensor block in their group, with
limited impacts on the model inference accuracy. To achieve the
goal, the main ideas include: (a) Always deduplicating the tensor
blocks in the ascending ordering of their estimated impacts on the
accuracy; (b) Periodically testing the deduplicated model inference
accuracy along the duplication detection process, and stopping the
deduplication for tensor blocks from a model, if its accuracy drops
below a threshold. (Sec. 4) Validation datasets are often available at
deployment stage, for pruning, fine-tuning, and handling concept
drifts [47]. Such datasets can be reused for the periodical accuracy
validation. However, we also provide an alternative approach that
does not require validation datasets and relies on LSH parameter
tuning to strike various trade-offs between accuracy and storage
efficiency as discussed in Sec. 4.3.

(2) Each set of tensor blocks is physically stored as an array
of pages of fixed size on disk. Distinct tensor blocks identified by
the indexing are carefully grouped to pages so that each tensor
is exactly covered by a subset of pages, and the number of pages
that are required by all models is minimized. We optimize these
objectives by assigning distinct tensor blocks that are shared by
the same set of tensors to one equivalent class. Then blocks in the
same equivalent class are grouped to the same set of pages. After
this initial packing, tensor blocks from non-full pages are repacked
to further improve the storage efficiency. (Sec. 5)

(3) The pages are automatically cached in the buffer pool. When
memory resources become insufficient, the buffer pool manager
will consider the locality patterns of each tensor and give hot pages
and shared pages higher priority to be kept in memory. (Sec. 6)

4 INDEX FOR DUPLICATION DETECTION
4.1 Problem Description

In this section, we focus on the following problem: For a set of ten-
sors that store model parameters, which may have different shapes
but are partitioned into tensor blocks that have the same shape, how
to divide all tensor blocks into distinct groups, so that blocks in
each group can replace each other without a significant drop in the
inference accuracy of each model? The problem is formalized as
follows: Given k tensors:T = {t1, ..., t }, the i-th tensor #; is split
into n; tensor blocks: t; = {b1, ..., by, }. The question is how to di-
vide all tensor blocks, B = Uj;t;, into m clusters: C = {c1,...,¢m}»
so that (1) Ve € C,c C B; (2) Vei,c; € C,ciNcj = ¢; (3) Ve € C,
Vbi,bj € c,b; ~ bj. Here, b; ~ bj means that b; can be replaced by
bj so that the drop in model accuracy is smaller than a threshold t.
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Figure 3: Overview of the proposed model deduplication workflow.

4.2 Main Ideas

4.2.1 Magnitude-aware Duplicate Detection. Existing works about
deduplication [10, 13, 16, 22, 28, 34, 41, 42, 48] and tensor chunk
deduplication such as Mistique [68] for model diagnosis, investi-
gated exact page deduplication and similarity-based approximate
page deduplication. However, we found these works cannot be
directly applied to tensor block deduplication for model serving
applications: (1) Exact deduplication of tensor chunks does not
consider the fuzziness or similarity of model weights. . The number
of tensor blocks that can be deduplicated based on exact match is
3x lower than similarity-based match as illustrated in Tab. 5. (2) We
also found it ineffective to perform deduplication solely based on
the similarity, without considering the impact of model weights on
the prediction accuracy. For example, we found that deduplicating
similar blocks in a batch normalization layer in a ResNet50 model
(two blocks with less than 0.1% different weights were considered
as similar), without considering the importance of weights, will
reduce accuracy from 81% to 8%. Therefore, it is critical to develop
new methods to identify tensor blocks that can be deduplicated
with limited impacts on accuracy.

Motivated by the iterative pruning process [32, 33], in which
weights with small magnitude are pruned first, we developed a
process of magnitude-aware duplicate detection, where blocks of
smaller magnitude are deduplicated first, and the model accuracy
is periodically validated after deduplicating every k blocks.

4.2.2 LSH-based Approximate Tensor Block Deduplication. To re-
duce the pair-wise similarity comparison overhead, we consider
leveraging Locality Sensitive Hash (LSH), which is a popular tech-
nique to solve nearest neighbor problems. LSH based on Hamming
distance [25], Euclidean distance [37], and cosine similarity [19]
are designed to identify similar numerical vectors with fixed dimen-
sions, and can be directly applied to detect similar tensor blocks. In
addition, the MinHash based on Jaccard similarity [17] is designed
to identify similar binary vectors or similar sets of items. In this
work, we mainly use the LSH based on Euclidean distance [20, 37],
which we call L2 LSH, because it is easy to compute (e.g., it does
not require an expensive numeric value discretization process like
MinHash) and it can be linked to the JS-divergence [49] of weights’
probability distributions of two tensor blocks [20].

4.3 Index Building

Given a set of models, for each model, we execute the steps as
follows for each model layer ordered by its tensor size descendingly:
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Step 1. Calculate an aggregated magnitude value (e.g., average, me-
dian, 1st quartile, 3rd quartile, etc.) for each tensor block in the
tensors of the model layer. We use the 3rd quartile, because even
if the block contains only a few large magnitude weights, it may
impact the inference accuracy significantly and should not be dedu-
plicated. The 3rd quartile can better reflect both the magnitude
and quantity of large weights in a block than aforementioned al-
ternatives, as illustrated in Fig. 4. The magnitude measurement
can also be replaced by more complicated ones such as L2-norm,
information measurements [52], etc.

90%

| —— 1st quartile
80% —— 2nd quartile
|, |=3rd quartile
—— average
70% max

60% 70% 80% 90% 100%
Ratio of Deduplicated Blocks to Total Blocks

Accuracy

Figure 4: Comparison of different magnitude measurements when
deduplicating an embedding layer pretrained using Wikipedia and
a variant of the embedding finetuned using the IMDB datasets.

Step 2. Order all tensor blocks in the model by their magnitude
values in ascending order.
Step 3. Select k blocks that have the lowest magnitude values, and
for each block, its LSH signature is computed to query the index.
If the index has seen similar blocks before, the block’s identifier is
added to the corresponding group and this block is replaced by the
representative block, which is the first indexed block in this group.
If the index hasn’t seen a similar block, a new group is created, and
this block becomes the representative block in the group.
Step 4. Test the model using a validation dataset to check whether
its inference accuracy drop is less significant than a threshold ¢.
If so, the algorithm repeats Step 3 and 4. Otherwise, it will stop
deduplication for this model. That said, it simply adds each remain-
ing block to the corresponding group, but such block will NOT be
replaced by the representative block in the group. Such remaining
blocks as well as the representative blocks are called as distinct
blocks, each of which has one physical copy.

We repeat the above process for each layer of each model to
incrementally construct the index, as illustrated in Alg. 1.

The output of the algorithm is Fr = {fi, ..., f¢ }. Each f; is a map-
ping for the i-th tensor in the model, which specifies the identifier
of the distinct tensor block corresponding to each (logical) block in



the tensor. The deduplication is achieved by allowing multiple ten-
sor blocks across models mapped to one distinct block. The output
is used in the page packing process as detailed in Sec. 5.

Algorithm 1 Index Building

1: INPUTS: T = {#1, ..., tx } (A set of parameter tensors in a model layer),
idx (The index that has been constructed for previous models, and will
be updated by this layer), L = {dy,...,dm } (A set of distinct blocks
derived from previous models, which will be updated by this layer)

2: OUTPUT: Fr = {fi, ..., fx } (fi maps a block in ¢; to a distinct block)

3 B={by,..bp} < U t;

4: ag < accuracy(Modelp);i < 0

5: B = {b}, ..., b},} « sort B by the magnitude of b; € B ascendingly

6: while i < ndo

7 forj=i+1,...,i+kdo

8 sj lsh(b})

9 if idx.count(s;) > 0 then

10: (be, ) « idx.ook_up(s;);

11: c— {(tensorID(b}),blockID(b;.))} Uc

12: idx.update(sj, (b, c))

13: b} « b, //use representative block b, to replace b;.

14: ftenmﬂD(b}) [blockID(b;.)] «— IndexInL(b.)

15: else

16: idx.insert(< sj, (b’, {(tensorID(b"), blockID (b))} >)
17: L‘push_back(b;.)

18: ftensorID(b;.) [blockID(b;.)] — IndexInL(b;.)

19: end if

20:  end for
21:  a <« accuracy(Modelp)
22: if ay — a > t then

23: foru=j+1,...,ndo

24: idx.insert(< Ish(b;,), (b, {(tensorID(b;,), blockID(b;,)) } >)
25: L.push_back(b},)

26: ftensorID(b;‘) [bIOCkID(b;)] - IndeXInL(b;J)

27: end for

28: return Fr

29:  end if

300 i< i+k
31: end while
32: return Fr

Fine-Tuning. In order to further improve the accuracy, after dedu-
plicating the models based on the constructed index, an additional
parameter finetune stage can be carried out to optimize the ac-
curacy after deduplication. In our implementation, for simplicity,
during the finetune process, the tensor blocks that are shared by
multiple models will be frozen, and only the weights in the private
pages will be tuned for each model.

Weight Normalization. Normalization is not helpful for layer-
wise deduplication (i.e., each iteration of Alg. 1 takes tensor blocks
in a layer as input). That’s because tensor blocks in one layer will
be ordered and deduplicated together, separated from other layers.
Our experiments also showed that both cross-layer and intra-layer
normalization can hardly affect the effectiveness of the layer-wise
deduplication.

Alternative Approach to Periodical Accuracy Validation. The
periodical accuracy validation in Alg. 1 will bring storage and la-
tency overheads, as discussed and evaluated in Sec. 7.3.1. Such
overheads can be avoided by an alternative approach that fully

relies on the tuning of the LSH collision threshold 2. It means that
all tensor blocks that have matches in the index will be deduplicated
without validation of accuracy. But the users can tune the collision
threshold to control the trade-off between accuracy and storage
efficiency. We evaluate this alternative approach in Sec. 7.3.1.

5 GROUPING TENSOR BLOCKS INTO PAGES

Based on Sec. 4, we obtained a mapping from each (logical) tensor
block to a (physical) distinct block. Each tensor may consist of both
private distinct blocks that belong to only one tensor and shared
distinct blocks that belong to multiple tensors. Now we investigate
the problem of how to pack multiple tensor blocks to database
pages, so that we can maximize the sharing of pages and minimize
the total number of pages that are needed.

Database storage organizes data in pages, so that a page is the
smallest unit of data for I/O read/write and cache load/evict op-
erations. Analytics databases usually use a page size significantly
larger than a tensor block (e.g., Spark uses 128 megabytes page size
and 1024 X 1024 block shape by default [57]). As a result, a database
page may contain multiple tensor blocks. Each tensor consists of
a set of pages that should contain exactly the set of tensor blocks
belonging to the tensor: no more and no less. If these pages contain
tensor blocks that do not belong to the tensor, it will significantly
complicate the scanning and various operations over the tensor.

However, the default paging process used in database systems
cannot work well with deduplication. By default, tensor blocks are
packed into pages based on the ordering of the time when each
block is written to the storage. If a page can hold up to [ tensor
blocks, every batch of I consecutive tensor blocks is packed into one
page. However, in such default packing, private (e.g., block 17-20
in Fig. 5) and shared tensor blocks (e.g., block 1-16) may get packed
to the same page. Such a page cannot be deduplicated because of
the private tensor blocks. As illustrated in Fig. 5, after performing
deduplication, so that each distinct page will be physically stored
once, the default packing requires 8 pages, while a better packing
scheme requires only 5 pages.

Tensor 2

Tensor 1

20 distinct tensor
blocks in two tensors

Default page packing: Optimal paging packing:
8 pages 5 pages

Figure 5: Motivation of page packing optimization

2 An LSH signature is usually split to multiple bands, and the collision threshold is the
minimal number of matching bands required for a match of two LSH signatures.
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5.1 Problem Formalization

The problem is: How to group the tensor blocks across all models to
pages to satisfy that: (1) For each tensor, we can find a subset of pages
so that the set of tensor blocks contained in the pages is exactly the
set of all tensor blocks that belong to the tensor; (2) The total number
of distinct pages that need to be physically stored is minimized.

Here we formalize the decision problem corresponding to the
above optimization problem, called as multi-tensor page packing
decision problem (MTPPDP), as following:

Input: A finite set of distinct tensor blocks B = {b1,...,b,}, and a
set of tensors T = {#1, ..., { }, and a page size limit /. (Each tensor ;
is a set of tensor blocks, i.e., t; C B.)

Question: Does there exist a collection of pages P = {p1, ..., ps},
such that (1) p; C B; (2) each page has no more than [ blocks,
denoted as [p;| < [; and (3) for each tensor t; € T, there exists
a subcollection of s pages, whose union is exactly t;, denoted as
P’ C P, so that UijP’Pj = 1.

It is an important problem, because large page sizes up to hun-
dreds of megabytes, are widely adopted in analytics databases [75]
and when memory resources become insufficient, even saving only
a few pages may significantly improve the performance.

Theorem 1. MTPPDP is NP complete.

Proof. The Set Basis decision problem [29, 65], which is NP com-
plete, can be reduced to MTPPDP in polynomial time. The Set Basis
decision problem is defined as follows:

Given a collection D of subsets of a finite set S, positive integer
n < |D|, the decision problem is to determine whether there exists
a collection I of n subsets of S (|I| = n), such that, for each d € D,
there is a subcollection of I whose union is exactly d.

The Set Basis decision problem can be reduced to MTPPDP in
polynomial time as follows: (1) B = S, (2) T = D.If the MTPPDP
problem has a solution P, P is also a solution to the Set Basis decision
problem. If the Set Basis decision problem has a solution I, we can
obtain a solution of P for the MTPPDP problem by breaking every
subset whose size is larger than the page size limit / into multiple
smaller subsets, so that each subset’s size limit is smaller than [.
Therefore, Theorem 1 is proved.

In particular, the related optimization problem, which is to search
for a minimal collection of pages P that satisfies the conditions, is
NP-hard: (1) The problem is at least as hard as the corresponding
decision problem, which is NP complete [29]; (2) There is no known
polynomial-time verification for a solution of the problem.

There exist greedy algorithms to solve the Set Basis optimization
problem, which choose from the basis candidate sets, constructed
from the intersections of sets in S [30, 67]. These algorithms cannot
be applied to our MTPPDP problem, because these algorithms do
not apply size constraints for each set in the set basis B.

5.2 A Two-Stage Page Packing Strategy

To solve the optimization problem, we first propose to group tensor
blocks into equivalent classes. Different tensor blocks that are
shared by the same set of tensors are assigned to the same equiva-
lent class, as illustrated in Fig. 6, which depicts the tensor sharing
relationship for the example in Fig. 5. It is beneficial to use a divide
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and conquer strategy to pack for each equivalent class in parallel
by grouping the blocks falling into the same equivalent class to
the same page(s). That’s because these pages can be shared by all
tensors associated with the page’s corresponding equivalent class.
By doing so, in the above example (Fig. 5), the 12 distinct blocks
in equivalent class C3 are packed to three pages, the four distinct
blocks in C; are packed to one page, and the four distinct blocks in
C, are packed to one page, which leads to the optimal plan for this
case, as shown in Fig. 6. The algorithm is illustrated in Alg. 2.

C:={2,3,4,5,7,8,9, 10,12, 13, 14, 15}:
tensor blocks shared by t; and t,

C;={1, 6, 11, 16}:
private to t;

C,={17,18,19,20}:
private to t,

Figure 6: Illustration of equivalent classes of tensor blocks for page
packing for the example in Fig. 5.

Algorithm 2 Equivalent Class-Based Greedy Strategy
1: INPUTS: T, B, [
2: OUTPUT: P
3: {C1,...Cm} « B, T {divide B into multiple equivalent classes, so
blocks in each class are shared by the same set of tensors}

4: P« (;5

5: for i=0..m do

6: P ¢

7. forb:C;do

8: if |p| < [ then

9: pe—puU{b}

10: else

11: P—PU{php—¢
12: end if

13:  end for

14:  if |p| > 0 then

15: P—PU{phpe—¢
16: end if

17: end for

18: return P

The problem with the equivalent class-based packing is that it
may lead to non-full pages, because items in certain equivalent
classes may not fully fill the pages. For example, as illustrated in
Fig. 7, if a page can maximally hold two blocks, the blocks in Cy, Cz,
Ce will be packed to three non-full pages respectively. However, a
better scheme is to pack these blocks into two pages: p1 = C1 U Cg
and py = C1 U Cy. Therefore, we propose a two-stage strategy for
optimizing page packing schemes. At the first stage, blocks from
each equivalent class are packed to pages separately, and no page is
allowed to mix blocks from different non-equivalent classes. Then,
we run the second stage by repacking blocks from non-full pages,
and applying an approximation algorithm based on the following
heuristics: (1) Largest-Tensor-first. A tensor that contains more
tensor blocks to be repacked is more likely to generate pages that
can be reused by other tensors. (2) Hottest-Block-First. Frequently



Cs={block,, blocks} shared by t; and t,

C, ={block,, block,}
private to t;

Ce ={blockg} private to t,

Co ={} shared by t;, t5, t3

Gy ={}
shared by t; and t3
C, ={block;} private to t3

Figure 7: Another example: the equivalent class-based greedy strat-
egy leads to three non-full pages for C;, C,, Cs.

shared tensor blocks, if packed together, are more likely to generate
pages that can be reused across multiple tensors.

The approximation algorithm picks the tensor that has the most
tensor blocks in non-full pages to repack first. When it repacks for
a given tensor, it first attempts to identify and reuse packed pages
that cover as many blocks to repack as possible. Then it orders
the remaining tensor blocks first based on their sharing frequency
(i-e., the number of tensors a block is shared by), and the ordering
of their equivalent classes. Then, it packs these blocks into pages
in order, without leaving any holes in a page except for the last
page. We formalized the algorithm for the second stage as Alg. 3.
(The algorithm for the first stage is the same with Alg. 2.) Alg. 3 is
scalable to a large number of equivalent classes, so it can also be
used independently for a large number of tensors. In Sec. 7.4, we
compare the performance of only using Alg. 3, only using Alg. 2,
and the two-stage algorithm.

5.3 Algorithm Analysis

Here, we use Alg2(P) and TwoStage(P) to denote the solution size
of Alg. 2 and the Two Stage algorithm, and OPT(P) to denote the
optimal solution size. [ refers to the maximal number of blocks in
one page. k refers to the number of tensors.

Theorem 2. Alg2(P) < OPT(P) + 2k —1

Proof. First, OPT(P) > [| U t;|/I]. That’s because every page has
at most [ blocks, and we have in total | U t;| blocks, so we have at
least [| U t;]/1] pages.

Second, in Alg. 2, tensor blocks from each equivalent class C;
are packed to pages separately. Each C; can be divided into two
disjoint sets: Cl.(l) and Cl.(z), so that: (1) |Cl.(2)| = |Ci|%l and the
blocks in Ci(z) will be packed to at most one non-full page; and (2)
Ci(l) =GCj— Cl.(z) and the blocks in Ci(l) will be packed to full pages

because |Cl.(l) |%I = 0. Because there are at most 25 — 1 equivalent
classes, and each equivalent class has at most one non-full page,

Alg2(P) < | V|1 + 2% — 1. Because | U CV|/1 < [U /1,
we have | U Cl.(l) |/l < OPT(P). Therefore, we proved Alg2(P) <
OPT(P) + 2K — 1.

In practice, we found the second stage (Alg. 3) is mostly helpful
when there are a large number of equivalent classes and each has
only a few remaining blocks. If every equivalent class has at most u
remaining blocks (u < I), we will have TwoStage(P) < OPT(P) +

LZ?:l N((;C)) X (i — 1) X u/l] + k. Here, N((/?) denotes the number of
equivalent classes that are associated with i of total k tensors. The

blocks in such equivalent classes will have at most i — 1 additional

2236

copies using Alg. 3, depending on how frequently each page can be
reused. Also, each tensor will lead to at most one non-full page, so
we added k in the above formulation.

Algorithm 3 Approximation Strategy

1: INPUTS: T (A set of tensors for packing to pages. When applied to
Stage-2, each tensor only contains blocks from non-full pages resulting
from Stage 1), I, P (The set of pages that have been packed in Stage 1,
when applied to Stage-2. P = ¢ if there is no Stage 1. More pages may
be appended to the set during processing.)

: OUTPUT: P (a set of pages as the final output)

: T « orderByNumTensorBlocksDescend(T)

: fori=1,...k do

P’ « a set of existing pages belonging to P that form a maximal

subset of #;; Is < t; — Upep/p

if Is = ¢ then

continue

end if

{b1,...bs;} < orderBySharingFreqDescend(Is); p «— ¢

for j=1,...,5ido

if |p| < [ then
p—puib;}

else
P—PU{php—¢

end if

end for

P—PU{phip—¢

18: end for

19: return P

[ I NI )

0 ® N

6 BUFFER POOL MANAGEMENT

An important factor in buffer pool management is to estimate the
probability that a page will be reused again within the next ¢ time
ticks, denoted as preyse. Widely used page replacement algorithms
such as LRU/MRU/LFU mainly consider pyeyse and use reference
time, distance, and frequency to model it.

Our previous works in locality-set-based page eviction [82, 83],
consider more factors in addition to preyse by modeling the eviction
costs as Eq. 1, which is a standard representation that considers
cost for writing out a page (c,y) and the cost for loading a page
back for reading (c,) separately [50, 82, 83]. The idea is that the
pages that will be accessed similarly (e.g., pages in one equivalent
class) are regarded as a separate locality set. Each locality set will
be configured with its own page eviction policy, e.g., MRU or LRU.
When pages need to be evicted from the buffer pool to make room
for new pages, the system chooses a locality set to be the victim
if the next page-to-be-evicted from the locality set has the lowest
expected eviction cost among all locality sets. Then one or more
pages will be evicted from the victim using its own eviction policy.
This algorithm has been proved to have better performance than
LRU/MRU/LFU for workloads that have predictable locality patterns
such as model serving [82, 83], where the computations’ data access
patterns at each layer are mostly known.

Cw + Preuse X Cr (1)

However, these existing algorithms did not consider page sharing
caused by model deduplication in the multi-model serving scenario.
To address the problem, we propose to refactor the formulation



of preuse. We apply the queueing theory [35] to model the page
accesses so that each page is like a server, and each model inference
request that triggers a page access is like a customer. Because a
page may be shared by multiple models, inference requests from
each model will be dispatched to a queue associated with the model.
If we assume the arrival time of the next access to each page from
each queue as an independent Poisson point process [35], preuse
can be estimated using Eq. 2. Here, M = {mj, ..., my. } represents a
set of models that share this page, and A; denotes the access rate
per time tick for the model m;.

- . Ait
Preuse =1—¢ Zm’EM (2)

This approach is more accurate than simply estimating preuse
based on the reference time/frequency/distance measured for each
page, because the access patterns of various datasets involved in
each model inference is fixed, mostly affected by A;.

We implemented the enhanced locality-set-based page eviction
(using Eq. 2) in netsDB. Our evaluation results in Sec. 7.5 showed
up to 1.6X improvement in cache hit ratio compared to MRU, LRU,
and the original locality-set-based page eviction.

7 EVALUATION

7.1 Evaluation and Workloads

7.1.1  Multiple Versions of Personalized Text Embedding Models. A
text embedding used for natural language processing is usually
trained using a large open corpus like Wikipedia [6]. However,
at the same time, every enterprise or domain has its own termi-
nologies, which are not covered in the open data. To personalize
the text embeddings, for each domain, we need to train the model
on both the shared open data and the private domain/enterprise
data. Therefore, we used a Word2Vec embedding downloaded from
TFHub [5], which is pretrained using a Wikipedia dump. The model
embeds about 1 million words. Each word corresponds to a 500 di-
mensional embedding vector. Therefore, the Word2Vec embedding
layer has about one million 500 dimensional embedding vectors
stored in a 1,009, 375 X 500 weight tensor. Then we finetune the
pre-trained model using different domain-specific corpus includ-
ing texts extracted from Shakespeare’s plays [4], posts collected
from Firefox support forum [8], articles collected from Fine Wine
Diary [8], Yelp reviews [76], IMDB reviews [53].

7.1.2  Multiple Versions of Text Classification Models. We further
investigate a scenario that serves five different text semantic clas-
sification models. Each classification task takes a review as input
and outputs a binary label to indicate the input is toxic or nontoxic
[15, 53, 76]. All tasks use the same model architecture. Each model
uses three layers. The first layer is a Word2Vec layer as mentioned
in Sec. 7.1.1, using a vocabulary size of 1, 009, 375 and an embedding
dimension of 500. The second layer is a fully connected layer that
consists of merely 500 X 16 parameters, and the third layer is an
output layer that consists of 16 X 2 parameters. Because the fully
connected layers are small in size, we encode these in a UDF that is
applied to the output of the Word2Vec embedding layer.

The first two text classification models are trained using the same
Yelp datasets. The difference is that Model-1’s embedding layer uses
the weights of a pre-trained model directly downloaded from TFHub
as mentioned in Sec. 7.2.1, which is set as Non-Trainable, so that
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only the weights of the fully connected layers are changed during
the training process. However, Model-2’s Word2Vec layer is set
to be Trainable, which means the weights of the layer will also
change during the training process. Similarly, Model-3 and Model-4
are trained using IMDB review datasets, with the embedding layer
set to be Non-Trainable and Trainable respectively. The Model-5
is trained using the civil comments [15], collected from news sites,
and its embedding layer is set to be Trainable.

7.1.3  Transfer Learning of Extreme Classification Models. Follow-
ing TRA [74], a two-layer feed-forward neural network (FFNN) is
implemented in netsDB for the AmazonCat-14K [55, 56] workload.
This FFNN requires five parameter tensors: the weight tensors and
bias tensors of the two layers, and the input tensor for which pre-
dictions are generated. The input tensor includes 1, 000 data points
that have 597, 540 features, and the extreme classification task uses
14, 588 labels. The hidden layer has 1, 000 neurons. Therefore, the
weight tensor (denoted as W;) in the first layer has 597, 540 X 1000
parameters, and the weight tensor (denoted as W) in the second
layer has 14, 588 X 1000 parameters.

A transfer learning scenario is tested, where the first layer W;
is freezed, and W; is specialized for different tasks. Only for this
scenario, the inputs, weights, and biases are randomly generated
instead of being trained from real-world data like other scenar-
ios. The experiments are still reasonable as deduplication in this
scenario hardly affects the inference accuracy. That is because W;
used in all the models are the same and thus no weights need to
be approximated for deduplicating it, and we also choose not to
deduplicate any blocks from the specialized and smaller W; layer.

7.1.4  Heterogeneous Models. We further investigate the dedupli-
cation of multiple models that have heterogeneous architectures.
Heterogeneous Scenario-1. In this scenario, we used four text
classification models with different shapes of pre-trained embed-
ding layers downloaded from TF-Hub. The first model, called as
nnlm128_yelp [2, 11], is trained on the Yelp dataset with an em-
bedding layer that has a dictionary size of 963,812 and each em-
bedding vector has a dimension of 128. Thus the shape of the
embedding layer is 963,812 X 128. The second model, called as
nnlm50_imdb [3, 11], is trained on the IMDB dataset with an em-
bedding layer of the shape of 963,812 x 50. The third model, called
wiki250_civil_comment [9, 59], is trained on the civil comment
dataset with an embedding layer of the shape of 1, 009, 375 X 250.
The fourth model, called wiki500_yelp is trained on the Yelp dataset,
which is also used in Section 7.1.2. Its embedding layer has a shape
of 1,009, 375 X 500.

Heterogeneous Scenario-2. In this scenario, we used four extreme
classification models as FFNN with different sizes for the input
layer, hidden layer, and output layer. The first model is trained on
RCV1-2K [46], and its input layer has 47, 236 features, its hidden
layer has 5, 000 neurons, and its output layer has 2, 456 labels. The
second model, is trained on the AmazonCat-13K dataset [54], and its
number of features, hidden neurons, and labels are 203, 882, 1, 000,
and 13, 330 respectively. The third model is trained on AmazonCat-
14K [55, 56], which is described in Section 7.1.3. The fourth model
is trained on EURLex-4.3K [18] and it has 200, 000 features, 2, 000
hidden neurons, and 4, 271 labels.



Heterogeneous Scenario-3. In this scenario, we investigate the
deduplication of one text classification model wiki500_yelp from
Scenario-1 and one extreme classification model AmazonCat-13K
from Scenario-2.

Evaluation Environment Setup Unless explicitly specified, most
of the experiments used an AWS r4xlarge instance that has four
vCPU cores and 30 gigabytes RAM. The storage volumes include
a 128 GB SSD, and a 128 GB hard disk drive. For the experiments
on the GPU, we used an AWS g4dn.2xlarge instance that is in-
stalled with one NVIDIA T4 Tensor Core GPU that has 16 gigabytes
memory, besides eight CPU cores and 32 gigabytes host memory.

The default buffer pool size is half of the available memory to
balance caching and execution. We configure it to different values to
compare the performance of the proposed approach and baselines
with different levels of memory resources allocated for caching the
model parameter tensors, the input feature tensors, etc.

7.2 Overall Evaluation Results

7.2.1 Multiple Versions of Personalized Text Embeddings. We find
that word embedding models finetuned from the same TFHub pre-
trained Word2Vec model share more than 90% of pages. (The accu-
racy of each embedding model after finetuning is above 99%.) Each
model is a 1, 009, 375 X 500 tensor, stored in a set of tensor blocks in
the shape of 10, 000 X 100, each weight is stored in double precision.
Each input matrix is of the shape of 100 X 1, 009, 375, representing
a batch of 100 words. It will multiply with the embedding matrix
of the shape 1, 009, 375 X 500Without our proposed deduplication
mechanism, storing six word embedding models separately requires
more than 24 gigabytes storage space. However, by applying our
work, only 6.7 gigabytes of storage space is required, which is a
3.6 reduction. Note that the overall memory requirements for
serving 6 models will be higher than the storage requirements, as
we also need to cache the intermediate data, which includes the
join HashMap constructed for probing the model parameters, and
about 1 gigabytes input data.
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Figure 8: Overall latency for serving different number of Word2Vec
models, tested in a r4xlarge instance, using SSD and HDD. Buffer
pool size is set to 15 gigabytes.
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Figure 9: Overall latency for serving six word2vec models using
different storage configurations
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In Fig. 8 and Fig 9, we measured the total latency of making a
batch of 100 inferences on all six models using different configura-
tions for buffer pool size and storage hardwares. We observed that
our proposed deduplication mechanism brought up to 1.4x and
4.7x speedups in model serving latency for SSD and HDD storage
respectively, as illustrated in Fig. 8 and Fig. 9.

We also compared the netsDB’s performance to the CPU-based
TensorFlow on the same AWS r4.xlarge instance and the GPU-
based TensorFlow on a g4dn.2xlarge instance. On TensorFlow, we
developed two approaches for Word2Vec inference.

The first approach used matrix multiplication (tf.matmul), sim-
ilar to netsDB’s implementation. In the experiments of comparing
this approach and netsDB, we used double precision for both sys-
tems. We still use the input batch size of 100 to be consistent with
all above experiments.

The second approach is based on embedding lookup by using
Keras’ Word2Vec embedding layer (i.e., keras. layers.Embedding).
The implementation takes a list of IDs as input, and searches the
embedding for each ID (via index) in parallel.

For the second approach, because Keras’ embedding layer en-
forces single precision, we changed netsDB implementation to use
the single-precision float type. The experiments for this approach
used 1 million IDs in each batch. We assume the 1 million IDs are
from 100 documents, and each document has 10, 000 different words,
so its input features include 100 vectors, each vector is a sum of the
one-hot embedding vectors of 10,000 words. Therefore, the input
batch has 800 megabytes in size for the implementation based on
matrix multiplication, but only 8 megabytes for the implementation
based on embedding lookup.

In Tab. 1, TF-mem, TF-file, and TF-DB load an input batch from
the local memory, the local CSV file, and a PostgreSQL table (400
BLOB fields for the first approach, and 1 BLOB field for the sec-
ond approach), respectively. We observed that netsDB supports the
inference of significantly more models in the same system than
TensorFlow. For this case, we did not observe performance gain
brought by GPU acceleration in TensorFlow, mainly because infer-
ence is less complicated than training and it cannot fully utilize the
GPU parallelism and the benefits cannot outweight the overheads
of moving data between CPU and GPU.

When all models fit to memory, TensorFlow has better perfor-
mance than netsDB. That’s because RDBMS introduces additional
overheads such as constructing a hash map for the hash join as
part of matrix multiplication, join-fork parallelism, query optimiza-
tion and compilation, etc. However, such overheads can be avoided
through materialization of hash map, asynchronous scheduling,
and ahead-of-time query compilation, while preserving the ben-
efits of the scalability brought by blocked tensors and relational
processing. We will investigate this in our future works.

7.2.2  Multiple Versions of Text Classification Models. Based on the
above results, we further evaluated the proposed techniques on the
text classification task described in Sec. 7.1.2.

We imported these text classification models into netsDB. The
default page size used in this experiment is 64 megabytes and when
using a block shape of 100 X 10000, each text classification model
requires 64 pages of storage size before deduplication. We first
compared the required number of private and shared pages after



Table 1: Comparing the serving performance of multiple word2vec

models deployed in netsDB to TensorFlow. (Unit: Seconds)
[ TensorFlow CPU TensorFlow GPU
[ numModels [ netsDB [ TF-mem [ TF-file [ TF-DB [ TF-mem [ TF-file [ TF-DB ]

[ Matrix-Multiplication-based inference, double precision ]

3 252 9 64 96 14 69 128
6 503 Failed Failed Failed Failed Failed Failed
12 1008 Failed Failed Failed Failed Failed Failed
Embedding-lookup-based inference (1 million IDs/batch), single precision
3 114 57 58 58 Failed Failed Failed
6 229 Failed Failed Failed Failed Failed Failed
12 456 Failed Failed Failed Failed Failed Failed

deduplication as well as the classifier inference accuracy before and
after deduplication. The comparison results are illustrated in Tab. 2.

Without deduplication, the total storage space required is 20.5GB
for 320 pages. After applying the proposed deduplication, the total
storage space required is reduced to 5.6GB for 87 pages.

Table 2: Pages deduplicated (shared pages) and inference accuracy
before and after deduplication.

[ [ private pages [ num shared pages [ auc before dedup [ auc after dedup

Model-1 2 62 85.01% 85.01%
Model-2 13 51 90.38% 86.79%
Model-3 7 57 81.25% 81.25%
Model-4 1 63 84.69% 81.11%
Model-5 1 63 94.80% 94.09%

The comparison of the overall inference latency of all five text
classification models, using different block sizes and storage con-
figurations, is illustrated in Fig. 10. We observed that 1.1X to 1.6X
speedup were achieved by applying our proposed techniques.

7.2.3  Transfer Learning of Extreme Classification Models. In this ex-
periment, all three models have the same architecture as described
in Sec. 7.1.3, using double precision weights, and are specialized
from the same feed-forward model through transfer learning and
they share a fully connected layer, which contains 597 millions of
parameters. This layer is stored as a shared set in netsDB, and it ac-
counts for 4.8 gigabytes of storage space. Each model’s specialized
layer only accounts for 0.2 gigabytes of storage space. Therefore,
with deduplication of the shared layer, the overall required storage
space is reduced from 15 gigabytes to 5.4 gigabytes. We need to
note that the required memory size for storing the working sets
involved in this model-serving workload is almost twice of the
required storage space, considering the input batch of the 1,000
597,540, 000 dimensional feature vectors and the intermediate data
between layers for both models.

Besides a significant reduction in storage space, we also observed
up to 1.18% and 1.45X speedup in SSD and HDD storage respectively,
because of the improvement in cache hit ratio (40% — 46%), as
illustrated in Fig. 11. Because this is a transfer learning scenario,
the shared pages have no approximation at all, there exists no
influence on accuracy.

We also compared the netsDB performance to TensorFlow, using
the Keras implementation of the FFNN model. As illustrated in
Tab. 3, netsDB outperforms TensorFlow for loading input from a
CSV file and a Blob field of a PostgreSQL table. If we compute and
store the input feature vectors in a table of 400 Blob fields, the TF-
DB latency for CPU and GPU is 1, 274 and 945 seconds respectively,
significantly slower than the latency on netsDB, which serves data
and model in the same system.
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Table 3: Comparing the serving performance of multiple FFNN

models deployed in netsDB to TensorFlow. (Unit: Seconds)
TensorFlow CPU | TensorFlow GPU

[ numModels [ netsDB [ TF-mem [ TF-file [ TF-DB [ TF-mem [ TF-file [ TF-DB ]

4]

5]

[ 2] 64| 43 | 383 7 [ 310 | 55 |
| 3] 9% | Failed | Failed | Failed |

64 | Failed | 11

7.24  Models of Heterogeneous Architectures. As illustrated in Tab. 4,
our proposed approach achieve significant benefits in compression
ratio and execution time speedup even for deduplicating models
that have heterogeneous architectures, as described in Sec. 7.1.4.
We also compare the maximum accuracy drop of all heterogeneous
models involved in each scenario after applying our proposed dedu-
plication approach. We used a page size of 64 megabytes, and the
overall storage size has been reduced by 2.6X for scenario-1, 1.2X for
scenario-2, and 1.8X for scenario-3. Despite the overheads in map-
ping each distinct block to its actual position in each tensor based
on the block metadata when handling heterogeneous model archi-
tectures, we still observed 1.1x to 1.7 execution time speedup after
applying the deduplication, due to the aforementioned reduction
in memory footprint. Taking scenario-1 as example, nnlm128_yelp,
wiki250_civil_comment, and wiki500_yelp achieved 1.3X, 2.3%, and
2.0x speedup in execution time respectively, and nnlm50_imdb
runs 9% slower after deduplication. This showed that the speedup
is positively correlated to the model size. In Scenario-1 we found
17% blocks are shared 2 to 100 times within one tensor, while this
ratio is only 1% and 6% in Scenario-2 and 3. Such block will be
stored once but mapped to multiple blocks in one tensor at runtime.

Table 4: Deduplication of Heterogeneous Model Architectures with
15GB buffer pool and SSD (block size: 50 X 10000)

Blocks | Blocks | Maximum Pages Pages Execution
Needed | Needed N
Models w/o w/ Accuracy Time
dedup dedup Drop wio w/ Speedup
dedup dedup
Scenario-1 1922 514 3.77% 138 53 1.7x
Scenario-2 3625 2868 3.75% 238 194 1.1x
Scenario-3 1704 895 3.59% 114 63 1.2x

7.3 Evaluation of Duplicate Block Detection

We compared our indexing strategy as illustrated in Alg. 1 to two
baselines: (1) A naive indexing scheme using pair-wise comparison



to identify similar blocks based on Euclidean distance; (2) Mistique’s
approximate deduplication using MinHash [68]. As illustrated in
Fig. 12, we observed significant accuracy improvement brought by
our proposed deduplication detection approaches (w/ and w/o fine-
tune) for deduplicating the same amount of blocks. That’s because
both baselines failed to consider a block’s magnitude as well as its
impact on accuracy.
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Figure 12: Comparison results of deduplicating a text classification
model using different indexing approaches (block size: 100x10000)

Moreover, we also compared the compression ratio, and the
average latency for querying one tensor block from the index of our
proposed approach to (1) Mistique exact deduplication approach,
where two tensor blocks are deduplicated only if they have the
same hash code; (2) Mistique approximate deduplication; and (3)
Enhanced pairwise comparison approach with magnitude ordering
applied. Both (2) and (3) used periodic accuracy checks, for which,
we evaluate the accuracy of a model once for indexing every five
blocks from the model, and we stop deduplication for a model once
its accuracy drop exceeds 3.5%. However, we do not roll back to
ensure the accuracy drop is within 3.5% for these experiments,
though such rollbacks can be easily implemented. As illustrated in
Tab. 5, the proposed approach based on L2 LSH still achieved the
best compression ratio. The Mistique’s approximate approach [68]
is significantly slower in querying the index because a new block
requires to be discretized and the MinHash generation requires
multiple rounds of permutations. Due to such overhead, the latency
required for building an index using the Mistique approximate
approach is significantly higher than our proposed approach.

Table 5: Comparison of compression ratio and index query time.

Blocks w/o dedup | Blocks w/ dedup (PefQ];ZiiE:Zn ) ‘
Mistique Exact Dedup 2545 2040 0.02
Mistique Approximate Dedup 2545 712 10+
Enhanced Pairwise 2545 693 2.9
Proposed (w/o finetune) 2545 662 0.2

7.3.1 Validation Overheads Analysis. We first evaluate the storage
costs of validation datasets and the additional latency incurred by
the periodic accuracy validation process. As illustrated in Fig. 13,
for several large-scale models, the size of an effective validation
dataset is significantly smaller than the size of storage space that
can be saved through deduplication.

In addition, we also implemented a variant of our approach that
does not rely on validation datasets, but relies on the tuning of the
LSH collision threshold. We split an LSH signature into multiple
bands, the threshold determines the minimum band collisions re-
quired for claiming that two LSH signatures match [37, 79]. We
find that by tuning the threshold, the users can achieve different
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4% ° 2000 102 1256 MB
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Figure 13: The compression ratio, accuracy reduction, saved space,
and per-iteration validation latency for deduplicating three text
classification models with different sizes of validation datasets.

levels of trade-offs between accuracy and compression ratio. This
variant provides an alternative for applications that do not have
validation datasets.

Table 6: Tuning of an LSH Threshold in the same scenario of Fig. 13

(the total number of bands is 90).
[ LSH Threshold | Compression Ratio | Accuracy Change |

6 11.74% -7.45%
7 54.34% -0.57%
8 88.07% 0.05%

7.4 Evaluation of Page Packing Algorithms

We evaluated our proposed page packing algorithms using four
evaluation scenarios: (1) Two-stage algorithm, which used Alg. 2
in stage 1, and then apply Alg. 3 to items in non-full bins in stage 2.
(2) Greedy-1 algorithm that is based on equivalent classes (Alg. 2);
(3) Greedy-2 algorithm that applies Alg. 3 to overall page packing.
(4) DedupBase, which first packs tensor blocks to pages in order,
and then eliminate the duplicate pages.

Table 7: Comparison of required number of pages using different
page packing algorithms.

Scenario (block size, page size)

[ DedupBase | Two-Stage | Greedy-1 | Greedy-2

word2vec (100 X 10000, 64MB) 130 98 99 98
text classification (100 X 10000, 64MB) 101 87 91 87
text classification (300 X 300, 64MB) 156 104 108 109
text classification (300 X 300, 32MB) 270 195 198 202
Hetero-Scenario-1(50 X 10000, 64MB) 58 55 53 56

We observed significant improvement in storage efficiency brought
by the two-stage algorithm compared to alternatives, as illustrated
in Tab. 7, except for the Heterogeneous-Scenario-1, in which pages
packed in the second stage cannot be reused. In addition, the com-
putation efficiency of the two-stage algorithm is comparable to
Greedy-1, and both are below 0.1 seconds in most of the scenarios.
When only applying Greedy-2, the time required to frequently com-
pute subsets of packed pages to form a maximal subset of a tensor
becomes the bottleneck, which will take 10 to 40 seconds to pack
pages for the two text classification scenario with 300 X 300 blocks.
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7.5 Evaluation of Caching Optimization

We also compare the proposed caching optimization to a number
of baselines, including LRU, MRU, as well as the locality set page
replacement policy without considering the page sharing. The de-
tailed cache hit ratio comparison for the Word2Vec embedding and
text classification applications are illustrated in Fig. 14. Locality Set-
M/L refers to the locality set page replacement policy [82, 83] that
treats shared pages as one locality set and applies the MRU/LRU
to this locality set of shared pages. Optimized M/L refers to the
localitySet-M/L with the proposed caching optimization applied
(i.e., shared pages will be given a higher priority to be kept in
memory). We observed that, after deduplication, the cache hit ra-
tio improved significantly because of the reduction in memory
footprint. In addition, with the proposed deduplication approach
applied, Optimized-M/L achieved a significantly better cache hit
ratio than alternative page replacement policies.

o 1 m word2vec text classification
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Figure 14: Comparison of different page replacement policies

7.6 Further Discussions

7.6.1 Model Updates. Deep learning models may be updated from
time to time at the serving stage. We implemented and compared
two approaches to deduplicate updated models.

Approach-1. The updates to a tensor are implemented as a removal
of the old tensor followed by an insertion of the new tensor. To
remove a tensor, all private pages belonging to the tensor will be
removed, and then, for each shared page belonging to this tensor, its
reference count will be decremented. Once a shared page’s reference
count is dropped to 1, this shared page will be moved from the
shared page set to the private set of the tensor that owns the page.
At the same time, the identifiers of the blocks of the tensor are
also removed from the index. If a tensor block in a model needs
to be removed, the LSH signature of the new block is computed
to query the corresponding group for this block, and the block’s
identifier will be removed from the group. Adding or removing
blocks to/from the group will not affect the representative block of
the group. If the representative block is the only block in the group,
and it is to be removed, the group will be removed.

Approach-2. We can also leverage the index to facilitate model
updates at a fine-grained level. First, the LSH signature for each
block in the updated model will be computed, and only the pages
that involve the blocks, of which the LSH signatures have changed,
need to be repacked. As illustrated in Tab. 8, we observed that
both approaches achieve a similar compression ratio with limited
accuracy drop. But Approach-2 is more efficient because it skips the
processing (e.g., accuracy validation) of blocks that have unchanged
LSH signatures.
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Table 8: Deduplicating updated wiki500_imdbm model.
compression | accuracy | validation | end-to-end duplicate detection
Approach-1 8.85% —4.07% 44 secs 148 secs
Approach-2 10.41% —3.61% 9 secs 108 secs

7.6.2  Relationship to Model Compression. Besides deduplication,
there exist a number of model compression techniques, such as
pruning [32, 33] and quantization [38], which can only be applied
to each single model separately. In this work, we found that as a
cross-model compression technique, model deduplication can be
applied after pruning or quantizing, which achieved 2X to 3 better
storage efficiency. That’s because pruning and quantization will not
significantly change the similarity of tensor blocks across models.

Table 9: Comparison of compression techniques (Compression
ratio is defined as the ratio of the size after compression to the size
before compression. Accuracy drop is measured as the maximum
accuracy drop of the models after compression.)

[ [ pruning [ quantization [ dedup [ dedup+ pruning [ dedup+quant ]
auc drop [ 3.2% [ 1.33% [ 3.98% [ 3.6% [ 3.78% ]
[ compression ratio [ 23.4% [ 12.5% [ 27.32% [ 6.74% [ 5.24% ]

8 CONCLUSIONS AND FUTURE WORKS

Serving deep learning models from RDBMS will benefit from the
RDBMS’ physical data independence and manageability. This work
proposed synergistic storage optimization techniques covering
indexing, page packing, and caching, which are implemented in
netsDB, an object-oriented relational database. We evaluated these
proposed techniques using several typical model serving scenarios,
including the serving of (1) multiple fine-tuned word embedding
models, (2) multiple text classification models, (3) multiple extreme
classification models based on FFNN, and (4) multiple heteroge-
neous models. The results showed that our proposed deduplication
techniques achieved 2.7x to 3.6x reduction in storage size, speeded
up the inference by 1.1X to 4.7%, and improved the cache hit ratio
by up to 1.6X. The results also showed that significantly more mod-
els can be served from RDBMS than TensorFlow, which helps to
reduce the operational costs of model inferences.

We also observed that the relational processing involves addi-
tional overheads such as building join hashmap, fork-join sched-
uling, query optimization, and compilation. Therefore, RDBMS is
mostly suitable when the models are too large to fit in memory
and/or the input features are large in size and the overheads for
transmitting input features from RDBMS to deep learning frame-
works are unacceptable. When models can all fit in memory, and the
relational processing overhead cannot outweigh the benefit brought
by RDBMS, we suggest not to use our solution for applications that
have stringent latency requirements. That said, aforementioned
relational processing overheads can be alleviated by applying join
hashmap materialization, asynchronous scheduling, and ahead-of-
time query compilation, which we will study in our future works.
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