
LEGOStore: A Linearizable Geo-Distributed Store Combining
Replication and Erasure Coding

Hamidreza Zare
The Pennsylvania State University

hkz5146@psu.edu

Viveck Ramesh Cadambe
The Pennsylvania State University

viveck@psu.edu

Bhuvan Urgaonkar
The Pennsylvania State University

buu1@psu.edu

Nader Alfares
The Pennsylvania State University

nna5040@psu.edu

Praneet Soni
The Pennsylvania State University

praneetsoni.soni@gmail.com

Chetan Sharma
The Pennsylvania State University

chesharm@google.com

Arif A Merchant
Google

aamerchant@google.com

ABSTRACT

We design and implement LEGOStore, an erasure coding (EC) based

linearizable data store over geo-distributed public cloud data cen-

ters (DCs). For such a data store, the confluence of the following

factors opens up opportunities for EC to be latency-competitive

with replication: (a) the necessity of communicating with remote

DCs to tolerate entire DC failures and implement linearizability;

and (b) the emergence of DCs near most large population centers.

LEGOStore employs an optimization framework that, for a given ob-

ject, carefully chooses among replication and EC, as well as among

various DC placements to minimize overall costs. To handle work-

load dynamism, LEGOStore employs a novel agile reconfiguration

protocol. Our evaluation using a LEGOStore prototype spanning 9

Google Cloud Platform DCs demonstrates the efficacy of our ideas.

We observe cost savings ranging from moderate (5-20%) to signif-

icant (60%) over baselines representing the state of the art while

meeting tail latency SLOs. Our reconfiguration protocol is able to

transition key placements in 3 to 4 inter-DC RTTs (< 1s in our

experiments), allowing for agile adaptation to dynamic conditions.

PVLDB Reference Format:

Hamidreza Zare, Viveck Ramesh Cadambe, Bhuvan Urgaonkar, Nader

Alfares, Praneet Soni, Chetan Sharma, and Arif A Merchant. LEGOStore: A

Linearizable Geo-Distributed Store Combining Replication and Erasure

Coding. PVLDB, 15(10): 2201 - 2215, 2022.

doi:10.14778/3547305.3547323

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/shahrooz1997/LEGOstore.

1 INTRODUCTION

Consistent geo-distributed key-value (KV) stores are crucial build-

ing blocks of modern Internet-scale services including databases

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547323

and web applications. Strong consistency (i.e., linearizability) is es-

pecially preferred by users for the ease of development and testing

it offers. As a case in point, the hugely popular S3 store from Ama-

zon Web Services (AWS), in essence a KV store with a GET/PUT

interface, was recently re-designed to switch its consistency model

from eventual to linearizable [72]. However, because of the inherent

lower bound in [12], linearizable KV stores inevitably incur signifi-

cant latency and cost overheads compared to weaker consistency

models such as causal and eventual consistency. These drawbacks

are particularly pronounced in the geo-distributed setting because

of the high inter-data center networking costs, and large network

latencies (see Table 2). To further exacerbate the problem, dynamic

phenomena such as shifts in arrival rates, appearance of clients

in new locations far from where data is stored, increase in net-

work delays, etc., can lead to gaps between predicted and actual

performance both in terms of costs and tail latencies.

We design LEGOStore, a geo-distributed linearizable KV store

(with the familiar GET/PUT or read/write API), meant for a global

user-base. LEGOStore procures its resources from a cloud provider’s

fleet of data centers (DCs) like many storage service providers [24,

56, 58]. Since an entire DC may become unavailable [27, 34, 58, 71],

LEGOStore employs redundancy across geo-distributed DCs to

operate despite such events. LEGOStore’s goal is to offer tail latency

service-level objectives (SLOs) that are predictable and robust in the

face of myriad sources of dynamism at a low cost. For achieving these

properties, LEGOStore is built upon the following three pillars:

1. Erasure Coding (EC) is a generalization of replication that

is more storage-efficient than replication for a given fault toler-

ance. A long line of research has helped establish EC’s efficacy

within a DC or for weaker consistency needs. However, EC’s effi-

cacy in the linearizable geo-distributed setting is relatively less well-

understood. Two recent works Giza [19] and Pando [67] demon-

strate some aspects of EC’s promise in the geo-distributed context.

In particular, because EC allows fragmenting the data and storing

it in a fault-tolerant manner, it leads to smaller storage costs and

(more importantly) smaller inter-DC networking costs. However,

the smaller-sized fragments inevitably require contacting more DCs

and, therefore, are thought to imply higher latencies in a first-order

estimation. By comprehensively exploring a wide gamut of work-

load features and SLOs, and careful design of the data placement

2201

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Storage and VM prices for the 9 GCP data centers that our prototype spans. We use custom VMs with 1 core and 1 GB of RAM from General-purpose
machine type family to run the LEGOStore’s servers and Standard provisioned space for its storage [30].

GCP data center location

Tokyo Sydney Singapore Frankfurt London Virginia São Paulo Los Angeles Oregon

Storage ($/GB.Month) 0.052 0.054 0.044 0.048 0.048 0.044 0.06 0.048 0.04
Virtual machine ($/hour) 0.0261 0.0283 0.0253 0.0262 0.0262 0.0226 0.0310 0.0248 0.0215

Table 2: Diverse RTTs and network pricing for 9 chosen GCP data centers. The RTTs are measured between VMs placed within the DCs; they would be higher if one
of the VMs were external to GCP but not by enough to change the outcome of our optimizer. For the same general recipient location, the outbound network prices
are sometimes higher if the recipient is located outside of GCP (egress pricing) but these prices exhibit a similar geographical diversity [31].

User location

Tokyo Sydney Singapore Frankfurt London Virginia São Paulo Los Angeles Oregon

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

n/w
price
($/GB)

L
at
en
cy

(m
s)

Tokyo - 2 0.15 115 0.12 70 0.12 226 0.12 218 0.12 148 0.12 253 0.12 100 0.12 90
Sydney 0.15 115 - 2 0.15 94 0.15 289 0.15 277 0.15 204 0.15 291 0.15 139 0.15 162
Singapore 0.09 72 0.15 94 - 2 0.09 202 0.09 203 0.09 214 0.09 319 0.09 165 0.09 166
Frankfurt 0.08 229 0.15 289 0.08 201 - 2 0.08 15 0.08 89 0.08 202 0.08 153 0.08 139
London 0.08 222 0.15 280 0.08 204 0.08 15 - 2 0.08 79 0.08 192 0.08 141 0.08 131
Virginia 0.08 146 0.15 204 0.08 214 0.08 90 0.08 79 - 2 0.08 116 0.08 68 0.08 58
São Paulo 0.08 252 0.15 292 0.08 317 0.08 202 0.08 192 0.08 117 - 1 0.08 155 0.08 172
Los Angeles 0.08 101 0.15 139 0.08 180 0.08 153 0.08 142 0.08 67 0.08 155 - 2 0.08 26G

C
P
d
at
a
ce
n
te
r

Oregon 0.08 95 0.15 164 0.08 165 0.08 142 0.08 131 0.08 58 0.08 173 0.08 26 - 2

and EC parameters through an optimization framework, LEGOStore

brings out the full potential of EC in the geo-distributed setting.

2. LEGOStore adaptsnonblocking, leaderless, quorumbased

linearizability protocols for both EC [16] and replication [9, 10].

When used with carefully optimized quorums, these protocols help

realize LEGOStore’s goal of predictable performance (i.e., meeting

latency SLOs with a very high likelihood as long as workload fea-

tures match their predicted values considered by our optimization).

A second important reason is that, when used in conjunction with

a well-designed resource autoscaling strategy, the latency resulting

from non-blocking protocols depends primarily on its inter-DC

latency and data transfer time components. This is in contrast with

the leader-based consensus used in Giza and Pando (see Figure 4).

While these works may be able to offer lower latencies for certain

workloads, they are susceptible to severe performance degradation

under concurrency-induced contention.

3. To offer robust SLOs in the face of dynamism, LEGOStore

implements an agile reconfiguration mechanism. LEGOStore

continually weighs the pros and cons of changing the configuration1

of a key or a group of keys via a cost-benefit analysis rooted in its

cost/performance modeling. If prompted by this analysis, it uses a

novel reconfiguration protocol to safely switch the configurations of

concerned keys without breaking linearizability. We have designed

this reconfiguration protocol carefully and specifically to work

alongside our GET/PUT protocols to keep its execution time small

which, in turn, allows us to limit the performance degradation

experienced by user requests issued during a reconfiguration.

1By the configuration of a key, we mean the following aspects of its placement: (i)
whether EC or replication is being used ; (ii) the EC parameters or replication degree
being used; and (iii) the DCs that comprise various quorums.

Contributions: We design LEGOStore, a cost-effective KV store

with predictable tail latency that adapts to dynamism. We develop

an optimization framework that, for a group of keys with similar

suitable workload features, takes as input these features, and public

cloud characteristics and determines configurations that satisfy

SLOs at minimal cost. The configuration choice involves selecting

one from a family of linearizability protocols, and the protocol pa-

rameters that can include the degree of redundancy, DC placement,

quorum sizes, and EC parameters. In this manner it selectively uses

EC for its better storage/networking costs when allowed by latency

goals, and uses replication otherwise. A key’s storage method may

change over time based on changes in workload features. We de-

velop a safe reconfiguration protocol, and an accompanying heuris-

tic cost/benefit analysis that allows LEGOStore to control costs by

dynamically adapting configurations.

We build a prototype LEGOStore system. We carry out extensive

evaluations using our optimizer and prototype spanning 9 Google

Cloud Platform (GCP) DCs. We get insights from our evaluation to

make suitable modeling and protocol design choices. Because of our

design, our prototype has close match with the performance pre-

dicted by the optimizer. Potential cost savings over baselines based

on state-of-the-art works such as SPANStore [75] and Pando [67]

range from moderate (5-20%) to significant (up to 60%). The most

significant cost savings emerge from carefully avoiding the use of

DCs with high outbound network prices. Our work offers a number

of general trends and insights relating workload and infrastructure

properties to cost-effective realization of linearizability. Some of

our findings are perhaps non-intuitive: (i) smaller EC-fragments do

not always lead to lower costs (Section 4.2.4); (ii) there exists a sig-

nificant asymmetry between GETs and PUTs in terms of costs, and

read-heavy workloads lead to different choices than write-heavy

2202

workloads (Section 4.2.3); (iii) we find scenarios where the optimizer

is able to exploit the lower costs of EC without a latency penalty

(Section 4.2.5); and (iv) even when a majority of the requests to a

key arise at a particular location, the DC near that location may

not necessarily be used for this key in our optimizer’s solution.

2 BACKGROUND

Public Cloud Latencies and Pricing: The lower bound of [11, 12]

implies that both GET and PUT operations in LEGOStore neces-

sarily involve inter-DC latencies and data transfers unlike with

weaker consistency models. The latencies between users and vari-

ous DCs of a public cloud provider span a large range. In Table 2

we depict our measurements of round-trip times (RTTs) between

pairs of DCs out of a set of 9 Google Cloud Platform (GCP) data

centers we use. The smallest RTTs are 15-20 msec while the largest

exceed 300 msec; RTTs between nodes within the same DC are

1-2 msec and pale in comparison. Similarly, the prices for storage,

computational, and network resources across DCs also exhibit ge-

ographical diversity as shown in Tables 1 and 2. This diversity is

the most prominent for data transfers—the cheapest per-byte trans-

fer is $0.08/GB (e.g., London to Tokyo), the costliest is $0.15/GB

(e.g., Sydney to Tokyo). LEGOStore’s design must carefully navigate

these sources of diversity to meet latency SLOs at minimum cost.

Our Choice of Consistent Storage Algorithms:Due to the lower

bound mentioned above, in leader-based protocols (e.g., Raft [53]),

for the geo-distributed scenario of interest to us, one round trip

time to the leader is inevitable. Using such leader-based protocols

can drive up latency when the workload is distributed over a wide

geographical area, and there is no leader node that is sufficiently

close to all DCs so as to satisfy the SLO requirements. Such a design

can also place excessive load on DCs that are more centrally located.

Therefore, as such, we choose algorithms with leaderless, quorum-

based protocols in our design and implementation. We describe

these protocols (ABD for replication and CAS for EC) next.

The ABD Algorithm:2 Let 𝑁 denote the degree of replication

(specifically, spanning 𝑁 separate DCs) being used for the key un-

der discussion. In the ABD algorithm, for a given key, each of the

nodes (i.e., DCs) stores a (tag, value) pair, where the tag is a (logical

timestamp, client ID) pair. The node replaces this tuple when it

receives a value with a higher tag from a client operation. The PUT

operation consists of two phases. The first phase, which involves a

logical-time query, requires responses from a quorum of 𝑞1 nodes,
and the second phase, which involves sending the new (tag, value)

pair requires acknowledgements from a quorum of 𝑞2 nodes. The
GET operation also consists of two phases. The first phase again

involves logical-time queries from a quorum of 𝑞1 nodes and deter-

mining the highest of these tags. The second “write-back” phase

sends the (tag, value) pair chosen from the first-phase responses

to a quorum of 𝑞2 nodes. If 𝑞1 + 𝑞2 > 𝑁 , then ABD guarantees

linearizability. If 𝑞1, 𝑞2 ≤ 𝑁 − 𝑓 , then operations terminate so long

as the number of node failures is at most 𝑓 . Note that this is a

stronger liveness guarantee as compared to Paxos; ABD circum-

vents FLP impossibility [26] because it implements a data type

(read/write memory) that is weaker than consensus (see also [52]

and Theorems 17.5, 17.9 in [47]). This liveness property translates

2The name “ABD” comes from the authors, Attya, Bar-Noy and Dolev [9, 10].

Table 3: Coarse cost comparison of replication (ABD) versus erasure coding
(CAS). Costs reported are per GET/PUT operation, and the per-server storage
cost. We assume that each value has 𝐵 bits and the metadata size is negligible.
All quorum sizes are assumed to be (𝑁 + 𝑘)/2 for CAS and (𝑁 + 1)/2 for ABD;
𝑁,𝑘 are assumed to be odd to ignore integer rounding. Latency is reported as
the number of round trips of the protocol.

PUT cost PUT latency GET cost GET latency Storage cost

CASa 𝑁𝐵
𝑘 3 rounds

(𝑁−𝐾)𝐵
2𝐾 2 rounds 𝛿 𝐵𝑘

ABDb 𝑁𝐵 2 rounds (𝑁 − 1)𝐵 2 rounds 1

aWith efficient garbage collection, 𝛿 can be kept small; it is equal to 1 for keys with
sufficiently low arrival rates.

bABD has a higher communication cost vs. CAS for GETs, even if 𝑘 = 1, since it
propagates values in the write-back phase, whereas CAS only propagates metadata.

into excellent robustness of operation latency (see Section 4.3). See

formal description of ABD in Appendix A of [82].

Whereas the above vanilla ABD requires two phases for all its

GET operations, a slight enhancement allows some (potentially

many) GET operations to complete in only one phase; we refer to

such a scenario as an “Optimized GET,” see details in [82].

Erasure Coding: Erasure coding (EC) is a generalization of repli-

cation that is attractive for modern storage systems because of its

potential cost savings over replication. An (𝑁,𝐾) Reed Solomon

Code stores a value over 𝑁 nodes, with each node storing a code-

word symbol of size 1/𝐾 of the original value, unlike replication

where each node stores the entire value. The value can be decoded

from any 𝐾 of the 𝑁 nodes, so the code tolerates up to 𝑓 = 𝑁 − 𝐾
failures. On the other hand, replication duplicates the data 𝑁 = 𝑓 +1
times to tolerate 𝑓 failures. For a fixed value of 𝑁 , EC leads to a

𝐾-fold reduction in storage cost compared to 𝑁 -way replication for

the same fault-tolerance. It also leads to a 𝐾-fold reduction in com-

munication cost for PUTs, which can be significant because of the

inter-DC network transfer pricing. While this suggests that costs

reduce with increasing 𝐾 , we will see that the actual dependence
of costs on 𝐾 in LEGOStore is far more complex (see Section 4.2.4).

In EC-based protocols, GET operations require 𝐾 > 1 nodes to

respond with codeword symbols for the same version of the key.

However, due to asynchrony, different nodes may store different

versions at a given time. Reconciling the different versions incurs

additional communication overheads for EC-based algorithms.

The CAS Algorithm: We use the coded atomic storage (CAS) algo-

rithm3 of [16, 17], described in Appendix B of [82]. In CAS, servers

store a list of triples, each consisting of a tag, a codeword symbol,

and a label that can be ‘pre’ or ‘fin’. The GET protocol operates

in two phases like ABD; however, PUT operates in three phases.

Similar to ABD, the first phase of PUT acquires the latest tag. The

second phase sends an encoded value to servers, and servers store

this symbol with a ‘pre’ label. The third phase propagates the ‘fin’ la-

bel to servers, and servers which receive it update the label for that

tag. The three phases of PUT require quorums of 𝑞1, 𝑞2, 𝑞3, resp.,
responses to complete. Servers respond to queries from GETs/PUTs

only with latest tag labeled ‘fin’ in their lists. A GET operates in

two phases, the first phase to acquire the highest tag labeled ‘fin’

and the second to acquire the chunks for that tag, decode the value

and do a write-back. The two phases of GET require responses

3The algorithm in Appendix B of [82] is a modification the algorithm in [16, 17] to allow
for flexible quorum sizes, which in turn this exposes more cost-saving opportunities.

2203

from quorums of size 𝑞1, 𝑞4, resp. In the write-back phase, CAS

only sends a ‘fin’ label with the tag, unlike ABD which sends the

entire value. In fact, the structural differences between ABD and

CAS protocols translates to lower communication costs for CAS

even if 𝑘 = 1 (i.e., replication) is used as compared to ABD, with the

penalty of incurring higher PUT latency due to the additional phase

(See Table 3). This variation between ABD and CAS offers LEGOS-

tore further flexibility in adapting to workloads as demonstrated in

Section 4.2. Similar to ABD, we also employ an "Optimized GET"

for CAS that enables some (potentially many) GET operations to

complete in only one phase. This optimized GET is based on a

client-side cache (recall a client is different from a user, cf. Sec-

tion 3) for the value computed in second phase of GET. LEGOStore

exploits these differences to reduce costs based on if the workload

is read- or write-intensive. On the server-side protocol, unlike ABD

where a server simply replaces a value with a higher tagged value,

CAS requires servers to store a history of the codeword symbols

corresponding to multiple versions, and then garbage collect (GC)

older versions at a later point. However, in practice, the overhead

is negligible for the workloads we study (see Appendix F in [82],

also remarks in Table 3.). The preliminary cost comparison of ABD

and CAS in Table 3 ignores several important aspects of practical

key-value stores, in particular the spatial diversity of pricing and

latency, flexibility of choosing quorum sizes and locations, and the

impact of arrival rates. Our paper refines the insights of Table 3 in

the context of LEGOStore (See Section 3.2 for details).

3 LEGOSTORE SYSTEM DESIGN

3.1 Interface and Components

LEGOStore is a linearizable key-value store spanning a set D of

𝐷 DCs of a public cloud provider.Applications using LEGOStore

("users") link the LEGOStore library that offers them an API com-

prising the following linearizable operations:

• CREATE(k,v): creates the key k using default configuration c (we
will define a configurationmomentarily) if it doesn’t already exist

and stores (k,c) in the local meta-data server (MDS); returns an

error if the key already exists.4

• GET(k): returns value for k if k exists; else returns an error.

• PUT(k,v): sets value of k to v; returns error if k doesn’t exist.

• DELETE(k): removes k; returns error if k doesn’t exist.

To service these operations, the library issues RPCs to a LEGOS-

tore "client" within a DC in D. A LEGOStore client implements the

client-end of LEGOStore’s consistency protocols. A user resident

within a DC in D would be assisted by a client within the same

DC. For users outside of D, a natural choice would be a client in

the nearest DC. The client assisting a user may change over time

(e.g., due to user movement) but only across operations. Since the

user-client delay is negligible compared to other RTTs involved in

request servicing (recall Table 2), we will ignore it in our modeling.

In order to service a GET or a PUT request for a key k, a client
first determines the "configuration" for k which consists of the

following elements: (i) replication or erasure coding to be used

(and, correspondingly, ABD or CAS); (ii) the DCs that comprise

4A default configuration uses the nearest DCs for various quorums in terms of their
RTTs from the client.

relevant quorums; and (iii) the identities of the LEGOStore "prox-

ies" within each of these DCs. Having obtained the configuration,

a client issues protocol-specific Remote Procedure Calls (RPCs)

to proxies in relevant quorums to service the user request. Each

DC’s proxy serves as the intermediary between the client and the

compute/storage servers that (a) implement the server-end of our

consistency protocols and (b) store actual data (replicas for ABD,

EC chunks for CAS) along with appropriate tags.

3.2 Finding Cost-Effective Configurations

We develop an optimization that determines cost-effective con-

figurations assuming perfect knowledge of workload and system

properties. Since our protocols operate at a per-key granularity due

to the composability of linearizability [36]—notice how the ABD

and CAS algorithms in Appendix A and B of [82] are described for

a generic key—we can decompose our datastore-wide optimization

into smaller optimization problems, one per key.5

Inputs (See Table 4): We assume that LEGOStore spans 𝐷 geo-

distributed DCs numbered 1, ..., 𝐷 . We assume that the following

are available at a per-key granularity: (i) overall request arrival rate;

(ii) geographical distribution of requests (specifically, fractions of

the overall arrival rate emerging in/near each DC); (iii) fraction

of requests that are GET operations; (iv) average object size and

meta-data6 size; (v) GET and PUT latency SLOs. We assume that

SLOs are in terms of 99𝑡ℎ percentile latencies. We assume that the

availability requirement is expressed via the single parameter 𝑓 >
0; LEGOStore must continue servicing requests despite up to 𝑓 DC
failures. The system properties considered in our formulation are:

(i) inter-DC latencies and prices for network traffic between clients

and servers; (ii) storage; (iii) computational resources in the form

of virtual machines (VMs).

Decision Variables: Our decision variables, as described at the

bottom of Table 4, help capture all aspects of a valid configuration.

These include: (i) boolean variable 𝑒𝑔 whether this key would be

served using ABD, and (ii) variables iq𝑘𝑔 which DCs constitute

various quorums that the chosen algorithm (2 and 4 quorums, resp.,

for ABD and CAS) requires (see variable 𝑖𝑞𝑘𝑔 in Table 4).

Optimization: Our optimization tries to minimize the cost of op-

erating key 𝑔 ∈ 𝐺 in the next epoch – a period of relative stability

in workload features. Our objective for key 𝑔 ∈ 𝐺 , which is cost

per unit time during the epoch being considered, is expressed as:

minimize
(
𝐶𝑔,𝑔𝑒𝑡 +𝐶𝑔,𝑝𝑢𝑡 +𝐶𝑔,𝑆𝑡𝑜𝑟𝑎𝑔𝑒 +𝐶𝑔,𝑉𝑀

)
s.t. (11) − (29) in Appendix C of [82].

(1)

The first two components of the objective with 𝑝𝑢𝑡 and 𝑔𝑒𝑡 in
their subscripts denote the networking costs per unit time of PUT

and GET operations, resp., for key 𝑔 while the last two denote costs
per unit time spent towards storage and computation, resp. The

details of the optimization are in Appendix C of [82], we reproduce

some representative constraints and equations here.

5Although we design our optimizer for individual keys, aggregating keys with similar
workload features and considering such a "group" of keys in the optimizer may be
useful (perhaps even necessary) for LEGOStore to scale to large number of keys.
6Meta-data transferred over the network can have non-negligible cost/latency im-
plications and that is what we explicitly capture. On the other hand, the storage of
meta-data contributes relatively negligibly to costs and we do not consider those costs.

2204

Table 4: Input and decision variables used by LEGOStore’s optimization.

Input Interpretation Type

𝐷 Number of data centers integer
D Set of data centers numbered 1, ..., 𝐷 set
𝑙𝑖 𝑗 Latency from DC 𝑖 to DC 𝑗 (RTT/2) real
𝐵𝑖 𝑗 Bandwidth between DC 𝑖 and DC 𝑗 real
G Set of keys set
𝜆𝑔 Aggregate request arrival rate for key 𝑔 ∈ G integer
𝜌𝑔 Read-write ratio for 𝑔 real [0,1]
𝛼𝑖𝑔 Fraction of requests originating at/near DC 𝑖 for key 𝑔 real
𝑜𝑔 Average object size, including protocol-specific meta-

data exchanged between a client and a server
integer

𝑜𝑚 Average protocol-specificmetadata exchanged between
a client and a server for each phase

integer

𝑙𝑔𝑒𝑡 GET latency SLO real
𝑙𝑝𝑢𝑡 PUT latency SLO real
𝑓 Availability requirement (i.e., number of failed DCs to

tolerate)
integer

𝑝𝑠𝑖 Storage price (per byte per unit time) for DC 𝑖 ∈ D real
𝑝𝑛𝑖 𝑗 Network price per byte from location 𝑖 to location 𝑗 real

𝑝𝑣𝑖 VM price at DC 𝑖 (simplifying assumption: all VMs of
a single size)

real

𝜃 𝑣 This quantity multiplied by the request arrival rate at
DC 𝑖 captures the VM capacity required at 𝑖

real

Var. Interpretation Type

𝑒𝑔 Protocol (0 for ABD, 1 for CAS) for key 𝑔 boolean
𝑚𝑔 Length of code (replication factor for ABD) integer
𝑘𝑔 Dimension of code (equals 1 for replication) integer

𝑞𝑖,𝑔 Quorum size for 𝑖th quorum of key 𝑔 integer
𝑣𝑖 Capacity of VMs at DC 𝑖 real

iq𝑘𝑔 Indicator for data placement for 𝑘 th quorum of key 𝑔.
𝑖𝑞𝑘𝑖 𝑗𝑔 = 1 iff DC 𝑗 in 𝑘 th quorum of clients in/near DC

𝑖

boolean

The networking cost per unit time of PUTs for key 𝑔 must be

represented differently based on whether ABD or CAS is used:

𝐶𝑔,𝑝𝑢𝑡 = 𝑒𝑔 ·𝐶𝑔,𝑝𝑢𝑡,𝐶𝐴𝑆︸������������︷︷������������︸
n/w cost if CAS chosen

+ (1 − 𝑒𝑔) ·𝐶𝑔,𝑝𝑢𝑡,𝐴𝐵𝐷︸��������������������︷︷��������������������︸
n/w cost if ABD chosen

, where,

𝐶𝑔,𝑝𝑢𝑡,𝐴𝐵𝐷 = (1 − 𝜌𝑔) · 𝜆𝑔

𝐷∑
𝑖=1

𝛼𝑖𝑔
(
𝑜𝑚

𝐷∑
𝑗=1

𝑝𝑛𝑗𝑖 · 𝑖𝑞
1
𝑖 𝑗𝑔

︸���������������︷︷���������������︸
n/w cost for phase 1

+

𝑜𝑔

𝐷∑
𝑘=1

𝑝𝑛𝑖𝑘 · 𝑖𝑞2𝑖𝑘𝑔

︸��������������︷︷��������������︸
n/w cost for phase 2

)
.

𝐶𝑔,𝑝𝑢𝑡,𝐶𝐴𝑆 = (1 − 𝜌𝑔) · 𝜆𝑔

𝐷∑
𝑖=1

𝛼𝑖𝑔
(
𝑜𝑚

(𝐷∑
𝑗=1

𝑝𝑛𝑗𝑖 · 𝑖𝑞
1
𝑖 𝑗𝑔

︸����������︷︷����������︸
phase 1

+

𝐷∑
𝑘=1

𝑝𝑛𝑖𝑘 · 𝑖𝑞3𝑖𝑘𝑔

︸�����������︷︷�����������︸
𝑝ℎ𝑎𝑠𝑒3

)
+
𝑜𝑔

𝑘𝑔

𝐷∑
𝑚=1

𝑝𝑛𝑖𝑚 · 𝑖𝑞2𝑖𝑚𝑔

︸������������������︷︷������������������︸
𝑝ℎ𝑎𝑠𝑒2

)
.

(2)

Note the role played by the key boolean decision variable 𝑖𝑞𝑘𝑖 𝑗𝑔
whose interpretation is: 𝑖𝑞𝑘𝑖 𝑗𝑔=1 iff data center 𝑗 is in the𝑘𝑡ℎ quorum

for clients in/near data center 𝑖 . In the above expressions, (1 − 𝜌𝑔) ·

𝜆𝑔 · 𝛼𝑖𝑔 captures the PUT request rate arising at/near data center 𝑖
and the 𝑜𝑚 and 𝑜𝑔 multipliers convert this into bytes per unit time.

The terms within the braces model the per-byte network transfer

prices. The first term represents network transfer prices that apply

to the first phase of the ABD PUT protocol whereas the second term

does the same for ABD PUT’s second phase. The term 𝑝𝑛𝑗𝑖 · 𝑖𝑞
1
𝑖 𝑗𝑔

should be understood as follows: since ABD’s first phase involves

clients in/near data center 𝑖 sending relatively small-sized write-

querymessages to all servers in their quorum (i.e., quorum 1, hence

the 1 in the superscript of 𝑖𝑞) followed by these servers responding

with their (tag, value) pairs, the subscript in 𝑝𝑛𝑗𝑖 is selected to denote

the price of data transfer from 𝑗 (for the server at data center 𝑗) to 𝑖
(for clients located in/near data center 𝑖).The network cost per unit

time for CAS is similar, with the number of phases being 3 and the

network cost savings offered by CAS reflected in phase 3, where

the value size 𝑜𝑔 is divided by the parameter 𝑘𝑔 . The networking
costs for GET are presented in Appendix C in [82].

The storage cost is modeled as: 𝐶𝑔,𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑝𝑠 ·
(
𝑒𝑔 ·𝑚𝑔 ·

𝑜𝑔
𝑘𝑔

+

(1− 𝑒𝑔) ·𝑚𝑔 ·𝑜𝑔
)
, see [82] for explanations. Finally, we consider the

VM costs per unit time for key 𝑔. Our assumptions on modeling

VM costs include: ability of procurement of VMs at fine granularity

(see, e.g., [29]) and VM autoscaling [13, 32] to ensure satisfactory

provisioning of VM capacity at each DC. We assume that this suit-

able VM capacity chosen by such an autoscaling policy is propor-

tional to the total request arrival rate at data center 𝑖 for key 𝑔.
With these assumptions, the VM cost for key 𝑔 at data center 𝑖 is:

𝐶𝑔,𝑉𝑀 = 𝜃 𝑣 ·
𝐷∑
𝑗=1

𝑝𝑣𝑗 ·𝜆𝑔+
𝐷∑
𝑖=1

𝛼𝑖𝑔+
4∑

𝑘=1
𝑖𝑞𝑘𝑖 𝑗𝑔,where 𝜃

𝑣 is an empirically

determined multiplier that estimates VM capacity needed to serve

the the request rate arriving at data center 𝑗 for 𝑔.
Constraints: Our optimization needs to capture the 3 types of

constraints related to: (i) ensuring linearizability; (ii) meeting avail-

ability guarantees corresponding to the parameter 𝑓 ; and (iii) meet-

ing latency SLOs. The key modeling choices we make are: (i) to

use worst-case latency as a "proxy" for tail latency; and (ii) ignore

latency contributors within a data center other than data trans-

fer time (e.g., queuing delays, encoding/ decoding time). For PUT

operations in CAS, the constraints are ∀𝑖, 𝑗, 𝑘 ∈ D,:

𝑖𝑞1𝑖 𝑗𝑔 ·
(
𝑙𝑖 𝑗 + 𝑙 𝑗𝑖 +

𝑜𝑚
𝐵 𝑗𝑖

)

︸�����������������������︷︷�����������������������︸
Latency of first phase of PUT

+ 𝑖𝑞2𝑖𝑚𝑔 ·
(
𝑙𝑖𝑚 +

𝑜𝑔/𝑘𝑔

𝐵𝑖𝑚
+ 𝑙𝑚𝑖

)

︸�����������������������������︷︷�����������������������������︸
Latency of second phase of PUT

+

𝑖𝑞3𝑖𝑘𝑔 ·
(
𝑙𝑖𝑘 +

𝑜𝑚
𝐵𝑖𝑘

+ 𝑙𝑘𝑖

)

︸������������������������︷︷������������������������︸
Latency of third phase of PUT

≤ 𝑙𝑝𝑢𝑡 .

(3)

See Appendix C in [82] for explanations, and for constraints for

PUT operations of ABD, and for GETs. Linearizability and avail-

ability targets manifest as constraints on quorum sizes.

3.3 How to Reconfigure?

LEGOStore uses a reconfiguration protocol that transitions cho-

sen keys from their old configurations to their new configurations

without violating linearizability. Unlike our approach, consensus-

based protocols such as Raft and Viewstamped Replication [44, 55],

2205

implement the key-value store as a log of commands applied se-

quentially to a replicated state machine. These solutions implement

reconfiguration by adding it as a special command to this log. Thus,

when a reconfiguration request is issued, the commands that are

issued before the reconfiguration request are first applied to the

state machine before executing the reconfiguration. To execute the

reconfiguration, the leader transfers the state to the new configura-

tion. After the transfer, it resumes handling of client commands that

are serialized after the reconfiguration request, but replicating the

state machine in the new configuration. While our approach does

not involve a replicated log7, it is possible to develop an approach

that inherits the essential idea of consensus-based reconfiguration

as follows: (i) On receiving a reconfiguration request, wait for all

ongoing operations to complete, and pause all new operations; (ii)

Perform the reconfiguration by transferring state from the old to

the new configurations; (iii) Resume all operations.

Under the reasonable assumption that reconfigurations of a given

key are performed relatively infrequently,8 our design goal is to

ensure that user performance is not degraded in the common case

where the configurations remain static. For this, it is crucial that user

operations that are not concurrent with reconfigurations follow the

baseline static protocols without requiring additional steps/phases

(such as contacting a controller). Our protocol does not assume

any special relation between the old and new configurations. It can

handle all types transitions, including changing of the replication

factor, EC parameters, quorum structure, and the protocol itself.

We wish to keep the number of communication phases as well as

the number of operations affected as small as possible. Towards this,

LEGOStore’s reconfiguration protocol improves upon steps (i)-(iii)

above. Reconfigurations are conducted by a controller that reads

data from the old configuration and transfers it to the new configu-

ration. On detecting a workload or system change (See Section 3.4

for details), the controller immediately performs the reconfigura-

tion without having to wait for all ongoing operations to complete,

i.e., without having to perform step (i). This enables LEGOStore to

adapt quickly to workload changes. Furthermore, steps (ii),(iii) are

conducted jointly through a single round of messaging. In particu-

lar, LEGOStore’s protocol integrates with the underlying protocols

of CAS and ABD and piggybacks the reconfiguration requests from

the controller along with the actions that read or transfer the data.

LEGOStore’s algorithm is provably linearizable (Appendix D of [82]),

and therefore, preserves the correctness of the overall data store.

The algorithm blocks certain concurrent operations and then re-

sumes them on completing the reconfiguration.

The reconfiguration protocol is described formally in Appendix

D of [82]. We assume that reconfigurations are applied sequentially

by the reconfiguration controller (or simply controller). The con-

troller sends a reconfig_query message to all the servers in the

old configuration. The reconfig_query message serves to both

signal a change in configuration, as well as an internal ‘get’ request

for the controller to read a consistent value in order to transfer it to

the new configuration. On receiving this message, the servers pause

7Rather than a replicated log, we simply have a replicated single read/write variable
per key, which is updated on receiving new values.
8More precisely, we assume that reconfigurations to a key are separated in time by
periods that are much longer (several minutes to hours or even longer) than the time
it takes to reconfigure (sub-second to a second, see measurements in Section 4.4).

all the ongoing operations and respond with the latest value if the

old configuration is performing ABD, or the highest tag labeled

‘fin’ if it is performing CAS. The controller waits for a quorum

to respond from the old configuration. If the old configuration

is performing CAS, then the reconfiguration controller sends a

reconfiguration_getmessage to servers in the old configuration

with the highest tag among the messages received from the quorum

(the quorum size is 𝑁 −𝑞2 + 1 if the old configuration is performing

ABD and 𝑁 −min(𝑞3, 𝑞4) + 1 if it is performing CAS). A server that

receives the reconfiguration_get message with tag 𝑡 sends a
codeword symbol corresponding to that tag, if it is available locally;

else it responds with an acknowledgement. The reconfiguration

controller then obtains responses from a quorum of𝑞4 messages and

decodes the value from the responses.The controller then proceeds

to write the (𝑡𝑎𝑔, 𝑣𝑎𝑙𝑢𝑒) pair to the new configuration, performing

encoding if the new configuration involves CAS. On completing

writing the value to the new configuration, the controller sends a

finish_reconfig message to servers in the old configuration. On

receiving these messages, the servers complete all operations with

tag less than or equal to 𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡 and send operation_fail mes-

sages along with information of new configuration to other pending

operations that were paused. On receiving operation_fail mes-

sages, the clients restart the operation in the new configuration.

3.4 When and What to Reconfigure?

At the heart of our strategy are these questions: (i) is a key config-

ured poorly for its current or upcoming workload? (ii) if yes, should

it be stored using a different configuration? While our discussion

focuses on workload dynamism, our ideas also apply to changes in

system/infrastructure properties.

Is a Key Configured Sub-Optimally? Some workload changes

can be predicted (e.g., cyclical temporal patterns or domain-specific

insights from users) while others can only be determined after

they have occurred. Generally speaking, a system such as LEGO-

Store would employ a combination of predictive and reactive ap-

proaches for detecting workload changes [13, 63, 69]. In this paper,

we pursue a purely reactive approach. We employ two types of

reactive rules that are indicative of a key being configured poorly:

• SLO violations: If SLO violations for a key are observed for more

than a threshold duration or during a window containing a thresh-

old number of requests, LEGOStore chooses to reconfigure it. Sec-

tion 4.4, 4.5 show that LEGOStore’s reconfiguration occurs within 1

sec; the threshold should be set sufficiently larger than this to avoid

harmful oscillatory behavior over-optimizing for transient phenom-

ena. If, in addition to SLO violations, some quorum members are

suspected of being slow or having failed, these nodes are removed

from consideration when determining the next configuration.

• Cost sub-optimality: Alternatively, a key’s configuration might

meet the SLO but the estimated running cost might exceed the

expected cost. We consider such sub-optimality to have occurred if

the observed cost exceeds modeled cost by more than a threshold

percentage as assessed over awindow of a certain duration.9 Having

determined the need for a change, LEGOStore reconfigures the key

based on our cost-benefit analysis described below.

9Detailed exploration of the impact of the thresholds on performance is future work.

2206

Should Such a Key be Reconfigured? For the case of SLO viola-

tions, LEGOStore will reconfigure as we consider SLO maintenance

to be sacrosanct. In the rest of the discussion, we focus on the

case of cost sub-optimality. We assume that such a key’s work-

load features can be predicted for the near term. In the absence of

such predictability—and this applies more generally to any similar

system—LEGOStore’s options are limited to using a state-of-the-art

latency-oriented optimization (see our baselines ABD Nearest and

CAS Nearest in Section 4.1) that is likely to be able to meet the SLO;

the impact of such a heuristic on cost is examined in Section 4.2.

Assuming predictability, LEGOStore computes the new config-

uration with the updated workload characteristics using the opti-

mization framework from Section 3.2. For an illustrative instance of

such decision-making, denote this newly computed configuration

as 𝑐𝑛𝑒𝑤 and the existing configuration as 𝑐𝑒𝑥𝑖𝑠𝑡 . Let us denote by
Cost(𝑐) the per time unit cost incurred when using configuration

𝑐 . We assume an additional predicted feature 𝑇𝑛𝑒𝑤 , the minimum

duration for which the predicted workload properties will endure

before changing. LEGOStore compares the cost involved in recon-

figuring with potential cost savings arising due to it. Reconfiguring

a key entails (a) explicit costs arising from the addtional data trans-

fer; and (b) implicit costs resulting from requests that are slowed

down or rejected. An evaluation (see Section 4.4 for details) of our

reconfiguration protocol suggests that the number of operations

experiencing slowdown is small. Therefore, we consider only (a).

LEGOStore’s cost-benefit analysis is simple. A reconfiguration to

𝑐𝑛𝑒𝑤 is carried out if the potential (minimum) cost savings 𝑇𝑛𝑒𝑤 ·(
Cost(𝑐𝑒𝑥𝑖𝑠𝑡)−Cost(𝑐𝑛𝑒𝑤)

)
significantly outweigh the explicit cost

of reconfiguration as captured by ReCost(𝑐𝑜𝑙𝑑 , 𝑐𝑒𝑥𝑖𝑠𝑡) · (1 + 𝛼).
ReCost(., .) is the cost of network transfer induced by our reconfig-
uration and its calculation involves ideas similar to those presented

in our optimizer (see Appendix C of [82]). The (1 + 𝛼) multiplier

(𝛼 > 0) serves to capture how aggressive or conservative LEGO-

Store wishes to be. The efficacy of our heuristics depends on the

predictability in workload features and the parameter 𝑇𝑛𝑒𝑤 .
Algorithms 1, 2 of [82] show that the time to complete a recon-

figuration (call it 𝑇𝑟𝑒) is largely dictated by the RTTs between the

controller and the servers farthest from it in the quorums involved

in various phases of the reconfiguration protocol. Figure 10 of [82]

highlights this period when both the old and the new configurations

use ABD.

4 EVALUATION

We implement a prototype LEGOStore on the Google Compute

Engine (GCE) public cloud and make the code for our prototype

as well as the optimizer available under the Apache license 2.0

at github.com/shahrooz1997/LEGOstore. Details of our prototype

implementation may be found in Appendix H of [82]. We evaluate

LEGOStore in terms of its ability to (i) lower costs compared to the

state-of-the-art; and (ii) meet latency SLOs. We use Porcupine [8]

for verifying linearizability of execution histories of our prototype.

To reproduce the artifacts, please refer to the LEGOStore repository.

4.1 Experimental Setup

Prototype Setup:We deploy our LEGOStore prototype across 9

Google Cloud Platform (GCP) DCs with locations, pairwise RTTs,

and resource pricing shown in Tables 1 and 2. We locate our users

within these data centers as well for the experiments. We conduct

extensive validation of the efficacy of the latency and cost modeling

underlying our optimizer (Appendix G.1 of [82]).

Workloads:Weemploy a custom-built workload10 generatorwhich

emulates a user application with an assumption that it sends re-

quests as per a Poisson process. We explore a large workload space

by systematically varying our workload parameters as follows.

• 3 per-key sizes in KB: (i) 1, (ii) 10, and (iii) 100;

• 3 per-key read ratios for high-read (HR), read-write (RW), and

high-write (HW) workloads, resp.: (i) 30:1, (ii) 1:1, and (iii) 1:30;

• 3 per-key arrival rates in requests/sec: (i) 50, (ii) 200, and (iii) 500;

• 3 sizes for the overall data: (i) 100 GB, (ii) 1 TB, and (iii) 10 TB.

• 7 different client distributions: (i) Oregon, (ii) Los Angeles, (iii)

Tokyo, (iv) Sydney, (v) Los Angeles and Oregon, (vi) Sydney and

Singapore, and (vii) Sydney and Tokyo.

This gives us a total of 567 diverse basic workloads for a given

availability target and latency SLO. Finally, we also vary the avail-

ability target (𝑓 =1 in this section and 𝑓 =2 in Appendix G of [82])

and latency SLO (in the range 200 ms—1 sec) in our experiments.

Additionally, we use the following customized workloads to explore

particular performance related phenomena: (i) a uniform client dis-

tribution across all 9 locations; (ii) workloads related to Figures 3-5;

we describe these in the text accompanying these figures. Finally,

while our exact metadata size varies slightly between ABD and

CAS, we round it up to an overestimated 100 B.

Baselines: We would like to compare LEGOStore’s efficacy to

the most important state-of-the-art approaches. To enable such

comparison, we construct the following baselines:

• ABD Fixed and CAS Fixed: These baselines use only ABD or

only CAS, respectively. The baseline employs either a fixed degree

of replication or a fixed set of CAS parameters. These parameter

values (3 for ABD and (5, 3) for CAS) are the ones chosen most

frequently by our optimizer across our large set of experiments

described in Section 4.2. For these fixed parameters, these baselines

pick the DCs with the smallest average network prices for their

quorums, where the average for a DC 𝑖 is calculated over the price

of transferring data to all user locations. A comparison with these

baselines demonstrates that merely knowing the right parameters

does not suffice—one must pick the actual DCs judiciously.

• ABD Nearest and CAS Nearest: These baselines also use only

ABD or only CAS. However, they do not a priori fix the degree of

replication or the EC parameters. Instead, we pick the optimized

value for each parameter and choose quorums that result in the

smallest latencies for the GET/PUT operations ignoring cost con-

cerns. They solve a variant of our optimizer where the objective

is latency minimization, expressions involving costs are not con-

sidered, and all other constraints are the same. These baselines

serve as representatives of existing works (e.g., Volley [4] and [62])

that primarily focus on latency reduction. While the baselines are

admittedly not as sophisticated as Volley, our results demonstrate

that unbridled focus on latency can lead to high costs.

• ABD Only Optimal and CAS Only Optimal: These are our

most sophisticated baselines meant to represent state-of-the-art

10We do not use an existing workload generator such as YCSB [79] because we wish
to explore a wider workload feature space than covered by available tools.

2207

(a) Latency SLO=1 sec. (b) Latency SLO=200 msec.

Figure 1: Cumulative count of the normalized cost of our baselines (for our 567 basic workloads) with 𝑓 = 1 and two extreme latency SLOs.

approaches. ABD Only Optimal and CAS Only Optimal are repre-

sentative of works that optimize replication-based systems such as

SPANStore [75] or EC-based systems such as Pando [67].

It is instructive to note that our baselines are quite powerful. In

fact, our optimizer picks the lower cost feasible solution among

ABD Only Optimal and CAS Only Optimal, so we expect at least

one of these baselines to be competitive for any given workload. Yet,

we will demonstrate that: (i) these baselines individually perform

poorly for many of our workloads; and (ii) the choice of which of

the two is better for a particular workload is highly non-trivial.

4.2 Insights from Our Optimization

4.2.1 The Extent and Nature of Cost Savings. In Figure 1, we express

our optimizer’s cost savings over our baselines via each baseline’s

normalized cost (cost offered by baseline / cost offered by our opti-

mizer); note that our optimizer has the lowest cost among all the

baselines, so this ratio is at least 1. We consider our collection of

567 basic workloads with 𝑓 =1 and (a) a relaxed SLO of 1 sec and

(b) a more stringent SLO of 200 msec. At least one of the baselines

- and consequently, our optimizer - meet the SLOs for all the 567

workloads chosen.We begin by contrasting the first-order strengths

and weaknesses of ABD and CAS as they are understood in con-

ventional wisdom. For the relatively relaxed latency SLO of 1 sec in

Figure 1(a), we find that ABD Only Optimal (and other ABD-based

variants) have more than twice the cost of our optimizer for more

than 300 (i.e, more than half) of our workloads. On the other hand,

CAS Only Optimal closely tracks our optimizer’s cost.That is, as

widely held, if high latencies are tolerable, EC can save storage and

networking costs. Figure 1(b), with its far more stringent SLO of 200

msec, confirms another aspect of conventional wisdom. CAS only

optimal is now simply unable to meet the SLO for many workloads

(324 out of 567). This is expected given its 3-phase PUT opera-

tions and larger quorums. (See similar results with 𝑓 =2 in Figure 12

of [82])). What is surprising, however, is that when we focus on the

subset of 243 workloads for which CAS Only Optimal is feasible,

it proves to be the cost-effective choice—nearly all workloads for

which CAS Only Optimal is feasible have a normalized cost of 1.

So, even for stringent SLOs, EC does hold the potential of saving

costs. Unlike in Figure 1(a), however, CAS Fixed or CAS Nearest

are nowhere close to being as effective as CAS Only Optimal. That

is, while EC can be cost-effective for these workloads, its quorums

need to be chosen carefully rather than via simple greedy heuris-

tics.11 Replication tends to be the less preferred choice for more

relaxed SLOs but, again, there are exceptions.

4.2.2 Sensitivity to Latency SLO. We focus on how the cost-efficacy

of ABD vs. CAS depends on the latency SLO by examining the entire

range of latencies from 50 msec to 1 sec. Furthermore, we separate

out this dependence based on read ratio, availability target and

object size. Our selected results are shown in Figure 2. As expected,

as one moves towards more relaxed SLOs, the optimizer’s choice

tends to shift from ABD to CAS (recall the 3-phase PUTs and larger

quorums in CAS). The complexity that the figures bring out is when

this transition from replication to EC occurs—we see that, depend-

ing on workload features, this transition may never occur (e.g., HW

in Figure 2(a)) or may occur at a relatively high latency (e.g., at 575

msec for the uniform user distribution for RW/HR).12 In particular,

more spatially distributed workloads correspond to a tendency to

choose replication over EC; for instance, for workloads with uni-

formly distributed users, SLOs smaller than 300 msec are infeasible

due to a natural lower bound implied by the inter-DC latencies. We

find that 𝑓 also has a complex impact on the optimizer’s choice; see

results with 𝑓 =2 in Figure 13, Appendix G in [82].

4.2.3 Read- vs. Write-Intensive Workloads. One phenomenon that

visibly stands out in Figure 2 is how write-intensive workloads for

the relatively small object sizes (HW in Figure 2(a)) prefer ABD

even for the more relaxed SLOs. This preference of ABD over CAS

becomes less pronounced when we increase the object size to 10KB

in Figure 2(b). Finally, we also observe that read-intensive/moderate

workloads tend to prefer CAS (𝐾=1) over ABD, even when replica-

tion is used. To understand this asymmetry, note the following:

•Reads:Whereas both ABD and CAS have a “write-back” phase for

read operations, ABD’s write-back phase carries data, while CAS’s

only carries metadata, and thereby incurs much lower network cost.

Thus, our optimizer tends to prefer CAS for HR workloads.

• Writes: For writes, CAS involves 3 phases whereas ABD only

requires 2. Since each phase incurs an additional overhead in terms

of metadata, the metadata costs for write operations are higher for

11As a further nuance, only 3 workloads out of 243 use CAS with 𝑘=1.
12The reader might be intrigued by the portions of Figure 2 highlighted using ovals.
Here, our optimizer’s choice shifts from ABD to CAS as the latency SLO is relaxed (as
expected) but then it shifts back to ABD!We consider this to be a quirk of the heuristics
embedded in our optimizer rather than a fundamental property of the optimal solution.

2208

HW RW HR HW RW HR

(a)Object Size = 1KB (b)Object Size = 10KB

Figure 2: Sensitivity of the optimizer’s choice to the latency SLO. We consider 2 object sizes (1KB and 10KB), 8 different client distributions, arrival rate=500 req/sec,
and 𝑓 =1. We consider 3 different read ratios (HW, RW, HR defined in Section 4.1).

CAS. Therefore, especially for small object sizes (Figure 2(a)) and

write-heavy workloads, our optimizer will tend to prefer ABD.

Collectively, the results in Figure 2 convey the significant com-

plexity of choosing between ABD and CAS. Within CAS-friendly

workloads, there is further substantial complexity in how the pa-

rameter 𝐾 depends on workload features.

4.2.4 Factors Affecting Optimal Code Dimension 𝐾 . We illustrate

our findings using the representative results in Figure 3(a)-(c) based

on a workload with the following features for which CAS is the

cost-effective choice: object size=1KB; datastore size=1TB; arrival

rate=200 req/sec; read ratio= RW (50%); user locations are Sydney

and Tokyo; latency SLO=1 sec. To understand the effects in Fig-

ure 3(a)-(c), we develop a simple analytical model based on the

empirical results (details in Appendix E, [82]). Our model relates

cost to 𝐾 , object size (𝑜), arrival rate (𝜆), and 𝑓 as follows:

𝑐𝑜𝑠𝑡 =
(
𝑐1 · 𝜆 · 𝐾 + 𝑐2 · 𝑜 · 𝜆 ·

𝑓

𝐾
+ 𝑐3 · 𝑜 ·

2𝑓

𝐾
+ 𝑐4

)
. (4)

Here, 𝑐1, 𝑐2, 𝑐3 are system-specific constants VM cost, network cost,

and storage cost, respectively13. Our model captures and helps

understand the non-monotonicity of cost in 𝐾 seen in Figure 3(a).

This behavior emerges because the following cost components

move in opposite directions with growing 𝐾 : network and storage

costs decrease due to reduction in object size, while VM costs in-

crease due to increase in quorum sizes. Fundamentally, this implies

that even under very relaxed latency constraints, the highest value

of 𝐾 is not necessarily optimal (contrary to the coarse analysis

of Table 3). Our model yields the following optimal value of 𝐾 :

𝐾𝑜𝑝𝑡 =
√
𝑜 ·𝑓 · (𝑐2 ·𝜆+2𝑐3)

𝑐1 ·𝜆
. Observe that 𝐾𝑜𝑝𝑡 increases with object

size14, which is in agreement with Figure 3(b). We observe a similar

qualitative match between our model-predicted dependence of𝐾𝑜𝑝𝑡
on arrival rate and that in Figure 3(c). 𝐾𝑜𝑝𝑡 is a decreasing function
of the arrival rate 𝜆, and saturates to a constant 𝐾∗ when 𝜆 → ∞,
i.e., when the storage cost becomes a negligible component of the

13𝑐4 is a constant and does not affect 𝐾𝑜𝑝𝑡 .
14A qualification to note is that the phenomenon is connected to our modeling choice
of having VM cost independent of the object size 𝑜 . E.g., if the VM cost were chosen
as an affine function of 𝑜 , then the dependence of 𝐾𝑜𝑝𝑡 on 𝑜 would diminish.

overall cost. Interestingly, even for 𝜆 → ∞, the system does not

revert to replication, i.e., 𝐾∗ is not necessarily 1.

4.2.5 Does EC Necessarily Have Higher Latency Than Replication?

Conventional wisdom dictates that EC has lower costs than replica-

tion but suffers from higher latency. We show that perhaps surpris-

ingly, this insight does not always lead to the right choices in the

geo-distributed setting. Note that for a linearizable store, requests

cannot be local [12], and so even with replication, requests need to

contact multiple DCs and the overall latency corresponds to the re-

sponse time of the farthest DC. Thus, in a geo-distributed scenario

where there are multiple DCs at similar distances as the farthest

DC in a replication-based system, EC can offer comparable latency

at a lower cost. Our optimizer corroborates this insight. Consider a

workload where requests to a million objects of 1 KB come from

users in Tokyo. The workload is HR (read ratio of 97%) with an

arrival rate of 500 req/sec. To tolerate 𝑓 =1 failure, the lowest GET
latency achievable via ABD is 139 msec at a cost of $1.057 per hour,
whereas using CAS achieves a GET latency of 160 msec at a cost of

$0.704 per hour - a cost saving of 33% for a mere 21 msec of latency

gap. To tolerate 𝑓 =2 failures for the same workload, the lowest GET

latency with ABD is 180 msec at a cost of $1.254 per hour, whereas
CAS offers a GET latency of 190 msec at a cost of $0.773 per hour -
38% lower cost for a mere 10 msec latency increase.

4.2.6 Are Nearest DCs Always the Right Choice? Our optimizer

reveals that, perhaps surprisingly, the naturally appealing approach

of using DCs nearest to user locations [4] can lead to wasted costs.

We describe one such finding in Appendix G.2 of [82].

4.3 Scalable Concurrency Handling

A distinguishing feature of LEGOStore is that it is designed to

provide reliable tail latency even in the face of highly concurrent

access to a key. For consensus-based protocols that apply operations

sequentially to a replicated state machines one after another, even

in the optimistic case where all operations are issued at a leader

that does not fail, the latency is expected to grow linearly with

the amount of concurrency. Furthermore, in distributed consensus,

due to FLP impossibility [26], concurrent operations may endure

several (in theory, unbounded) rounds of communication.

2209

(a) (b) (c)

Figure 3: For CAS-based solutions, cost is non-monotonic in 𝐾 and 𝐾𝑜𝑝𝑡 has a complex relation with object size and arrival rate. Latency SLO is 1 sec.

(a) Read ratio=50%. (b) Read ratio=3.2%.

Figure 4: LEGOStore is able to ensure that latency offered to a key is robust
even at for highly concurrent accesses. Here we plot the latency experienced
by clients at the Tokyo location for arrival rates in [20-100] req/sec.

To validate our expectation of robust tail latency even under

high concurrency, we increase the arrival rate for the same key

with object size 1 KB. The object is configured to use CAS(5, 3) with

DCs in Singapore, Frankfurt, Virginia, California, and Oregon. In

particular, requests from uniformly-distributed user locations come

to the single key. We run the experiments for both HW and RW

for a period of 1 minute for each arrival rate. We plot the latency

experienced by clients at the Tokyo location against arrival rate in

Figure 4. LEGOStore demonstrates a remarkable robustness of the

latency of operations. Even for an arrival rate of 100 req/sec to the

same key, every operation completes and we see no degradation

in performance for the average and tail latencies. We recorded a

maximum concurrency of 142 write operations on one key for an

arrival rate of 100 req/sec and 30:1 write ratio. Little’s law suggests

an average concurrency of around 60 operations for this experiment.

Note the contrast with consensus-based protocols, where the tail

latency is crucially dependent on limited concurrency for a given

key. E.g., in [67] Figure 13, evenwith somewhat limited concurrency,

the latency of only “successful” writes can grow up to 30s without

leader fallback, and at least doubles with leader fallback.

The similarity of the latency in Figure 4(b) which has a HWwork-

load as compared with the RW workload in Figure 4(a) indicates

that our latencies remain robust even if the workload is write heavy.

It is also worth noting that Figure 4 is a further corroboration of the

robustness of our modeling in Section 3.2. Specifically, our model

ignores intra-DC phenomena such as queuing, and the robustness

of latency despite a high arrival rate shows the overwhelming sig-

nificance of the inter-DC RTTs in determining response times.

4.4 Reconfiguration to Handle Load Change

In this subsection and the next, we explore LEGOStore’s ability

to perform fast reconfiguration in line with the expectations set

in Section 3.3. We consider a set of 20 keys with similar work-

loads, each with an object size of 1 KB and 𝑓 =1 to which RW (i.e.,

read ratio of 50%) requests arrive from 4 locations with the follow-

ing distribution: Tokyo (30%), Sydney (30%), Singapore (30%), and

Frankfurt (10%). Each user issues one request every 2 seconds on

average. Our latency SLOs are 700 msec and 800 msec for GETs

and PUTs, respectively. As seen in Figure 5, till 𝑡=200 sec, requests
arrive at a total rate of 100 req/sec (i.e., 200 users) from the 4 lo-

cations. LEGOStore employs configurations with CAS(5,3) for our

keys with DCs in Tokyo, Sydney, Singapore, Virginia, and Oregon.

The figure plots the latency experienced by users at Sydney and

Frankfurt; users at Singapore and Tokyo experience similar SLO

adherence. LEGOStore successfully meets SLOs. In fact, a small

number of GET requests (shown using a right-facing arrow) see su-

perior performance as they are "optimized" GETs (recall Section 2).

At 𝑡=200 sec, the collective request arrival rate increases 4-fold to

400 req/sec (i.e., 800 users) while all other workload features remain

unchanged. We assume that the controller located at LA issues a

reconfiguration without delay on detecting this workload change.

For the new workload, LEGOStore’s optimizer recommends a new

configuration performing ABDwith replication factor of 3 over DCs

in Tokyo, Sydney, and Singapore. Across multiple measurements,

we find that reconfiguration concludes in less than 1 sec. The break-

down of overall reconfiguration for a sample instance that takes

717 msec is: (i) reconfig query=68 msec; (ii) reconfig finalize=208

msec; (iii) reconfig write=139 msec; (iv) updating metadata=163;

and (v) reconfig finish=139 msec.

We examine user experience during and in the immediate after-

math of reconfiguration. We show the latencies experienced by all

the users each at the Sydney and Frankfurt locations to isolate the

performance degradation experienced at each user location more

clearly.A user request experiences one of two types of degradation

which mainly depends on when it arrives in relation to the recon-

figuration. Type (i) A small number of requests (small due to how

quick the reconfiguration is) is blocked at the old configuration

servers with the possibility of either getting eventually serviced

by these old servers or having to restart in the new configuration

(see Section 3.3). These are the requests experiencing latencies in

the 750 msec - 1 sec range and highlighted using boxes for the

GET requests. Type (ii) A second possibility applies to all other

requests that do not get blocked at the old configuration servers.

These requests incur an additional delay of about 200 msec (users in

Sydney) and 250 msec (Frankfurt) to acquire the new configuration

from LA and are shown using an ovals for the GET requests. This

2210

CAS(5,3) ABD(3) CAS(4,2)

(a) GET operations.

CAS(5,3) ABD(3) CAS(4,2)

(b) PUT operations.

Figure 5: The efficacy and performance impact of two reconfigurations is shown for one of 20 keys with similar workloads. The first reconfiguration occurs in
response to a 4-fold increase in request arrival rate at 𝑡=200 sec. The second reconfiguration occurs at 𝑡=400 sec in response to the Singapore DC failing at 𝑡=360
sec. The arrows show the optimized GET operations while the squares and ovals respectively highlight two types of performance degradation associated with
reconfiguration: (i) requests blocked in the old configuration, and (ii) first request issued by a user after the reconfiguration which needs to acquire the new
configuration from the controller at LA. The different colors for the latency dots represent different users.

Figure 6: The efficacy and performance impact of a reconfiguration (at t=10
min) is shown for a key that we derive from the Wikipedia dataset.

increase in latency happens because the users do not know that a

reconfiguration has occurred and try to do an operation with the

old configuration, e.g., see requests at 𝑡 ∼ 200 sec experiencing a

slight degradation among GET operations from Sydney users.

4.5 Reconfiguration to Handle DC Failure

When a DC in one of the quorums fails, LEGOStore will send the

request to all other DCs participating in the configuration that

are not in the quorum. This will in general be sub-optimal cost-

wise and may also fail to meet the SLO. In Appendix G.3 Figure 11

in [82], we show a sample result where a DC failure results in

such SLO violation. To alleviate this, upon detecting a failure,15

LEGOStore invokes its optimizer to determine a new cost-effective

configuration that discounts the failed DC and then transitions

to this new configuration. Figure 5 depicts a scenario where the

Singapore DC, a member of both ABD quorums, fails at 𝑡=360
sec. We assume that this failure is detected and remediated via

a transition to a new configuration using CAS(4,2) at 𝑡=400 sec.

Again, we find that the transition occurs within a second and has

a small adverse impact on request latency— most requests whose

latency exceeds the SLO are of the unavoidable Type (ii).

15LEGOStore can work with any existing approach for failure detection.

4.6 LEGOStore for a Real-World Workload

In this subsection, we construct our workload using a publicly avail-

able dataset collected from Wikipedia’s web server [68]. This is a

read-mostly workload with a highly skewed popularity distribu-

tion. We extract arrival time and request size information from the

dataset and interpret each request as a GET or a PUT based on

its type. We sample a set of 1550 distinct objects (each interpreted

as a key) from the dataset whose aggregate arrival rate can be ac-

commodated by our prototype. We consider workload features for

this set of keys over two 1-hour long periods (call these 𝑇1 and 𝑇2).
Since the workload itself does not reveal a distribution of clients,

we assume a uniform distribution of clients among 5 of our DCs

(Tokyo, Sydney, Singapore, Frankfurt, London) for 𝑇1 and a uni-

form distribution among all 9 DCs for 𝑇2. We use our optimizer to

determine cost-effective configurations for each of these keys for

both of our 1-hour periods. We choose a latency SLO of 750 msec.

Our findings demonstrate that LEGOStore offers cost savings

over baselines for the Wikipedia workload. We compare the cost

offered by the optimizer against our various baselines for all of the

1550 keys in Figure 15 of [82]. Even for a fixed duration, the results

highlight the importance of the optimizer as a variety of different

configurations are chosen for different objects - this includes both

replication and CAS and different parameters for CAS. Further, with

change in client distribution for a given key, LEGOStore’s reconfig-

uration and optimizer couple to ensure sustained cost effectiveness

and improvement over baselines. In Figure 6, we highlight an illus-

trative key’s performance in our LEGOStore prototype over a 20

minute period with the first 10 minutes from 𝑇1 and the second 10

minutes from 𝑇2. The arrival rate to this key changes from 16 to

35 req/sec.Our optimizer chooses CAS (m=5, k=1) for 𝑇1 and CAS

(m=8, k=1) for 𝑇2. The latter yields a 20% cost reduction over the

former and triggers a reconfiguration. Figure 6 is centered around

the reconfiguration LEGOStore carries out for this key at t=10 min.

Similar to earlier experiments, our prototype accomplishes the re-

configuration within 1.96 seconds with an increase in response

times for a small number of requests during the reconfiguration.

We find that our optimizer, itself executed on public cloud VMs,

contributes negligibly to the operational cost of LEGOStore. As an

2211

illustrative calculation, for the workload in this section we consider

extremely frequent reconfigurations occurring once every 5 min-

utes for the key with the highest arrival rate of 20.16 req/sec. Each

invocation of our optimizer costs about $0.0001 on average (the

average optimizer execution time is 18 sec, see Appendix H). This

turns out to be a mere 0.48% the overall costs for this key.

5 RELATEDWORK

EC Based Data Storage: Several papers have studied the design

of in-memory KV stores [2, 18, 22, 45, 57, 60, 74, 77, 84]. A sig-

nificant body of work focuses on minimizing repair costs and en-

coding/decoding [14, 22, 41–43, 49, 65, 70, 73, 76, 78, 80]. The cost

savings offered by EC have motivated its use particularly in produc-

tion archival (i.e., write-once/rarely) systems [38, 50]. These papers

do not focus on consistency aspects that are relevant to workloads

with both reads and writes, nor do they study the geo-distributed

setting; therefore, the key factors governing their performance are

different from us. Strongly consistent EC-based algorithms and KV

stores are developed in [1, 21, 23, 35, 59]; however, none of these

works study the geo-distributed setting or the public cloud.

Strongly Consistent Geo-Distributed Storage: There are several

strongly consistent geo-distributed KV stores [19, 20, 33, 67, 75, 83].

SpanStore [75] develops an optimization to minimize costs while

satisfying latencies for a strongly consistent geo-distributed store

on the public cloud. While there are several technical differences

(e.g., SpanStore uses a blocking protocol via locks), the most im-

portant advance made by LEGOStore is its integration of EC into

the picture. Besides tuning EC parameters, LEGOStore integrates

the constraints of structurally more complex EC-based protocols to

enable cost savings. Most closely related to our work are Giza [19]

and Pando [67], which are both strongly consistent EC-based geo-

distributed data stores. Both data stores modify consensus protocols

(Paxos and Fast Paxos) to utilize EC and minimize latency. The most

notable difference between these works and LEGOStore is that LEGO-

Store is designed to keep tail latency predictable and robust and

keep costs low in the face of dynamism. Since Giza and Pando are

based on consensus, they will tend to have higher latency under

concurrent writes, e.g., for hot objects with high arrival rates. Fur-

thermore, neither Pando nor Giza have an explicit reconfiguration

algorithm. On the other hand, since Giza and Pando use consensus,

they offer more complex primitives such as Read-Modify-Writes

and versioned objects. A noteworthy comparison point vs. Giza is

that it does not operate in the public cloud and does not contain an

optimization framework for cost minimization.

Reconfiguration: There is a growing body of work that develops

non-blocking algorithms for reconfiguration [6, 51]. Algorithms

in [6, 51] require an additional phase of a client to contact a con-

troller/configuration service in the critical path of every operation.

In LEGOStore, for the common case of operations that are not con-

current with a reconfiguration, the number of phases (and therefore

the latency, costs) are identical to the baseline static protocol. Our

algorithm has a resemblance to an adaptation of [46] in the tutorial

[5]. That algorithmworksmainly for replication and requires clients

to propagate values to the new configuration rather than the con-

troller, which can incur larger costs. Our reconfiguration algorithm

utilizes concepts/structures that appear in previous algorithms; our
main contribution is to adapt the existing algorithms specifically to

ABD and CAS in order to keep the reconfiguration latency/costs low

and predictable. In particular, our algorithm piggybacks read/write

requests for the reconfiguration along with messages that are sent

to block ongoing operations, and makes careful choices on oper-

ations that can be completed in older configurations to provably

ensure linearizability. Several works [4, 7, 62] design heuristics to

determine when and which objects to reconfigure. Sharov et. al [62]

give a method for optimizing the configuration of quorum-based

replication schemes, including the placement of the leaders and

replica locations for read and write operations as well as transac-

tions. The paper shares conceptual similarities with LEGOStore’s

optimization, but was limited to replication-based schemes and

focused solely on minimizing latency for placement, whereas we

focus on erasure-coded schemes and include costs in our placement

decisions; on the other hand, our methods do not readily apply to

systems that support transactions. A similar comparison applies

to the replication-oriented optimizers described in [3, 28, 81]. Vol-

ley [4] describes techniques for dynamically migrating data among

Microsoft’s geo-distributed data centers to keep content closer to

users and keeping server loads well-balanced.

Data Placement and Optimization for Public Cloud: There is a

rich area of data placement and tuning of consistency parameters for

replication based geo-distributed stores [2, 7, 39, 48, 61, 64, 66, 75].

These works expose the role of diverse workloads and costs in

system design, and our optimization framework is inspired by this

body of work. However, most of these references [7, 39, 61, 66, 75]

only consider replication. Reference [2] studied placement and

parameter optimization for EC within a DC; while some insights

are qualitatively similar, our geo-distributed setting along with

its diversity makes the salient factors that govern performance

different. From an optimization viewpoint, closest are [48, 64] which

study EC over geo-distributed public clouds; however, they do not

consider consistency and related quorums constraints and costs.

6 CONCLUSION

We developed LEGOStore, a linearizable geo-distributed key-value

store which procured resources from a public cloud provider. LEGO-

Store’s goal was to offer tail latency SLOs that were predictable and

robust in the face of dynamism. We focused on salient aspects of

EC’s benefits for LEGOStore. Several additional aspects of key-value

store design constitute interesting future directions. For instance,

LEGOStore’s effectiveness depends on a module that detects work-

load change and then reconfigures based on the detected changes.

Additionally, we focused on read/write operations and have not

implemented read/modify/write (RMW) operations [40], which in-

evitably suffer from less robust tail-latency due to FLP impossibility.

The recent paper Gryff [15] designs a provably strongly consistent

data store with RMW operations and yet provides the favorable

tail-latency properties of ABD for read and write operations. Gryff

is based on replication, and the development of a similar system

that uses EC is an interesting area of future research.

ACKNOWLEDGEMENTS

This work was supported in part by a Google Faculty Award, and

the NSF under grants CCF- 1553248 and CNS-1717571. We thank

Raj Pandey for his help in Section 4.6.

2212

REFERENCES
[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,

and Jay J. Wylie. 2005. Fault-Scalable Byzantine Fault-Tolerant Services. SIGOPS
Oper. Syst. Rev. 39, 5 (oct 2005), 59–74. https://doi.org/10.1145/1095809.1095817

[2] M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian. 2018. EC-Store: Bridging the
Gap between Storage and Latency in Distributed Erasure Coded Systems. In 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE Computer Society, Los Alamitos, CA, USA, 255–266. https://doi.org/10.
1109/ICDCS.2018.00034

[3] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. MorphoSys:
Automatic Physical Design Metamorphosis for Distributed Database Systems.
Proc. VLDB Endow. 13, 13 (sep 2020), 3573–3587. https://doi.org/10.14778/3424573.
3424578

[4] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and
Harbinder Bhogan. 2010. Volley: Automated Data Placement for Geo-Distributed
Cloud Services. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation (San Jose, California) (NSDI’10). USENIX Association,
USA, 2.

[5] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexan-
der Shraer. 2010. Reconfiguring Replicated Atomic Storage: A Tutorial. Bul-
letin of the EATCS: The Distributed Computing Column 102 (October 2010), 84–
108. https://www.microsoft.com/en-us/research/publication/reconfiguring-
replicated-atomic-storage-a-tutorial/

[6] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. 2011.
Dynamic Atomic Storage without Consensus. J. ACM 58, 2, Article 7 (apr 2011),
32 pages. https://doi.org/10.1145/1944345.1944348

[7] Masoud Saeida Ardekani and Douglas B. Terry. 2014. A Self-Configurable Geo-
Replicated Cloud Storage System. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 367–381. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/ardekani

[8] Anish Athalye. 2017. Porcupine: A fast linearizability checker in Go. https:
//github.com/anishathalye/porcupine (branch: master), (gathered data dates:
11/01/2021 and 04/14/2022).

[9] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1990. Sharing Memory Robustly
in Message-Passing Systems. In Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing (Quebec City, Quebec, Canada) (PODC
’90). Association for Computing Machinery, New York, NY, USA, 363–375. https:
//doi.org/10.1145/93385.93441

[10] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly
in Message-Passing Systems. J. ACM 42, 1 (Jan 1995), 124–142. https://doi.org/
10.1145/200836.200869

[11] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

[12] Hagit Attiya and Jennifer L. Welch. 1994. Sequential Consistency versus
Linearizability. ACM Trans. Comput. Syst. 12, 2 (may 1994), 91–122. https:
//doi.org/10.1145/176575.176576

[13] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. 2019. BurScale:
Using Burstable Instances for Cost-Effective Autoscaling in the Public Cloud. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 126–138.
https://doi.org/10.1145/3357223.3362706

[14] Yunren Bai, Zihan Xu, Haixia Wang, and Dongsheng Wang. 2019. Fast Recovery
Techniques for Erasure-Coded Clusters in Non-Uniform Traffic Network. In
Proceedings of the 48th International Conference on Parallel Processing (Kyoto,
Japan) (ICPP 2019). Association for Computing Machinery, New York, NY, USA,
Article 61, 10 pages. https://doi.org/10.1145/3337821.3337831

[15] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying Con-
sensus and Shared Registers. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
591–617. https://www.usenix.org/conference/nsdi20/presentation/burke

[16] Viveck R Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. 2017. A
coded shared atomic memory algorithm for message passing architectures. Dis-
tributed Computing 30, 1 (2017), 49–73.

[17] Viveck R. Cadambe, Nancy Lynch, Muriel Médard, and Peter Musial. 2014. A
Coded Shared Atomic Memory Algorithm for Message Passing Architectures. In
2014 IEEE 13th International Symposium on Network Computing and Applications
(NCA). IEEE Computer Society, Los Alamitos, CA, USA, 253–260. https://doi.
org/10.1109/NCA.2014.44

[18] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo Wang, Yubin Xia, Haibing
Guan, and Binyu Zang. 2017. Efficient and Available In-Memory KV-Store with
Hybrid Erasure Coding and Replication. ACM Trans. Storage 13, 3, Article 25
(sep 2017), 30 pages. https://doi.org/10.1145/3129900

[19] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus, and Dou-
glas Phillips. 2017. Giza: Erasure Coding Objects across Global Data Centers. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 539–551. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/chen-yu-lin

[20] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.

[21] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and
Marko Vukolić. 2013. PoWerStore: Proofs of Writing for Efficient and Robust
Storage. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Com-
munications Security (Berlin, Germany) (CCS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 285–298. https://doi.org/10.1145/2508859.2516750

[22] S. Duan, P. Subedi, K. Teranishi, P. Davis, H. Kolla, M. Gamell, and M. Parashar.
2018. Scalable Data Resilience for In-memory Data Staging. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 105–115. https://doi.org/10.1109/IPDPS.2018.00021

[23] Partha Dutta, Rachid Guerraoui, and Ron R. Levy. 2008. Optimistic Erasure-
Coded Distributed Storage. In Distributed Computing, Gadi Taubenfeld (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 182–196.

[24] Evernote. 2021. Evernote. https://evernote.com.
[25] Facebook. 2021. RocksDB: A Persistent Key-Value Store for Flash and RAM

Storage. https://github.com/facebook/rocksdb.
[26] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility

of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (apr 1985),
374–382. https://doi.org/10.1145/3149.214121

[27] Mary Jo Foley. 2020. Microsoft’s March 3 Azure East US outage: What went
wrong (or right)? https://www.zdnet.com/article/microsofts-march-3-azure-
east-us-outage-what-went-wrong-or-right/ (visited on 05/05/2021).

[28] Brad Glasbergen, Michael Abebe, and Khuzaima Daudjee. 2018. Tutorial: Adap-
tive Replication and Partitioning in Data Systems. In Proceedings of the 19th
International Middleware Conference Tutorials (Rennes, France) (Middleware ’18).
Association for Computing Machinery, New York, NY, USA, Article 1, 5 pages.
https://doi.org/10.1145/3279945.3279946

[29] Google. 2021. Machine types | Compute Engine Documentation | Google Cloud.
https://cloud.google.com/compute/docs/machine-types (visited on 05/05/2021).

[30] Google. 2021. VM instances pricing | Compute Engine Documentation |
Google Cloud. https://cloud.google.com/compute/vm-instance-pricing (visited
on 05/05/2021).

[31] Google. 2021. VM instances pricing | Compute Engine Documentation | Google
Cloud. https://cloud.google.com/vpc/network-pricing (visited on 05/05/2021).

[32] Y. Guo, A. L. Stolyar, and A. Walid. 2020. Online VM Auto-Scaling Algorithms
for Application Hosting in a Cloud. IEEE Transactions on Cloud Computing 8, 03
(jul 2020), 889–898. https://doi.org/10.1109/TCC.2018.2830793

[33] Harshit Gupta and Umakishore Ramachandran. 2018. FogStore: A Geo-
Distributed Key-Value Store Guaranteeing Low Latency for Strongly Consis-
tent Access. In Proceedings of the 12th ACM International Conference on Dis-
tributed and Event-based Systems (Hamilton, New Zealand) (DEBS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 148–159. https:
//doi.org/10.1145/3210284.3210297

[34] Nick Heath. 2018. Azure outage: Microsoft working to restore key services after
US regional disruption. https://www.techrepublic.com/article/azure-outage-
microsoft-working-to-restore-key-services-after-us-regional-outage/ (visited
on 05/05/2021).

[35] James Hendricks, Gregory R Ganger, and Michael K Reiter. 2007. Low-overhead
byzantine fault-tolerant storage. ACM SIGOPS Operating Systems Review 41, 6
(2007), 73–86.

[36] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492.

[37] Eben Hewitt. 2010. Cassandra: The Definitive Guide (1st ed.). O’Reilly Media,
Inc., Sebastopol, CA, USA.

[38] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Coding in Windows Azure
Storage. In Proceedings of the 2012 USENIX Conference on Annual Technical Con-
ference (Boston, MA) (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,
2–2. http://dl.acm.org/citation.cfm?id=2342821.2342823

[39] A. Jonathan, M. Uluyol, A. Chandra, and J. Weissman. 2017. Ensuring reliability
in geo-distributed edge cloud. In 2017 Resilience Week (RWS). IEEE, Wilmington,
DE, USA, 127–132. https://doi.org/10.1109/RWEEK.2017.8088660

[40] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. 2020. Hermes: A
Fast, Fault-Tolerant and Linearizable Replication Protocol. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 201–217. https:
//doi.org/10.1145/3373376.3378496

[41] Huiba Li, Yiming Zhang, Zhiming Zhang, Shengyun Liu, Dongsheng Li, Xiaohui
Liu, and Yuxing Peng. 2017. PARIX: Speculative Partial Writes in Erasure-Coded
Systems. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 581–587. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/li-huiba

2213

[42] Shenglong Li, Quanlu Zhang, Zhi Yang, and Yafei Dai. 2017. BCStore: Bandwidth-
Efficient In-memory KV-Store with Batch Coding. International Conference on
Massive Storage Systems and Technology (MSST) 33 (2017), 13.

[43] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong Hu. 2019. OpenEC: Toward
Unified and Configurable Erasure Coding Management in Distributed Storage
Systems. In 17th USENIX Conference on File and Storage Technologies (FAST 19).
USENIX Association, Boston, MA, 331–344. https://www.usenix.org/conference/
fast19/presentation/li

[44] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.
Technical Report MIT-CSAIL-TR-2012-021. MIT.

[45] Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K Panda. 2017. Scalable and Dis-
tributed Key-Value Store-based Data Management Using RDMA-Memcached.
IEEE Data Eng. Bull. 40, 1 (2017), 50–61.

[46] Nancy Lynch and Alexander Shvartsman. 2002. RAMBO: A Reconfigurable
Atomic Memory Service for Dynamic Networks. In International Symposium on
Distributed Computing. Springer, Toulouse, France, 173–190. https://doi.org/10.
1007/3-540-36108-1_12

[47] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[48] J. Matt, P. Waibel, and S. Schulte. 2017. Cost- and Latency-Efficient Redundant
Data Storage in the Cloud. In 2017 IEEE 10th Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, Kanazawa, Japan, 164–172. https:
//doi.org/10.1109/SOCA.2017.30

[49] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh Bagchi. 2016. Partial-
Parallel-Repair (PPR): A Distributed Technique for Repairing Erasure Coded Stor-
age. In Proceedings of the Eleventh European Conference on Computer Systems (Lon-
don, United Kingdom) (EuroSys ’16). Association for Computing Machinery, New
York, NY, USA, Article 30, 16 pages. https://doi.org/10.1145/2901318.2901328

[50] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: Facebook’s warm blob storage system. In Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation. USENIX
Association, Broomfield, CO, 383–398.

[51] Nicolas Nicolaou, Viveck Cadambe, N Prakash, Kishori Konwar, Muriel Medard,
and Nancy Lynch. 2019. Ares: Adaptive, reconfigurable, erasure coded, atomic
storage. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, Dallas, Texas, USA, 2195–2205.

[52] European Association of Theoretical Computer Science. 2011. Edsger W. Dijkstra
Prize in Distributed Computing: 2011.

[53] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association, Philadelphia, PA, 305–319. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/ongaro

[54] OpenStack. 2021. Erasure Code API library written in C with pluggable Erasure
Code backends. https://github.com/openstack/liberasurecode. (branch: master),
(gathered data dates: 11/01/2021 and 04/14/2022).

[55] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP
’13). Association for Computing Machinery, New York, NY, USA, 69–84. https:
//doi.org/10.1145/2517349.2522716

[56] Overleaf. 2021. Overleaf. https://www.overleaf.com.
[57] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ram-

chandran. 2016. EC-cache: load-balanced, low-latency cluster caching with
online erasure coding. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16). USENIX Association, Savannah, GA, USA,
401–417.

[58] Ben Rossi. 2015. Amazon investigating major cloud outage, GitHub and
Heroku report issues. https://www.information-age.com/amazon-investigating-
major-cloud-outage-github-and-heroku-report-issues-123459971/ (visited on
05/05/2021).

[59] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan Spence.
2004. FAB: Building Distributed Enterprise Disk Arrays from Commodity Com-
ponents. In Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems (Boston, MA, USA)
(ASPLOS XI). Association for Computing Machinery, New York, NY, USA, 48–58.
https://doi.org/10.1145/1024393.1024400

[60] Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K Panda. 2017. High-performance
and resilient key-value store with online erasure coding for big data workloads.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, Atlanta, GA, USA, 527–537.

[61] PN Shankaranarayanan, Ashiwan Sivakumar, Sanjay Rao, and Mohit Tawar-
malani. 2014. Performance sensitive replication in geo-distributed cloud data-
stores. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, Atlanta, GA, USA, 240–251.

[62] Artyom Sharov, Alexander Shraer, Arif Merchant, andMurray Stokely. 2015. Take
Me to Your Leader!: Online Optimization of Distributed Storage Configurations.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1490–1501. https://doi.org/10.14778/2824032.

2824047
[63] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-

Scale: Elastic Resource Scaling for Multi-Tenant Cloud Systems. In Proceedings
of the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
Association for Computing Machinery, New York, NY, USA, Article 5, 14 pages.
https://doi.org/10.1145/2038916.2038921

[64] Maomeng Su, Lei Zhang, YongweiWu, Kang Chen, and Keqin Li. 2016. Systematic
data placement optimization in multi-cloud storage for complex requirements.
IEEE Trans. Comput. 65, 6 (2016), 1964–1977.

[65] Konstantin Taranov, Gustavo Alonso, and Torsten Hoefler. 2018. Fast and
Strongly-consistent Per-item Resilience in Key-value Stores. In Proceedings of the
Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). ACM, New York,
NY, USA, Article 39, 14 pages. https://doi.org/10.1145/3190508.3190536

[66] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K Aguilera, and Hussam Abu-Libdeh. 2013. Consistency-based
service level agreements for cloud storage. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, Farmington, PA, USA,
309–324.

[67] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and
Harsha V. Madhyastha. 2020. Near-Optimal Latency Versus Cost Tradeoffs
in Geo-Distributed Storage. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
157–180. https://www.usenix.org/conference/nsdi20/presentation/uluyol

[68] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Elsevier Computer Networks 53,
11 (July 2009), 1830–1845. http://www.globule.org/publi/WWADH_comnet2009.
html, http://www.wikibench.eu/wiki/2007-09/ (visited on 03/10/2022).

[69] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. 2005. Dynamic Provisioning of
Multi-tier Internet Applications. In Second International Conference on Autonomic
Computing (ICAC’05). IEEE Computer Society, Seattle, WA, USA, 217–228. https:
//doi.org/10.1109/ICAC.2005.27

[70] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita
Lobo, Birenjith Sasidharan, P. Vijay Kumar, Alexandar Barg, Min Ye, Srinivasan
Narayanamurthy, Syed Hussain, and Siddhartha Nandi. 2018. Clay Codes: Mould-
ing MDS Codes to Yield an MSR Code. In 16th USENIX Conference on File and
Storage Technologies (FAST 18). USENIX Association, Oakland, CA, 139–154.
https://www.usenix.org/conference/fast18/presentation/vajha

[71] Kaushik Veeraraghavan, Justin Meza, Scott Michelson, Sankaralingam Panneer-
selvam, Alex Gyori, David Chou, Sonia Margulis, Daniel Obenshain, Shruti
Padmanabha, Ashish Shah, Yee Jiun Song, and Tianyin Xu. 2018. Maelstrom:
Mitigating Datacenter-level Disasters by Draining Interdependent Traffic Safely
and Efficiently. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 373–389. https:
//www.usenix.org/conference/osdi18/presentation/veeraraghavan

[72] Werner Vogels. 2021. Diving Deep on S3 Consistency. https://
www.allthingsdistributed.com/2021/04/s3-strong-consistency.html (visited on
05/05/2021).

[73] Fang Wang, Yingjie Tang, Yanwen Xie, and Xuehai Tang. 2019. XORInc: Opti-
mizing Data Repair and Update for Erasure-Coded Systems with XOR-Based
In-Network Computation. In 2019 35th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, Santa Clara, CA, USA, 244–256.

[74] Shuang Wang, Jianzhong Huang, Xiao Qin, Qiang Cao, and Changsheng Xie.
2017. Wps: A workload-aware placement scheme for erasure-coded in-memory
stores. In 2017 International Conference on Networking, Architecture, and Storage
(NAS). IEEE, Shenzhen, China, 1–10.

[75] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. 2013. SPANStore: Cost-Effective Geo-Replicated Storage Spanning
Multiple Cloud Services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 292–308. https://doi.org/10.
1145/2517349.2522730

[76] Jie Xia, Jianzhong Huang, Xiao Qin, Qiang Cao, and Changsheng Xie. 2017.
Revisiting Updating Schemes for Erasure-Coded In-Memory Stores. In 2017
International Conference on Networking, Architecture, and Storage (NAS). IEEE
Computer Society, Los Alamitos, CA, USA, 1–6. https://doi.org/10.1109/NAS.
2017.8026875

[77] Yu Xiang, Tian Lan, Vaneet Aggarwal, Yih-Farn R Chen, Yu Xiang, Tian Lan,
Vaneet Aggarwal, and Yih-Farn R Chen. 2016. Joint latency and cost optimization
for erasure-coded data center storage. IEEE/ACM Transactions on Networking
(TON) 24, 4 (2016), 2443–2457.

[78] Xin Xie, Chentao Wu, Junqing Gu, Han Qiu, Jie Li, Minyi Guo, Xubin He,
Yuanyuan Dong, and Yafei Zhao. 2019. AZ-Code: An Efficient Availability
Zone Level Erasure Code to Provide High Fault Tolerance in Cloud Storage
Systems. In 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST). IEEE Computer Society, Los Alamitos, CA, USA, 230–243. https:
//doi.org/10.1109/MSST.2019.00004

[79] Yahoo. 2010. Yahoo Cloud Serving Benchmark (YCSB). https://research.yahoo.
com/news/yahoo-cloud-serving-benchmark.

2214

[80] Matt M. T. Yiu, Helen H. W. Chan, and Patrick P. C. Lee. 2017. Erasure Coding
for Small Objects in In-Memory KV Storage. In Proceedings of the 10th ACM
International Systems and Storage Conference (Haifa, Israel) (SYSTOR ’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 14, 12 pages.
https://doi.org/10.1145/3078468.3078470

[81] Victor Zakhary, Faisal Nawab, Divy Agrawal, and Amr El Abbadi. 2018. Global-
Scale Placement of Transactional Data Stores. In Proceedings of the 21st Interna-
tional Conference on Extending Database Technology, EDBT 2018, Vienna, Austria,
March 26-29, 2018, Michael H. Böhlen, Reinhard Pichler, Norman May, Erhard
Rahm, Shan-Hung Wu, and Katja Hose (Eds.). OpenProceedings.org, Vienna,
Austria, 385–396. https://doi.org/10.5441/002/edbt.2018.34

[82] Hamidreza Zare, Viveck R. Cadambe, Bhuvan Urgaonkar, Chetan Sharma, Pra-
neet Soni, Nader Alfares, and Arif Merchant. 2021. LEGOStore: A Lineariz-
able Geo-Distributed Store Combining Replication and Erasure Coding. Arxiv
preprint available at https://arxiv.org/abs/2111.12009.

[83] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera,
and Jinyang Li. 2013. Transaction Chains: Achieving Serializability with Low
Latency in Geo-Distributed Storage Systems. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania)
(SOSP ’13). Association for Computing Machinery, New York, NY, USA, 276–291.
https://doi.org/10.1145/2517349.2522729

[84] Dongfang Zhao, Ke Wang, Kan Qiao, Tonglin Li, Iman Sadooghi, and Ioan Raicu.
2016. Toward high-performance key-value stores through GPU encoding and
locality-aware encoding. J. Parallel Distributed Comput. 96 (2016), 27–37.

2215

