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ABSTRACT
As nowadays Machine Learning (ML) techniques are generating

huge data collections, the problem of how to efficiently engineer

their storage and operations is becoming of paramount importance.

In this article we propose a new lossless compression scheme for

real-valued matrices which achieves efficient performance in terms

of compression ratio and time for linear-algebra operations. Ex-

periments show that, as a compressor, our tool is clearly superior

to gzip and it is usually within 20% of xz in terms of compression

ratio. In addition, our compressed format supports matrix-vector

multiplications in time and space proportional to the size of the

compressed representation, unlike gzip and xz that require the full
decompression of the compressed matrix. To our knowledge our

lossless compressor is the first one achieving time and space com-

plexities which match the theoretical limit expressed by the 𝑘-th

order statistical entropy of the input.

To achieve further time/space reductions, we propose column-

reordering algorithms hinging on a novel column-similarity score.

Our experiments on various data sets of ML matrices show that our

column reordering can yield a further reduction of up to 16% in the

peak memory usage during matrix-vector multiplication.

Finally, we compare our proposal against the state-of-the-art

Compressed Linear Algebra (CLA) approach showing that ours runs

always at least twice faster (in a multi-thread setting), and achieves

better compressed space occupancy and peak memory usage. This

experimentally confirms the provably effective theoretical bounds

we show for our compressed-matrix approach.
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1 INTRODUCTION
Matrix operations have always been important in scientific com-

puting and engineering, and they have become even more so with

the widespread adoption of ML and deep-learning tools. Very large

matrices do not just present scalability challenges for their stor-

age: they also consume a large amount of bandwidth resources

in server-to-client transmissions, as well as in CPU/GPU-memory

communications. Hence matrix compression appears as an attrac-

tive choice. Common simple heuristics for shrinking ML models

are generally based on lossy compression, like low and ultra-low

precision storage, sparsification (i.e., reduction of the number of

non-zero values), and quantisation (i.e., reduction of the value do-

main). Unfortunately, lossy compression schemes often impair the

ML model accuracy in a data — and algorithm — specific manner,

thus requiring an attentive and manual application.

For this reason lossless compression represents a better alterna-

tive for achieving “automated” space savings. It is data-independent

and does not require any a priori knowledge about the input data. In
addition, if some problem domain is not sensitive to the use of a par-

ticular lossy technique, we can apply lossy compression followed

by the lossless one, therefore achieving the best of both worlds.

Unfortunately, traditional one-dimensional lossless compression

techniques such as Huffman, Lempel-Ziv, bzip, Run-Length Encod-

ing (RLE) often perform poorly on matrices, in that they are not able

to unfold the (sometimes hidden) dependencies or redundancies

between rows and columns. Moreover, they usually require the full-

matrix decompression for performing the needed linear-algebra

operations, thus the space reduction is only achieved in the storage

or transmission, but not in the more critical computation phase.

Recently, some authors [12–14] proposed new lossless compres-

sion schemes for matrices which not only save space, but also

manage to speed up linear-algebra operations, and matrix multi-

plication in particular. These results apply mainly to large, sparse
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matrices: the algorithms in [12, 13] are designed for matrices com-

ing from ML domains, while the ones in [14] are specialised in

representing binary adjacency matrices of web and social graphs.

In this paper we continue the line of research introduced in [12,

13], called Compressed Linear Algebra (CLA). The authors use rela-
tively simple compression techniques (e.g., Offset-List Encoding,

Run-Length Encoding, Direct Dictionary Coding) preceded by a

compression-planning phase partitioning the columns of the input

matrix into groups that can be effectively compressed together.

Since ML matrices often exhibit hidden correlations (see, for in-

stance, [13]), the combination of a careful compression planning,

which is done only once, together with simple compression tech-

niques yields good compression and fast linear-algebra operations.

To improve performances, the CLA system also deploys row- and

column-partitioning techniques to make the compression more

cache-friendly and suitable for multithreading.

We design and experiment new lossless compression schemes for

large matrices, which achieve the best performance when the input

matrices are either sparse or contain a relatively small number of

distinct values. A fundamental feature of our contribution is that

our lossless compression algorithms guarantee that:

• the compression ratio is bounded in terms of the 𝑘-th or-

der empirical entropy of the compressed sparse row/value

(CSRV) representation of the input matrix; and

• the cost of the right and left matrix-vector multiplication is

proportional to the size of the compressed matrix.

As just mentioned, saving simultaneously both time and space is

not new [12–14, 22], but to our knowledge our approach is the first

achieving bounds for the time and space complexities that match

the theoretical limit expressed by the 𝑘-th order statistical entropy.

Given its theoretical properties, our grammar-based algorithm may

be used not only as a stand-alone compression tool for matrices,

but also as a new powerful compression option within the CLA

framework, or a similar system, in lieu of their simpler compressors.

Technically speaking, our starting point is the CSRV representa-

tion of a matrix, which is a simple modification of the well-known

compressed sparse row (CSR) representation [31]. The CSRV repre-

sentation is more effective than CSRwhen the input matrix contains

relatively few distinct values. In Section 3 we show that we can com-

press this representation using a grammar compressor [21] so that

we can later compute the right and left matrix-vector multiplication

by working directly upon the compressed matrix, and within time

and working space proportional to the compressed size of that ma-

trix. We tested our proposal in practice with a prototype described

in Section 4 using the RePair [28] grammar compressor over eight

matrices resulting from real ML problems. As for the compression

ratios, the experiments show our tool is clearly superior to gzip,
and that it is usually within 20% of xz; in addition, our solution is

designed to offer support for matrix-vector multiplications directly

over the compressed file, whereas gzip and xz cannot.
To measure the space usage of our matrix-multiplication algo-

rithms, we tested a sequence of left and right vector-matrix mul-

tiplications and found that the peak memory usage for our multi-

threaded algorithms is for most inputs between 6% and 50% of the

size of the uncompressed matrix. These results confirm the theoreti-

cal finding that grammar compression can indeed save a significant

amount of space during the computation, and therefore allows us

to work with larger data sets in internal memory.

In the second part of the paper we add an algorithmic step to

our grammar-based compression scheme to obtain an even greater

space saving. As pointed out in [12], ML matrices often exhibit cor-

relations between columns; this phenomenon is likely to make the

same combination of values appear in the same columns in multiple

rows. Most compressors are able to exploit the presence of identical

values only when they occur in contiguous columns. Nonetheless,

in real-world data sets correlated columns often appear far apart

from each other. For this reason, the matrix compression scheme of

CLA [12] features a preliminary step aimed at discovering groups

of correlated columns; then, such groups are compressed indepen-

dently of one another, possibly choosing a different compressor

for each group. We hence study the problem of column reordering

under the hypothesis that the subsequent compression phase is

implemented via a grammar compressor. The column-reordering

problem for binary, categorical, and general matrices attracted a

lot of interest in the past because of its applications to compress-

ing tables arising from several contexts, such as data warehouses

[5, 6, 35], biological experiments [1], mobile data [17], and graph

DBs [20], just to cite a few. Discovering dependency relations among

matrix columns and finding the order that guarantees the small-

est compressed output is an NP-hard problem in its general form

(cf. e.g. [5]). Thus, all of the papers above use heuristics to efficiently

find appropriate column permutations. In all cases, the key step lies

in defining a proper measure of column similarity accounting for
the special features of the problem and of the compressor at hand.

In Section 5, we present a column-similarity score designed for

our lossless grammar-based compressors for matrices. Then, we

describe four new column-reordering algorithms that hinge on

this score and, to boost compression, we apply them to row blocks

which are finally compressed individually. We test the effectiveness

of this combination over the same eight ML matrices mentioned

before. Experimental figures show that, without worsening the

running time, we can achieve a further reduction of up to 16% of

the peak memory usage during matrix-vector multiplications.

As a final contribution of this paper, we compare our matrix

compressor to the one of Compressed Linear Algebra (CLA) system,

which constitutes the state-of-the-art in this setting [12, 13]. As for

compression, experiments show that our approach is more effective

than CLA over 7 matrices (out of the 8 we tested), with an (absolute)

space improvement of up to 10%. The space improvement is even

greater if we consider the peak memory usage during matrix-vector

multiplications, being a factor between 3.14 and 19.12. In terms of

running time, CLA is always at least two times slower than our

compressors. These results were obtained using 16 threads for our

compressors, whereas CLA was set to use all the available threads

(the testing machine supports up to 80 independent threads).

Summing up, our experiments show that: (1) our grammar-based

compressors for matrices do indeed achieve a better space reduction

than the state of the art, and (2) our theoretical results ensuring that

the number of operations is bounded by the size of the compressed

matrix translate into algorithms that are also fast in practice; in-

deed for the most compressible matrices experiments show our

algorithms are even faster than the algorithm working directly on

the uncompressed matrix. As a final note, we point out that CLA
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is a general framework offering compressed linear algebra for ML

systems which, by design, is not tied to a particular compression

technique. Hence, we envision our compressors could be adopted

not only as stand-alone compression tools for matrices but also as

a new powerful compression option within the CLA framework.

1.1 Transparency and Reproducibility
All source files of our algorithms, as well as the scripts to reproduce

the experimental results, are available at the repository https://

gitlab.com/manzai/mm-repair. The data sets are available at the

public Kaggle repository [26].

2 THE COMPRESSED SPARSE ROW/VALUE
REPRESENTATION

Given a matrix 𝑀 ∈ R𝑛,𝑚 with 𝑛 rows and𝑚 columns, the com-

pressed sparse row (CSR) representation [31] is a classic scheme

taking advantage of the matrix sparsity. If the matrix𝑀 contains 𝑡

non-zero elements, the CSR representation consists of 1) a length-𝑡

array nz listing the non-zero elements row-by-row; 2) a length-𝑡 ar-

ray idx storing for each element in nz its column index; 3) a length-𝑛

array first such that first[1] = 0, and first[𝑖] with 2 ≤ 𝑖 ≤ 𝑛 equals

the number of non-zero terms in the first 𝑖−1 rows (this information

is used for partitioning the elements of nz by rows).

If the number of distinct non-zero values is relatively small, then

it is more space efficient to introduce an additional array 𝑉 [1, 𝑘]
containing the distinct non-zero elements of𝑀 and to store in nz
not the actual non-zero values but their indices in 𝑉 . If there are,

say, fewer than 2
16

distinct non-zero elements, then each entry in

nz takes only 2 bytes instead of the 8 bytes of a double: this saving
can more than compensate for the extra cost of storing the array𝑉 .

This representation as a whole is called CSR-IV in [22].

In this paper we introduce a new representation, called Com-
pressed Sparse Row/Value (CSRV), by making two minor modifica-

tions to the above scheme. Firstly, we combine the two length-𝑡 ar-

rays nz and idx in a single vector of pairs 𝑆 , such that for 𝑖 = 1, . . . , 𝑡 ,

entry 𝑆 [𝑖] contains the pair of integers (nz[𝑖], idx[𝑖]). Secondly, in-
stead of storing a separate array first we include its information in

𝑆 by storing a special symbol $ immediately after the last non-zero

entry of each row. As a result, the array 𝑆 now has length 𝑡 + 𝑛,

which can be obtained by scanning the matrix𝑀 row-by-row: for

each entry 𝑀 [𝑖] [ 𝑗] ≠ 0 we append to 𝑆 the pair ⟨ℓ, 𝑗⟩, where ℓ is
the index in 𝑉 such that 𝑉 [ℓ] = 𝑀 [𝑖] [ 𝑗]. In addition, at the end of

each row we append to 𝑆 the special symbol $. During the scanning,

for each nonzero𝑀 [𝑖] [ 𝑗] we need to retrieve the index ℓ such that

𝑉 [ℓ] = 𝑀 [𝑖] [ 𝑗], or to add 𝑀 [𝑖] [ 𝑗] to 𝑉 if no such index exists.

Storing the association between values in 𝑉 and their index in a

hash table with constant amortised time per operation, we have

the following result.

Lemma 2.1. The construction of the CSRV representation of a ma-
trix𝑀 ∈ R𝑛,𝑚 takes O(𝑚𝑛) time. □

Figure 1 reports an example in which the elements of𝑉 are sorted

according to their size, but any other ordering (or no ordering at

all) would have worked equally well. Also, the elements of 𝑆 within

the same row can be reordered without loss of information; this

latter property will be used in Section 5 to improve compression.

Given the CSRV representation of matrix𝑀 and a vector 𝑥 [1,𝑚],
it is straightforward to perform the 𝑦 = 𝑀𝑥 multiplication with a

single scan of 𝑆 . To beginwith, we initialise the vector𝑦 [1, 𝑛] to zero.
Then, during the scan of row 𝑖 , when we encounter the pair ⟨ℓ, 𝑗⟩ we
add the value 𝑉 [ℓ] · 𝑥 [ 𝑗] to the entry 𝑦 [𝑖]. The occurrences of the
symbol $ allow us to keep track of the current row. We can similarly

compute with a single scan of 𝑆 the left-multiplication 𝑥𝑡 = 𝑦𝑡𝑀 :

firstly, we initialise 𝑥 [1,𝑚] to zero; then, during the scan of row

𝑖 , when we encounter the pair ⟨ℓ, 𝑗⟩ we add the value 𝑦 [𝑖] · 𝑉 [ℓ]
to the entry 𝑥 [ 𝑗]. Hence, either right and left multiplications can

be computed in O(|𝑆 |) = O(𝑛 + 𝑡) time. Hereinafter we use the

notation (𝑆,𝑉 ) to denote the CSRV representation outlined above.

3 GRAMMAR-COMPRESSED MATRICES
We show how to compress the CSRV representation (𝑆,𝑉 ) of a ma-

trix𝑀 with an algorithm that, for compressible matrices, provably

yields a reduction in both the space occupancy and in the cost of

the left and right matrix-vector multiplication operations.

Recall that a grammar-compressed representation for a string 𝑇

over an alphabet of terminal symbols Σ is a context-free grammar

that generates only𝑇 [7]. For simplicity, we assume the grammar is

a so-called straight-line program [24] (SLP), that is, it consists of a

set of rules of the form 𝐿𝑖 → 𝑅𝑖1𝑅𝑖2 , where 𝐿𝑖 is a nonterminal and

each of 𝑅𝑖1 and 𝑅𝑖2 can be either a terminal (i.e., an element of the

base alphabet Σ), or a nonterminal. The grammar generates only 𝑇 ,

implying that each nonterminal appears as the left-hand side of a

single rule; we can thus identify each rule with the nonterminal on

its left-hand side. Given a nonterminal 𝑁 𝑗 , its expansion, denoted by
exp(𝑁 𝑗 ), is defined as the (unique) sequence obtained by repeatedly
applying the substitution rules of the SLP grammar until we are

left with a string of Σ. Thus one can leverage a SLP to represent 𝑇

as a succinct sequence 𝐶 of nonterminals; one can then retrieve 𝑇

from 𝐶 by expanding the nonterminals. The grammar compressor

outputs a set of rules and a special nonterminal whose expansion

generates only the input string𝑇 . If the rules are𝑞, the nonterminals

𝑁1, . . . , 𝑁𝑞 are 𝑞 too, and we can number them so that if 𝑁𝑖 appears

in the right-hand side of 𝑁 𝑗 , then 𝑖 < 𝑗 .

One can define the size of a grammar as the sum of the lengths

of the right-hand sides of the rules. The same text 𝑇 can be gen-

erated by many different grammars, and finding the smallest one

is NP-complete [7, 33]. Yet, the compressors producing irreducible

grammars, among them Greedy, LongestMatch [21], RePair [23],
and Sequential [21], are guaranteed to produce an output whose size
is bounded by |𝑇 |𝐻𝑘 (𝑇 ) + 𝑜 ( |𝑇 |𝐻𝑘 (𝑇 )) bits for any 𝑘 ∈ 𝑜 (log𝜎 |𝑇 |),
where 𝜎 is the size of the input alphabet and 𝐻𝑘 (𝑇 ) is the order-𝑘
statistical entropy of the input 𝑇 [30]. Up to lower order terms,

then, these grammar compressors are as good as the best statistical

encoders that compress the input on the basis of the frequencies of

𝑘-tuples of symbols. Grammar compressors are also very effective

for compressing strings with many repetitions: in this case their

output size can be within a logarithmic factor from the output of

the best compressors based on LZ-parsing; see [29] for details.

To compress a CSRV representation (𝑆,𝑉 ) we apply a grammar

compressor to the sequence 𝑆 . We modify the compressor so that it

never uses the special terminal symbol $ in any rule. This guarantees

that the expansion of any nonterminal 𝑁𝑘 only contains pairs ⟨𝑖, 𝑗⟩.
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1.2 3.4 5.6 0 2.3

2.3 0 2.3 4.5 1.7

1.2 3.4 2.3 4.5 0

3.4 0 5.6 0 2.3

2.3 0 2.3 4.5 0

1.2 3.4 2.3 4.5 3.4



𝑉 = [1.2 1.7 2.3 3.4 4.5 5.6]

𝑆 = ⟨1,1⟩ ⟨4,2⟩ ⟨6,3⟩ ⟨3,5⟩ $ ⟨3,1⟩ ⟨3,3⟩ ⟨5,4⟩ ⟨2,5⟩ $

⟨1,1⟩ ⟨4,2⟩ ⟨3,3⟩ ⟨5,4⟩ $ ⟨4,1⟩ ⟨6,3⟩ ⟨3,5⟩ $

⟨3,1⟩ ⟨3,3⟩ ⟨5,4⟩ $ ⟨1,1⟩ ⟨4,2⟩ ⟨3,3⟩ ⟨5,4⟩ ⟨4,5⟩ $

Figure 1: A matrix and its CSRV representation. In the array 𝑆 the symbol ⟨3,1⟩ stands for an occurrence of the value 𝑉 [3] = 2.3

in column 1. Note that the same value in column 3, is represented instead by ⟨3,3⟩. Only the same values in the same column are
represented by the same pair ⟨𝑖, 𝑗⟩.

R = {𝑁1 → ⟨3,3⟩ ⟨5,4⟩ 𝑁2 → ⟨1,1⟩ ⟨4,2⟩ 𝑁3 → ⟨3,1⟩ 𝑁1

𝑁4 → ⟨6,3⟩ ⟨3,5⟩ 𝑁5 → 𝑁2 𝑁4 𝑁6 → 𝑁3 ⟨2,5⟩
𝑁7 → 𝑁2 𝑁1 𝑁8 → ⟨4,1⟩ 𝑁4 𝑁9 → 𝑁7 ⟨4,5⟩ }

C = 𝑁5 $𝑁6 $𝑁7 $𝑁8 $𝑁3 $𝑁9 $

Figure 2: The set of rules R and the final string C whose
expansion is the sequence 𝑆 from Figure 1.

As a result, the output of the grammar compressor applied to 𝑆

consists of a set of rules R and a string

C = 𝑁𝑖1 $𝑁𝑖2 $ · · ·𝑁𝑖𝑛$ (1)

such that each 𝑁𝑖 𝑗 is a nonterminal whose expansion is the se-

quence of pairs representing the non-zero elements of row 𝑗 . In

the same sense, the expansion of the string C (i.e., expanding each

of its nonterminals) is the sequence 𝑆 . An example of a grammar

representing the string 𝑆 of Figure 1 is given in Figure 2. In the

following we write (C,R,𝑉 ) to denote the grammar representation

of (the CSRV representation of) a matrix𝑀 .

3.1 Right Multiplication for
Grammar-Compressed Matrices

In this section we show that, given a grammar representation

(C,R,𝑉 ) of a matrix𝑀 , we can compute the right multiplication

𝑦 = 𝑀𝑥 in O(|R| + |C|) time using O(|R|) words of auxiliary space.
In the following we use 𝑆 to denote the expansion of C, so that

(𝑆,𝑉 ) is the CSRV representation of𝑀 .

Definition 3.1. Given a vector 𝑥 [1,𝑚] and a pair ⟨ℓ, 𝑗⟩ ∈ 𝑆 we

define

eval𝑥 (⟨ℓ, 𝑗⟩) = 𝑉 [ℓ] · 𝑥 [ 𝑗];
(recall that the pair ⟨ℓ, 𝑗⟩ represents the value 𝑉 [ℓ] stored in col-

umn 𝑗 of matrix𝑀). Similarly, for a nonterminal 𝑁𝑖 whose expan-

sion is ⟨ℓ1, 𝑗1⟩ ⟨ℓ2, 𝑗2⟩ · · · ⟨ℓℎ, 𝑗ℎ⟩ we define

eval𝑥 (𝑁𝑖 ) =
ℎ∑︁

𝑘=1

eval𝑥 (⟨ℓ𝑘 , 𝑗𝑘 ⟩) =
ℎ∑︁

𝑘=1

𝑉 [ℓ𝑘 ] 𝑥 [ 𝑗𝑘 ] . (2)

From the above definition we immediately get

Lemma 3.2. If the grammar contains the rule 𝑁𝑖 → 𝐴𝐵, then
eval𝑥 (𝑁𝑖 ) = eval𝑥 (𝐴) + eval𝑥 (𝐵). □

Lemma 3.3. Given the representation (C,R,𝑉 ) of a matrix 𝑀 ∈
R𝑛,𝑚 with C = 𝑁𝑖1 $ · · ·𝑁𝑖𝑛$, if 𝑦 = 𝑀𝑥 then it holds that 𝑦 [𝑟 ] =

eval𝑥 (𝑁𝑖𝑟 ), for 𝑟 = 1, . . . , 𝑛.

Proof. We have 𝑦 [𝑟 ] =
∑𝑚
𝑖=1

𝑀 [𝑟 ] [𝑖] · 𝑥 [𝑖]. By construction,

the expansion of the nonterminal 𝑁𝑖𝑟 is the sequence of pairs

⟨ℓ1, 𝑗1⟩ · · · ⟨ℓℎ, 𝑗ℎ⟩ representing all the non-zero elements of row 𝑟

where, for 𝑘 = 1, . . . , ℎ, ℓ𝑘 denotes the position in 𝑉 containing the

value𝑀 [𝑟 ] [ 𝑗𝑘 ]. Thus

𝑦 [𝑟 ] =
ℎ∑︁

𝑘=1

𝑀 [𝑟 ] [ 𝑗𝑘 ] · 𝑥 [ 𝑗𝑘 ] =
ℎ∑︁

𝑘=1

𝑉 [ℓ𝑘 ] · 𝑥 [ 𝑗𝑘 ] = eval𝑥 (𝑁𝑖𝑟 ) .

□

Theorem 3.4. Given the grammar-compressed CSRV represen-
tation (C,R,𝑉 ) of a matrix 𝑀 ∈ R𝑛×𝑚 and a vector 𝑥 ∈ R𝑚 , we
can compute 𝑦 = 𝑀𝑥 in O(|C| + |R|) time using O(|R|) words of
auxiliary space.

Proof. To compute 𝑦 = 𝑀𝑥 , we introduce an auxiliary array

𝑊 [1, 𝑞], where 𝑞 = |R |, such that𝑊 [𝑖] = eval𝑥 (𝑁𝑖 ). Because of
Lemma 3.2 and of the rule ordering, we can fill𝑊 with a single pass

over R in time O(𝑞): the value𝑊 [𝑖] = eval𝑥 (𝑁𝑖 ) is the sum of two

terms that can be either of the form eval𝑥 (⟨ℎ,𝑘⟩) or eval𝑥 (𝑁 𝑗 ) with
𝑗 < 𝑖 . In the former case eval𝑥 (⟨ℎ,𝑘⟩) = 𝑉 [ℎ] · 𝑥 [𝑘]; in the latter

case eval𝑥 (𝑁 𝑗 ) = 𝑊 [ 𝑗] for some already-computed entry, since

𝑗 < 𝑖 . One may indeed observe that 𝑁𝑖 ’s are ranked by the time

they are computed. After filling𝑊 , we use Lemma 3.3 to determine

the components of the output vector 𝑦. □

3.2 Left multiplication for
grammar-compressed matrices

We now show that, given the grammar representation (C,R,𝑉 ) of
a matrix𝑀 , we can compute the left multiplication 𝑥𝑡 = 𝑦𝑡𝑀 with

an algorithm symmetrical to the one for the right multiplication

and within the same time and space bounds.

Definition 3.5. For any ⟨ℓ, 𝑗⟩ ∈ 𝑆 we define rows(⟨ℓ, 𝑗⟩) as the
set of rows whose CSRV representation contains ⟨ℓ, 𝑗⟩. Note that
𝑘 ∈ rows(⟨ℓ, 𝑗⟩) if, and only if, the expansion of the nonterminal

𝑁𝑖𝑘 ∈ C contains the pair ⟨ℓ, 𝑗⟩ or, equivalently,𝑀 [𝑘] [ 𝑗] = 𝑉 [ℓ].

For the example in Figure 1, we have rows(⟨1,1⟩) = {1, 3, 6} since
⟨1,1⟩ represents the value 1.2 that appears in column 1 of those

three rows. Similarly, rows(⟨3,1⟩) = {2, 5}.
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Definition 3.6. Given a vector 𝑦 [1, 𝑛], for any ⟨𝑖, 𝑗⟩ ∈ 𝑆 we define

sum𝑦 (⟨𝑖, 𝑗⟩) as

sum𝑦 (⟨𝑖, 𝑗⟩) =
∑︁

𝑘∈rows( ⟨𝑖,𝑗 ⟩) 𝑦 [𝑘]

Lemma 3.7. Given the CSRV representation (𝑆,𝑉 ) of matrix𝑀 ∈
R𝑛×𝑚 , let 𝑆 ′ be the set of distinct symbols in 𝑆 (i.e., without duplicates).
If 𝑥𝑡 = 𝑦𝑡𝑀 then, for 𝑗 = 1, . . . ,𝑚, it holds that

𝑥 [ 𝑗] =
∑︁

⟨𝑖,𝑗 ⟩∈𝑆′ 𝑉 [𝑖] · sum𝑦 (⟨𝑖, 𝑗⟩)

(one should notice that the summation involves only pairs in 𝑆 ′ with
second component 𝑗).

Proof. Since

𝑥 [ 𝑗] =
∑︁𝑛

ℓ=1

𝑦 [ℓ] ·𝑀 [ℓ] [ 𝑗],

the value 𝑥 [ 𝑗] depends only upon the non-zero elements in col-

umn 𝑗 . Each nonzero in column 𝑗 is represented by a symbol ⟨𝑖, 𝑗⟩
and has its corresponding value encoded by some entry𝑉 [𝑖]. If ⟨𝑖, 𝑗⟩
occurs at row 𝑟 in column 𝑗 , then𝑦 [𝑟 ] is multiplied by𝑉 [𝑖], and this
holds for all rows containing ⟨𝑖, 𝑗⟩. One can aggregate these multi-

plications and write them as𝑉 [𝑖] · sum𝑦 (⟨𝑖, 𝑗⟩). The lemma follows

by iterating this argument over all distinct non-null values 𝑉 [𝑖]
occurring in column 𝑗 , and therefore over all pairs ⟨𝑖, 𝑗⟩ ∈ 𝑆 ′. □

We now show that the notions of rows and sum can be naturally

extended to nonterminals.

Definition 3.8. Given the representation (C,R,𝑉 ) of a matrix

𝑀 ∈ R𝑛×𝑚 , for each nonterminal 𝑁 𝑗 we define rows(𝑁 𝑗 ) as the
set of row indices ℓ such that 𝑁 𝑗 appears in the expansion of 𝑁𝑖ℓ .

In other words, rows(𝑁 𝑗 ) denotes the rows whose compression

makes use of 𝑁 𝑗 . We also define sum𝑦 (𝑁 𝑗 ) =
∑
ℓ∈rows(𝑁 𝑗 ) 𝑦 [ℓ].

In the following we make the natural assumption that the gram-

mar does not contain useless rules, that is, if the grammar contains

the rule 𝑁𝑖 → 𝐴𝐵, then 𝑁𝑖 appears in the right-hand side of some

other rule (whose left-hand side will be some 𝑁 𝑗 with 𝑗 > 𝑖), or 𝑁𝑖

appears in the final string C (or both).

Lemma 3.9. For any symbol 𝛼 (terminal or nonterminal), let R𝛼

denote the set of nonterminals 𝑁 𝑗 ’s such that their defining rule
𝑁 𝑗 → 𝐴𝐵 contains 𝛼 in their right-hand side (i.e., 𝐴 = 𝛼 or 𝐵 = 𝛼),
and let I𝛼 denote the set of row indices ℓ such that 𝑁𝑖ℓ = 𝛼 (hence
ℓ ∈ I𝛼 iff the expansion of 𝛼 coincides with the ℓ-th row). Then,

sum𝑦 (𝛼) =
∑︁

𝑁 𝑗 ∈𝑅𝛼

sum𝑦 (𝑁 𝑗 ) +
∑︁

ℓ∈I𝛼
𝑦 [ℓ] . (3)

Proof. Since each occurrence of 𝛼 is either the right-hand side

of a single rule, or coincides with some 𝑁𝑖𝛼 , we have

rows(𝛼) =
{⋃

𝑁 𝑗 ∈R𝛼

rows(𝑁 𝑗 )
} ⋃

𝛼

I𝛼

and the lemma follows by induction on the number of steps in the

derivation of 𝛼 . □

In view of Lemma 3.7, to compute 𝑥𝑡 = 𝑦𝑡𝑀 , we need to compute

𝑉 [𝑖] · sum𝑦 (⟨𝑖, 𝑗⟩) for all ⟨𝑖, 𝑗⟩ ∈ 𝑆 ′. To this end we first compute

sum𝑦 for nonterminals and then we use Lemma 3.9 to derive the

values sum𝑦 (⟨𝑖, 𝑗⟩). In our implementation we introduce an aux-

iliary array𝑊 [1, 𝑞], where 𝑞 = |R |, such that at the end of the

computation𝑊 [𝑖] contains sum𝑦 (𝑁𝑖 ). To explain: we initially set

𝑥 [1,𝑚] to zero, and we set𝑊 [1, 𝑞] to zero as well, except for the

entries𝑊 [𝑖ℓ ] that we initialise to 𝑦 [ℓ] for every nonterminal 𝑁𝑖ℓ

in the final string C (this accounts for the terms in the second sum-

mation of (3)). Next, we scan the set of rules backwards from 𝑞 to 1;

for every rule 𝑁 𝑗 → 𝐴𝐵 we proceed as follows:

• if 𝐴 (or 𝐵) is equal to another nonterminal 𝑁𝑖 (necessarily

with 𝑖 < 𝑗 ) we increase𝑊 [𝑖] by the value𝑊 [ 𝑗];
• if 𝐴 (or 𝐵) is equal to a terminal ⟨ℎ,𝑘⟩ we increase 𝑥 [𝑘] by
𝑉 [ℎ] ·𝑊 [ 𝑗].

The crucial observation is that when we reach the rule 𝑁 𝑗 → 𝐴𝐵

we have already computed in𝑊 [ 𝑗] the correct value sum𝑦 (𝑁 𝑗 )
since we have already accounted for all terms in Lemma 3.9, namely

the nonterminals in the final string C and all rules containing 𝑁 𝑗

in their right-hand side (by our assumptions these rules will be

numbered higher than 𝑗 ). Using our strategy, the value sum𝑦 (𝑁 𝑗 )
is added to sum𝑦 (𝐴) and sum𝑦 (𝐵), affecting their corresponding
values in𝑊 if they are nonterminal, or being accumulated in the

proper entry of 𝑥 if they are terminals.

Theorem 3.10. Given the grammar-compressed CSRV represen-
tation (C,R,𝑉 ) of a matrix𝑀 ∈ R𝑛×𝑚 and a vector 𝑦 ∈ R𝑛 , we can
compute 𝑥𝑡 = 𝑦𝑡𝑀 within O(|C| + |R|) time using O(|R|) words of
auxiliary space. □

We point out that we do not require that in the array 𝑆 , com-

pressed to C and R, the pairs relative to the same row are ordered

according to column index, as we arranged them in Figure 1. To

help the compression, we could instead reorder the pairs in other

ways: this would not impact upon the design of our multiplication

algorithms. In Section 5, we analyse the compression improvement

obtained by reordering the columns of𝑀 globally, i.e., reordering
the elements in each row using the same permutation. As for future

work, we plan to analyse the general problem in which the elements

in each row are reordered independently of all other rows.

4 IMPLEMENTATION AND EXPERIMENTS
Wenow describe a prototype of ourmatrix-multiplication algorithm

for grammar-compressed matrices. We derive different representa-

tions with different time/space trade-offs, so that in the end we will

eventually define a family of grammar-compression algorithms.

Given a matrix𝑀 ∈ R𝑛,𝑚 we first build the CSRV representation

(𝑆,𝑉 ) as described in Section 2.We implemented this representation

by storing the sequence 𝑆 as an array of 32-bit unsigned integers:

the symbol $ is encoded by the integer 0, while the pair ⟨𝑖, 𝑗⟩ is
encoded by the integer 1 + 𝑖𝑚 + 𝑗 (recall 0 ≤ 𝑗 < 𝑚 is the column

index). The entries of 𝑉 are represented as 8-byte doubles, so the

total space usage amounts to 4|𝑆 | + 8|𝑉 | bytes. In the following we

call this representation csrv and we use it as a baseline for our tests.
To build the grammar representation (C,R,𝑉 ) we compress the

32-bit integer sequence 𝑆 using the RePair algorithm [23], which

runs in 𝑂 ( |𝑆 |) time, using 𝑂 ( |𝑆 |) words of space, and achieves a

compression ratio bounded by the high-order statistical entropy of 𝑆

(see Sect. 3). RePair works by repeatedly finding the most frequent

pair of consecutive symbols 𝐴𝐵, replacing all their occurrences by

a new nonterminal 𝑁𝑖 , and appending the rule 𝑁𝑖 → 𝐴𝐵 to the

current rule set. We modified RePair so that it never builds a rule
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involving the symbol $, as required by our construction. RePair

stops when there are no more pairs of consecutive symbols appear-

ing more than once. Thus, the final string C has not necessarily

the form 𝑁𝑖1 $𝑁𝑖2 $ · · ·𝑁𝑖𝑛$ discussed in the previous section; in-

stead C is usually longer and may even include terminals ⟨𝑖, 𝑗⟩. We

could add additional rules to obtain a final string C with exactly

2𝑛 symbols as above; but since this does not help compression or

running times we use RePair’s final string as C, adding the (simple)

necessary modifications to the multiplication algorithm.

In addition to the final string C, RePair produces a set of rules R
where, as we saw, each rule is represented by a symbol pair. In its

naïve representation, RePair outputs |C| + 2|R | 32-bit integers over-
all.

1
However, this is quite a wasteful representation: if the largest

nonterminal is represented by the integer 𝑁max, we can represent C
and R using packed arrays with entries of𝑤 = 1+

⌊
log

2
𝑁max

⌋
bits.

What’s more, some symbols might be more frequent than others in

C or R, so we can save additional space by using a variable-length

representation via an entropy coder. We have thus experimented

with the following variants of RePair compression, which induce

three corresponding variants of our matrix compression algorithm:

re_32: C and R are represented as 32-bit integer arrays. This

is the fastest, but less space-efficient representation.

re_iv: C and R are represented as packed arrays, with entries

of 1 +
⌊
log

2
𝑁max

⌋
bits (see above). In our implementation

we used the class int_vector from the sdsl-lite library [16].

re_ans: R is represented via a packed array as above, whereas

C is compressed using the ans-fold entropy coder from [28].

All the above variants store the array 𝑉 uncompressed. Clearly,

more complex representations are possible, offering even larger

compression achievements. However, the reader should notice two

important points. Firstly, we want to efficiently support matrix-

vector multiplication: looking at the algorithms in Section 3 we

see that the left-multiplication algorithm scans the rules in R back-

wards, and only a few compressors provide fast right-to-left access

to uncompressed data. In addition, the compression of C and R is

secondary: we expect the largest saving from the use of the gram-

mar compressor and reordering techniques introduced in Section 5.

4.1 Multi-threaded implementation
To take advantage of modern multi-core architectures, matrix mul-

tiplication algorithms usually split the input matrices into blocks;

indeed, most operations on the individual blocks can be easily car-

ried out in parallel on amulti-threadmachine. Since forMLmatrices

the number of observations (rows) is much larger than the number

of features (columns), we implemented a representation in which

the input matrix is partitioned into blocks of rows. Given a param-

eter 𝑏 > 1, an 𝑟 × 𝑐 matrix 𝑀 is partitioned into 𝑏 blocks of size

⌈𝑟/𝑏⌉ × 𝑐 (except for the last block which might have fewer rows).

With this setting, the right multiplication 𝑦 = 𝑀𝑥 consists of 𝑏

independent right multiplications each one involving a single block.

The 𝑏 left multiplications computing 𝑥𝑡 = 𝑦𝑡𝑀 are independent

too; in a final step the 𝑏 resulting row vectors are summed together.

Our grammar-based representations can be easily adapted to

work with distinct blocks of rows. After computing the CSRV

1
Notice that for a rule 𝑁𝑖 → 𝐴𝐵, we have to encode only 𝐴 and 𝐵 because the

nonterminals 𝑁𝑖 have increasing ids.

representation (𝑆,𝑉 ), we partition the vector 𝑆 into 𝑏 subvectors

𝑆1, . . . , 𝑆𝑏 , so that 𝑆𝑖 contains the encoding of the non-zero elements

of the 𝑖-th row block. We thereby grammar-compress each subvec-

tor 𝑆𝑖 using RePair; the resulting string C𝑖 and rule set R𝑖 are then

further compressed as described before. Notice that the value array

𝑉 is unique and shared by all matrix blocks.

4.2 Some experimental figures
We executed all our experiments on a machine equipped with 80

Intel(R) Xeon Gold 6230 CPUs running @ 2.10 GHz, with 360 GB

of RAM. We measured running times and peak space usages with

the Unix tool time. Table 1 reports the features of our data set; it
includes all the matrices from [12, 13] and two other matrices (Susy
and Optical) coming from the ML repository [11] thus offering a

wide spectrum ofmatrix-types that allow us to better investigate the

algorithmic features and performance of all algorithms we tested.

For uniformity’s sake, we represent the entries of all matrices as

8-byte doubles, so the uncompressed and full representation of a

matrix takes a total of rows × cols × 8 bytes. If such representation

is compressed with gzip and xz, with their default compression level,

the resulting compressed files have the sizes reported in columns 6

and 7 of Table 1. Column 8 reports the size of the csrv representation,
while the last three columns report the sizes of the three variants

of our RePair compressor described above. All sizes are given as

a percentage of the ratio between the size of the compressed and

the uncompressed matrix representations (rows × cols × 8 bytes),

hence a smaller percentage corresponds to a better compression.

We emphasise that some of the matrices, namely Susy, Higgs,
and Optical, are not really sparse, having more than 92% non-zero

elements. The classical CSR representation, where each non-zero

entry takes 12 bytes, would take, on these data sets, more space

than the uncompressed representation. Our csrv representation,

that takes advantage of repeated values, is already obtaining some

compression; in particular for Optical, which has fewer distinct

nonzeros, csrv shows a reduced space footprint compared to gzip.
Further space reduction is obtained by our advanced grammar-

based compressors, even for non-sparse matrices, thus achieving

space reduction on a larger class of matrices with some structure.

The comparison between the csrv and re_32 output sizes is of
interest to see some indication of the effectiveness of grammar

compression. At one extreme, we see that re_32 does not provide
for Susy any additional compression to the csrv representation,

suggesting that there are notmany pairs of adjacent non-zero values

occurring many times in different rows. At the other extreme, re_32
provides for Census a six-fold better compression, and re_iv and
re_ans achieve a compression even better than the state-of-the-

art tool xz. Moreover, our most sophisticated encoder, re_ans, is
significantly better than gzip, with the only exception being Susy.

Let us now turn our attention to our main interest, namely reduc-

ing both space usage and running time for the matrix multiplication

operations. Standard compressors, like gzip and xz, need to fully

decompress the compressed matrix in order to perform any opera-

tion on it. Hence, the cost of any operation is at least proportional

to the size of the uncompressed matrix; conversely, in the previous

section we proved that using grammar compression, left and right

multiplications can be carried out in time proportional to the size
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Table 1: Matrices used in our experiments and the compression ratio achieved by the tools described in the text; a smaller
percentage corresponds to a better compression. The column nonzeros reports the percentage of non-zero elements over the
total, while column #|nonzeros| reports the number of distinct non-zero values.

matrix rows cols nonzeros #|nonzeros| gzip xz csrv re_32 re_iv re_ans

Susy [11] 5 000 000 18 98.82% 20 352 142 53.27% 43.94% 74.80% 74.80% 69.91% 66.63 %

Higgs [11] 11 000 000 28 92.11% 8 083 943 48.38% 31.47% 50.46% 46.91% 41.38% 38.05 %

Airline78 [2] 14 462 943 29 72.66% 7 794 13.27% 7.01% 38.06% 14.84% 11.13% 9.27 %

Covtype [11] 581 012 54 22.00% 6 682 6.25% 3.34% 11.95% 7.21% 4.52% 3.87 %

Census [11] 2 458 285 68 43.03% 45 5.54% 2.79% 22.25% 3.24% 2.02% 1.53 %

Optical [11] 325 834 174 97.50% 897 176 53.54% 27.13% 50.62% 40.70% 35.81% 34.31 %

Mnist2m [4] 2 000 000 784 25.25% 255 6.46% 4.25% 12.69% 7.47% 5.84% 5.33 %

ImageNet [8] 1 262 102 900 30.99% 824 5.52% 3.63% 11.72% 6.41% 4.00% 3.86%

of the compressed matrix. To measure the practical impact of this

theoretical result, we considered 500 iterations of the computation

𝑦𝑖 = 𝑀 𝑥𝑖 , 𝑧𝑡𝑖 = 𝑦𝑡𝑖 𝑀, 𝑥𝑖+1 =
𝑧𝑖

∥𝑧𝑖 ∥∞
(4)

where ∥𝑧𝑖 ∥∞ is the largest modulus of the components of 𝑧𝑖 . The

above computation consists of 500 alternated left and right ma-

trix multiplications and mimics, e.g., the most costly operations of

conjugate gradient method used for least square computations.

For the above iterative scheme we report in Table 2 the average
time per iteration and the peak memory usage, as measured by the

Unix tool time. In addition to the single-threaded algorithms, we

tested versions using 4, 8, 12, and 16 threads. The first two columns

in Table 2 report the peak memory usage and average iteration

time for the single-threaded version of re_iv and re_ans, for which
the input matrix is not partitioned and it is therefore grammar-

compressed as a single unit. As expected for both algorithms the

peak memory usage of the single-threaded version of re_iv and

re_ans is somewhat larger than the compressed size reported in

Table 1. Indeed, according to Theorems 3.4 and 3.10 in addition to

the space for the input and output vectors our algorithms use as a

working space an (uncompressed) array of |R | 8-byte doubles. How-
ever, the difference between peak memory usage and compressed

matrix size is less than 7% of the uncompressed matrix size, with the

only exception ofHiggs (≈ 9%). Unfortunately, the time per iteration

of the single-threaded version is disappointing especially for the

larger matrices. Hence, we have investigated the use of multiple

threads by partitioning the matrix into a number of row-blocks

equal to the number of threads as discussed in Section 4.1.

Figure 3 shows the increase of the peak memory usage (first row)

and the decrease of the running time (second row) as the number

of threads increases for re_ans and re_iv. We see that, with the

exception of the most compressible inputs (i.e. Covtype and Census),
with 16 threads the peak memory usage is always less than 1.5

times the peak memory usage of the single-threaded version (for

the most compressible inputs the overheads of the computation

dominate over the storage of the compressed matrix). Notice also

that for Higgs the space usage of the multi-threaded versions of

re_iv and re_ans is smaller than for the single-threaded version: the

reason is that this file is better compressed when split into distinct

blocks (this usually happens when the blocks have little structure in

common). Comparing the plots at the top of Figure 3, we see that for

re_iv the memory overhead of using multiple threads grows slower

than for re_ans. Hence, although re_iv is a simpler and usually less

effective compressor, it uses less space than re_ans when working

with 16 threads as shown by the last two columns of Table 2.

As far as time efficiency is concerned, Figure 3 (bottom left)

shows that for re_ans using 4 threads the speedup is close to 100%

(time ratio is 1/4), when using 8 threads the speedup is still close

to the optimal (i.e. 1/8) except for Census and Susy. As expected, a
larger number of threads only helps re_ans with the largest inputs:

for Higgs, Airline78 and Mnist2m with 16 threads the speedup is

still within 12.66 and 14.90. On the other hand, for Covtype, which
is the smallest input, re_ans does not achieve any improvement by

going from 8 to 16 threads. For re_iv the speedup follows a similar

trend (Figure 3 bottom right). We notice that for 4 and 8 threads the

speedup is smaller than for re_ans, but for 16 threads the speedup
is larger than 11 for all inputs except, again, for the small Covtype.

Table 2 summarises the statistics for the iterative computation

of Eq. (4) with csrv and our grammar compressors using 16 threads.

The results show that even for a multi-threaded computation the

overall space usage can still be a small fraction of the uncompressed

size. Indeed, the peak memory usage of the grammar compressors

is up to 3× smaller than for csrv (i.e. for Census) and for 5 inputs

it is less than 20% of the original uncompressed size. As we will

discuss in Section 5.4, such impressive compression rates come

together with a reduced average time per iteration compared to

the state-of-the-art tool CLA; in some cases we operate even faster

than over the uncompressed (dense) matrix representation.

The combined analysis of the peak memory usage versus run-

ning time highlights some interesting points. Considering all the

algorithms running with 16 threads we see that, not surprisingly,

the simpler compressed representations usually lead to faster ma-

trix multiplications. Among the grammar compressors, the fastest

algorithm is re_32 in which the string C and the rule set R are

represented by 32-bit integers. The more sophisticated encoders

re_iv and re_ans achieve better compression but they are slower.

This is in accordance with the theoretical results: according to

Theorems 3.4 and 3.10 the cost of matrix-vector multiplication is

O(|C| + |R|) time; re_iv and re_ans use compressed representations
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Table 2: Peak memory usage and average time per iteration in seconds for the computation of 500 iterations of Eq. (4). The
memory usage is expressed as the percentage of the size of the full uncompressed matrix.

re_iv 1 thread re_ans 1 thread csrv 16 threads re_32 16 threads re_iv 16 threads re_ans 16 threads

matrix peak mem time peak mem time peak mem time peak mem time peak mem time peak mem time

Susy 76.15% 3.89 73.40% 4.88 80.66% 0.26 80.63% 0.27 77.45% 0.35 82.67% 0.45

Higgs 50.30% 8.28 47.12% 11.03 54.12% 0.36 52.04% 0.42 47.01% 0.62 44.90% 0.74

Airline78 17.16% 2.88 15.40% 3.94 41.57% 0.17 24.72% 0.15 19.21% 0.25 19.28% 0.31

Covtype 9.42% 0.05 10.16% 0.07 14.60% 0.01 13.09% 0.01 17.10% 0.01 17.29% 0.01

Census 4.37% 0.12 4.11% 0.19 23.88% 0.05 6.70% 0.01 6.14% 0.01 8.03% 0.02

Optical 39.83% 0.73 39.23% 1.08 51.70% 0.04 46.56% 0.04 45.00% 0.06 56.72% 0.09

Mnist2m 7.33% 7.09 6.85% 9.87 12.83% 0.20 11.31% 0.42 8.19% 0.60 8.30% 0.78

ImageNet 5.21% 4.56 5.21% 4.58 6.95% 0.38 6.95% 0.39 6.95% 0.41 6.95% 0.39
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Figure 3: Peak memory usage (up) and running time (bottom) of the multi-threaded version of the matrix multiplication
algorithm using the re_ans (left) and re_iv (right) compressors. The 𝑌 -axis reports the ratio between time and space of the
multi-threaded version of re_ans or re_iv versus the single-threaded version of the same algorithm.

of C and R: this reduces the peak memory usage but not the num-

ber of arithmetic operations. As for the csrv representation (see

column 3 in Table 2), we notice that different input matrices can

have very different behaviours. For Airline78, e.g., re_32 uses much

less space than csrv but shows only a modest improvement in run-

ning time. For Mnist2m, re_32 shows a modest reduction in space

but an increase in running time; the most sophisticated re_iv and
re_ans tools achieve greater compression but they are significantly

slower. Finally, for Census we have a four-times reduction in space

for re_32 and re_iv with a five-fold improvement in running time.

Since users want the fastest algorithm than can run in the available

memory, we conclude that all compressors should be considered;

indeed an interesting problem would be the design of a mechanism

for selecting the best options given the user’s constraints.

Table 3 reports the compression-time performance of our ap-

proaches using 16 threads. Comparing the running times for csrv
and re_32 we see that computing the CSRV representation costs

more than computing the grammar. In fact, the former takes O(𝑚𝑛)
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Table 3: Compression times in seconds for the 16-thread
version of our algorithms and CLA.

matrix csrv re_32 re_iv re_ans CLA
Susy 58.97 61.79 62.14 112.10 —

Higgs 136.99 148.34 149.21 223.73 39.86

Airline78 42.65 58.33 58.85 71.29 5.45

Covtype 1.55 1.77 1.83 2.23 8.52

Census 10.94 13.22 13.29 14.12 8.52

Optical 15.84 17.81 18.01 34.38 12.25

Mnist2m 82.95 104.75 105.68 147.10 118.97

Imagenet 63.66 84.87 85.44 104.44 177.39

time, while the latter takes time proportional to the number of non-

zero elements. In addition, the computation of the CSRV represen-

tation involves the whole matrix and it is done by a single thread,

while the grammar compression is done in parallel using a thread

for each row block. Comparing the running times for re_32, re_iv
and re_ans we see that, not surprisingly, computing the packed-

array representation of C and R is relatively inexpensive, while

compressing C with the ans-fold entropy coder may take more

time (see Susy and Higgs). As a reference we also report compres-

sion times for CLA (discussed in Section 5.3) which is usually faster

than our proposals. However, it is worth saying that compression

is done once while the compressed matrix is later used many times,

so construction speed was actually not a main goal of this paper.

Finally, we point out that there are avenues for improving our

algorithms. For example, in our tests we used the same compres-

sor for each row block of the input matrix: we could use different

compressors to compress different blocks, or use the CSRV repre-

sentation for the blocks which are hard to compress (a similar idea,

applied to blocks of columns, is used within CLA). Another avenue

for improvement is the reordering of the elements of the array 𝑆

as discussed at the end of Section 3: some promising results in this

direction are presented in the next section.

5 COLUMN REORDERING FOR GRAMMAR
COMPRESSION

In this section we show how the reordering of the columns of the

input matrix improves the performance of our grammar compressor.

As we mentioned at the end of Section 3, reordering the columns

is only one of the possible preprocessing operations that can be

applied to the input matrix without affecting our multiplication

algorithms. We start our investigation with this technique as it

was already studied in the related area of table compression [5, 35].

Grammar compression for the CSRV representation replaces pairs

of symbols appearing adjacently and in many rows with a single

nonterminal. Hence, we aim at reordering matrix columns so that

correlated columns appear adjacent to each other. To this end, we

define the column similarity as the number of identical symbol pairs

(cf. the formal definition in the next subsection). This similarity

score estimates the compressible fraction of every column pair,

hence modelling the compression performance of a tool like RePair

when two columns are placed one adjacent to the other in the final

ordering. This conservative, yet simple idea, achieves an effective

performance as proved by our experiments. We use the column-

similarity score within four novel column-reordering algorithms

and measure their impact on the performance of our compressed

matrix-vector multiplication algorithm.

5.1 The column-column similarity matrix
Given the input matrix 𝑀 ∈ R𝑛,𝑚 we define the 𝑚 ×𝑚 column-

column similarity matrix CSM as follows. For each pair of column

indices 𝑖 and 𝑗 , with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, we build the sequence of pairs

𝑃𝑖 𝑗 = ⟨𝑀 [1] [𝑖], 𝑀 [1] [ 𝑗]⟩, ⟨𝑀 [2] [𝑖], 𝑀 [2] [ 𝑗]⟩ . . .
. . . ⟨𝑀 [𝑛] [𝑖], 𝑀 [𝑛] [ 𝑗]⟩

and we define 𝑅𝑃𝑁𝑍
𝑖 𝑗

as the number of repetitions of pairs of non-

zero elements in the sequence 𝑃𝑖 𝑗 (note we only consider pairs in

which both elements are nonzeros). For example, for the matrix

of Fig. 1 it holds 𝑅𝑃𝑁𝑍
12

= 2 because 𝑃12 contains only one non-

zero pair, i.e. ⟨1.2, 3.4⟩, which has two repetitions; and 𝑅𝑃𝑁𝑍
13

= 1

because 𝑃24 contains two non-zero pairs, i.e. ⟨1.2, 5.6⟩ and ⟨1.2, 2.3⟩,
but only one repetition of ⟨1.2, 2.3⟩.

So, we define the similarity between columns 𝑖 and 𝑗 as the ratio

CSM[ 𝑗] [𝑖] = CSM[𝑖] [ 𝑗] =
𝑅𝑃𝑁𝑍

𝑖 𝑗

𝑛
.

From the previous example we have CSM[1] [2] = 2/6 = 0.3̄, and

CSM[1] [3] = 1/6 = 0.16̄.

The computation of CSM[𝑖] [ 𝑗] can be done in 𝑂 (𝑛) expected
time by inserting each pair in a hash table, thus taking𝑂 (𝑚2𝑛) time

over all column pairs. An alternative procedure taking𝑂 (𝑚2𝑛 log𝑛)
time consists in collecting all pairs and sorting them in order to

easily count duplicates. The sorting-based approach turned out to

be very fast in practice and hence we chose it our experiments.

The storage of CSM takes Θ(𝑚2) words if we use a full-sized
representation. We also experimented with two heuristics for reduc-

ing that space bound to 𝑂 (𝑚𝑘), where 𝑘 is a user-defined sparsity

parameter. The first heuristic consists of building a sparse CSMma-

trix, called locally-pruned column-column similarity matrix CSM𝑃 ,

in which we maintain only the 𝑘 greatest column-column similarity

scores for each column. The second heuristic builds a globally-

pruned column-column similarity matrix CSM𝑃 by keeping the

top-(𝑚𝑘) similarity scores among all the entries of CSM. The space

complexity is still 𝑂 (𝑚𝑘), but now the pruning is performed glob-
ally over all entries of the original matrix.

5.2 Column-reordering approaches
Once we have computed the column-similarity matrix CSM either

in its full or sparse version, we leverage it to find a column reorder-

ing that helps grammar compression. We investigated four different

column-reordering algorithms working upon the weighted graph𝐺

whose adjacency matrix is either CSM (consisting of Θ(𝑚2) edges)
or CSM𝑃 (consisting of Θ(𝑚𝑘) edges). They are described below.

The Lin-Kernighan heuristic (LKH) is a heuristic for the Trav-
elling Salesman Problem (TSP). Though the algorithm is approxi-

mate, the implementation in [18, 19] computes the best known

solution for a series of large-scale instances with unknown optima.

Wemodel column reordering as an instance of a (symmetric) TSP

stated on the graph𝐺 above. Each of the𝑚 columns in the original
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matrix 𝑀 corresponds to a different city in the TSP; the distance

between pairs of cities (columns) is given by the corresponding

entry in the matrices CSM or CSM𝑃 (negated, since the TSP is a

minimisation problem and we want to maximise total similarity).

The TSP solution will specify an ordering of𝑀 ’s columns. We used

the ANSI C implementation of LKH available at: http://webhotel4.

ruc.dk/~keld/research/LKH/ (version 2.0.9).

The PathCover approach reduces column reordering to the

problem of finding a set of maximum weighted paths in the above-

mentioned graph 𝐺 ; it requires that these paths “cover” all of its

nodes and they are disjoint. We introduce this approach since TSP

is NP-hard, but we do not necessarily need to impose its strong

constraint of forming a single Hamiltonian path. We may indeed

concentrate our algorithmic effort upon the subset of compress-

ible columns [32], leaving aside those columns that do not exhibit

significant redundancies. PathCover returns a set of partial reorder-
ings (induced by the found paths) that yield a full reordering if

concatenated together. The approach is a reminiscence of the single
linkage algorithm used in hierarchical clustering [25, Ch. 17]. We

implement PathCover using a variant of the Kruskal’s algorithm
for Minimum Spanning Trees [9]. We scan𝐺 ’s edges by decreasing

weights, and add edges to the solution only if they form disjoint

paths. Though in Python, our code runs very fast in practice.

PathCover+ is a variant of PathCover in which the column-

column similarity matrix is dynamically updated as follows. Let

(𝑢𝑟−1, 𝑢𝑟 ) be the heaviest edge selected by the PathCover algo-
rithm, and assume that it extends a covering path to form P =

(𝑢1, ..., 𝑢𝑟−1, 𝑢𝑟 ). Then, for each node 𝑣 adjacent to some node 𝑢 𝑗 ∈
P, we recompute the new weight 𝑤 (𝑣,𝑢 𝑗 ) the minimum among

the weights from 𝑣 to any node in P. Thus, the weighting corre-

sponds to coalescing the path P into a macro-node and making

the link from 𝑣 to P as the minimum weighted edge from 𝑣 to any

node 𝑢 ∈ P. We implemented PathCover+ in Python following a

procedure similar to Sybein’s MST algorithm [27].

The Maximum Weighted Matching (MWM) approach deter-

mines a weighted matching M of the graph 𝐺 . By definition, M is

a subgraph of𝐺 such that no two edges share common vertices and

the sum of the edge weights is maximum among all possible match-

ings in 𝐺 . The best exact MWM algorithm exhibits Θ(𝑚3) time

complexity [15]. For our column-reordering purpose, we generate a

bipartite graph 𝐵𝐺 with 2𝑚 nodes and

(𝑚
2

)
edges weighted accord-

ing to the column-column similarity entries. To clarify, for each

column pair 𝑖 , 𝑗 , with 𝑖 < 𝑗 , we insert an edge in 𝐵𝐺 that connects

the 𝑖-th node to the 𝑗-th node and assign to it weight CSM[𝑖] [ 𝑗]
or CSM𝑃 [𝑖] [ 𝑗]. Choosing that edge corresponds to assuming that

the 𝑖-th column precedes the 𝑗-th column in the reordering. After

the MWM is computed, we use this predecessor-successor relation

to determine the final column reordering. Notice we cannot induce

cycles, as we assumed that edges (𝑖, 𝑗) are oriented, namely 𝑖 < 𝑗 . If

the matching size |M| is lower than the number of columns𝑚 in𝑀 ,

then MWM does not induce a single column-reordering sequence,

but rather a set of shorter disjoint column-reordering sequences: we

thus concatenate these partial reordering sequences in an arbitrary

order to get a full reordering. We implementedMWM in C++ using

the Boost library (https://www.boost.org).

5.3 Experimenting with column reordering
We conducted a set of experiments using the matrices reported in

Table 1 to analyse the time and space performance of the column-

reordering approaches described above. After applying the column-

reordering algorithm we compressed the reordered matrix using

re_ans from Section 4. We report the results only for the methods

LKH, PathCover, and MWM, since the PathCover+ method always

resulted in a worse compression performance.

The three column-reordering algorithms exhibit quite differ-

ent time performances. PathCover is faster thanMWM, and their

time performance is dominated by the construction of the column-

similarity matrix. LKH is the most time-consuming one and its run-

ning time slightly varies with the setting of LKH heuristic (faster

solutions correspond to worse results), but in any case LKH is orders

of magnitude slower than the other approaches.

In terms of space performance, we found that the locally-pruned

version of theCSMmatrix usually outperforms the full matrix or the

globally-pruned matrix. Table 4 reports the compression achieved

by this approach on the whole (unpartitioned) matrices for the three

reordering algorithms and for three different values of the sparsity

parameter 𝑘 . We see from Table 4 that for Susy the three reordering

algorithms exhibit the same performance, and LKH slightly wins

over ImageNet. PathCover is superior over three matrices, while

MWM is the winner for the remaining three. LKH is often very

close to the best compression but, given its larger computational

cost, we conclude that it is not a competitive solution. Overall,

reordering columns is advantageous up to 16.35% over Covtype, and
up to 10.26% over Airline78, as indicated in column “gain”, where

we report the space reduction induced by column-reordering with
respect to the version without reordering.

Next, to measure the effectiveness of the reordering techniques

for thematrixmultiplication operationswe performed the following

experiment. We partitioned each input matrix into 16 blocks of rows

as described in Section 4.1. Then, we applied to each block of rows

the best column-reordering according to Table 4 (in either case with

sparsity parameter 𝑘 = 16) followed by re_ans, and selected the

column-reordering algorithms yielding the best compression (so

each block can be subjected to a different permutation).
2
With such

reordered-and-compressed matrix, we performed our benchmark

computation (Eq. 4) and recorded the peak memory usage and the

average time per iteration. We reiterated the same procedure for

re_iv and reported the results in Table 5. Comparing these results

to those in Table 2 we see that reordering helps to reduce the peak

space and, to a lesser degree, the average running time too.

Although the benefits of reordering might appear small in ab-

solute terms they can be, again, significant in relative terms with
respect to the size of the compressed matrix. To see this, Figure 4

shows, for the two algorithms and for each input matrix, the per-

centage improvements in the peak memory usage, computed as

(𝑝𝑜 −𝑝𝑟 )/𝑝𝑜 where 𝑝𝑜 and 𝑝𝑟 are respectively the peak memory us-

age for the original and for the reordered matrix. We see that there

is an interesting memory-usage reduction for half of the inputs: for

Airline78, Covtype, Census and ImageNet compressed by re_iv and
re_ans we observed a memory usage reduction between roughly

2
As we observed at the end of Section 3.2, we do not need to store the column permu-

tation because every pair in 𝑆 stores the original column of each element.
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Table 4: Compression achieved by our column-reordering
algorithms, with the locally-pruned CSM matrix, followed
by the algorithm re_ans. Compression ratios should be com-
pared to those of re_ans without reordering from Table 1;
these are shown in parentheses in the rightmost column
where we also report the relative space reduction achieved
by the best permutation (highlighted in red).

matrix LKH PathCover MWM gain

S
u
s
y

k=4 66.57% 66.57% 66.57%

0.09%

(66.63%)

k=8 66.57% 66.57% 66.57%

k=16 66.57% 66.57% 66.57%

H
i
g
g
s k=4 38.03% 38.00% 37.99%

0.36%

(38.05%)

k=8 37.92% 38.00% 37.98%

k=16 38.02% 38.04% 37.92%

A
i
r
l
. k=4 9.63% 9.21% 10.17%

10.26%

(9.27%)

k=8 8.65% 9.52% 8.32%
k=16 9.43% 8.34% 9.63%

C
o
v
t
. k=4 3.74% 3.30% 4.19%

16.35%

(3.87%)

k=8 3.51% 3.24% 3.72%

k=16 3.25% 3.26% 3.72%

C
e
n
s
u
s

k=4 1.37% 1.39% 1.37%

3.40%

(1.53%)

k=8 1.33% 1.37% 1.41%

k=16 1.31% 1.30% 1.39%

O
p
t
i
c
a
l

k=4 33.23% 32.60% 33.19%

4.99%

(34.31%)

k=8 32.68% 33.03% 33.26%

k=16 33.22% 32.89% 32.95%

M
n
.2
m k=4 5.29% 5.31% 5.32%

0.73%

(5.33%)

k=8 5.29% 5.31% 5.29%
k=16 5.30% 5.31% 5.30%

I
m
.N
e
t

k=4 3.84% 3.87% 3.90%

2.14%

(3.86%)

k=8 3.82% 3.84% 3.88%

k=16 3.78% 3.81% 3.86%

5% and 15% of the original memory usage. The running times for

these experiments are reported in Table 5. Remarkably, for Airline78
such memory reduction translates to a 25% reduction in the average

running time. Note also that sometimes reordering does not help:

for Mnist2m reordering does not change the peak memory usage

but instead induces a small (5%) increase in the running time for

both algorithms; and for Susy, the reordering slightly increases the

peak memory, with no significant changes in the running time.

5.4 Matrix-vector multiplication efficiency
In this section we are interested in evaluating the peak memory

usage versus the speed of matrix-vector multiplication over five

approaches: two based on our compressors re_iv and re_ans applied
over the block-wise optimally reordered matrix (described in the

previous section), CLA [12, 13], and two baselines storing in RAM

the gzip-compressed matrix or the uncompressed matrix. In our

experiments we set CLA to use all the available threads (80 in our

test machine) while the other approaches used 16 threads partition-

ing the input matrix into 16 row-blocks as in Section 4.1. Results

are reported in Table 5. Columns size and PM are respectively the

Figure 4: Percentage (relative) improvements in terms of the
peak memory usage for the reordered matrices as resulting
from the data reported in Table 5 for re_iv and re_ans.

size of the compressed matrix and the peak memory usage during

the multiplication algorithm expressed as a percentage with respect

to the size of the uncompressed matrix (we omitted the size for the

“uncompressed” algorithm since it was obviously 100%). Column

time is the time in seconds for a single iteration of Eq. (4) averaged

over 500 iterations. PM and time were measured using the Unix

tool time except for CLA as discussed below.

The comparison with CLA faces some technical hurdles: we

implemented our tools in small self-contained C/C++ programs,

while CLA is available inside Apache SystemDS [34], a complete

ML system written in Java and designed to run possibly on top of

Apache Spark. SystemDS’s algorithms are expressed in a high-level

languagewith an R-like syntax: such scripts are parsed and analysed

before the actual computation starts. In addition, SystemDS does not

store the compressed matrix on disk: matrices are compressed from

scratch at every execution; since the compression algorithm has a

randomised component the compressed representation can change

from one execution to the next one. For these technical reasons, the

time for CLA includes compression time, the compressed matrix

size was derived from SystemDS logs, and the peak memory usage

for the matrix-vector multiplication phase alone has been computed

“forcing” the Java garbage collector using a procedure suggested by

CLA’s authors. Note that for the matrix Susy, CLA was unable to

complete the computation due to a Java runtime exception.

As for compression, CLA is less effective than re_ans with the

only exception of Higgs. Compared to re_iv, CLA is clearly superior

for Higgs, marginally superior for Covtype and Mnist2m, and less

effective for all the other inputs. The PM of CLA exceeded in some

cases the dimension of the uncompressed representation and it was

always larger than our approaches by a factor from 3.14 (Higgs)
to 19.12 (Census). As for running time, CLA is always at least two

times slower than re_ans, and at least three times slower than re_iv
(but we should remember that CLA time includes construction).

The gzip-based approach decompresses each row block at each

iteration and multiplies it for the current vector. The whole compu-

tation is done completely in RAM using a thread for each row block;
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Table 5: Performance comparison considering compressed space, peak memory usage (PM), and average running time in
seconds for matrix-vector multiplication; see text for details. Sizes and PMs are expressed as percentages.

re_iv re_ans CLA gzip uncompressed

16 threads 16 threads multithread 16 threads 16 threads

matrix size PM time size PM time size PM time size PM time PM time

(%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (s)

Susy 68.99 77.53 0.35 65.99 82.77 0.45 76.14 — — 53.27 63.09 2.22 106.14 0.17

Higgs 41.63 46.68 0.58 37.44 44.63 0.71 32.74 146.68 2.09 48.38 54.56 5.48 103.74 0.51

Airl. 9.35 16.06 0.17 8.13 16.43 0.23 12.34 120.27 1.17 13.27 17.53 6.27 103.57 0.75

Covt. 4.78 16.25 0.01 4.17 16.11 0.01 4.55 70.15 0.05 6.25 10.26 0.41 103.51 0.03

Census 2.00 5.70 0.01 1.55 7.25 0.02 3.77 108.96 0.16 5.54 7.92 1.89 101.77 0.12

Optical 36.05 44.50 0.06 34.93 56.39 0.09 40.44 176.90 0.20 53.55 57.26 1.00 101.47 0.04

Mn.2m 6.24 8.19 0.64 5.88 8.30 0.82 6.22 47.09 1.98 6.46 6.76 24.96 100.16 0.57

Im.Net 4.70 6.59 0.48 4.28 6.59 0.48 6.67 56.80 0.97 5.52 5.89 10.91 100.16 0.46

anyway, this was by far the slowest algorithm though having the

best PM together with our algorithms (no clear winner here), which

however are much faster (more than 40× for the most compressible

matrices). Finally, the approach storing the uncompressed matrix in

RAM has naturally a PM slightly larger than 100% and it is usually

the fastest algorithm, except for some highly-compressible files (i.e.

Covtype, Census and Airline78) where our approaches are faster.
Summing up, from the above comparisons we can draw some

important conclusions about our grammar compressors: (1) they

are able to save disk space and PM, thus providing experimental

evidence to the theoretical space bounds in terms of the 𝑘-th order

statistical entropy; (2) they are the fastest among the compressed

approaches, and for the most compressible matrices even faster

than the uncompressed algorithm, thus providing experimental

evidence to the theoretical results ensuring that the number of

operations is bounded by the size of the compressed matrix.

6 CONCLUSIONS AND FUTUREWORK
We have presented a grammar-based lossless compression scheme

for real-valued matrices that guarantees the size of the compressed

matrix is proportional to the 𝑘-th order statistical entropy of the

Compressed Sparse Row/Value representation. We have shown how

to perform left and right matrix-vector multiplications in time and

space linear with the size of the compressed matrix representation.

These remarkable properties of our approach open the related

problem of reordering the matrix elements for maximising com-

pression. This requires discovering and exploiting the hidden de-

pendencies between elements in ML matrices. As a first step in this

direction we have introduced and tested four column-reordering

algorithms based upon a new column-similarity score, which takes

into account the subsequent grammar-compression stage.

As a future work, we plan to investigate how much row permu-

tation and co-clustering techniques [3, 10, 17] can contribute to

achieving even better compression ratios. Moreover, it seems possi-

ble to extend the proposed grammar-compressed techniques to deal

with semiring-annotated data, thereby computing binary/unary

joins efficiently. We can indeed operate upon logical matrices and

simulate binary joins by replacing “+” with OR and “∗” with AND. It
would be of interest also to adapt and test our matrix-compression

scheme in the context of columnar DBs, which feature multiple

data types, such as strings, integers, categorical data, etc. Finally,

web and social graphs offer another relevant opportunity for the

application of our new compression schemes.
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