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ABSTRACT
Finding a set of co-clusters in a bipartite network is a fundamental
and important problem. In this paper, we present the Attributed
Bipartite Co-clustering (ABC) problem which uni�es two main
concepts: (i) bipartite modularity optimization, and (ii) attribute
cohesiveness. To the best of our knowledge, this is the �rst work to
�nd co-clusters while considering the attribute cohesiveness. We
prove that ABC is NP-hard and is not in APX, unless P=NP. We
propose three algorithms: (1) a top-down algorithm; (2) a bottom-up
algorithm; (3) a group matching algorithm. Extensive experimental
results on real-world attributed bipartite networks demonstrate the
e�ciency and e�ectiveness of our algorithms.
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1 INTRODUCTION
Many systems can be modeled as a bipartite network [32] such as
metabolic network [35], human sexual network [44], document-
word network [21], and collaboration networks [74]. A bipartite
network has two distinct sets of nodes* and+ and a set of edges ⇢
connecting nodes in * and + . It has many interesting applications.
An attributed bipartite network is a bipartite network where each
node is associated with a set of attributes. Based on the attributes,
we can measure the closeness of the nodes. For instance, a user-
location check-in network [39] is an attributed bipartite network,
where the nodes are divided into users and locations and an edge
represents a user making a check-in at a location; each user is
associated with a set of friends, and each location is associated with
its coordinates and description.

Co-clustering is an important and fundamental problem for a
bipartite network [14, 21, 22]. Generally, co-clustering a bipar-
tite network is to simultaneously group vertices in clusters of
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each vertex set by performing simultaneous clustering of the rows
and columns of a matrix. Co-clustering has been extensively stud-
ied in the context of gene expression data and document-word
networks. There are many approaches for co-clustering such as
bipartite modularity optimization [1], information theoretic co-
clustering algorithm [22], deep-learning based co-clustering [72],
:-means based co-clustering [34]. Among di�erent approaches,
matrix-factorization approaches are arguably most widely used [23,
29, 46, 58, 62, 65]. However, these methods require large memory
space and are not scalable to large bipartite graphs. In contrast,
bipartite modularity optimization aims to maximize the bipartite
modularity [6] via iterative alternating optimization [1] or spectral
approximation [41] to �nd the best partitions in a bipartite network.
These co-clustering methods focus on only the bipartite network
without considering the attributes of nodes; the two sides of each
generated co-cluster are densely connected. However, attributes of
nodes often provide valuable information that can be used to gener-
ate di�erent types of co-clusters such that each side of a co-cluster
has similar attributes and the nodes in each side are cohesive. For
example, if one side of the bipartite network is users with a social
network, we may require that the user nodes of each co-cluster are
densely connected to form a community. Unfortunately, previous
work fails to consider this.

In this work, we tackle a new problem of attributed bipartite
co-clustering (ABC). We de�ne an attributed co-cluster as a sub-
graph of an attributed bipartite network, in which each side of a
co-cluster has similar attributes (patterns) and the two sides are
densely connected with each other. Our goal is to �nd all the attrib-
uted co-clusters in an attributed bipartite network.

The example applications of our problem are as follows.

• Recommendation. In a music service, the users and the songs
form a bipartite graph, where an edge represents a user favors
a song. Each user is associated with attributes such as his/her
preferred music genres and each music is associated with at-
tributes like artist and genre. Each attributed co-cluster consists
of a set of users with similar favorite genres and a set of favored
similar songs. Based on an attributed co-cluster, we can make up
a playlist with the selected songs and recommend the playlist to
the selected users. Note that users who have not indicated any
preference for songs or songs that have never been marked as
favorite songs are not included in the attributed co-cluster.

• Finding fraudsters. In a social commerce service, users and
products can make a bipartite graph, where an edge indicates
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a user favors (or disfavors) a product. Each user and product is
associated with its attributes. Each resulted co-cluster contains a
set of users with similar attributes such as purchase pattern or
favorite products, and a set of favored (or disfavored) products
having similar properties. The fraudsters often share similar at-
tributes and are connected with products with similar attributes,
and co-clusters will help to identify a cluster of fraudsters.

• Bus planning system. Consider operating a shuttle bus plan-
ning system. The users and the companies form a bipartite net-
work, where each user has a home location and each company is
associated with its location, and a bipartite edge represents a user
who works for a company. ABC will return a set of co-clusters,
in which each co-cluster consists of a set of users whose home
locations are close and a set of companies which are located
closely. Thus, each co-cluster can be a candidate of a bus route.

• Finding local experts [15, 40]. In location/event based social
networks (LBSNs), such as meetup, ABC can be utilized for �nd-
ing a set of local expert candidates by identifying a set of co-
clusters. Each co-cluster contains cohesive users and a set of close
locations. It is helpful to �nd a set of local experts by checking the
users in the co-cluster. Activities of the experts are concentrated
on a speci�c region. For example, in LBSNs, it is named region-
alization, and is important for utilizing marketing strategy [37].

Unfortunately, it is challenging to solve the ABC problem as to be
explained. It is not feasible to extend existing bi-clustering methods
for attributed bipartite networks. One might think we �rst �nd
co-clusters without considering the attributes, and then apply the
post-processing to guarantee the attribute cohesiveness (i.e., each
side of a co-cluster has similar attributes). However, as the existing
co-clustering methods do not consider the attributes, the nodes
in each side of an identi�ed co-cluster may have total di�erent
attributes. It is challenging and unknown how to design a sensible
post-processing method to solve the ABC problem.

The �rst challenge of attributed bipartite co-clustering is to de-
�ne attributed co-clusters for an attributed bipartite network, which
is an open problem. For bipartite networks without attributes, bi-
partite modularity [6, 30, 56] is proposed and has been used for
de�ning co-clusters [1, 2, 41], which often results in better e�ciency
and co-clusters of better quality compared with other co-clustering
models. Therefore, a natural idea is to extend the bipartite modular-
ity to attributed bipartite networks. However, bipartite modularity
optimization [1, 2, 41] may miss some important structures due
to its characteristics. In this paper, we formulate a new bipartite
:-clique ring resolution limit problem which belongs to the resolu-
tion limit problem families, and show that the bipartite modularity
su�ers from the bipartite :-clique ring resolution limit problem. It
implies that when we optimize the bipartite modularity, it fails to
identify small-sized co-clusters, and thus misses some important
structures. To mitigate the problem, in this paper, we propose a
newmodularity measure called Excess BipartiteModularity Density
(EBMD). We prove that the proposed EBMD does not su�er from
the bipartite :-clique ring resolution limit problem. Furthermore,
the previous bipartite modularity de�nition does not take into ac-
count the attributes of nodes. We propose to enforce constraints
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Figure 1: Sample graph with social connection attributes

to incorporate attribute similarity in the de�nition of co-clusters,
which work together with the proposed EBMD.

Second, we prove that the attributed bipartite co-clustering prob-
lem based on our EBMD de�nition is NP-hard and not in APX.
Thus, it has no PTAS(Polynomial-Time Approximation Scheme)
assuming % < #% , and also no 2-approximation. We design three
e�cient heuristic algorithms: (1) a bottom-up algorithm; (2) a group-
matching algorithm; and (3) a top-down algorithm. These algo-
rithms are designed to handle two major challenges to strike a
balance di�erently: (1) maximizing EBMD; and (2) preserving the
attribute cohesiveness. The bottom-up algorithm gives priority
to addressing the challenge of maximizing EBMD by iteratively
�nding seed nodes and adding a set of nodes for preserving the at-
tribute cohesiveness. The group-matching algorithm focuses on the
attribute cohesiveness as the main concern by �nding sets of seed
nodes in each side and then combining them based on maximizing
EBMD. Lastly, the top-down algorithm simultaneously considers
maximizing EBMD and preserving attribute cohesiveness by itera-
tively splitting larger co-clusters into small-sized co-clusters while
maximizing the EBMD.

The contributions of our work are summarized as follows:

(1) De�ning the attributed bipartite co-clustering ABC prob-
lem. To the best of our knowledge, this is the �rst work to
�nd a set of co-clusters in an attributed bipartite network by
considering the bipartite edges and similarity cohesiveness si-
multaneously. We prove that the ABC problem is NP-hard and
not in APX, unless % = #% .

(2) New bipartite modularity and theoretical analysis. We
prove that the existing bipartite modularity su�ers from the
bipartite :-clique ring resolution limit problem. To overcome
the limitation, we propose a new bipartite modularity EBMD,
and prove that EBMD can resolve the problem.

(3) Solutions. We propose three solutions to solve the attributed
bipartite co-clustering problem e�ectively and e�ciently.

(4) Extensive Evaluation. We conduct extensive experiments on
real-life networks to demonstrate e�ectiveness and e�ciency.
We also show the usefulness of our problem with the case study.

2 THEORETICAL ANALYSIS
In this section, we present the bipartite modularity and propose
excess bipartite modularity density with theoretical analysis.

2.1 Bipartite modularity
D��������� 1. (Bipartite network).

Bipartite network ⌧ = (* ,+ , ⇢) is a network where the nodes are
divided into two disjoint sets, * and + , and every edge in ⇢ connects
a node in* to a node in + .
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D��������� 2. (Co-cluster).
Given a set of nodes 2 , a subgraph ⌧ [2] of a bipartite graph ⌧ is a
co-cluster if 2 is densely connected in terms of bipartite edges.

D��������� 3. (Bipartite modularity [6, 54]).
Given a bipartite network ⌧ = (* ,+ , ⇢) and a set of disjoint co-
clusters ⇠ , bipartite modularity is de�ned as follows1.

"⌫ (⌧,⇠) =
’
22⇠

"⌫ (⌧, 2) =
’
22⇠

[ ;2|⇢ | � (3
*
2 3

+
2

|⇢ |2 )] (1)

In Equation 1, "⌫ (⌧, 2) is the cluster-modularity of each co-
cluster 2 , |⇢ | is the sum of the bipartite edges, ;2 is the number
of edges in co-cluster 2 , 3*2 =

Õ
E22* 3E , where 3E is the degree

of the node E and 2* is the set of nodes in the * side of the co-
cluster 2 , and 3+2 is de�ned similarly as 3*2 . Intuitively, the bipartite
modularity in Equation 1 indicates the di�erence between a fraction
of edges within co-clusters and an expected fraction of the edges.
Therefore, higher modularity indicates that there are more intra co-
cluster edges than randomly distributed edges, which are re�ected
by ( 3

*
2 3+2
|⇢ | ) in Equation 1. Note that the randomly distributed edges

are re�ected by a null model of the modularity, which is de�ned as
3D3E
|⇢ | for a pair of node.

E������ 1. Figure 1 shows a bipartite network and two co-clusters.
The cluster-modularity of each co-cluster is computed as follows.

• "⌫ (⌧, 21) = 7
18 � 8·7

324 = 0.216
• "⌫ (⌧, 22) = 10

18 � 10·11
324 = 0.216

Therefore,"⌫ (⌧,⇠) = "⌫ (⌧, 21) +"⌫ (⌧, 22) = 0.432.

Assume that we have a co-cluster 2 of ⌧ . In the bipartite mod-
ularity optimization problem, to maximize the modularity score,
the cluster-modularity of the co-cluster 2 should be positive, i.e.,
;2
|⇢ | � ( 3

*
2 3+2
|⇢ |2 ) � 0.

2.2 Excess bipartite modularity density(EBMD)
In this section, we propose a new objective function named excess
bipartite modularity density(EBMD). We extend excess modularity
density [12], which is designed for a unipartite network, to the
bipartite network. EBMD is de�ned as follows.

D��������� 4. (Excess bipartite modularity density(EBMD)).
Given a bipartite network ⌧ = (* ,+ , ⇢) and a set of disjoint co-
clusters ⇠ = {21, 22, · · · , 28 }, EBMD is de�ned as follows.

- (⌧,⇠) =
’
22⇠

[X2
;2
|⇢ | � X

2
2
3*2 3

+
2

|⇢ |2 ] (2)

where ⇠ is a set of co-clusters, ;2 is the number of internal edges in
the co-cluster 2 , |⇢ | is the number of edges, 2* (resp. 2+ ) is a set of
nodes in the * (resp. + ) side of the co-cluster 2 , and 3*2 (resp. 3+2 )
is the sum of the degree of the nodes in 2* (resp. 2+ ). The function
X2 is de�ned as X2 = ;2

|2* | |2+ | �
|⇢ |

|* | |+ | . Note X2 can be negative
when 2 does not have su�cient internal edges compared with the
whole graph. We denote [X2

;2
|⇢ | � X

2
2
3*2 3+2
|⇢ |2 ] as the sub-EBMD.

1Note that Equation 3 is cluster-level bipartite modularity [6]
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Figure 2: Bipartite :-clique ring graph

E������ 2. The EBMD of the co-clusters in Figure 1 is computed
as follows.

• X21 =
7
9 � 18

42 = 0.349
• X22 =

10
12 � 18

42 = 0.404
Then, EBMD of each co-cluster is as follows.

• - (⌧, 21) = X21 · 718 � X2
21 ·

8·7
324 = 0.115

• - (⌧, 22) = X22 · 1018 � X2
22 ·

10·11
324 = 0.169

Therefore, - (⌧,⇠) = - (⌧, 21) + - (⌧, 22) = 0.283.

2.3 Theoretical analysis
We next analyze the classic bipartite modularity and EBMD. We
�rst introduce some de�nitions.

D��������� 5. (A bipartite :-clique graph).
A bipartite :-clique graph contains : nodes in * and + sides, respec-
tively. For each E 2 + and D 2 * , there exists an edge (D, E). Hence,
there are :2 bipartite edges.

D��������� 6. (Ring-shape graph).
A ring-shape graph ⌧ consists of = disjoint subgraphs 21, 22, · · · , 2=
such that for any two subgraphs 28 and 2 (8%=)+1 where 1 < 8  =,
there exists exactly one edge in ⌧ that connects a node in 28 and a
node in 2 (8%=)+1.

By combining a bipartite :-clique graph and a ring-shape graph,
we de�ne a bipartite :-clique ring graph.

D��������� 7. (Bipartite :-clique ring graph).
A bipartite :-clique ring graph is a sequence of = � 4 bipartite :-
cliques, denoted by 21, . . . ,2= , such that for any 28 and 2+(8%=)+1 where

1  8  =, there exists only one edge that connects 2*8 and 2+(8%=)+1.

The resolution limit problem implies that the modularity opti-
mization based approaches may fail to �nd communities that are
smaller than a certain size [10, 11, 53]. This problem is considered
as a general phenomenon [64] that describes clustering algorithms
failing to identify desirable clusters. As this phenomenon is dif-
�cult to conceptualize, many papers [12, 27] utilize clique-based
network con�gurations to show the resolution limit problem since
merged cliques clearly present a limitation of the modularity-based
approaches. Inspired by this idea, we de�ne a type of resolution
limit problem, named bipartite :-clique ring resolution limit which
belongs to the resolution limit problem families.

D��������� 8. (bipartite :-clique ring resolution limit).
Given a function 5 , we call that optimizing 5 su�ers from bipartite
:-clique ring resolution limit if it fails to �nd = bipartite :-cliques.

We proceed to show that optimizing the bipartite modularity
su�ers from the bipartite :-clique ring resolution limit and EBMD
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Figure 3: Bipartite :-clique ring resolution limit problem

does not su�ers from it, i.e., optimizing EBMD is bipartite :-clique
ring resolution free. In the proof, we compare two cases: (1) an
objective function prefers to �nd a set of :-cliques; (2) an objective
function prefers to �nd a set of merged cliques, i.e., two adjacent
cliques are merged. We de�ne the following notations.

• |⇢ | = = + =:2
• "⌫ (() = =( :2

=+=:2 � (:+1)2
(=+=:2)2 )

• "⌫ (") = =
2 ( 2:

2+1
=+=:2 � (2:+2)2

(=+=:2)2 )

• - (() = =(U :2

=+=:2 � U2 (:+1)2
(=+=:2)2 )

• U = :2

:2 � =+=:2

=2:2 = 1 � =+=:2

=2:2

• - (") = =
2 (V 2:2+1

=+=:2 � V2 (2:+2)2
(=+=:2)2 )

• V = 2:2+1
4:2 � =+=:2

=2:2

T������ 1. Optimizing the bipartite modularity su�ers from the
bipartite :-clique ring resolution limit.

P����. We assume that bipartite modularity does not su�er
from the bipartite :-clique ring resolution limit, and check whether
the assumption is contradictory.

"⌫ (() > "⌫ (")

) =( :2

= + =:2 �
(: + 1)2
(= + =:2)2 ) >

=

2
( 2:

2 + 1
= + =:2 �

4(: + 1)2
(= + =:2)2 )

) 2:2

2(= + =:2) �
2:2 + 1

2(= + =:2) > � (: + 1)2
(= + =:2)2

) 1
2
<

(: + 1)2
= + =:2

(3)

We notice that 1
2 < (:+1)2

(=+=:2) does not when = is large. Suppose that
= = :2. Then, we get the following result.

1
2
<

(: + 1)2
= + =:2 )

1
2
<

(: + 1)2
:2 + :4 (4)

We notice that for any positive value : � 2, Equation 4 does not
hold. It means that our assumption leads to a contradiction, and
implies that the bipartite modularity optimization su�ers from the
bipartite :-clique ring resolution limit problem. ⇤

We next check whether EBMD su�ers from the bipartite :-clique
ring resolution limit.

T������ 2. Optimizing the EBMD is bipartite :-clique ring reso-
lution free.

P����. We assume that EBMD prefers merged bipartite cliques,
i.e., su�ers from bipartite :-clique ring resolution limit problem.

- (() < - (")

) =(U :2

= + =:2 � U
2 (: + 1)2
(= + =:2)2 ) <

=

2
(V 2:

2 + 1
= + =:2 � V

2 (2: + 2)2
(= + =:2)2 )

) 2:2 (U � V) � V
2

<
(: + 1)2 (U2 � 2V2)

= + =:2 (5)

)

2:2 (1 � 2:2+1
4:2 ) � ( 2:2+1

4:2 � =+=:2

=2:2 )
2

<

(: + 1)2 ((1 � =+=:2

=2:2 )2 � 2( 2:2+1
4:2 � =+=:2

=2:2 )2)
=(:2 + 1)

(6)

Now, we have two scenarios. The �rst scenario is to assume that
when = is su�ciently large such as = = 1 in Equation 6.

) 2:2 (1 � 2:2 + 1
4:2

) < 2:2 + 1
4:2

) 8:4 � 4:2 � 2 < 2:2 + 1
(7)

Equation 7 does not hold when : � 2. It implies that when = = 1,
optimizing EBMD does not su�er from the bipartite :-clique ring
resolution limit. We next assume that when = is the smallest value,
i.e., = = 4 in Equation 6.

)
2:2�1

2 � 1
4

2
<

(: + 1)2 (( 3:2�1
4:2 )2 � 1

8 )
4(:2 + 1)

) (:2 + 1) (2:2 � 3
2
) < (: + 1)2 (( 3:

2 � 1
4:2

)2 � 1
8
)

(8)

We notice that Equation 8 does not always hold if : � 2. Thus,
EBMD is bipartite :-clique ring resolution free. ⇤

Figure 3 shows the bipartite :-clique ring resolution limit prob-
lem. If an objective function prefers purple co-clusters to green
co-clusters, the objective function can be considered as su�ering
the bipartite :-clique ring resolution limit problem.

E������ 3. Suppose that we have a bipartite :-clique ring graph
with = = 12 and : = 2. Note that each clique has four nodes and has
four internal edges and two outgoing edges. Let suppose two scenarios:

(1) co-clusters ( : each clique is a co-cluster;
(2) co-clusters " : two adjacent cliques form a co-cluster, i.e.,

21 [ 22 is a co-cluster
Then, the bipartite modularity is as follows.

• ⌫" (() = 12 · ( 4
60 � 5·5

602 ) = 0.716
• ⌫" (") = 6 · ( 9

60 � 10·10
602 ) = 0.733

We notice that co-clusters ( have a small bipartite modularity score
even if each co-cluster is a bipartite clique. It indicates that the bipartite
modularity optimization su�ers from the resolution limit problem.

Next, to compute EBMD, let ~ denote a co-cluster in ( and . denote
a co-cluster in" . We �rst calculate X~ and X. :

• X~ = 4
4 � 60

24·24 = 0.895
• X. = 9

16 � 60
24·24 = 0.458

Therefore, we get the following result. We notice that EBMD does not
miss an important structure in this example.
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Table 1: Notations

Notation Description
⌧ Attributed bipartite network
⌧ [� ] the subgraph ⌧ induced by nodes �
` threshold for minimum number of close nodes
n threshold to determine similar nodes
⇢*

–
8D,E2* {G,~}if � (G,~) � n

� (D, E) similarity between nodes D and E
# (D) A set of neighbor nodes based on bipartite edges
( (D) A set of similar nodes based on n,�, �

• - (() = 12 · (0.895 · 4
60 � (0.8952) 5·5602 ) = 0.649

• - (") = 6 · (0.458 · 9
60 � (0.4582) 10·10602 ) = 0.377.

3 PROBLEM DEFINITION
We propose a new bipartite modularity to overcome the limitation
of the classic bipartite modularity. But we still face the challenge
of incorporating attributes in the de�nition of co-cluster. We next
present how we address this challenge. The main notations used in
this paper are summarized in Table 1.

D��������� 9. (Attributed bipartite network(ABN)).
Attributed bipartite network⌧ = (* ,+ , ⇢,�, � ) is a bipartite network
in which every node D 2 * (or E 2 + ) is associated with a set of
attributes �(D). Given two nodes D1, D2 from * (or + ), function �
evaluates the similarity � (D1,D2) based on their attributes.

Our idea. Previous work does not take similarity of nodes or their
connection into consideration in de�ning co-clusters although the
attributes of nodes provide valuable information for de�ning co-
clusters. For example, if the nodes * of bipartite network ⌧ are
users with social network links, we expect that each co-cluster has
two properties: 1) the * side and + side are densely connected by
bipartite edges as it is considered in the previous work; and 2) the
nodes in * side (resp. + ) are densely connected or share similar
attributes. Note that our proposed solutions should be orthogonal
to the similarity function, which can be any function to be speci�ed
by end users. This is important to cope with various types of data
to meet the needs in di�erent scenarios. For example, the similarity
function could simply correspond to the social link if* is a social
network, i.e., the similarity is 1 if there is a link between D1 and D2,
and 0 otherwise.

D��������� 10. (Similarity constraint).
Given a set of nodes � ✓ + (or � ✓ * ), function � , and similarity
thresholds n and `, � satis�es the similarity constraint if
• 8⌘ 2 � of ⌧ , there exist at least ` nodes {⌘1, . . . ,⌘` } in � , such

that � (⌘,⌘8 ) � n for every 8 2 [1, `].
• 8⌘,⌘0 2 � , there is a sequence of nodes ⌘1,⌘2, · · ·⌘G where ⌘1 = ⌘

and ⌘G = ⌘0, s.t. � (⌘8 ,⌘8+1) � n for 8 2 [1, G � 1].
Intuitively, the �rst condition requests that each node should

have at least ` similar nodes in a co-cluster; The second condition
is to guarantee that each pair of nodes in a co-cluster is similarity-
based reachable The two conditions can be understood from a
di�erent angle as follows: We construct a similarity graph ⌧+ =
(+ , ⇢+ ), where the edges ⇢+ are formed based on the n and function

� , i.e., (E1, E2) 2 ⇢+ i� � (E1, E2) � n . Then, a set � ✓ + of nodes
satis�es the similarity constraint if the subgraph induced by � is
connected (similarity-based reachable) and its minimum degree
is at least `. We call a maximal subgraph satisfying the similarity
constraint as `-core which is a :-core [63] in a similarity graph.

D��������� 11. (Attributed Co-cluster). Let � = (�* ,�+ ). A
subgraph ⌧ [� ] of an attributed bipartite network ⌧ is an attributed
co-cluster if ⌧ [� ] is a co-cluster and �* and �+ satisfy similarity
constraint.

P���������������� 1. (Attributed Bipartite Co-Clustering(ABC)).
Given an attributed bipartite network ⌧ = (* ,+ , ⇢,�, � ), similarity
thresholds `, n , attributed bipartite co-clustering (ABC) is to �nd a
set C of attributed co-cluster while maximizing EBMD - (⌧, C).

E������ 4. In Figure 1, we notice that there are two attributed
bipartite co-clusters 21 and 22. Each attributed bipartite co-cluster is
densely connected and satisfy the similarity constraint when ` = 2.

R����� 1. Note that our ABC problem is not a graph partitioning
problem, i.e., we aim to �nd a set of meaningful attributed co-clusters.
It is possible that some entities may not belong to a speci�c attributed
co-cluster if it does not satisfy the similarity constraint or it does not
have a bene�t to maximize EBMD.

T������ 3. The problem of solving ABC is NP-hard when ` � 3

P����. We �rst introduce"("⇡: problem [3]. Given a graph
⌧ = (+ , ⇢) and positive integer : , the goal of"("⇡: is to �nd a
minimum subgraph of which its minimum degree is larger than
or equal to : . It is known that the problem is NP-hard and not in
APX-hard for any : � 3. Here we introduce a reduction from an
instance of"("⇡: to the instance of ABC problem. Note that we
consider a similarity graph in * and + sides, i.e., we consider both
sides as a graph. An edge of * side (or + side) indicates that two
nodes are similar. Otherwise, two nodes are not connected. Initially,
we construct a new graph ⌧ 0 from ⌧ . The procedure is as follows.
• Make * = ⌧1 [ ⌧2 [ ⌧3 where ⌧1 = ⌧2 = ⌧3 = ⌧ and + =
⌧4 [⌧5 [⌧6 where ⌧4 = ⌧5 = ⌧6 = ⌧

• From ⌧1 to ⌧4, we make a bipartite clique in ⌧ 0.
• From ⌧3 to ⌧6, we make a bipartite clique in ⌧ 0.
• For both ⌧1 and ⌧4, we make a clique.
• For both ⌧2 and ⌧5, they have the same edges ⇢ of ⌧ .
• For both ⌧3 and ⌧6, there is no edge.
• From ⌧1 to ⌧2, we make a bipartite clique (any nodes in ⌧1 is

similar to any nodes in ⌧2).
• From ⌧4 to ⌧5, we make a bipartite clique (any nodes in ⌧4 is

similar to any nodes in ⌧5).
Figure 4 shows a new bipartite graph. Here, we have an instance
of ABC problem, i.e., ��⌫⇠ = (⌧ 0, ` = |+ | + :) where |+ | is the
number of nodes in the original graph ⌧ . We can easily notice that
a solution must contain⌧1 and⌧4 and include at least :+1 nodes in
⌧2 and⌧5 to satisfy the similarity constraint since ` = |+ | +: . Note
that ⌧3 and ⌧6 cannot form a co-cluster since it does not satisfy
a similarity constraint. Here, let denote .⌧2 (or .⌧5 as a subgraph
in ⌧2 (and ⌧5) to satisfy the similarity constraint and # = |+ |. To
specify a solution, we denote ( = {⌧1 [ .⌧2 ,⌧4 [ .⌧5 }. We often
use . instead of using .⌧2 or .⌧5 since |.⌧2 | = |.⌧5 |.
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Figure 4: Reduction setting
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2
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- (⌧ 0, () = ( # 2

(# + . )2 �
2
9
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2
� ( # 2

(# + . )2 �
2
9
)2 1
4
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Here, we wonder when the size of . is increased, how is EBMD
changed? To answer the question, we check the derivative of- (⌧ 0, ().

d- (⌧ 0, ()
d.

= �#
2 (11. 2 + 22#. + 2# 2)

9(. + # )5 < 0 (11)

Since the derivative of
d- (⌧ 0, ()

d.
< 0, - (⌧ 0, () is always decreas-

ing, i.e., it prefers small-size subgraph to maximize the EBMD. It
implies a set of nodes . in ⌧2 can be a solution of "("⇡: since
they satisfy the degree constraint and the size is minimized for
maximizing EBMD. Since �nding an exact solution of"("⇡: is
NP-hard and the reduction process can be done in polynomial time,
solving our ABC problem is also NP-hard when ` � 3. ⇤

T������ 4. ABC problem is not in APX for ` � 3, unless % = #% .

P����. We give an L-reduction [18] from MSMD: (Minimum
Subgraph of MinimumDegree) [3, 4] to an instance of ABC problem
in polynomial time.MSMD: problem is a minimization problem
and is not in APX, when : � 3 and unless P=NP [3]. For con-
venience, we consider the inverse problem of ABC to make the
minimization problem. Since the problemMSMD: is not in APX
when : � 3 and unless % = #% , our claim is that our ABC is also
not in APX, unless % = #% . In the proof of the theorem 3, we
present a reduction from MSMD: to our problem. Now, we are
ready to show L-reduction from MSMD: to ABC. We switch ABC
for convenience from maximization to minimization for preserving
APX in the reduction. New problem ABC is to minimize the inverse
EBMD while EBMD is positive. This is reasonable since we can
�nd only one subgraph as a result (See Proof of Theorem 3). In this
proof, we use the following notations (See Figure 5).
• # = |+ |.
• G is an instance of MSMD: .
• 5 (G) is an instance of ABC.
• if ~0 is a solution to 5 (G), then 6(~0) is a solution to G .
• $%) (.) de�nes the cost of the optimal solution for the given

instance of a problem.
• (>; 0MSMD:

(6(~0)) is the cost of the solution6(~0) for the instance
G of MSMD: .

• (>; 0
ABC

(~0) is the cost of the solution ~0 for the instance 5 (G) of
ABC.

Problem Instance Solution Cost

𝑀𝑆𝑀𝐷 푥1231 푔(푦) 1123 Size

𝐴𝐵𝐶 𝑓(푥)1231 푦 1231 EBMD
𝑓(. ) 푔(. )

Figure 5: !-reduction notations

There is an L-reduction (5 ,6) if two positive constants U and V
exist such that

$%)ABC (5 (G))  U$%)MSMD: (G) (12)
$%)MSMD: (G)�(>; 0MSMD:

(6(~0)) 
V ($%)ABC (5 (G)) � (>;

0
ABC

(~0)) (13)

We �nd that there exist such U = 4# 2 and V = 0.0007. Equation 12
holds when we use U = 4# 2. For $%)"("⇡: (G), see Equation 10.

1
1
2 ( # 2

(#+$%)MSMD: (G))2 �
2
9 ) � 1

4 (( # 2

#+$%)MSMD: (G))2 �
2
9 )2

 U$%)MSMD: (G)
(14)

Let us replace $%)"("⇡: (G) by % for convenience.

2( # 2

(# + %)2 �
2
9
) � ( # 2

(# + %)2 �
2
9
)2 � 4

U%
(15)

In Equation 15, since # 2

(#+% )2 �
2
9 is positive and less than 1,

# 2

(#+% )2 �
2
9 > ( # 2

(#+% )2 �
2
9 )2. Thus, we can rewrite Equation 15 as follows.

2( # 2

(# + %)2 �
2
9
) � ( # 2

(# + %)2 �
2
9
)2 � # 2

(# + %)2 �
2
9
� 4
U%
(16)

When we check # 2

(#+% )2 �
2
9 � 4

U% , we notice that the range of the
left term is from 1

36 to 7
9 since %  # . The right term is 1

# 2% when
we replace U = 4# 2. The right term is always smaller than the left
term if # � 4.

Next, we check whether Equation 13 holds when V = 0.0007.
Note that (>; 0

ABC
(~0) = 1

1
2 ( # 2

(# +(>;0MSMD:
(~0) )2 �

2
9 )� 1

4 ( ( # 2
# +(>;0MSMD:

(~0) )2 �
2
9 )2

.

We next check whether Equation 13 holds.

$%)MSMD: (G) � (>; 0MSMD:
(6(~0)) 

V ( 1
1
2 ( # 2

(#+$%)MSMD: (G))2 �
2
9 ) � 1

4 (( # 2

#+$%)MSMD: (G))2 �
2
9 )2
�

1
1
2 ( # 2

(#+(>; 0MSMD:
(~0))2 �

2
9 ) � 1

4 (( # 2

#+(>; 0MSMD:
(~0))2 �

2
9 )2

) (17)

For convenience, let us replace$%)MSMD: (G) by�, (>; 0MSMD:
(6(~0))

by ⌫, 12 ( # 2

(#+$%)MSMD: (~0))2 �
2
9 ) � 1

4 (( # 2

#+$%)MSMD: (~0))2 �
2
9 )2 by

- , and 1
2 ( # 2

(#+(>;MSMD: (~0))2 �
2
9 )� 1

4 (( # 2

#+(>;MSMD: (~0))2 �
2
9 )2 by. .

We know that - > . (See Theorem 3) and � < ⌫. We then rewrite
Equation 17.

� � ⌫  V ( 1
-
� 1
.
) ) -. (� � ⌫)  V (. � - ) (18)
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Since � � ⌫ and . � - are negative, we multiply �1 on both sides
for convenience.

-. (⌫ ��) � V (- � . ) ) -. (⌫ ��)
(- � . ) � V (19)

Our goal is to �nd a positive constant V which satis�es Equation 19.
We can set ⌫ �� as 1 which is the minimum value.

-. (⌫ ��)
(- � . ) � -.

(- � . ) �
. 2

(- � . ) � V
(20)

Here, V can be positive, and we aim to �nd the minimum value of
. 2

(-�. ) for selecting a proper V value. Let us denote the minimum

value of . 2

(-�. ) by )
<8= . To �nd )<8= , we set $%)MSMD: (G) = 4

and (>; 0MSMD:
(~0) = # since this is the minimum and maximum

value of � and ⌫. The value )<8= is as follows.

)
( 12 ( 14 � 2

9 ) � 1
4 (( 14 � 2

9 )2)2

( 12 ( # 2

(#+4)2 �
2
9 ) � 1

4 (( # 2

(#+4)2 �
2
9 )2) � ( 12 ( 14 � 2

9 ) � 1
4 (( 14 � 2

9 )2)

)
( 1
72 � ( 1

4·362 ))
2

( 12 ( # 2

(#+4)2 �
2
9 ) � 1

4 ( # 2

(#+4)2 �
2
9 )2 � ( 1

72 � 1
4·362 )

(21)

We notice that)<8= decreases monotonically when # increases.
When # is 5, )<8= is 0.006785, and when # is su�ciently large
such as 1 quadrillion(1015), )<8= ⇡ 0.000838. It implies that when
# is less than 1 quadrillion, V = 0.0007 satis�es Equation 20. When
# becomes large, we can choose smaller V value. ⇤

We also notice that ABC problem is not in PTAS for ` � 3, unless
% = #% since PTAS is a sub-class of APX.
Overview of our solutions Due to the NP-hardness of the ABC
problem, it is prohibitively expensive to �nd an exact solution.
To solve the problem e�ciently, there are two main challenges
in �nding good co-clusters: (1) we need to maximize EBMD; and
(2) we need to preserve the attribute cohesiveness in each co-cluster.
Inspired by this, we design three e�cient algorithms that strike a
balance of the two aspects di�erently. Firstly, we propose a bottom-
up algorithm that puts maximizing EBMD as the prime concern.
We �rst select an edge that most likely belongs to an attributed
co-cluster with a high EBMD. Then we build up co-clusters from
this seed edge by iteratively adding nodes to ensure the similarity
constraint. Secondly, we propose a group-basedmatching algorithm
that puts preserving the attribute cohesiveness as the main concern.
Speci�cally, in each side of the bipartite network, we �nd a group
of node sets that satisfy the similarity constraint. Then we pair
up the node sets from both sides to maximize EBMD. Lastly, we
propose a top-down algorithm that simultaneously considers EBMD
and attribute cohesiveness. It iteratively deletes edges to split the
bipartite network into smaller attribute cohesive co-clusters. In the
remaining paper, we elaborate on the three algorithms in turn.

4 BOTTOM-UP ALGORITHM
In this section, we present the bottom-up algorithm (BUA) that
focuses on maximizing EBMD as the prime concern. A natural idea
works as follows: We �rst select an edge that most likely belongs
to an attributed co-cluster with a high EBMD. Starting from this
seed edge, we build up a co-cluster by iteratively adding nodes that

ensure the similarity constraint is met. However, this is not trivial.
Two questions are raised in designing the algorithm: (1) How to
select the seed edge? and (2) Which nodes should be included to
ensure the similarity constraint?

To answer the �rst question, we notice that edge centrality mea-
sures the importance of an edge in a graph. Informally, an edge
with a large edge centrality implies that it may connect di�erent
clusters of nodes [28]. In contrast, an edge having a small edge
centrality is likely to be in the center of a cluster since removing
the edge may not have an important e�ect on the graph structure.
Inspired by this, we propose to select the edge with the minimum
edge centrality as the seed edge. There are many edge centrality
measures [5, 7, 9, 20, 57] for graph analysis. However, most of these
measures are ine�cient and have to be recomputed when the graph
structure is changed. We use four edge centrality measures and eval-
uate their suitability empirically. Two measures are degree-related
measures by extending traditional degree centrality [7] for mea-
suring the importance of edges without considering the attributes.
We also develop two additional measures to incorporate the at-
tributes based on the Jaccard similarity �(.). (1) Given a bipartite
edge 4 = {D, E}, attributed bipartite centrality computes the Jaccard
similarity of a set of bipartite neighbor nodes of D in + (resp. E in
* ) and a set of similar nodes of E in + (resp. D in * ). If the average
value of the two Jaccard similarities is large, D and E are closely
related, i.e., the edge 4 = {D, E} is considered as an unimportant
edge. (2) Second order neighbor centrality uses Jaccard similarity
of a set of similar nodes of D(resp. (E)) and 2-hop neighbor nodes of
D(resp. (E)). De�nition 12 de�nes the four edge centrality measures.

D��������� 12. (edge centrality). Let 4 = (D, E) 2 ⇢ be an edge in
a bipartite network. We consider the following centrality measures.
• degree multiply centrality : 1 (4) = |# (D) | ⇤ |# (E) |.
• degree sum centrality : 1 (4) = |# (D) | + |# (E) |.
• attributed bipartite centrality :1 (4) = 1� � (# (D),( (E))+� (# (E),( (D))

2
where �(.) is a Jaccard similarity between two sets.

• second order neighbor centrality :
1 (4) = 1 � � (( (D),–G2# (D) # (G))+� (( (E),–G2# (E) # (G))

2

E������ 5. In Figure 1, the edge centrality of edges 1 (41,1){D1, E1}
and 1 (43,4){D3, E4} are as follows:
• attributed bipartite centrality : 1 (41,1) = 1 � 0.5+0.5

2 = 0 and
1 (43,4) = 1 � 0+0

2 = 1;
• degree multiply centrality : 1 (41,1) = 4 and 1 (43,4) = 16;
• degree sum centrality : 1 (41,1) = 4 and 1 (43,4) = 8;
• second order neighbor centrality : 1 (41,1) = 1 � 0.67+0.5

2 = 0.415
and 1 (43,4) = 1 � 0.2+0.2

2 = 0.8

To address the second challenge "which nodes should we include
to ensure the similarity constraint?”, suppose that a bipartite edge
4B443 = {D, E} has the smallest edge centrality in attributed bipartite
graph ⌧ . For each node D and E in 4B443 , we iteratively compute
`-core [63] to satisfy the similarity constraint in both sides :
(1) Initialize a set of nodes )D (resp. ) E ) as the ego network [25] of

node D(resp. E), i.e., )D  # (D) [ D (resp. ) E  # (E) [ E).
(2) Compute `-core ⇡D

) (resp. ⇡E
) ) of )

D (resp. ) E ).
(3) If ⇡D

) and ⇡E
) contains node D and E , respectively, return ⇡D

)
and ⇡E

) as a result; Otherwise, go to Step (4).
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(4) For all the nodes ' ✓ )D (resp. ) E ) that are in )D , but not in
⇡D
) (resp. ⇡

E
) ), we add all the neighbors of ' to )D (resp. ) E ),

i.e., )D  )D [ # (G),8G 2 ' (resp. ) E  ) E [ # (G),8G 2 ').
Then, go back to the Step (2).

Step (4) is to expand ) since from current nodes ) we cannot �nd
any subgraph satisfying the similarity constraint and containing
nodeD (resp. E). Thus, we iteratively expand nodes) for considering
more nodes to satisfy the similarity constraint. As the result of the
above procedures, we have both ⇡D

) and ⇡E
) . We combine ⇡D

) and
⇡E
) to get co-cluster⇠ and put⇠ in the result. Next, to �nd other co-

clusters, we delete⇡D
) and⇡E

) from the attributed bipartite network,
and �nd the next seed edge and repeat the above procedure until
there is no more co-cluster.

E������ 6. In Figure 1, when we compute attributed bipartite
centrality, the edge (D4, E6) is selected since its centrality score is the
smallest (0.292). It then identi�es co-cluster {D4,D5,D6,D7, E4, E5, E6}.
Next, the edge (D3, E3) is selected because its centrality score is 0.41.
It also generates a co-cluster {D1,D2,D3, E1, E2, E3}.
Time complexity. Let = denote |* | + |+ |, |⌧* | = |* | + |⇢* |," as
|⌧* | + |⌧+ |. We have
• $ (<8= ( |* |, |+ |)

`+1 ) as the maximum number of co-clusters.
• $ (⌫) to compute edge centrality measure.
• $ ( |⌧* |)(or |⌧+ ) to compute `-core and �nd a set of connected

components in a* (or + ) side.
• $ ( |* |2 + |+ |2) to compute the similarity of the entities.
Therefore, the time complexity of BUA is $ ( |* |2 + |+ |2 + ⌫ +
="<8= ( |* |, |+ |)

`+1 ).

5 GROUP-BASED MATCHING ALGORITHM
In this section, we present the group-based matching algorithm
(GMA). Di�erent from BUA, GMA takes ensuring the similarity
constraint as the prime concern. The high-level idea of GMA is as
follows: We �rst �nd a group of node sets from* and+ sides of the
bipartite network, respectively, such that every node set satis�es
the similarity constraint. Then we pair up the node sets from both
sides to form a co-cluster to maximize EBMD. This idea raises two
challenges to be addressed: (1) How can we �nd node sets that
satisfy the similarity constraint? and (2) Given the node sets, how
can we pair them up to form co-clusters with high EBMD?

To address the �rst challenge, recall that if we build a similarity
graph for the nodes in the* (or + ) side of the bipartite network, a
node set satis�es the similarity constraint if the subgraph induced
by the node set is connected and has a minimum degree at least `.
Inspired by this, a naive idea for �nding the node sets that satisfy
the similarity constraint is to use `-core. A `-core is a maximal
connected subgraph in which all vertices have degree at least `. A
`-core can be identi�ed in linear time by removing all nodes that
have degree less than `. However, this idea has a limitation. Due to
the maximality constraint of `-core, it usually �nds a large giant
node set. For instance, in Gowalla dataset [17], 3-core contains 12
connected components, and one single giant connected component
contains 99.96% nodes. Similarly, 3-core of Brightkite [17] contains
16 connected components, and one of them contains 99.6% nodes.
It is impossible to pair up node sets to form a co-cluster with high
EBMD if there exists only a few candidate node sets.

To overcome such a limitation, we propose to use two techniques:
(1) hierarchy of core decomposition and (2) graph partitioning tech-
nique. First, recall that to �nd a `-core, we have to remove all nodes
that have degree less than ` cascadingly. This naturally organize the
`-core, (` + 1)-core, . . . , into a hierarchy, i.e., (` + 1)-core ✓ `-core
when ` � 1. Apparently, the set of (` + 1)-cores also satisfy the
similarity constraint. Therefore, instead of just considering `-core
as the node sets to be paired up, we consider all `-core, (` + 1)-core,
. . . , `<0G -core, where `<0G is the maximum core value.

Second, to get as many candidate node sets as possible, we adopt
the graph partitioning technique to divide the similarity graph
into smaller partitions. Then for each partition we compute `-core,
(` + 1)-core, . . . , `<0G -core. Each core is a candidate node set to
be paired up later. With these two techniques, we �nd a group of
node sets that satisfy the similarity constraint from both sides of
the bipartite network.

To address the second challenge, i.e., how to pair up the node
sets to form a co-cluster with high EBMD, we model this as the
maximum weight matching problem [50]. Speci�cally, we build a
bipartite graph ⌫ = (* 0,+ 0,, 0), where * 0 (resp. + 0) is the set of
node sets from the* (resp.+ ) side of the original bipartite network.
For a pair of node D 2 * 0, E 2 + 0, the edge weight of (D, E) is
the EBMD of the co-cluster formed by pairing D and E up. The
maximum weight matching problem [50] is to �nd a matching in
which the sum of the weights is maximized. Then we can use the
existing LEDA-algorithm [50] to determine which node sets pair
should be paired up to form a co-cluster.
Time complexity. Let |⌧* | = |* | + |⇢* |. Each component takes:
• $ (%) to run the graph partitioning algorithm. We utilize pMETIS

for our algorithm, and it takes $ (⌧* log: +⌧+ log:), where :
is the number of partitions.

• $ (, ) to run the maximum weight bipartite matching algorithm.
We utilize LEDA’s algorithm, and it takes $ (( |* | + |+ |) ( |⇢ | +
(|* | + |+ |) log ( |* | + |+ |)))

• $ ( |⌧* | + |⌧+ |) to form shell structures in* and + sides.
• |⇢ | is to setup s-EBMDM.
• $ ( |* |2 + |+ |2) to compute the similarity of the entities.
Therefore, its time complexity is$ ( |* |2+|+ |2+⌧* log:+⌧+ log:+
((|* | + |+ |) ( |⇢ | + (|* | + |+ |) log ( |* | + |+ |))) + |⌧* | + |⌧+ | + |⇢ |).

6 TOP-DOWN ALGORITHM
We have presented two algorithms that take maximizing EBMD and
ensuring similarity constraint as the prime objective, respectively.
We proceed to present a top-down algorithm (TDA) that considers
both objectives iteratively.

The high-level idea of TDA is as follows: Given a set of initial
co-clusters, we iteratively split them into smaller co-clusters until
it can no longer be split or we cannot get any EBMD gain when we
split the co-clusters. We proceed to present the idea in more detail.

To get the initial set of co-clusters, we follow the idea of GMA.
Speci�cally, we partition the similarity network of* and + for the
original bipartite network and compute the `-core of each partition
to ensure the similarity constraint. We invoke LEDA-algorithm [50],
which is designed for the maximum weight matching problem, to
�nd the set of co-clusters. To �nd initial co-cluster, we do not use
the result of GMA. GMA uses a set of (` 0)-cores where ` 0 � `,
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and it may return densely connected co-clusters by not considering
loosely connected nodes. It indicates that there is no enough space
to maximize EBMD by splitting the co-clusters. Thus, we use `-core
to �nd initial co-clusters.

To split a co-cluster into two smaller co-clusters, we �rst divide
the co-cluster into two subgraphs with graph partition techniques.
As graph partition aims to minimize the number of crossing edges,
the resulted subgraphs are likely to contain co-clusters with a higher
EBMD. Next, we compute `-core on the similarity graph of each
side of the subgraphs to ensure the similarity constraint. Since
`-core can generate multiple connected components, we invoke
LEDA-algorithm [50] to �nd best co-clusters. If newly identi�ed co-
clusters⇠=4F have larger EBMD compared with the co-cluster⇠>;3
before being split, we discard ⇠>;3 and add ⇠=4F to the current
solution. Otherwise, we keep ⇠>;3 and check other co-clusters
whether we can improve EBMD by splitting them. If there is no
more co-clusters to be split, the algorithm is terminated.

Time complexity. Let = be |+ | + |* |, |⌧* | = |* | + |⇢* |. Time
complexity of each component in TDA is as follows.

• $ (C) is the maximum number of co-cluster splitting.
• $ (%) to run the graph partitioning algorithm. Since we utilize

pMETIS for our algorithm, it takes $ (⌧* log: +⌧+ log:) and
$ (⌧⇠ log 2), where : is the number of partitions.

• $ (, ) to run the maximum weight bipartite matching algorithm.
We utilize LEDA’s algorithm, which takes $ (=( |⇢ | + = log=))

• |⌧* |(or |⌧+ |) to compute `-core and �nd a set of connected
components in* (or + ) side.

• $ ( |* |2 + |+ |2) to compute the similarity of the entities.

Therefore, the time complexity of TDA is$ ( |* |2 + |+ |2 +⌧* log: +
⌧+ log: + C (⌧⇠ log 2) (=( |⇢ | + = log=)) ( |⌧* | + |⌧+ |)).
Summary.We observe that BUA can be utilized when the graph
size is relatively small and the clustering coe�cient is su�ciently
large. In contrast, GMA is preferable when the graph size is large
due to its high scalability. Finally, our TDA is capable of handling
data of any size and producing high quality results.

Selecting proper parameters. Selecting proper parameters is an
open question and is very challenging. For `, we consider ` as
an additional degree of freedom available to users to specify the
cohesiveness level. If a user chooses a larger `, the resultant co-
cluster has more attribute cohesiveness and the size will be small.
For n , we can use the elbow method by utilizing `-similar plot [45]
to select a proper n value. For =%0AC , we suggest to choose small
=%0AC since selecting a large =%0AC may return undesired result.
For the similarity function, our solution can support any similarity
function, which can be selected based on problem domain.

7 EXPERIMENTS
We evaluate our proposed algorithms over real-world attributed
bipartite graphs. All the experiments are conducted on CentOS
7.6.1810 with 2.60GHz Xeon CPU E5-4627 v4 and 32GBmemory. For
implementation, we use JgraphT library [51], Apache Lucene [49],
METIS package [38], Coclust package [61], and LEDA package [50].

Dataset. Table 2 shows four categories of datasets that are used in
the experimental study:

Table 2: Datasets

Category Name |* | |+ | |⇢ |

LBSN
without g.t

YELP [47] 23K 19K 691K
Brightkite [17] 58K 773K 831K
Gowalla [17] 197K 1.3M 4M

EBSN
without g.t Meetup [26] 1.2M 3.5M 4.5M

Synthetic network [42] 1M 1M 32M
Doc-word
with g.t

20news [43] 36K 19K 2.4M
pubmed10 [13] 36K 16K 1.8M

• Location-based social network (LBSN) including YELP, Brightkite,
and Gowalla. They have no ground-truth co-cluster information.
For LBSN, it consists of a set of users and a set of locations. A
bipartite edge represents that a user makes a check-in at a lo-
cation. Each user has a set of friends, and each location has a
coordinate. We de�ne two users are similar if they are friends.
Two locations are similar if their distance is within a threshold n .

• Event-based social network (EBSN) includingMeetup. TheMeetup
dataset consists of a set of users and a set of events. We consider
two users to be similar if they attend at least three common
events. For each event, we consider the top-: events with the
highest textual similarity to be similar events. It has no ground-
truth information.

• Synthetic network [42] consists of 1" nodes in each side and
32" bipartite edges. We utilize LFR benchmark dataset [42]
to generate a synthetic unipartite network ⌧ = (+⌧ , ⇢⌧ ). We
then generate a symmetric bipartite network from the unipartite
graph. We �rstly set* = ⌧ and+ = ⌧ , and connect a nodeD 2 *
to a node E 2 * if D = E (named self-edge). Next, if (D, E) 2 ⇢⌧ ,
we make two edges from D 2 * to E 2 + and E 2 * to D 2 + . We
next de�ne a noise parameter g = 0.01, and pick g |⇢ | edges and
randomly rewire them to make a noise of a bipartite network.

• Doc-word dataset contains 20news and Pubmed10 dataset. It con-
sists of a set of words and documents. A bipartite edge represents
a word that appears in a document. We remove stopwords [48],
words with frequency smaller than 5, and �nd the top-10 similar
words using Word2Vec [52]. For each document, we �nd the top
10 similar documents with the highest textual similarity [49].

Algorithms. To the best of our knowledge, there is no direct com-
petitor in the literature for solving the ABC problem. Therefore, we
compare our algorithms with several representative co-clustering
algorithms including the recent work using deep learning, but they
do not consider the attributes and the returned co-clusters may not
satisfy the similarity constraint (We tried to do a post-processing of
applying :-core or bipartite weight matching, but it does not work
as it often returns empty results): CCMOD [1], SpecMOD [41],
Info [22], and DeepCC [72]. For CCMOD, SpecMOD, and Info, we
use coclust package [61] with default parameters. For DeepCC 2,
we use the default parameters. For BiMLPA, we use \ = 0.3 and
_ = 5 where \ indicates the weight ratio threshold, and _ indicates
the maximum number of labels.
• BUA : Bottom-up algorithm.
• GMA : Group-based matching algorithm.
2https://github.com/DerronXu/Deep-Co-Clustering
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Figure 6: EBMD and running time

• GMA* : Group-based matching algorithm without considering
similarity constraint.

• TDA : Top-down algorithm.
• CCMOD : Co-clustering by direct modularity maximization [1].
• SpecMOD : Co-clustering by spectral approximation [41].
• Info : Information-theoretic Co-clustering [22].
• DeepCC : Deep learning-based co-clustering [72].
• BiMLPA : Multi-label Propagation in Bipartite Networks [69]

BUA algorithm can incorporate di�erent centrality measures,
and we denote BUA with attributed bipartite centrality as BUA(ab),
BUA with degree sum as BUA(ds), BUA with degree multiply as
BUA(dm), and BUA with attributed bipartite centrality as BUA(se).

Evaluation metrics. When there is no ground-truth information,
we report EBMD to measure the quality of the attributed co-clusters.
Otherwise, we report Normalized Mutual Information(NMI) [19]
and Rand Index [59]. the NMI measure estimates the quality of
the clustering with respect to a given underlying class labeling by
measuring how closely the clustering algorithm could reconstruct
the underlying label distribution in the data [67], and the Rand
index is a measure of the similarity between two data clusterings,
that is computed by the number of concordant pairs divided by the
total number of pairs[59].

7.1 Experimental result

Real-world network without ground-truth information. We
�rst compare our proposed algorithms and baseline algorithms. We
set ` = 5 n = 0.2 for LBSN, and ` = 3 and top-6 similar events in
EBSN. In this experiment, we report the results of our algorithms
since other algorithms cannot guarantee the similarity constraints
are satis�ed. The �rst row of Figure 6 reports EBMD, which in-
dicates the quality of the results. We observe that TDA achieves
the largest EBMD for all the datasets, and GMA follows on most
of datasets. Among BUA algorithms with di�erent betweenness
centrality measures, BUA(ab) attributed bipartite centrality and
BUA(se) second-order centrality have larger EBMD. The second
row of Figure 6 shows the running time. We observe that di�erent
variants of BUA are much slower than GMA and TDA, which have
comparable e�ciency. Note that BUA(se) does not �nish within 24
hours on synthetic datasets. Thus, we do not report BUA(se) on
the synthetic network dataset. This experiment shows that TDA
achieves the best quality in terms of EBMD and is more e�cient
than other algorithms. Among BUA algorithms with di�erent be-
tweenness centrality measures, BUA(ab) and BUA(se) have better
performance since they consider the attribute cohesiveness in each

side. Since BUA(se) is less e�cient, we report BUA(ab) in the rest
experiments.

NMI RAND

20news

BiMLPA BUA(ab) CCMOD GMA GMA* Info TDA

pubmed10
0.00

0.25

0.50

0.75

NMI RAND

Figure 7: NMI and RI result
Real-world networks with ground-truth information.Wenext
evaluate the e�ectiveness on 20news and pubmed10 that have
ground-truth co-clusters. Figure 7 shows NMI [19] and Rand in-
dex [59] of the algorithms. Note that the results of SpecMOD and
DeepCC are not included since they cannot �nish within 24 hours.
CCMOD and Info require the number of co-clusters as an input, and
we give the number of ground-truth co-clusters. Since our problem
is not a graph partitioning problem, some nodes (empirically less
than 20%) are not included in the results. To check the accuracy, we
�lter out the nodes that are not included in our solution. We observe
that our proposed algorithms return the best accuracy in terms of
NMI and RI. This is because similarity constraint and EBMD help to
identify high-quality co-clusters. We notice that BiMLPA has very
low accuracy since it returns a very large co-cluster containing
99.9% nodes as a result.
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Figure 8: Comparing EBMD and existing bipartitemodularity

Comparing EBMD with traditional bipartite modularity.This
experiment is to evaluate the performancewhenwe optimize EBMD
by comparing with the traditional bipartite modularity [6] named
TBM as the objective function in our proposed algorithms. We use
two algorithms: GMA and TDA since (1) they perform better than
BUA and (2) BUA cannot be extended to use the existing modu-
larity (since it uses a heuristic to maximize EBMD of the result
co-clusters). We report the number of attributed co-clusters and
the average size of the attributed co-clusters. Figure 8 shows the
comparison results when we use EBMD (EBMD-based) and the
existing bipartite modularity (TBM-based) on Yelp dataset. The
results on other datasets are qualitatively similar. GMA returns the
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same number of co-clusters (44 co-clusters) for both modularity
measures since the number of co-clusters depends on the attributes.
However, the average size of co-clusters of TBM is 18% larger than
the EBMD. For TDA, TBM returns few co-clusters compared with
EBMD and the average size of co-clusters of TBM is 96% larger than
that of EBMD. The results clearly show that EBMD is able to alle-
viate the resolution limit problem and TBM returns few and larger
co-clusters due to the resolution limit problem. For the scalability
test, in TDA, optimizing TBM is relatively faster than optimizing
EBMD since TBM prefers large-sized co-clusters as a result.
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Figure 9: Scalability with number of bipartite edges

Scalability test.We next evaluate the scalability of the algorithms.
We �x the* and+ sides and randomly vary the number of check-in
edges from 1 to 10" on Yelp. Figure 9 shows that the running time
increases linearly with the number of edges. We set =%0AC = 10 for
GMA and TDA. When the number of edges is 105, it did not �nish
within 24 hours since it is required to compute common neighbors
many times. For baseline algorithms, we use default parameters and
set the number of co-cluster =⇠;DB as 10. This is because by setting
=⇠;DB = =%0AC , it will generate the similar number of co-clusters
and it is a fair comparison. If we set larger =⇠;DB or =%0AC , the
baseline algorithms cannot �nish in a reasonable time. We observe
that the running times of GMA and TDA linearly increase with the
size of the graph. SpecMOD and DeepCC cannot �nish within 24
hours when there are more than 105 edges. CCMOD is 370 order
of magnitude slower than TDA when |⇢ | = 107.
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Figure 10: Number of co-clusters (Yelp)
Number of connected components. Analyzing the number of
returned co-clusters helps to understand the characteristics of an
algorithm. Hence, we report the number of co-clusters of our algo-
rithms by varying parameters ` and n in Yelp dataset in Figure 10.
Note that BUA(ab) returns fewer co-clusters since many real-world
graph has a small-diameter [60]. Let us recall BUA algorithm. It
expands a seed node of a seed edge to satisfy the similarity con-
straint by iteratively adding a set of neighbor nodes in * (or + )
side. When* or + side has a small diameter, many nodes can be-
long to a single co-cluster, and thus it returns fewer co-clusters.
TDA and GMA return more co-clusters comparing with BUA(ab)
since employing a graph partitioning method can help to �nd more
small-sized co-clusters. In GMA and TDA, to avoid �nding a large
giant co-cluster, it utilizes the graph partitioning technique. There-
fore, we can control the number of co-clusters by varying =%0AC .

When =%0AC is �xed, TDA returns more co-clusters compared with
GMA since TDA iteratively splits co-clusters to �nd a solution. We
observe that when ` increases, the number of co-clusters decreases
since a larger ` makes some nodes not to be considered due to the
similarity constraint. When n increases (n is a distance threshold in
Yelp and : in top-: events in Meetup), the number of co-clusters
increases since a larger n allows additional edges in each side.
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Figure 11: Varying parameters
Varying ` and n.We next observe the results when we vary user
parameters to understand their e�ect. Figure 11a presents the result
when we change ` value in Yelp and Meetup dataset. The results
on the other datasets are qualitatively similar and are ignored due
to space limitation. We observe that when ` increases, EBMD de-
creases since a larger internal density in * and + sides does not
directly relate to the cohesive bipartite edges. We observe that when
` increases, the running time decreases since we do not need to
consider some nodes that do not satisfy the similarity constraint.

Figure 11b presents the result when changing the threshold n
value in Yelp and Meetup. We observe that when n increases (n is a
distance threshold in Yelp and : in top-: events in Meetup), EBMD
increases and the running time decrease. The reason is that a larger
n allows additional edges in each side. These additional edges will
cause more nodes to be included in co-clusters, resulting in higher
EBMD. As expected, when n increases, the running time increases
due to the increased number of edges in the similarity graph. Note
that in Meetup dataset, BUA(ab) does not �nish within 24 hours,
and thus its result is not included.
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Figure 12: Varying =%0AC on TDA (Yelp, Brightkite)
Varying =%0AC . In GMA and TDA, we utilize the graph partition-
ing techniqueMETIS. This experiment is to evaluate the e�ect of
=%0AC inMETIS. Hence, we vary =%0AC and report the EBMD and
the running time in Yelp and Brightkite datasets. Figure 12 shows
EBMD of TDA when we change =%0AC . The results on the other
datasets display a similar trend and are ignored. We observe that
when =%0AC increases, the running time of the algorithms increases.
This is because we need to consider many small-sized partitions.
We also observe that when =%0AC becomes larger, EBMD decreases
since it cannot �nd large-sized co-clusters, and thus it may not
result in large EBMD. Based on this result, we choose =%0AC = 50
for Yelp, =%0AC = 200 for Brightkite. Similarly, we set =%0AC = 1, 000
for Gowalla, and =%0AC = 5, 000 for Meetup dataset.
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Figure 13: Case study

7.2 Case study
We utilize our algorithm for �nding shilling attackers in MovieLens
dataset [31] and detecting fraud edges from Alibaba e-commerce
network. We use TDA algorithm with ` = 3 with =%0AC = 10.

Finding Shilling Attackers. For Movielens dataset, we adopt sim-
ulated bot attacker [16] to inject shilling attackers. Totally, 94
shilling attackers are injected. For* and + sides, we consider that
any users (or movies) are connected if they watch (or are watched
by) at least 5 same movies (or users). Figure 13a shows the ratio of
the shilling attackers among all the resulted co-clusters. Among 53
co-clusters, shilling attackers are located in 7 co-clusters. Especially,
in the co-cluster #4, all the identi�ed users are the shilling attackers.

Finding Fraud Edges. Alibaba e-commerce dataset consists of
1.5" users, 0.5" items and 2" purchasing links from users to
the items. It has ground-truth fraud edges. For both* and + sides,
we keep 5 nearest neighbors based on the euclidean distance be-
tween their attribute vectors. Figure 13b shows the ratio of the
fraud edges among all resulted co-clusters. Among 295 co-clusters,
only a few co-clusters contain many fraud edges. We notice that
the co-cluster #148 contains all the fraud edges in Figure 13b.

From both case studies, we notice that the shilling attackers and
fraud edges are located concentratedly, and thus we show that our
algorithm has the ability to identify them.

8 RELATEDWORK
Co-clustering problem [21, 22] is to perform simultaneous cluster-
ing of the rows and columns of a matrix and has been extensively
studied on various types of data. Many co-clustering algorithms
have been developed [21, 22, 24, 71, 72]. These approaches only
focus on �nding co-clusters without considering attributes of nodes.
However, our ABC considers the attributes of the nodes and sim-
ilarity constraints for �nding co-clusters. As discussed in Intro-
duction, it is di�cult to adapt these algorithms for solving ABC.
The most close work to ours is the modularity-based co-clustering.
Barber [6] proposes a bipartite modularity, and a spectral partition-
ing algorithm using the Eigenvectors of the Laplacian matrix. This
algorithm aims to minimize the number of crossing edges between
clusters. Our EBMD is an extended version of Barber’s bipartite
modularity. Aliem [1] propose iterative alternating optimization
procedure to maximize the bipartite modularity [6] for a prede�ned
number of clusters. Guimera et al. [30] propose a special bipar-
tite modularity to �nd one-side clusters. Murata [56] proposes a
bipartite modularity by allowing one-to-many bipartite clusters,
meaning that the one side of a cluster such as 2+ can belong to
di�erent co-clusters 2 0. In contrast, in ABC we propose the EBMD

to address the resolution limit problem of the bipartite modular-
ity. Additionally, our ABC problem needs to meet the similarity
constraints among entities in each side, which is not considered in
these previous studies. Clearly, consideration of node attributes in
the ABC problem introduces new challenges.

The attributed network clustering problem [8, 70] is related to
the ABC problem. Given an attributed network, where each node is
associated with a set of attributes, the attributed network clustering
problem aims to �nd a set of clusters of which each is structurally
cohesive while sharing similar attributes. However, they cannot be
used to solve the problem of �nding attributed bipartite co-clusters.

Our work is related to the heterogeneous information network
(HIN) clustering problem [55, 66]. Recently, several HIN clustering
approaches are proposed. Zhe et al. [75] propose to apply modular-
ity optimization in attributed networks to �nd attributed commu-
nities. Huang et al. [33] propose an algorithm by joint nonnegative
matrix factorization and graph optimization for attributed commu-
nity discovery. Sun et al. [68] develop the Network Embedding for
attributed clustering. Zhang et al. [73] propose a heterogeneous
graph neural network model. Most of these approaches do not con-
sider the strict cohesiveness of the identi�ed clusters, that is, these
approaches cannot be utilized to solve the ABC problem since they
cannot satisfy the attribute cohesiveness. Recently, Jian et al. [36]
study the relational community detection problem (RCD) in HINs
by considering the strict cohesiveness. RCD problem is to �nd a set
of maximal subgraphs by satisfying a set of constraints. However,
the RCD problem cannot be utilized to �nd a solution to ABC since
(1) it aims to �nd a set of maximal subgraphs; and (2) although it
could consider the attributed cohesiveness in both * and + sides,
respectively, it cannot consider internal dense connections and ex-
ternal sparse connections simultaneously by using the cohesiveness
constraint, i.e., it cannot model EBMD by utilizing the speci�ed
constraints.

9 CONCLUSION
In this paper, we formulated the Attributed Bipartite Co-clustering
problem (ABC) which aims to �nd a set of co-clusters which are
densely connected and the nodes of each side have similar attributes.
We showed that classic bipartite modularity optimization su�ers
from the bipartite :-clique resolution limit problem. Therefore,
we proposed a new bipartite modularity measure which does not
su�er from the bipartite :-clique resolution limit problem. We also
proved that our problem is NP-hard and not in APX. To solve
the problem, we proposed three e�ective and e�cient heuristic
solutions. Finally, extensive experiments on synthetic and real-
world attributed bipartite networks were conducted to demonstrate
the e�ectiveness and e�ciency of our proposed algorithms.
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