
Efficient Shortest Path Counting on Large Road Networks
Yu-Xuan Qiu

AAII, University of Technology

Sydney

Australia

yuxuan.qiu@student.uts.edu.au

Dong Wen

The University of New South Wales

Australia

dong.wen@unsw.edu.au

Lu Qin

AAII, University of Technology

Sydney

Australia

lu.qin@uts.edu.au

Wentao Li

AAII, University of Technology

Sydney

Australia

wentao.li@uts.edu.au

Rong-Hua Li

Beijing Institute of Technology

China

lironghuabit@126.com

Ying Zhang
∗

AAII, University of Technology

Sydney

Australia

ying.zhang@uts.edu.au

ABSTRACT
The shortest path distance and related concepts lay the founda-

tions of many real-world applications in road network analysis.

The shortest path count has drawn much research attention in

academia, not only as a closeness metric accompanying the shorted

distance but also serving as a building block of centrality compu-

tation. This paper aims to improve the efficiency of counting the

shortest paths between two query vertices on a large road network.

We propose a novel index solution by organizing all vertices in a

tree structure and propose several optimizations to speed up the

index construction. We conduct extensive experiments on 14 real-

world networks. Compared with the state-of-the-art solution, we

achieve much higher efficiency on both query processing and index

construction with a more compact index.

PVLDB Reference Format:
Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Rong-Hua Li, and Ying Zhang.

Efficient Shortest Path Counting on Large Road Networks. PVLDB, 15(10):

2098 - 2110, 2022.

doi:10.14778/3547305.3547315

1 INTRODUCTION
Given the strong expressive power of the graph model, road maps

are often abstracted as graphs, aka road networks, in many real-

world location-based services and analytical tasks. In these applica-

tions, each road is represented by an edge, and each intersection of

roads is represented by a graph vertex. The real distance of each

road is modeled as a weight value for each edge in the graph. In

analyzing road networks, the concept of the shortest path is im-

portant and lays the foundation of many complex location-based

queries, like the shortest distance [32], kNN [33] and betweenness

centrality [6]. The distance or length of a path is the sum of weights

of all edges in the path. A path 𝑝 is the shortest path if there does

∗
Ying Zhang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:10.14778/3547305.3547315

v19

v20

v16 v15

v17

v18
v13

v14
v2

v1 v3

v5

v4

v6
v9v8

v7
v10 v11

v12

1
2

2
3

2
1

1

2
1

2

2 2

1

2

1

21

3
4

1

2
2 2 2

2
1
2

2
2

Figure 1: A road network 𝐺 (𝑉 , 𝐸).
not exist a path with the same terminal vertices and a distance value

smaller than 𝑝 . The shortest distance between two vertices is the

distance of their shortest path. It is a standard metric to evaluate

how close (or similar) the two vertices are.

A great deal of research effort has been contributed to effi-

ciently querying the shortest distance between query vertices in

graphs [4, 8, 22, 32, 41, 43]. However, a vertex may reach multi-

ple other vertices with the same shortest distance, which weakens

the effectiveness of the shortest distance as a closeness metric. A

recent work [42] breaks the tie by formulating the shortest path

counting problem, which aims to compute the number of shortest

paths between two query vertices in a graph. In this paper, we study

the shortest path counting problem on road networks, where the

distance is rounded to a specific precision, e.g., meters.

In real road network applications, more shortest paths indicate

more traffic options and more flexibility for route planning from the

start vertex to the destination. For instance, top-𝑘 nearest neighbors

search aims at finding 𝑘 objects close to the query vertex from a

candidate set. It is a key operator in taxi-hailing (e.g., Uber), restau-

rant (e.g., Tripadvisor), and hotel recommendation (e.g., Booking)

services. A candidate object can be more desirable than others

with the same or similar distance if many shortest paths lead to

the object since we have more backup routing plans and a higher

probability of avoiding traffic jams. For example, in a movie ticket

application, there are two cinemas with the similar shortest dis-

tance to the source location. We may prefer the one with more

shortest paths considering the traffic options. In addition to serv-

ing as a closeness metric, the shortest path count has been used

as a building block of betweenness centrality computation [34, 35].

On road networks, the betweenness centrality is widely used as

a static predictor of congestion and load, which helps predict the

2098

https://doi.org/10.14778/3547305.3547315
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547315

traffic flow [26]. Given a vertex 𝑢, the betweenness centrality of 𝑢,

denoted by 𝐶𝐵 (𝑢), is the fraction of shortest paths passing 𝑢, i.e.,

𝐶𝐵 (𝑢) =
∑
𝑠≠𝑢≠𝑡 ∈𝑉

spc𝑢 (𝑠,𝑡)
spc(𝑠,𝑡) , where spc(𝑠, 𝑡) is the number of short-

est paths between 𝑠 and 𝑡 , and spc𝑢 (𝑠, 𝑡) is the number of paths pass-

ing 𝑢 in spc(𝑠, 𝑡). [35] observes that spc𝑢 (𝑠, 𝑡) = spc(𝑠,𝑢) · spc(𝑢, 𝑡)
if sd(𝑠,𝑢) +sd(𝑢, 𝑡) = sd(𝑠, 𝑡), where sd(𝑠, 𝑡) is the shortest distance
between 𝑠 and 𝑡 . Based on this property, several works precompute

the shortest distances and the shortest path counts for a set of

vertex pairs to approximately compute the betweenness central-

ity [7, 13, 35, 37]. The techniques in this paper can significantly

improve the efficiency of counting shortest paths and boost the

efficiency of betweenness centrality computation in practice. Apart

from road networks, the proposed method can also be applied to

other infrastructure networks, like power grid networks and public

transportation networks, which have a small tree height [12, 31].

The State-Of-The-Art Solution. The state-of-the-art algorithm
for shortest path counting is proposed in [42]. In [42], the authors

devise a labeling-based index by assigning a total order for all

vertices. Specifically, for each vertex𝑢, they precompute the shortest

distances and the shortest path counts to some vertices with higher

ranks than 𝑢 in the order. To query the number of shortest paths

between two vertices 𝑢 and 𝑣 , they find every common vertex in

the label sets of these two vertices. Each common vertex 𝑝 acts as

a bridge to connect two shortest sub-paths. The sum of two sub-

paths’ distances is their distance, and the product of two sub-paths’

counts is the number of the shortest paths between𝑢 and 𝑣 in terms

of 𝑝 in the index. They sum the counts for all common vertices

whose corresponding distances are the shortest between 𝑢 and 𝑣 .

Challenges.Their indexing schemeworkswell as a generalmethod.

However, there still exist several challenges and room for improve-

ment. First, based on a total vertex order, a low-ranking vertex may

have a large number of labels in the index. More labels imply more

index space usage and more comparisons in the query processing.

Second, they order the labels for each vertex and perform a merge-

sort-like strategy to find common vertices in query processing.

Given that the label size for each vertex is not well-bounded, the

query strategy needs to access all labels, thus incurring much time

overhead. Third, to compute the order-based labels, [42] searches

every vertex in the induced subgraph of all vertices with lower

ranks. The search space can be the whole graph, which makes the

index construction inefficient in large graphs.

Our Approach. In this paper, we propose a new labeling-based

index structure that is carefully defined for road networks and other

sparse graphs. We adopt the concept of tree decomposition [11]

and propose a tree-based labeling structure, given that real-world

road networks normally have a low average degree and small

treewidth [32, 33]. Specifically, we organize all vertices in the graph

into a tree structure such that there is a one-to-one correspondence

between the vertices and the tree nodes. By our indexing scheme,

we only store a label for each ancestor of a vertex in the tree, which

bounds the label size of each vertex well. In query processing, we de-

rive several useful properties which enable us to only consider the

common ancestors of two query vertices in the tree. As a result, we

only check a small number of labels which significantly improves

the query efficiency. Our index is also a labeling-based structure

and satisfies the concept of exact shortest path covering defined in

[42]. Their hub-pushing-based index construction paradigm can be

naturally adapted to construct our tree-based index. To improve the

indexing efficiency, we propose a new index construction frame-

work and avoid the costly graph search in [42]. The critical step

in index construction is to compute the shortest distance and path

count for a vertex 𝑢 to one of its ancestor 𝑣 . We propose several

rules to reduce all the descendants of 𝑢 in the tree while preserving

the correctness of all shortest paths in the small reduced graph. We

compute the result from 𝑢 to 𝑣 by utilizing the values derived in

previous rounds and avoid searching the graph by only scanning

the neighbors of 𝑢 in the reduced graph.

Contributions. We summarize our main contributions as follows.

• A novel tree-based index algorithm.We design a novel index struc-

ture called TL-Index. Let 𝑛 be the number of vertices, ℎ be the

treeheight, and 𝑤 be the treewidth. Our index size is bounded

by 𝑂 (𝑛ℎ), and the query time is bounded by 𝑂 (ℎ). By contrast,

the index size and the query processing time of the state-of-

the-art solution are bounded by 𝑂 (𝑛𝑤 log𝑛) and 𝑂 (𝑤 log𝑛), re-
spectively [42]. As shown in our experiments (Section 5), ℎ is

much smaller than𝑤 log𝑛 in real-world graphs. For instance of

the New York City map, we have ℎ = 505 and 𝑤 log𝑛 = 2412.

Therefore, our solution achieves higher query efficiency than the

state-of-the-art method with smaller space usage.

• A new index construction paradigm. We propose a new paradigm

to construct the index and two optimizations to improve effi-

ciency. Compared to the index construction framework proposed

in [42], we improve the time complexity of index construction

from𝑂 (𝑛ℎ2+𝑛ℎ log𝑛) to𝑂 (𝑛ℎ𝑤 +𝑛 log𝑛), because𝑤 is typically

several times smaller than ℎ in practice.

• Extensive experiments and evaluations. We conduct extensive

experiments on 14 real-world networks, including the USA map

with 24 million vertices and 58 million edges. The state-of-the-art

method cannot finish indexing within 24 hours on the USA map,

while our proposed method only takes one hour. On other large

real-world maps, our method achieves 20 times faster indexing

and seven times faster querying than the state-of-the-art method.

The results validate the effectiveness of our index structure and

the efficiency of the indexing algorithm.

2 PRELIMINARIES
2.1 Problem Statement
We consider a road network𝐺 = (𝑉 , 𝐸, 𝜙) which is usually a degree-
bounded, connected, and weighted graph. 𝑉 (𝐺) is a set of vertices,
𝐸 (𝐺) is a set of edges, and 𝜙 : 𝑒 ∈ 𝐸 (𝐺) ↦→ 𝑁 + is a weight function
for each edge. We mainly focus on undirected graphs in this paper.

Our techniques can be easily extended to directed graphs and other

sparse graphs. When it is clear from the context, we use 𝑉 and 𝐸

to denote 𝑉 (𝐺) and 𝐸 (𝐺), and use 𝑛 = |𝑉 | and𝑚 = |𝐸 | to denote

the numbers of vertices and edges, respectively. We denote all

neighbors of a vertex 𝑣 in 𝐺 as 𝑁𝐺 (𝑣) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}. We

use 𝑁 (𝑣) to denote 𝑁𝐺 (𝑣) when the context is obvious. We use

𝜙 (𝑒) to denote the weight of an edge 𝑒 ∈ 𝐸. On road networks, the

edge weight may represent the actual length or the travel time of a

road segment. A (simple) path
1 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑘) is a sequence of

1
In this paper, the term "path" always means a simple path.

2099

distinct vertices where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 1 ≤ 𝑖 < 𝑘 . The length

of a path 𝑝 , denoted by 𝜙 (𝑝), is the sum of weights of all edges on

the path, i.e., 𝜙 (𝑝) = ∑𝑘−1
𝑖=1 𝜙 (𝑒 (𝑣𝑖 , 𝑣𝑖+1)). Given two vertices 𝑠 and

𝑡 , the shortest distance between 𝑠 and 𝑡 , denoted by sd(𝑠, 𝑡), is the
smallest length of all paths between 𝑠 and 𝑡 . A path 𝑝 between 𝑠 and

𝑡 is a shortest path if 𝜙 (𝑝) = sd(𝑠, 𝑡). We denote the set of all the

shortest paths between 𝑠 and 𝑡 in the graph 𝐺 by 𝑃𝐺 (𝑠, 𝑡), and we

use 𝑃 (𝑠, 𝑡) when context is obvious. The number of shortest paths

is denoted by spc(𝑠, 𝑡), i.e., spc(𝑠, 𝑡) = |𝑃 (𝑠, 𝑡) |.
Problem Definition Given a road network 𝐺 and two query ver-

tices 𝑞 = (𝑠, 𝑡), the shortest path counting problem aims to effi-

ciently compute the number of shortest paths between 𝑠 and 𝑡 .

Example 1. Figure 1 shows an example of a road network𝐺 (𝑉 , 𝐸, 𝜙)
with 20 vertices and 29 edges. The weight is marked on each edge.

Considering vertices 𝑣6 and 𝑣16, there are many paths between them,

such as 𝑝1 = (𝑣6, 𝑣8, 𝑣14, 𝑣16) and 𝑝2 = (𝑣6, 𝑣4, 𝑣3, 𝑣1, 𝑣13, 𝑣14, 𝑣16). We

have 𝜙 (𝑝1) = 9 and 𝜙 (𝑝2) = 10, and 𝑝2 is not a shortest path. Given

that there is no other path 𝑝 with length less than 𝑝1, 𝑝1 is a shortest

path, and the shortest distance between 𝑣6 and 𝑣16 is 9. There are also

5 other paths with the same length 9 between 𝑣6 and 𝑣16. Therefore,

the number of shortest paths between 𝑣6 and 𝑣16 is 6 in 𝐺 .

A Basic Online Method. The shortest path count can be straight-

forwardly derived as a byproduct of the Dijkstra’s algorithm in

computing the shortest distance. Specifically, we use a queue to

maintain all visited vertices with a priority of distance to the source

vertex. For each visited vertex during the search, in addition to

maintaining the distance from the source vertex, we store the cor-

responding shortest path count. Given a vertex 𝑣 , let 𝐷 [𝑣] and
𝐶 [𝑣] be intermediate shortest distance and shortest path count,

respectively. When exploring 𝑣 from a neighbor 𝑢 of 𝑣 , if a shorter

distance (i.e., 𝐷 [𝑢] +𝜙 (𝑢, 𝑣) < 𝐷 [𝑣]) is found, we replace 𝐷 [𝑣] and
𝐶 [𝑣] with 𝐷 [𝑢] +𝜙 (𝑢, 𝑣) and𝐶 [𝑢], respectively. If 𝐷 [𝑢] +𝜙 (𝑢, 𝑣) =
𝐷 [𝑣], we add 𝐶 [𝑢] to 𝐶 [𝑣]. We do not update 𝐶 [𝑣] and 𝐷 [𝑣] if
𝐷 [𝑢] + 𝜙 (𝑢, 𝑣) > 𝐷 [𝑣]. The online method works but may suffer

from weak scalability in large graphs since all edges in the graph

will be scanned in the worst case.

2.2 The State of the Art: Hub Labeling
Zhang and Yu [42] proposed a hub-labeling-based algorithm to

count shortest paths efficiently. They first introduce the exact short-

est path covering (ESPC) that guarantees to cover all shortest paths

without redundancy and then propose a corresponding hub push-

ing algorithm to build the index. More specifically, for each vertex

𝑢, they precompute a collection of labels 𝐿(𝑢), and each label is a

triplet (𝑤, sd(𝑢,𝑤), 𝛿𝑢,𝑤), where sd(𝑢,𝑤) is the shortest distance
between 𝑢 and 𝑤 , and 𝛿𝑢,𝑤 is the number of a subset of shortest

paths between 𝑢 and𝑤 in the graph (i.e., 𝛿𝑢,𝑤 ≤ spc(𝑢,𝑤)). Given
two query vertices 𝑢 and 𝑣 , the shortest path count is computed

based on the following equation.

spc(𝑢, 𝑣) =
∑︁

𝑤∈𝐿 (𝑢),𝑤∈𝐿 (𝑣),sd(𝑢,𝑤)+sd(𝑣,𝑤)=sd(𝑢,𝑣)
𝛿𝑢,𝑤 · 𝛿𝑣,𝑤 (1)

In Equation (1), the shortest distance sd(𝑢, 𝑣) can be derived by the

formula min𝑤∈𝐿 (𝑢),𝑤∈𝐿 (𝑣) sd(𝑢,𝑤) + sd(𝑣,𝑤).

v1
v3

v5

v4
v2
v6

Vertex 𝐿(·)
𝑣1 (𝑣1, 0, 1)
𝑣2 (𝑣2, 0, 1), (𝑣1, 1, 1)
𝑣3 (𝑣3, 0, 1), (𝑣2, 2, 1), (𝑣1, 1, 1)
𝑣4 (𝑣4, 0, 1), (𝑣3, 1, 1), (𝑣2, 1, 1), (𝑣1, 2, 2)
𝑣5 (𝑣5, 0, 1), (𝑣2, 2, 1), (𝑣1, 1, 1)
𝑣6 (𝑣6, 0, 1), (𝑣5, 1, 1), (𝑣2, 1, 1), (𝑣1, 2, 2)

Figure 2: A simple graph and its hub-labeling index given
the vertex order 𝑣1 ≤ 𝑣2 ≤ 𝑣3 ≤ 𝑣4 ≤ 𝑣5 ≤ 𝑣6.

For index construction, Zhang and Yu [42] assign a total order

≤ for all vertices. They process vertices in descending order. For

each vertex 𝑤 ∈ 𝑉 , they perform a search from 𝑤 in the induced

subgraph of all the vertices whose orders are not higher than 𝑤 .

The shortest distance and shortest path count from𝑤 to each vertex

𝑣 are collected in the search, and a corresponding label is added

to 𝐿(𝑣). During the search, if a shorter distance between 𝑤 and

𝑣 is found based on the existing labels of 𝑤 and 𝑣 (i.e., a vertex

with a high order than𝑤 covers the shortest path of𝑤 and 𝑣), they

prune the search space and stop to search the neighbors of 𝑣 . The

algorithm finishes in 𝑛 iterations.

Example 2. Weuse a simple graph in Figure 2 to illustrate the index

structure of [42]. We assume that the total order is 𝑣1 ≤ 𝑣2 ≤ 𝑣3 ≤
𝑣4 ≤ 𝑣5 ≤ 𝑣6. The labels of all six vertices are presented on the right.

Give a pair of query vertices 𝑣4 and 𝑣5, we have the shortest distance

sd(𝑣4, 𝑣5) = min{sd(𝑣4, 𝑣2) + sd(𝑣5, 𝑣2), sd(𝑣4, 𝑣1) + sd(𝑣5, 𝑣1)} = 3,

and the number of shortest paths spc(𝑣4, 𝑣5) = 𝛿 (𝑣4, 𝑣2) · 𝛿 (𝑣5, 𝑣2) +
𝛿 (𝑣4, 𝑣1) · 𝛿 (𝑣5, 𝑣1) = 1 × 1 + 2 × 1 = 3.

Several optimizations are also developed in [42] to reduce the in-

dex size. Given that both query efficiency and index size are closely

related to the label size, they also analyze the maximum label size

for each vertex for several types of graphs. We will compare their

theoretical results with our method on road networks in Section 3.2.

2.3 Opportunities
We first analyze the limitations of the state-of-the-art method. In

[42], the label size for a vertex can be very large, andwe need to scan

all the labels of two query vertices in the worst case. To precompute

the labels for each vertex, their method scans the induced subgraph

of all vertices with lower ranks. When processing the first vertex,

the entire graph is scanned, and searching a large graph is costly.

The key to improving the efficiency of counting shortest paths

is to reduce the number of label comparisons in query processing.

To this end, we organize vertices in a tree structure called tree

decomposition [18] and proposed a tree-based index structure. Even

though tree decomposition has been used in existing works to

compute the shortest distance on road networks, the main technical

challenge in our problem is to avoid the redundancy of query results,

which is quite different from existing studies.

A straightforward idea to construct our index is to adopt a sim-

ilar framework in the hub-labeling method, where high-ranking

vertices are first processed. We significantly improve the efficiency

of index construction by adopting a reverse framework. We first

process low-ranking vertices so that all intermediate information

can be fully utilized when high-ranking vertices are processed. We

propose graph reduction techniques to guarantee the correctness

2100

X(v8)
v14

v6 v14

v14v6v8

v8 v9v12 v7v10 v13 v16v17

v14v6v13

v6v2v3 v13

v8v6v9

v17v16v20v3v2v5 v6

v5v3v4 v6

v14v13v16

v8v11 v12

v8v7 v14 v13v6v2 v14

v3v2v1 v13

v14 v16v15

v17v13v18

v20v17v19

Figure 3: Tree decomposition 𝑇𝐺 of 𝐺 .
of our new computing framework. We also propose a rule to relax

the index definition, which reduces the computational cost but still

guarantees correctness.

3 TREE-BASED SHORTEST PATH COUNTING
We propose a new labeling-based index carefully defined based on

a tree structure of all vertices in the graph. Compared to the state

of the art, our solution achieves higher efficiency for both query

processing and index construction with a more compact index.

3.1 Tree Decomposition
Tree Decomposition has been used in many applications to speed

up certain graph computational problems [18]. We give the formal

definition as follows.

Definition 1. (Tree Decomposition) Given a graph𝐺 (𝑉 , 𝐸), a
tree decomposition of 𝐺 , denoted as 𝑇𝐺 , is a tree in which every tree

node 𝑋 ∈ 𝑇𝐺 is a subset of 𝑉 (i.e., 𝑋 ⊆ 𝑉) such that the following

conditions hold:

(1)

⋃
𝑋 ∈𝑇𝐺 𝑋 = 𝑉 ;

(2) for every (𝑢, 𝑣) ∈ 𝐸, there exists 𝑋 ∈ 𝑇𝐺 such that 𝑢 ∈ 𝑋 and

𝑣 ∈ 𝑋 ;

(3) for every 𝑢 ∈ 𝑉 , {𝑋 |𝑢 ∈ 𝑋 } forms a connected subtree of 𝑇𝐺 .

Definition 2. (Treewidth and Treeheight) Given a tree de-

composition𝑇𝐺 of a graph𝐺 , the treewidth of𝑇𝐺 , denoted by𝑤 (𝑇𝐺),
is one less than the maximum cardinality of all nodes in 𝑇𝐺 , i.e.,

𝑤 (𝑇𝐺) = max𝑋 ∈𝑇𝐺 |𝑋 | − 1. The treeheight, denoted by ℎ(𝑇𝐺), is the
maximum depth of all nodes in𝑇𝐺 where the depth of a node 𝑋 is the

distance from 𝑋 to the root node in 𝑇𝐺 .

We use𝑤 and ℎ to denote treewidth and treeheight, respectively,
when it is clear from the context. It is important to note that we can

derive a tree decomposition of a road network with low treewidth
and low treeheight values. For example, on the road network of New

York City with 264,346 vertices and 733,846 edges, we can construct

a tree decomposition with a treeheight of 505 and a treewidth of

134. Detailed statistics for other datasets can be found in Table 1.

Tree Decomposition Construction. Given a graph𝐺 , there could

bemultiple tree decompositions, and it is NP-Complete to determine

the minimized treewidth of all tree decompositions of𝐺 [5]. In this

paper, we adopt a sub-optimal tree decomposition method proposed

in [27] with a time complexity of𝑂 (𝑛 · (𝑤2 + log𝑛)). The method is

relatively efficient in practice and has been used in several research

works on road networks [16, 32, 33]. It processes each vertex in a

greedy way. Specifically, in each iteration, the algorithm picks the

vertex 𝑣 with the smallest degree and creates a corresponding tree

node 𝑋 (𝑣) with all neighbors of 𝑣 in the graph. Then, it removes

𝑣 and updates the graph by adding an edge between every pair of

unconnected neighbors of 𝑣 . Assume𝑢 is the first removed neighbor

of 𝑣 after removing 𝑣 , we set 𝑋 (𝑢) as the parent of 𝑋 (𝑣) in the

tree decomposition. The algorithm terminates after removing all

vertices, and we get the tree decomposition of the given graph.

It is straightforward to see that the derived tree decomposition

contains 𝑛 nodes, and there is a one-to-one correspondence from

graph vertices to tree nodes. In the rest, we assume this property

holds, and tree decomposition is computed using the method in [27].

We always refer to each 𝑣 ∈ 𝑉 in graphs as a vertex and refer

to each 𝑋 ∈ 𝑇𝐺 as a (tree) node. We use the vertex 𝑣 instead of the

tree node 𝑋 (𝑣) for simplicity when it is clear from the context. The

depth of a vertex 𝑣 , denoted by Depth(𝑣), is the number of edges

from the tree node 𝑋 (𝑣) to the root node. The ancestor set of a

vertex 𝑣 , denoted by A(𝑣) is the set of vertices 𝑢 such that 𝑋 (𝑢) is
an ancestor of 𝑋 (𝑣) in the tree decomposition. The subtree set of a

vertex 𝑣 , denoted by T(𝑣), is the set of vertices 𝑢 such that 𝑋 (𝑢) is
in the subtree rooted by 𝑋 (𝑣) in the tree decomposition.

Example 3. Figure 3 shows a tree decomposition 𝑇𝐺 for the road

network in Figure 1. To construct such a tree decomposition, we first

pick the vertex with the lowest degree. Suppose we pick 𝑣19 and create

a tree node 𝑋 (𝑣19) with its neighbors 𝑣20 and 𝑣17. We then remove

𝑣19 and add an edge between 𝑣17 and 𝑣20. We repeat the above process

until all the vertices are removed. Assume 𝑣20 is the first removed

neighbor of 𝑣19, we set 𝑋 (𝑣20) as the parent of 𝑋 (𝑣19). We repeat

the process and get a tree with 20 tree nodes. The corresponding tree

node of the vertex 𝑣3 is 𝑋 (𝑣3) = {𝑣3, 𝑣2, 𝑣6, 𝑣13}. The ancestors of 𝑣3
are A(𝑣3) = {𝑣14, 𝑣6, 𝑣13, 𝑣2}, and the subtree set of 𝑣3 is T(𝑣3) =
{𝑣3, 𝑣5, 𝑣1, 𝑣4}. For the vertex 𝑣13, all tree nodes containing 𝑣13 form a

connected subtree and are marked in the red area in Figure 3.

3.2 TL-Index
We propose a new index structure, named TL-Index, to count short-

est paths based on tree decomposition. Compared to the state-of-

the-art hub-labeling-based index, the only similar part in TL-Index

is, conceptually, to store a set of labeling vertices with correspond-

ing distance and count values to each vertex 𝑣 . We carefully pick

the labeling values by utilizing tree decomposition. We organize

the labels in a structure that can avoid the merge-sort-like style

query mechanism in [27] and achieve higher query efficiency. The

details of query processing can be found in Section 3.3. Below, we

introduce an important definition which is crucial to guarantee the

correctness of the index.

Definition 3. (Convex Path) Given a tree decomposition 𝑇𝐺
of graph 𝐺 (𝑉 , 𝐸), a path 𝑝 = (𝑠, 𝑣1, 𝑣2, . . . , 𝑣𝑘 , 𝑡) between two ver-

tices 𝑠 and 𝑡 is a convex path if for every 1 ≤ 𝑖 ≤ 𝑘 , the depth of

𝑋 (𝑣𝑖) is larger than the smaller one of 𝑋 (𝑠) and 𝑋 (𝑡), i.e., ∀1 ≤ 𝑖 ≤
𝑘,Depth(𝑣𝑖) > min(Depth(𝑠),Depth(𝑡)).

2101

1
1

6
1

2
1

4
2

3
0

3
2

9
0

4
0

4
1

3
1

3
1

3
3

1
1

7
0

2
0

2
1

4
1

9
1

3
1

2
1

3
1

4
1

2
1

2
1

1
1

2
1

7
1

1
1

4
1

2
1

6
3

11
1

5
1

3
1

2
1

1
1

4
1

2
1

4
1

2
1

1
1

1
1

…

5
2

11
0

6
1

2
1

3
1

v14

v17

v13

v16v2

v18

v19

v20

v3

v5

v4

v1

v15

6
3

3
1

3
2

4
0

1
1

2
2

 sd = 9, cspc = 1

v17 v6
v6

Figure 4: The TL-Index for 𝐺 .
Example 4. Given the graph 𝐺 in Figure 1 and its tree decomposi-

tion 𝑇𝐺 in Figure 3, the path (𝑣6, 𝑣8, 𝑣7, 𝑣10) is a convex path. This is
because Depth(𝑣7) > Depth(𝑣8) > min(Depth(𝑣6),Depth(𝑣10)).
The path (𝑣6, 𝑣8, 𝑣14, 𝑣16) is not a convex path, as Depth(𝑣14) <

min(Depth(𝑣6),Depth(𝑣16)).

Let ⊙ be the concatenation of two paths. We provide a support

lemma followed by the key theorem motivating our index below.

Lemma 1. Given a tree decomposition 𝑇𝐺 and an arbitrary path 𝑝

in 𝐺 , there exists only one vertex in 𝑝 with the lowest depth.

Proof. We prove Lemma 1 by contradiction. Given a path 𝑝 ,

suppose we have 𝑢, 𝑣 ∈ 𝑝 , and both 𝑢 and 𝑣 have the lowest depth

in 𝑝 . Thus, 𝑇 (𝑢) and 𝑇 (𝑣) must be two disjoint sub-trees in 𝑇𝐺 . We

denote the sub-path between 𝑢 and 𝑣 by (𝑢,𝑤1,𝑤2, . . . ,𝑤𝑖−1,𝑤𝑖 , 𝑣).
We first consider the 𝑢 side. As (𝑢,𝑤1) ∈ 𝐸, based on Definition 1

(2), we know ∃𝑋 ∈ 𝑇𝐺 , 𝑢 ∈ 𝑋,𝑤1 ∈ 𝑋 . Based on Definition 1 (3),

𝑋 (𝑢) and 𝑋 should be in the same sub-tree, 𝑋 (𝑤1) and 𝑋 should

also be in the same sub-tree, i.e., 𝑋 (𝑢) and 𝑋 (𝑤1) should be in the

same sub-tree. As 𝑢 has the minimum depth, we have 𝑤1 ∈ 𝑇 (𝑢).
We similarly have𝑤2 ∈ 𝑇 (𝑢), . . . ,𝑤𝑖 ∈ 𝑇 (𝑢). On the 𝑣 side, we also

have𝑤𝑖 ∈ 𝑇 (𝑣) where the contradiction exists. □

Theorem 1. Given an arbitrary path 𝑝 (𝑣1, 𝑣2, . . . , 𝑣𝑘), either 𝑝 is

a convex path or there exists one and only one pair of convex paths

𝑝1 and 𝑝2 such that 𝑝 = 𝑝1 ⊙ 𝑝2.

Proof. Based on Lemma 1, given a non-convex path 𝑝 between

two vertices 𝑠 and 𝑡 , assume that 𝑣 is the vertex with the smallest

depth in 𝑝 . We have 𝑣 ≠ 𝑠 and 𝑣 ≠ 𝑡 . Otherwise, 𝑝 is a convex

path. Therefore, 𝑝 can be divided to two sub-paths from 𝑣 , and both

sub-paths are convex paths. □

Based on Theorem 1, each shortest path is either a convex short-

est path or a concatenation of two convex shortest paths, given

that any sub-path of a shortest path is also a shortest path. Here, a

convex shortest path is a convex path that has the same length as

the shortest path between two terminal vertices in the graph. To

compute the shortest path count for any pair of vertices, our idea

is to precompute the distance and the count of all convex shortest

paths between each possible pair of vertices. Note that the number

of convex shortest paths is significantly smaller than that of all

shortest paths, which is supported by the following lemma.

Lemma 2. Given a tree decomposition 𝑇𝐺 of a graph 𝐺 and an

arbitrary path 𝑝 , let 𝑣 be the vertex with the smallest depth in 𝑝 . 𝑣 is

the ancestor of all other vertices in 𝑝 .

The shortest paths between two vertices 𝑠 and 𝑡 can be divided

into two types. The first is the convex shortest path between 𝑠 and

𝑡 , and the other is the concatenation of two convex shortest paths

from 𝑠 and 𝑡 , respectively. It is easy to see that for a non-convex

shortest path 𝑝 , two convex sub-paths join at the vertex with the

smallest depth in 𝑝 . Therefore, our index stores the count of each

precomputed convex shortest path as a label of the terminal vertex

with a larger depth. We formally define the index as follows.

Definition 4. Given a road network 𝐺 ,TL-Index precomputes:

(1) a tree structure of all vertices by tree decomposition;

(2) the shortest distance from each vertex to all its ancestors;

(3) the convex shortest path count from each vertex to all its

ancestors.

Note that by a tree structure in Definition 4, we discard all ver-

tices except 𝑣 in each tree node𝑋 (𝑣) and use 𝑣 as a tree node instead
of the original vertex set 𝑋 (𝑣).

Example 5. We show the TL-Index for the road network 𝐺 (Fig-

ure 1) in Figure 4 based on the tree decomposition 𝑇𝐺 in Figure 3. For

simplicity, we only show a part of the index. The index is based on the

tree structure of the tree decomposition. For each vertex (index tree

node), we store the shortest distance and the corresponding convex

shortest path count to each ancestor. The label for the ancestor close to

the root is arranged in the front. We take the vertex 𝑣17 as an example.

As we mark in Figure 4, the shortest distance between 𝑣17 and 𝑣6 is 9,

and there is only 1 convex shortest path. The shortest distance between

𝑣17 and 𝑣14 is 4, and its corresponding convex shortest path count is 1.

Note that in the labels of 𝑣20, the count value for 𝑣6 is 0 since there is

no convex path between them whose length is less than or equal to 11.

Theorem 2. The space complexity of TL-Index is 𝑂 (𝑛 · ℎ).

Zhang and Yu [42] also analyze the space usage of their proposed

hub-labeling index for graphs with small treewidth. They show that

their index size can be bounded by 𝑂 (𝑤𝑛 log𝑛) if the vertex order
is carefully arranged, where𝑤 is the treewidth, and 𝑛 is the number

of vertices. Our index size is much smaller given that ℎ is much

smaller than𝑤 log𝑛. The statistics (e.g.,𝑤 , ℎ and 𝑛) of each dataset

evaluated in experiments is provided in Table 1. We also compare

the practical index size in Figure 12.

3.3 Query Processing with TL-Index
We propose the query processing algorithm in this section. Our TL-

Index is also a labeling-based index that satisfies the criteria of exact

shortest path covering (ESPC) defined in [42]. Given two query

vertices 𝑠 and 𝑡 , the general idea is to identify all common labeling

vertices as shown in Equation (1). We utilize the tree structure to

bound the common labels of query vertices. In this way, we avoid

the merge-sort-like strategy to process labels of two query vertices

2102

Algorithm 1: TL-Query

Input: the TL-Index and two query vertices 𝑠, 𝑡

Output: the shortest distance sd(𝑠, 𝑡), and corresponding

count spc(𝑠, 𝑡)
1 𝑣 ← the LCA of 𝑠 and 𝑡 in the tree;

2 𝑑 ←∞, 𝑐 ← 0;

3 foreach 𝑢 ∈ A(𝑣) ∪ {𝑣} do
4 𝑑 ′ ← sd(𝑠,𝑢) + sd(𝑢, 𝑡);
5 if 𝑑 ′ < 𝑑 then
6 𝑑 ← 𝑑 ′;
7 𝑐 ← cspc𝑠,𝑢 · cspc𝑢,𝑡 ;
8 else if 𝑑 ′ = 𝑑 then
9 𝑐 ← 𝑐 + cspc𝑠,𝑢 · cspc𝑢,𝑡 ;

10 return 𝑑 and 𝑐

in Equation (1) and speed up the query processing by visiting a

limited number of common vertices directly. We reduce the visited

labels in query processing by the following lemma.

Lemma 3. Given two query vertices 𝑠 and 𝑡 , let CA(𝑠, 𝑡) be the set
of vertices 𝑣 such that 𝑋 (𝑣) is a common ancestor

2
of 𝑋 (𝑠) and 𝑋 (𝑡).

For each shortest path 𝑝 between 𝑠 and 𝑡 , let 𝑢 be the vertex with the

lowest depth in 𝑝 . We have 𝑢 ∈ CA(𝑠, 𝑡).

Based on Lemma 3, the shortest distance path count between 𝑠

and 𝑡 can be computed using the following equation.

spc(𝑠, 𝑡) =
∑︁

𝑣∈CA(𝑠,𝑡),sd(𝑠,𝑣)+sd(𝑣,𝑡)=sd(𝑠,𝑡)
cspc𝑠,𝑣 · cspc𝑣,𝑡 , (2)

where cspc𝑠,𝑣 denotes the number of all convex shortest paths

between vertices 𝑠 and 𝑣 . The shortest distance between 𝑠 and 𝑡 can

be computed as follows.

sd(𝑠, 𝑡) = min

𝑣∈CA(𝑠,𝑡)
sd(𝑠, 𝑣) + sd(𝑣, 𝑡) (3)

We provide the query processing algorithm based on TL-Index

in Algorithm 1. We first compute the LCA of 𝑠 and 𝑡 in line 1. Then,

for each common ancestor of 𝑠 and 𝑡 , we initialize the shortest path

count if a shorter distance is found (lines 5–7). We increase the

existing count if the same distance value is found (lines 8–9).

Theorem 3. The time complexity of Algorithm 1 is𝑂 (ℎ), where ℎ
is the treeheight of the tree decomposition 𝑇𝐺 .

Proof. In line 1 of Algorithm 1, it takes 𝑂 (1) time to find the

LCA [9]. In line 3, the size ofA(𝑣)∪{𝑣} is bounded by the treeheight
ℎ of 𝑇𝐺 . □

4 INDEX CONSTRUCTION
We propose algorithms for index construction in this section. Sec-

tion 4.1 extends the framework in the state of the art and presents a

non-trivial indexing algorithm. Sections 4.2, 4.3, 4.4, and 4.5 propose

optimizations and our improved algorithm for index construction.

2
Each tree node is also regarded as an ancestor of itself in Lemma 3.

Algorithm 2: TL-Construct
Input: A road network 𝐺 (𝑉 , 𝐸, 𝜙)
Output: The TL-Index of 𝐺

1 𝑇𝐺 ← TreeDecomposition(𝐺);
2 foreach 𝑋 (𝑢) ∈ 𝑇𝐺 in a top-down manner do
3 foreach 𝑣 ∈ T(𝑢) do 𝐷 [𝑣] = ∞;
4 𝐷 [𝑢] = 0,𝐶 [𝑢] = 1;

5 𝑄 ← an empty queue prioritized by 𝐷 [·];
6 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑢);
7 while 𝑄 is not empty do
8 𝑣 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ();
9 𝑑 ← min𝑝∈A(𝑢) sd(𝑢, 𝑝) + sd(𝑝, 𝑣);

10 if 𝑑 < 𝐷 [𝑣] then
11 sd(𝑢, 𝑣) ← 𝑑, cspc(𝑢, 𝑣) ← 0;

12 continue

13 else sd(𝑢, 𝑣) ← 𝐷 [𝑣], cspc(𝑢, 𝑣) ← 𝐶 [𝑣] ;
14 foreach 𝑣 ′ ∈ 𝑁 (𝑣) do
15 𝑛𝑑 ← 𝐷 [𝑣] + 𝜙 (𝑣, 𝑣 ′);
16 if 𝐷 [𝑣 ′] > 𝑛𝑑 ∧ Depth(𝑣 ′) > Depth(𝑢) then
17 𝐷 [𝑣 ′] ← 𝑛𝑑,𝐶 [𝑣 ′] ← 𝐶 [𝑣];
18 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣 ′)
19 else if 𝐷 [𝑣 ′] = 𝑛𝑑 then
20 𝐶 [𝑣 ′] ← 𝐶 [𝑣 ′] +𝐶 [𝑣];

4.1 Basic Index Construction by Hub Pushing
In [42], the authors propose a hub-pushing algorithm to construct

an order-based labeling index. We introduce a non-trivial baseline

named TL-Construct by extending their framework.

The pseudocode of TL-Construct is provided in Algorithm 2.

Given the tree decomposition, TL-Construct processes vertices in
a top-down manner in the tree. The algorithm runs in 𝑛 rounds.

In each round (lines 2–20), we pick the vertex 𝑢 with the smallest

depth in the tree and break the tie by picking an arbitrary one. We

search from 𝑢 with a distance priority. The arrays 𝐷 [·] and 𝐶 [·]
store the distance and the shortest path count, respectively, from 𝑢

to each vertex during the search.

The distance and the shortest path count to the source vertex

𝑢 itself are initialized by 0 and 1 respectively in line 4. In each

iteration, we pop the top vertex 𝑣 from the priority queue in line 8,

and 𝑣 is the nearest unprocessed vertex to 𝑢.

Line 9 computes the distance between 𝑢 and 𝑣 based on the

information computed in earlier rounds. For each common ancestor

𝑝 of 𝑢 and 𝑣 , we compute the distance by using 𝑝 as a bridging

vertex given that the shortest distances from 𝑝 to 𝑢 and from 𝑝 to 𝑣

have been computed. If the distance based on earlier information

is shorter than the current distance, we store the shorter distance

and terminate further exploration from 𝑣 in lines 10–12. Otherwise,

we store the shortest distance sd(𝑢, 𝑣) and the convex shortest path
count cspc(𝑢, 𝑣) for the TL-Index.

We extend the search space from 𝑣 to each neighbor of 𝑣 . In line

16, 𝐷 [𝑣 ′] > 𝑛𝑑 means we find shorter distance from 𝑢 to 𝑣 ′. In this

case, we replace the existing distance and the convex shortest path

count to 𝑣 ′. Note that𝐷 [𝑣 ′] can be∞ if 𝑣 ′ is not visited in the search.
If the distance is the same as that computed in earlier iterations

2103

Algorithm 3: Operator ⊖
Input: A road network 𝐺 and a vertex 𝑢 ∈ 𝑉 (𝐺)
Output: The graph 𝐺 ⊖ 𝑢

1 foreach 𝑣,𝑤 ∈ 𝑁 (𝑢) do
2 if (𝑣,𝑤) ∉ 𝐸 ∨ 𝜙 (𝑣,𝑤) > 𝜙 (𝑣,𝑢) + 𝜙 (𝑢,𝑤) then
3 𝐸 ← 𝐸 ∪ {(𝑣,𝑤)};
4 𝜙 (𝑣,𝑤) ← 𝜙 (𝑣,𝑢) + 𝜙 (𝑢,𝑤);
5 𝜍 (𝑣,𝑤) ← 𝜍 (𝑣,𝑢) × 𝜍 (𝑢,𝑤);
6 else if 𝜙 (𝑣,𝑤) = 𝜙 (𝑣,𝑢) + 𝜙 (𝑢,𝑤) then
7 𝜍 (𝑣,𝑤) ← 𝜍 (𝑣,𝑤) + 𝜍 (𝑣,𝑢) × 𝜍 (𝑢,𝑤);

8 remove 𝑢 and all incident edges from 𝐺 ;

(line 19), we increase the number of convex shortest paths in line

20. Lines 16 and 19 also guarantee that we only process vertices

with a larger depth than the source vertex 𝑢.

Example 6. We show a running example for Algorithm 2. Given

a graph 𝐺 (Figure 1) and its tree decomposition 𝑇𝐺 (Figure 3), let us

consider the shortest distance and the shortest path count between

the vertices 𝑣14 and 𝑣16. Algorithm 2 starts from 𝑣14 and adds all

its neighbors into 𝑄 in lines 14–18. It also updates 𝐷 [·] and 𝐶 [·] in
line 17. For instance, we have 𝐷 [𝑣15] = 1, 𝐶 [𝑣15] = 1, 𝐷 [𝑣16] = 3,

and 𝐶 [𝑣16] = 1 after scanning all the neighbors of 𝑣14. In the next

iteration, suppose 𝑄 pops 𝑣15 in line 8, and Algorithm 2 expands its

neighbor, i.e., 𝑣16 in line 15-20. We have 𝑛𝑑 = 𝐷 [𝑣15] + 𝜙 (𝑣16, 𝑣15) =
1 + 2 = 3 which equals 𝐷 [𝑣16]. Thus, we add 𝐶 [𝑣16] and 𝐶 [𝑣15] in
line 20. When 𝑄 pops 𝑣16, we store 𝐷 [𝑣16] and 𝐶 [𝑣16] to sd(𝑣14, 𝑣16)
and cspc(𝑣14, 𝑣16), respectively. When 𝑄 is empty in line 7, we have

computed the shortest distance and the shortest path count from 𝑣14
to each other vertex. The next vertex is 𝑣6 in line 2. Consider a case

that 𝑢 = 𝑣6 when 𝑄 pops 𝑣16 in line 8. We find 𝐷 [𝑣16] = 11 which

is greater than sd(𝑣6, 𝑣14) + sd(𝑣14, 𝑣16) = 9 (lines 9-10). Therefore,

we set sd(𝑣6, 𝑣16) = 9, cspc(𝑣6, 𝑣16) = 0 (line 11) and terminate the

exploration in line 12.

Theorem 4. The time complexity of Algorithm 2 is 𝑂 (𝑛ℎ2 +
𝑛ℎ log𝑛).

Proof. For each vertex 𝑢 ∈ 𝐺 , we only visit the vertices 𝑣 ∈
𝑇 (𝑢). Thus, we visit 𝑂 (𝑛 · ℎ) times in total. In each visit, we query

𝑂 (ℎ) times in line 9. The maintenance of the priority queue𝑄 costs

𝑂 (ℎ ·𝑚+ℎ ·𝑛 log𝑛) using Fibonacci heap. Thus, the time complexity

of Algorithm 2 is 𝑂 (𝑛ℎ2 + 𝑛ℎ log𝑛). □

4.2 A New Upward Computing Framework
The index construction algorithm proposed in Section 4.1 essentially

computes a distance value and a count value for each pair of vertices

with an ancestor-descendant relationship. For each vertex𝑢 in each

round, Algorithm 2 performs a priority-queue-based search for all

vertices in the subtree rooted from 𝑢 and computes values between

𝑢 and all its descendants. However, the search space can be the

whole graph in the worse case. In addition, for each visited vertex

𝑣 , the algorithm scans all the ancestors of 𝑢 to check if a shorter

distance value exists, which incurs significant extra cost.

To improve the efficiency of index construction, we propose a

novel index construction algorithm, which is called TL-Construct∗.

TL-Construct∗ adopts an upward computing framework. Specifi-

cally, for each vertex 𝑢 in each round, we compute the distance

value and the count value between 𝑢 and all its ancestors in the

tree. We propose a graph reduction technique in Section 4.3 to

support the correctness of the upward computing framework. We

relax the index definition in Section 4.4 to speed up the upward

computation of the shortest distance and the shortest path count

while guaranteeing the correctness simultaneously. We show the

final index construction algorithm in Section 4.5.

4.3 Graph Reduction
Preserving Shortest Path Count. For simplicity, we first intro-

duce the DC-Graph, which is denoted by 𝐺 (𝑉 , 𝐸, 𝜙, 𝜍). Compared

with the conventional road network, the DC-Graph contains an

additional function 𝜍 to assign a count weight for each edge. Given

a path 𝑝 in a DC-Graph, we define the count value of 𝑝 , denoted by

𝜍 (𝑝), as the following equation.

𝜍 (𝑝) =
∏
𝑒∈𝑝

𝜍 (𝑒) (4)

Given two vertices 𝑢 and 𝑣 in a DC-Graph 𝐺 ′, to count the

number of shortest paths spc𝐺′ (𝑢, 𝑣), we sum the count values

of all their shortest paths instead of just calculating the number

of paths. The DC-Graph is a generalized version of conventional

road networks. Given 𝜍 (𝑒) = 1 for all edges 𝑒 , counting paths in

a DC-Graph is equivalent to counting those in the corresponding

conventional graph with the same vertices and edges. Next, we

define the DCP-Graph as follows.

Definition 5. (DCP-Graph) Given a road network𝐺 (𝑉 , 𝐸, 𝜙), a
DC-Graph 𝐺 ′(𝑉 ′, 𝐸 ′, 𝜙 ′, 𝜍) is a DCP-Graph if 𝑉 ′ ⊆ 𝑉 and for every

pair 𝑢, 𝑣 ∈ 𝑉 ′, sd𝐺 (𝑢, 𝑣) = sd𝐺′ (𝑢, 𝑣) and spc𝐺 (𝑢, 𝑣) = spc𝐺′ (𝑢, 𝑣).

Example 7. Figure 5 (a) shows a DCP-graph with five vertices from

𝐺 in Figure 1. All other vertices are reduced. Each edge has two weights

namely 𝜙 and 𝜍 , we denote them by [𝜙 : 𝜍]. The reduced graph 𝐺 ′

preserves the shortest distance and the shortest path count of all pairs

of vertices in𝐺 ′. For example, we have sd𝐺 (𝑣2, 𝑣6) = sd𝐺′ (𝑣2, 𝑣6) = 4

and spc𝐺 (𝑣2, 𝑣6) = spc𝐺′ (𝑣2, 𝑣6) = 2. We also have sd𝐺 (𝑣14, 𝑣6) =
sd𝐺′ (𝑣14, 𝑣6) = 6 and spc𝐺 (𝑣14, 𝑣6) = spc𝐺′ (𝑣14, 𝑣6) = 3.

Based on Definition 5, we propose a reduction operation for each

vertex in a graph 𝐺 and transform 𝐺 to a DCP-Graph as shown in

Algorithm 3. Note that for any edge 𝑒 whose count weight 𝜍 (𝑒) is
not defined, we initialize it as 1 in the algorithm. For every pair of

neighbors 𝑣,𝑤 of 𝑢 in 𝐺 , if 1) the edge (𝑣,𝑤) does not exist earlier,
or 2) the edge (𝑣,𝑤) exists but a shorter edge appears (line 2), we
create the edge and replace the edge distance weight and the edge

count weight by 𝜙 (𝑣,𝑢) +𝜙 (𝑢,𝑤) and 𝜍 (𝑣,𝑢) ×𝜍 (𝑢,𝑤), respectively.
If there is an existing edge (𝑣,𝑤) and the distances are the same

(line 6), we increase the corresponding edge count weight in line 7.

Lemma 4. Algorithm 3 returns a DCP-Graph of 𝐺 .

Proof. Let 𝐺 ′ be 𝐺 ⊖ 𝑤 . For any vertices 𝑢 ∈ 𝑉 (𝐺 ′) and 𝑣 ∈
𝑉 (𝐺 ′), we consider the following two cases:

• Case 1: the shortest path from𝑢 to 𝑣 in𝐺 does not pass through𝑤 .

Thus, we know sd𝐺 (𝑢, 𝑣) = sd𝐺′ (𝑢, 𝑣) and spc𝐺 (𝑢, 𝑣) = spc𝐺′ (𝑢, 𝑣)
as the shortest path in 𝐺 is also the shortest path in 𝐺 ′.

2104

v3

v13 v2

v14

v6
[3:1]

[3:1]

[3:2]

[4:1]

[1:1] [2:1]

[4:2]

[6:1]

(a) A reduced graph𝐺′ of𝐺

v19v20

v16v15 v17

v18

v13 v2

v1 v3

v5

v41

2

2

2 1

2

2 2
1

2

1

1
1

2

(b) Local graph for 𝑣3 and 𝑣13 in the original graph𝐺 .

v3

v13 v2
[3:1] [3:2]

[4:1]

(c) Local graph for 𝑣3 and 𝑣13

in the reduced graph𝐺′.

Figure 5: Examples of optimizations in index construction based on the graph 𝐺 in Figure 1 and its tree decomposition in
Figure 3. For each edge in the subfigures (a) and (c), the label means [the distance weight 𝜙 : the count weight 𝜍]. For the subfigure
(b), the label means the distance of the edge.

Algorithm 4: DCP-TreeDecomposition

Input: 𝐺 (𝑉 , 𝐸, 𝜙)
Output: Tree decomposition 𝑇𝐺

1 𝑇𝐺 ← ∅
2 foreach 𝑒 ∈ 𝐸 do 𝜍 (𝑒) = 1;

3 𝑉 ′ ← 𝑉 , 𝑖 ← 1;

4 while 𝑉 ≠ ∅ do
5 𝑢 ← the vertex with the smallest degree in 𝑉 ;

6 𝑋 (𝑢) ← {𝑢} ∪ 𝑁 (𝑢);
7 create a tree node 𝑋 (𝑢) in 𝑇𝐺 ;
8 𝐺 ← 𝐺 ⊖ 𝑢;
9 𝜋 (𝑢) = 𝑖;

10 𝑖 ← 𝑖 + 1;
11 foreach 𝑢 ∈ 𝑉 ′ do
12 if |𝑋 (𝑢) | > 1 then
13 𝑣 ← argmin𝑣∈𝑋 (𝑢)\{𝑢 } 𝜋 (𝑣);
14 set 𝑋 (𝑣) be the parent of 𝑋 (𝑢) in 𝑇𝐺 ;

15 return 𝑇𝐺

• Case 2: the shortest path from 𝑢 to 𝑣 in 𝐺 passes through 𝑤 .

In this case, suppose that the shortest path between 𝑢 and 𝑣

is (𝑢, . . . ,𝑤𝑖 ,𝑤,𝑤 𝑗 , . . . , 𝑣). As Algorithm 3 eliminates 𝑤 in 𝐺 ′,
and inserts a new edge (𝑤𝑖 ,𝑤 𝑗) with 𝜙 (𝑤𝑖 ,𝑤 𝑗) = 𝜙 (𝑤𝑖 ,𝑤) +
𝜙 (𝑤,𝑤 𝑗) and 𝜍 (𝑤𝑖 ,𝑤 𝑗) = 𝜍 (𝑤𝑖 ,𝑤) × 𝜍 (𝑤,𝑤 𝑗) (if there is no

edge (𝑤𝑖 ,𝑤 𝑗) ∈ 𝐺 or 𝜙 (𝑤𝑖 ,𝑤 𝑗) > 𝜙 (𝑤𝑖 ,𝑤) + 𝜙 (𝑤,𝑤 𝑗) in 𝐺) or

𝜍 (𝑤𝑖 ,𝑤 𝑗) ← 𝜍 (𝑤𝑖 ,𝑤 𝑗) + 𝜍 (𝑤𝑖 ,𝑤) × 𝜍 (𝑤,𝑤 𝑗) (if there is already
𝜙 (𝑤𝑖 ,𝑤 𝑗) = 𝜙 (𝑤𝑖 ,𝑤) + 𝜙 (𝑤,𝑤 𝑗) in 𝐺).

Hence, both the distance and the corresponding edge count are

preserved, and Algorithm 3 returns a DCP-Graph of G. □

Graph Reduction in Tree Decomposition.We can reduce the

graph in tree decomposition in a natural way, given that we need

to connect every pair of neighbors when eliminating each vertex

in tree decomposition. The revised tree decomposition is called

DCP-Tree Decomposition and is shown in Algorithm 4. Lines 4–

10 iteratively reduce each vertex from the graph. The vertex 𝑢 is

removed from 𝐺 in line 8. 𝜋 (·) is an array to record the removing

order of all vertices. Performing the operator ⊖ for all vertices

would not increase the time complexity of tree decomposition.

Lemma 5. The time complexity of Algorithm 4 is𝑂 (𝑛 ·𝑤2+𝑛 log𝑛).

Proof. In Algorithm 4, the dominant cost for each vertex is

maintaining and selecting the vertex with the smallest degree in

𝑉 ′, which costs 𝑂 (𝑛 · log𝑛) time. In line 8, the ⊖ operator costs

𝑂 (𝑤2) time. Thus, the overall time complexity of Algorithm 4 is

𝑂 (𝑛 ·𝑤2 + 𝑛 log𝑛). □

4.4 Relaxing Convex Shortest Path
In this section, we focus on the phase of computing convex shortest

path count. We simplify the logic of index construction by relaxing

the convex shortest path count in the index definition. Given a graph

𝐺 , its tree decomposition𝑇𝐺 and two vertices 𝑢, 𝑣 with Depth(𝑢) ≠
Depth(𝑣), the local graph of 𝑢 and 𝑣 is the induced subgraph of

T(𝑢) ∪ T(𝑣) in 𝐺 . That is to say, the local graph contains all the

vertices who have tree depths no smaller than both 𝑢 and 𝑣 .

Example 8. Given graph𝐺 in Figure 1 and the tree decomposition

in Figure 3, the local graph for 𝑣2 and 𝑣13 in𝑉 (𝐺) is shown in Figure 5
(b). As we can see from the figure, all the vertices are from the subtree

rooted by 𝑣13, given that T(𝑣2) ⊂ T(𝑣13).

Based on the concept of the local graph, we relax the definition

of the convex shortest path as follows.

Definition 6. (Local Shortest Distance and Local Shortest

Path Count) Given a tree decomposition 𝑇𝐺 of graph 𝐺 (𝑉 , 𝐸), the
local shortest distance (resp. shortest path count) between two ver-

tices 𝑢 and 𝑣 , denoted by sd(𝑢, 𝑣)− (resp. cspc(𝑢, 𝑣)−), is the shortest
distance (resp. shortest path count) of 𝑢 and 𝑣 in their local graph.

Example 9. Let us continue Example 8. In the local graph (Fig-

ure 5(b)), for vertices 𝑣2 and 𝑣13, we can find the shortest path 𝑝1 =

(𝑣2, 𝑣1, 𝑣13). The shortest distance sd(𝑣2, 𝑣13)− = 4, and the local

shortest path count is cspc(𝑣2, 𝑣13)− = 1. By contrast, When we

look at the full graph 𝐺 in Figure 1, we find the shortest path 𝑝2 =

(𝑣2, 𝑣14, 𝑣13) which has a smaller distance than the local shortest path

𝑝1. We can also see that Depth(𝑣14) < min(Depth(𝑣2),Depth(𝑣13))
in 𝑇𝐺 and 𝑝2 is not a convex shortest path. Therefore, the shortest

distance between 𝑣2 and 𝑣13 in the full graph 𝐺 is sd(𝑣2, 𝑣13) = 3,

and the convex shortest path count is cspc(𝑣2, 𝑣13) = 0,

Lemma 6. Given a convex shortest path 𝑝 between two vertices 𝑢

and 𝑣 , 𝑝 is a local shortest path in the local graph of 𝑢 and 𝑣 .

Lemma 7. Algorithm 1 is correct if we replace the shortest distance

and the convex shortest path count in TL-Index (Definition 4) by the

local shortest distance and the local shortest path count, respectively.

2105

Algorithm 5: TL-Construct∗

Input: A road network 𝐺 (𝑉 , 𝐸, 𝜙)
Output: The TL-Index of 𝐺

1 𝑇𝐺 ← DCP-TreeDecomposition(𝐺);
2 foreach 𝑋 (𝑢) ∈ 𝑇𝐺 in a top-down manner do
3 foreach 𝑣 ∈ A(𝑢) do
4 foreach 𝑢 ′ ∈ 𝑋 (𝑢) \ {𝑢} do
5 if Depth(𝑢 ′) < Depth(𝑣) then continue;
6 𝑑 ← 𝜙 (𝑢,𝑢 ′) + sd(𝑢 ′, 𝑣)−;
7 𝑐 ← 𝜍 (𝑢,𝑢 ′) · cspc(𝑢 ′, 𝑣)−;
8 if 𝑑 < sd(𝑢, 𝑣)− then
9 sd(𝑢, 𝑣)− ← 𝑑 ;

10 cspc(𝑢, 𝑣)− ← 𝑐;

11 else if 𝑑 = sd(𝑢, 𝑣)− then
12 cspc(𝑢, 𝑣)− ← cspc(𝑢, 𝑣)− + 𝑐;

Proof. Given vertices 𝑢 and 𝑣 ,𝑤 ∈ CA(𝑢, 𝑣). We first consider

the shortest paths between 𝑢 and𝑤 . If there is any convex short-

est path between 𝑢 and 𝑤 , we have sd(𝑢,𝑤) = sd(𝑢,𝑤)− and

cspc(𝑢,𝑤) = cspc(𝑢,𝑤)− based on Lemma 6. If there is no con-

vex shortest paths between 𝑢 and𝑤 , we have sd(𝑢,𝑤) < sd(𝑢,𝑤)−.
Based on Theorem 1, there must be at least one vertex𝑤 ′ ∈ A(𝑤)
that satisfies sd(𝑢,𝑤) = sd(𝑢,𝑤 ′)− + sd(𝑤 ′,𝑤)− and spc(𝑢,𝑤) =∑

𝑤′ cspc(𝑢,𝑤 ′)− · cspc(𝑤 ′,𝑤)−. We have the same result for the

shortest paths between𝑤 and 𝑣 . Thus, Algorithm 1 is correct. □

Based on Lemma 7, we compute the local shortest distance and

the local shortest path count from each vertex to its ancestors.

Compared to computing the exact shortest distance and convex

shortest path count, the local values reduce significant search space

in the index construction. Recall that based on the graph reduction

techniques in Section 4.3, we have a reduced graph preserving

the shortest distance and the shortest path count during the index

construction. By combing the reduction and the local computation

ideas, computing the local shortest distance and local shortest path

count is conducted in a local reduced subgraph.

Example 10. An example to compute values from 𝑣3 to 𝑣13 is

provided in Figure 5 (c). When processing 𝑣3, many other vertices have

been reduced as shown in 𝐺 ′ of Figure 5 (a). Based on Lemma 7, we

only care the induced subgraph of all vertices in 𝐺 ′ without a depth
smaller than 𝑣13. The final search space is shown in Figure 5 (c).

4.5 The Final Algorithm
As shown in Algorithm 5, we first compute the tree decomposition

and the count weight for all new edges (shortcuts) inserted to

the graph. Then, for each vertex 𝑢, we compute the local shortest

distance and the local shortest path count from 𝑢 to its ancestors

in lines 3–12. Specifically, 𝑋 (𝑢) \ {𝑢} in line 4 are neighbors of 𝑢 in

the DCP-Graph after performing the reduction operation ⊖ for all

subtree vertices of 𝑢. Note that for every vertex 𝑢 ′ in 𝑋 (𝑢) \ {𝑢},
the values have been computed in earlier rounds. Therefore, we use

each neighbor 𝑢 ′ to compute the distance and the count from 𝑢 to

each 𝑣 (line 6 and line 7), since the shortest path from 𝑢 to 𝑣 must

pass at least one of the neighbors. We do not need to consider the

neighbor 𝑢 ′ with a smaller depth than the target vertex 𝑣 in line 5

1
1

6
1

3
2

11
1

5
1

v14

v13

v16

6
3v6 v14 [6, 3]X(v6)/{v6}:

v6 [6, 1]X(v13)/{v13}: v14 [1, 1]

X(v16)/{v16}: v13 [5, 1] v14 [3, 2]

Different from the values by basic index construction.

Figure 6: An example of TL-Construct∗.
since 𝑢 ′ is not in the local graph. During computing distance via

neighbors, we replace the shortest distance and shortest path count

if a shorter distance is found (lines 8–10). We increase the count if

the same shortest distance is found (lines 11–12).

Example 11. We show a running example with a partial TL-Index

in Figure 6. On the right side, we list the distance weight and the

corresponding count weight derived by the DCP-TreeDecomposition
(Algorithm 4). Given𝑢 = 𝑣6 in line 2, we need to check its ancestor 𝑣14.

In line 6 and 7, we have 𝑑 = 𝜙 (𝑣6, 𝑣14) + sd(𝑣14, 𝑣14)− = 6+0 = 6 and

𝑐 = 𝜍 (𝑣6, 𝑣14) · cspc(𝑣14, 𝑣14)− = 1× 1 = 1. Given that sd(𝑣6, 𝑣14)− is
initialized as∞, we update sd(𝑣6, 𝑣14)− = 6 and cspc(𝑣6, 𝑣14)− = 1.

For the iteration of 𝑢 = 𝑣16 in line 2, when 𝑣 = 𝑣14 in line 3, we update

sd(𝑣16, 𝑣14)− = 3 and cspc(𝑣16, 𝑣14)− = 2, which is straightforwardly

derived by DCP-TreeDecomposition. Then, for the labels from 𝑣16
to 𝑣6 (𝑣 = 𝑣6 in line 3), we calculate 𝑑 = 𝜙 (𝑣16, 𝑣13) + sd(𝑣13, 𝑣6)− =

5 + 6 = 11 and 𝑐 = 𝜍 (𝑣16, 𝑣13) · cspc(𝑣13, 𝑣6)− = 1 in lines 6–7. Then,

we update the labels correspondingly in line 9-10. Note that the labels

from 𝑣16 to 𝑣6 and 𝑣13 differ from those in the TL-index in Figure 4.

This is because we only store the local shortest distance and the local

shortest path count by our final algorithm.

Theorem 5. The time complexity of Algorithm 5 is 𝑂 (𝑛 log𝑛 +
𝑛ℎ𝑤), where 𝑛 is the number of vertices, ℎ is the treeheight, and𝑤 is

the treewidth.

Proof. In line 1, Algorithm 4 takes 𝑂 (𝑛 · 𝑤2 + 𝑛 log𝑛). From
line 2 to line 12, there are three loops and the time complexity is

𝑂 (𝑛ℎ𝑤). The overall time complexity is 𝑂 (𝑛 log𝑛 + 𝑛ℎ𝑤).
□

5 EXPERIMENTS
We conduct extensive experiments to evaluate our methods against

the state-of-the-art approach. All the algorithms are implemented

in C++ with -O3 optimization, and the experiments are conducted

on a Linux machine with an Intel Xeon Gold 6248 2.5GHz CPU and

768GB RAM. We evaluate all the algorithms on fourteen real-world

graphs as shown in Table 1. GRD is the power grid network of the

western states in the USA
3
. SYD is a public transportation network

containing all the public transportation stops in Sydney [28]. All

the rest are road networks from DIMACS
4
.

Compared Algorithms. In our experiments, we compare our

algorithms with the state-of-the-art solution HL-Index [42] for the

3
http://konect.cc/

4
http://www.diag.uniroma1.it//challenge9/download.shtml

2106

http://konect.cc/
http://www.diag.uniroma1.it//challenge9/download.shtml

Table 1: Statistics of road networks.

Name Description 𝑛 𝑚 ℎ 𝑤

GRD US Power Grid 4,941 6,594 72 25

SYD Public Transport 24,063 28,695 194 79

NY NYC 264,346 733,846 505 134

BAY Bay Area 321,270 800,172 403 108

COL Colorado 435,666 1,057,066 465 146

FLA Florida 1,070,376 2,712,798 520 136

NW Northwest US 1,207,945 2,840,208 548 146

NE Northeast US 1,524,453 3,897,636 828 219

CAL CA and NV 1,890,815 4,657,742 713 215

LKS Great Lakes 2,758,119 6,885,658 1325 370

EUS Eastern US 3,598,623 8,778,114 1022 272

WUS Western US 6,262,104 15,248,146 1041 326

CUS Central US 14,081,816 34,292,496 2433 660

USA Full US 23,947,347 58,333,344 2564 693

0

5

10

15

20

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

34.6

T
im

e
(µ

s)

TL−Query HL−Query

Figure 7: Query time.

shortest path counting query processing on real-world networks.

We obtain the C++ code from the authors and revise their index

construction algorithm to handle weighted graphs by replacing the

Breadth-First Search with the Dijkstra’s Search, given that only

unweighted graphs are considered in their implementation. We

compare the following algorithms in experiments.

• HL-Index: The hub-labeling index in [42].

• HL-Query: The query processing algorithm in [42].

• HL-Construct: The index construction algorithm in [42].

• TL-Index: Our index structure (Definition 4).

• TL-Query: Our query processing algorithm (Algorithm 1).

• TL-Construct: Our basic indexing algorithm (Algorithm 2).

• TL-Construct∗: Our optimized indexing algorithm (Algorithm 5).

Note that the hub-labeling method cannot finish indexing the

USA dataset within 24 hours, thus we do not report the results.

Exp-1: Query Time.We compare the average query time between

TL-Query and HL-Query. For each dataset, we randomly generate

one million queries. We record the query time of each algorithm and

report the average time in Figure 7. We also show the speedup of

TL-Query over HL-Query in Figure 8. As we can see from Figure 7

and Figure 8, TL-Query is significantly faster than HL-Query on

all datasets. This is mainly because TL-Query only needs to visit

a small number of labels compared with HL-Query in counting

shortest paths. For example, in the CUS dataset, TL-Query takes

5.14 μs on average while HL-Query requires 34.59 μs. TL-Query is

6.73 times faster than HL-Query.
Exp-2: Visited Label Size inQuery Processing.When processing

queries, both TL-Query and HL-Query need to check and compare

0

1

2

3

4

5

6

7

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

S
p

ee
d

u
p

Figure 8: TL-Query speedup over HL-Query.

0

1000

2000

3000

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

#
 o

f
V

is
it

ed
 L

ab
el

s

TL−Query HL−Query

Figure 9: Number of visited labels in query processing.
a number of labels to derive the final result. We evaluate the number

of visited labels in query processing in this evaluation. Similar to the

query processing time, we report the average value of one million

random queries. The results are shown in Figure 9. We can see

that the average label size of TL-Query is significantly smaller than

HL-Query on all the datasets. For example, on the NE dataset, the

average size of TL-Query is 240, and that of HL-Query is 1164. That
means, on average, HL-Query needs to visit 1164 labels to finish

the query, while TL-Index only needs to visit 240 labels. This result

is consistent with our query performance evaluation in Figure 7.

Exp-3: Varying Query Distance.We further test the query effi-

ciency of the algorithms by varying the query distance. We generate

ten groups of queries,𝑄1, 𝑄2, . . . , 𝑄10, by distances for each dataset.

Specifically, we set 𝑙𝑚𝑖𝑛 to be 1,000 (1 kilometer) and 𝑙𝑚𝑎𝑥 to be the

maximum resulting distance of any pair of vertices in the graph.

Let 𝑥 = (𝑙𝑚𝑎𝑥/𝑙𝑚𝑖𝑛)1/10. A randomly generated query belongs to

𝑄𝑖 if its distance between the source and target vertices falls in

the range (𝑙𝑚𝑖𝑛 × 𝑥𝑖−1, 𝑙𝑚𝑖𝑛 × 𝑥𝑖]. We randomly generate 10,000

queries for each group and each dataset. We record the average

time of TL-Query and HL-Query for the 10,000 queries and report

the results by varying query distance from 𝑄1 to 𝑄10 in Figure 10.

We can see that our solution TL-Query outperforms HL-Query
in all cases. We also make the following observations. First, when

the query distance increases, the time cost of HL-Query increases.

For example, on the BAY dataset, HL-Query takes 1.869 μs on aver-

age to process 𝑄1 queries. When handling 𝑄10 queries, HL-Query
takes 2.256 μs. This is because, in HL-Index, two faraway vertices

may have more common labels than two close vertices. Second,

in contrast to HL-Query, when the query distance increases, the

time cost of TL-Query decreases. On 𝑄1 queries, TL-Index takes

1.447 μs. While on 𝑄10 queries, it only requires 0.776 μs. This is
because, in TL-Query, the dominant cost is querying the label from

the LCA to the root. Intuitively, when the distance between two

vertices is long, their LCA is more likely to have a lower Depth
in the tree decomposition. Therefore, our proposed method visits

2107

TL−Query HL−Query

0

1

2

3

4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(a) NY

0

1

2

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(b) BAY

0

1

2

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(c) COL

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(d) FLA

0

2

4

6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(e) NW

0

5

10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(f) NE

0

2

4

6

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(g) CAL

0

2

4

6

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(h) LKS

0

5

10

15

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(i) EUS

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(j) WUS

0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(k) CUS

6

8

10

12

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(l) USA

Figure 10: Query processing time varying query distance.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

T
im

e
 (

s)

TL−Construct* HL−Construct TC−Construct

Figure 11: Index construction time.

fewer labels when the query distance is longer. Third, when the

distance between the source and the target vertices is relatively

large, our method TL-Query is significantly faster than HL-Query.
Exp-4: Index Construction. The index construction time for

the algorithms HL-Construct, TL-Construct∗, and TL-Construct
is shown in Figure 11. When the dataset size increases, the indexing

time of all the algorithms also increases. Among all three algorithms,

our TL-Construct∗ is the most efficient in indexing. Our solution

TL-Construct∗ is 8–20 times faster thanHL-Construct on large road
networks. For example, on EUS, WUS, and CUS, our TL-Construct∗

is 19.41, 15.98, and 20.19 times faster than HL-Construct, respec-
tively. Note that HL-Construct cannot finish indexing USA within

24 hours. Compared to TL-Construct, our proposed TL-Construct∗

is also several times faster. For example, on EUS, WUS, CUS, and

USA, our TL-Construct∗ is 9.34, 11.61, 14.27, and 13.92 times faster

than TL-Construct. Meanwhile, our baseline algorithm is also faster

than HL-Construct for most datasets, thanks to the tree structure.

The results show the advance of our indexing algorithm.

Exp-5: Index Size. We report the index size for the HL-Index and

our proposed TL-Index. The results are shown in Figure 12. When

the size of the network increases, the size of the index also increases

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FL

A
N

W
N

E
C
A

L
L
K

S
E
U

S
W

U
S

C
U

S
U

SA

In
d

e
x

 S
iz

e
 (

G
B

)

TL−Index HL−Index

Figure 12: Index size (GB).

for both algorithms. The index size of our TL-Index is smaller than

that of HL-Index on most datasets. Specifically, on most of the

datasets, the index size of TL-Index is 20%–40% smaller than that

of HL-Index. This is because HL-Index is designed based on a total

vertex order. Many labels are precomputed for each vertex.

Exp-6: Indexing Scalability.We test the indexing time and the

index size when varying the dataset size (the number of vertices in

the road networks) from 10
6
to 24 × 106. We divide the map of the

whole US into 10 × 10 grids and generate ten road networks using

the 1×1, 2×2, . . . , 10×10 grids in the middle of the map. We denote

them as 𝐺1,𝐺2, . . . ,𝐺10, respectively. We report the indexing time

and the index size in Figure 13 (a) and Figure 13 (b), respectively.

When the dataset increases from 10
6
to 24 × 10

6
, the indexing

time increases stably for all algorithms. Our TL-Construct∗ always
outperforms the other two algorithms. HL-Construct cannot finish
the datasets whose sizes are greater than 18 × 106 within 24 hours.

Therefore, they are not reported in the figure.

Exp-7: The Number of Shortest Paths.We report the average

and the maximum shortest path count in Figure 14 and Figure 15.

Figure 14 shows that the larger the road network, the greater the

shortest paths count. This is because the shortest paths on larger

2108

10
1

10
2

10
3

10
4

10
5

10
6

4×10
6

8×10
6

12×10
6

16×10
6

20×10
6

24×10
6

T
im

e
 (

s)

TL−Construct* TL−Construct HL−Construct

(a) Indexing time.

10
0

10
1

10
2

10
3

10
6

4×10
6

8×10
6

12×10
6

16×10
6

20×10
6

24×10
6

In
d

e
x

 S
iz

e
 (

G
B

)

TL−Index HL−Index

(b) Index size.

Figure 13: Scalability testing.

1

10
1

10
2

10
4

10
6

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

C
o

u
n

t
#

Average Count# Maximum Count#

Figure 14: Shortest path count on different graphs.

1

10
1

10
2

10
4

10
6

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

C
o

u
n

t
#

Average Count# Maximum Count#

Figure 15: Shortest path count varying distance.
road networks may have more hops, and we are more likely to

get the shortest paths with the same shortest distance. Generally,

for small networks, like NY, BAY, and COL, the average shortest

path count is around 1.5. For medium networks, like FLA and WUS,

the average shortest path count is about 3–7. For large networks,

like CUS and USA, the average shortest path count is 52 and 97,

respectively. Figure 15 shows the average and maximum shortest

path count number varying the shortest distance on the USA graph.

The results on other graphs show a similar trend. The ten groups

of queries are the same as those in Exp-3. The shortest path count

number increases with the increase of the shortest distance, which

is in accordance with the results above.

6 RELATEDWORKS
Shortest Distance Query in Networks. Querying the shortest

distance is a critical problem in graph data analysis. The Dijkstra

algorithm [19] is one of the most renowned algorithms for this

problem. However, for large networks, such online algorithms may

be inefficient. Thus, existing research works mainly focus on pre-

computing an effective index to accelerate query processing. For

example, Goldberg et al. proposed an A* search method accelerated

by precomputed shortest distances [23]. Gavoille et al. studied the

labeling methods for undirected graphs [21]. Sanders et al. designed

the Highway Hierarchies, which imitates the natural hierarchies of

road network [38]. Geisberger et al. proposed another hierarchy-

based algorithm named Contraction Hierarchies [22] which relies

on a pre-assigned total order. Another important class of methods

for shortest distance query is hub-labeling-based algorithms [17].

Abraham et al. studied efficient hub-labeling algorithms for road

networks [1, 2]. Ouyang et al. combined the advantages of both

hub labeling and hierarchy and proposed an H2H labeling scheme

for road networks [32]. Chen et al. [16] proposed the P2H method

which improves the H2H labeling scheme by reducing the label

size. Akiba et al. presented the pruned highway labeling [3] and

the pruned landmark labeling [4] for road networks and scale-free

networks, respectively.

Network SubstructureCounting. In the literature, many research

works count small subgraphs like motifs [15, 30] or graphlets [14].

Jain et al. proposed an elegant clique counting algorithm based

on classic pivoting techniques [25]. Shi et al. developed a parallel

clique counting algorithm [39]. A comparison between different

k-clique counting or listing algorithms can be found in [29]. There

are also many works study the counting of paths in the literature.

Flum et al. proved that counting the cycles and paths of length 𝑘 in

both directed and undirected graphs, parameterized by k, is #W[1]-

complete [20]. Valiant proved that the 𝑠 − 𝑡 simple path counting

problem is #P-complete [40]. Bezakova et al. provided a shortest

paths counting query method for planar graphs [10]. Zhang et al.

devised a hub-labeling-based method for shortest path counting

on large graphs [42]. Ren et al. studied shortest path counting in

probabilistic biological networks[36]. He et al. proposed a data

structure for categorical path counting queries [24].

7 CONCLUSION
In this paper, we study the problem of counting the shortest paths

between two given vertices on large road networks. We propose a

novel index structure based on tree decomposition.Our algorithm

can achieve𝑂 (ℎ) query processing time, and the index size is𝑂 (𝑛 ·
ℎ), where 𝑛 is the number of vertices and ℎ is the treeheight of the
tree decomposition of the road network, which is small in practice.

We propose an efficient algorithm and several optimizations to

speed up the index construction. The experimental results show our

algorithm significantly outperforms the state-of-the-art method.

ACKNOWLEDGMENTS
Lu Qin is supported by ARC FT200100787 and DP210101347. Rong-

Hua Li is supported by NSFC Grants 62072034 and U1809206. Ying

Zhang is supported by ARC FT170100128.

2109

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.

2011. A hub-based labeling algorithm for shortest paths in road networks. In

International Symposium on Experimental Algorithms. 230–241.

[2] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.

2012. Hierarchical hub labelings for shortest paths. In European Symposium on

Algorithms. 24–35.

[3] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast shortest-path distance queries on road networks by pruned highway labeling.

In Proceedings of the sixteenth workshop on algorithm engineering and experiments

(ALENEX). 147–154.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD.

349–360.

[5] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. 1987. Complexity

of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods 8,

2 (1987), 277–284.

[6] David A. Bader, Shiva Kintali, KameshMadduri, andMilenaMihail. 2007. Approx-

imating Betweenness Centrality. In Algorithms and Models for the Web-Graph,

Vol. 4863. 124–137.

[7] David A. Bader and Kamesh Madduri. 2006. Parallel Algorithms for Evaluating

Centrality Indices in Real-world Networks. In ICPP. 539–550.

[8] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. 2016.

Route Planning in Transportation Networks. In Algorithm Engineering - Selected

Results and Surveys. 19–80.

[9] Michael A Bender and Martin Farach-Colton. 2000. The LCA problem revisited.

In Latin American Symposium on Theoretical Informatics. 88–94.

[10] Ivona Bezáková and Andrew Searns. 2018. On counting oracles for path problems.

In International Symposium on Algorithms and Computation.

[11] Hans L Bodlaender. 2006. Treewidth: characterizations, applications, and com-

putations. In International Workshop on Graph-Theoretic Concepts in Computer

Science. 1–14.

[12] Hans L Bodlaender, John R Gilbert, Hjálmtỳr Hafsteinsson, and Ton Kloks. 1991.

Approximating treewidth, pathwidth, and minimum elimination tree height. In

InternationalWorkshop on Graph-Theoretic Concepts in Computer Science. Springer,

1–12.

[13] Ulrik Brandes. 2008. On variants of shortest-path betweenness centrality and

their generic computation. Soc. Networks 30, 2 (2008), 136–145.

[14] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2017. Counting graphlets: Space vs time. InWSDM. 557–566.

[15] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast

Motif Counting via Succinct Color Coding and Adaptive Sampling. PVLDB 12,

11 (2019), 1651–1663.

[16] Zitong Chen, Ada Wai-Chee Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang.

2021. P2H: Efficient Distance Querying on Road Networks by Projected Vertex

Separators. In SIGMOD. 313–325.

[17] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.

[18] Reinhard Diestel. 2016. Graph theory. 351–355 pages.

[19] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[20] Jörg Flum and Martin Grohe. 2004. The parameterized complexity of counting

problems. SIAM J. Comput. 33, 4 (2004), 892–922.

[21] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. 2004. Distance

labeling in graphs. Journal of Algorithms 53, 1 (2004), 85–112.

[22] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction hierarchies: Faster and simpler hierarchical routing in road networks.

In International Workshop on Experimental and Efficient Algorithms. 319–333.

[23] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path: A

search meets graph theory.. In SODA, Vol. 5. 156–165.

[24] Meng He and Serikzhan Kazi. 2021. Data structures for categorical path counting

queries. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM

2021).

[25] Shweta Jain and C Seshadhri. 2020. The power of pivoting for exact clique

counting. In WSDM. 268–276.

[26] Alec Kirkley, Hugo Barbosa, Marc Barthelemy, and Gourab Ghoshal. 2018. From

the betweenness centrality in street networks to structural invariants in random

planar graphs. Nature communications 9, 1 (2018), 1–12.

[27] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel. 2001.

Treewidth: Computational Experiments. Electron. Notes Discret. Math. 8 (2001),

54–57.

[28] Rainer Kujala, Christoffer Weckström, Richard K Darst, Miloš N Mladenović, and

Jari Saramäki. 2018. A collection of public transport network data sets for 25

cities. Scientific data 5, 1 (2018), 1–14.

[29] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. PVLDB 13, 11 (2020), 2536–2548.

[30] Chenhao Ma, Reynold Cheng, Laks VS Lakshmanan, Tobias Grubenmann, Yixi-

ang Fang, and Xiaodong Li. 2019. Linc: a motif counting algorithm for uncertain

graphs. PVLDB 13, 2 (2019), 155–168.

[31] Silviu Maniu, Pierre Senellart, and Suraj Jog. 2019. An experimental study of the

treewidth of real-world graph data. In ICDT. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik.

[32] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

Road Networks. In SIGMOD. 709–724.

[33] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Progressive Top-K Nearest Neighbors Search in Large Road Networks. In

SIGMOD. 1781–1795.

[34] Matteo Pontecorvi and Vijaya Ramachandran. 2015. A Faster Algorithm for Fully

Dynamic Betweenness Centrality. CoRR abs/1506.05783 (2015).

[35] Rami Puzis, Yuval Elovici, and Shlomi Dolev. 2007. Fast algorithm for successive

computation of group betweenness centrality. Physical Review E 76, 5 (2007),

056709.

[36] Yuanfang Ren, Ahmet Ay, and Tamer Kahveci. 2018. Shortest path counting in

probabilistic biological networks. BMC bioinformatics 19, 1 (2018), 1–19.

[37] Matteo Riondato and Evgenios M. Kornaropoulos. 2014. Fast approximation of

betweenness centrality through sampling. In WSDM. 413–422.

[38] Peter Sanders and Dominik Schultes. 2005. Highway hierarchies hasten exact

shortest path queries. In European Symposium on Algorithms. 568–579.

[39] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel clique counting and

peeling algorithms. In SIAM Conference on Applied and Computational Discrete

Algorithms. 135–146.

[40] Leslie G Valiant. 1979. The complexity of enumeration and reliability problems.

SIAM J. Comput. 8, 3 (1979), 410–421.

[41] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu, and

Shuigeng Zhou. 2012. Shortest path and distance queries on road networks: An

experimental evaluation. PVLDB 5, 5 (2012), 406–417.

[42] Yikai Zhang and Jeffrey Xu Yu. 2020. Hub Labeling for Shortest Path Counting.

In SIGMOD. 1813–1828.

[43] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng

Zhou. 2013. Shortest path and distance queries on road networks: towards

bridging theory and practice. In SIGMOD. 857–868.

2110

