
Near-Data Processing in Database Systems on Native
Computational Storage under HTAPWorkloads

Tobias Vinçon⇤, Christian Knödler⇤, Leonardo Solis-Vasquez#, Arthur Bernhardt⇤, Sajjad Tamimi#,
Lukas Weber#, Florian Stock#, Andreas Koch#, Ilia Petrov⇤
#Embedded Systems and Applications Group, *Data Management Lab

#Technische Universität Darmstadt, ⇤Reutlingen University

ABSTRACT
Today’s Hybrid Transactional and Analytical Processing (HTAP)
systems, tackle the ever-growing data in combination with a mix-
ture of transactional and analytical workloads. While optimizing for
aspects such as data freshness and performance isolation, they build
on the traditional data-to-code principle and may trigger massive
cold data transfers that impair the overall performance and scalabil-
ity. Firstly, in this paper we show that Near-Data Processing (NDP)
naturally �ts in the HTAP design space. Secondly, we propose an
NDP database architecture, allowing transactionally consistent in-
situ executions of analytical operations in HTAP settings. We eval-
uate the proposed architecture in state-of-the-art key/value-stores
and multi-versioned DBMS. In contrast to traditional setups, our
approach yields robust, resource- and cost-e�cient performance.

PVLDB Reference Format:
Tobias Vinçon, Christian Knödler, Leonardo Solis-Vasquez, Arthur
Bernhardt, Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch, Ilia
Petrov. Near-Data Processing in Database Systems on Native
Computational Storage under HTAP Workloads. PVLDB, 15(10): 1991 -
2004, 2022.
doi:10.14778/3547305.3547307

1 INTRODUCTION
Modern data-intensive systems run Hybrid Transactional and An-
alytical Processing (HTAP) workloads combining long-running
analytical queries (OLAP) as well as frequent and low-latency up-
date transactions (OLTP) on the same dataset and even on the same
system [55]. Such hybrid systems operate with continuous update
rates on a hot portion of a large dataset, while performing complex
analytical tasks on both the hot and the much larger cold part of
the dataset. Consequently, large data transfers of cold data occur
that are partly due to poor data locality, but also due to traditional
(data-to-code) system architectures. Such transfers entail non-robust
performance, scalability issues, and poor resource e�ciency.

Near-Data Processing (NDP) is a code-to-data paradigm targeting
in-situ operation execution, i.e. as close as possible to the physical
data location. NDP leverages the trend towards smart/computational
storage as hardware manufacturers can fabricate combinations of
storage and compute elements economically, and package them
within the same device. Furthermore, with semiconductor storage

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547307

Passive Storage

Unified
Engine

Passive Storage

Trans.
Engine

Analytical
Engine

HTAP
OLTP OLAP

HTAP
OLTP OLAP

Computational
Storage

HTAP
OLTP OLAP

NDP Engine

Current HTAP Design Space NDP Extension

Unified Storage Decoupled Storage Computational Storage

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data
Freshness

Perf.
Isolation

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data Transfer
Reduction

U
pdate-aw

are N
D

P

D
at

a
Ex

ch
an

ge

Figure 1: State-of-the-art HTAP architectures can be divided
into uni�ed and decoupled storage systems [60] and optimize
either on data freshness or performance isolation. NDP and
computational storage allow tackling both dimensions, while
reducing cold data transfers for better performance.

(NVM/Flash), the device-internal bandwidth, parallelism, and laten-
cies are much better than the external ones (device-to-host). Both
trends lift major drawbacks of prior approaches like ActiveDisks
[3, 35, 61] or Database Machines [16], such as bandwidth limitation
and expensive proprietary hardware. Interestingly, even commodity
devices nowadays come with compute hardware used for running
backwards compatibility �rmware not for data processing.

Based on their storage design, two types of HTAP architectures
can be distinguished [60]: uni�ed and decoupled storage (Fig. 1).
The former executes the OLTP and OLAP operations on the same
dataset based on snapshotting and multi-versioning techniques,
and is optimal for analytical processing on latest data. The latter
separates the OLTP and the OLAP sub-system. It trades higher (but
amortizable) OLAP response times, data freshness, selective access,
workload adaptability, for higher OLTP throughput.
Problem 1: HTAP architectures cause transfer of cold data.
In state-of-the-art large-memory settings, the working dataset �ts
in memory, yet the complete dataset is much larger (cold, historic
data) and available on persistent storage. For instance, Umbra [52]
is a novel system, representative of the new class of hybrid in-
memory/SSD-based high-performance DBMS. HTAP workloads
tend to process/analyze cold data, which is generally not in mem-
ory. Existing HTAP architectures (Fig. 1) assume passive storage,
and thus OLAP processing entails large transfers of cold data. This
impacts the system performance, and limits its scalability and re-
source e�ciency (as shown in a motivating experiment – Fig. 2 –

1991

/

Stack Traditional Update-Aware NDP

Th
ro

ug
hp

ut
 [t

x/
s]

A BExpectation Evaluation

OLTP
100%

OLTP
100%

HTAP
OLTP+OLAP

Time

Injection
of OLAP Tx

DBMS serves
OLAP+OLTP

OLAP as NDP,
DBMS serves OLTP

Buffer
adjustment

Figure 2: Expectation: A traditional systems su�er the im-
pact of data transfers after an OLAP query injection. Update-
aware NDP executes OLAP operations in-situ, with robust
performance. Our evaluation B con�rms this behaviour.

discussed later on). A key observation of this paper is that NDP
naturally �ts in the HTAP problem space, as NDP allows in-situ
operations to process cold data without moving it to the host. NDP
enables intervention-free execution, where the DBMS can continue
processing, after asynchronously o�oading NDP operations and
delegating their execution to computational storage.
Problem 2: NDP necessitates transactional consistency. De-
spite all its advantages, NDP is currently utilized solely in read-only
settings. Yet, in update-intensive HTAP settings, the most recent
modi�cations of OLTP-style transactions are only available in the
large DBMS memory [22], likely scattered across di�erent data
structures. However, analytical NDP operations from OLAP trans-
actions, o�oaded to computational storage, require that most recent
data in-situ, alongside the cold persistent dataset, to achieve consis-
tency and freshness guarantees. These properties are necessary since
NDP operations execute in the context of the invoking transaction.
The question of how the most recent data can be collected and
propagated to smart storage, and how consistency and freshness
can be ensured is still considered open [22].
Update-aware NDP. In this paper, we propose a snapshot-based,
update-aware NDP architecture for computational storage andHTAP
workloads. The core idea is to de�ne a small shared state that ac-
cumulates modi�cations to main-memory data and DBMS state.
Noticeably, the shared state is the only delta between the work-
ing set in the large DBMS memory, containing the most recent
updates, and the much larger, but colder and complete dataset on
computational storage. The shared state is regularly �ushed to com-
putational storage, whenever it reaches a pre-de�ned limit, but most
importantly it is propagated as part of every NDP invocation. Thus,
at the point of invocation the computational storage attains a com-
plete and consistent snapshot, and the read-only NDP operation can
execute with consistency guarantees. Moreover, the in-situ execu-
tion is asynchronous and free from DBMS/host intervention, as the
computational storage now has a complete snapshot of the entire
dataset. Although our architecture is aligned with disaggregated
storage architectures [19, 46, 70], here we target in-situ processing.

We demonstrate the impact of NDP in HTAP settings with a
motivating experiment (Fig. 2) in MySQL/MyRocks as traditional
stack and MyRocks over nKV [69] as an NDP stack. In the �rst
phase, both systems run LinkBench [7] as an OLTP workload. In
the second HTAP phase, we inject an analytical OLAP operation

(Betweenness Centrality, performing a graph analysis) in parallel
to OLTP. Upon its completion, we switch back to pure OLTP in
the last phase. The clear performance drop with the traditional
stack during the HTAP phase is due to excessive cold data transfers.
Noticeably, the OLTP throughput remains unchanged with the NDP
stack, because of the intervention-free in-situ OLAP execution.
Our contributions are:
• Wepropose an update-aware NDP architecture that utilizes a small

shared state to create a consistent snapshot on computational
storage and execute the analytical NDP operation in-situ against
it. Such NDP executions have snapshot transactional guarantees.

• We propose new NDP execution models. NDP storage can exe-
cute operations asynchronously in an intervention-free manner.
Currently, we focus on read-only, analytical NDP operations.

• We describe how intermediary and �nal results can be handled
in-situ to reduce data-transfers.

• A case study shows the implementation in two di�erent systems:
a key-value store (nKV), and a multi-version DBMS (neoDBMS).
The evaluation is performed on real hardware - COSMOS+ [54].
This paper is organized as follows. The next section provides

necessary background and discusses related work. In Sect. 3 we go
into the details of the proposed update-aware NDP architecture and
describe the concepts behind its execution model. The experimental
evaluation is discussed in Sect. 4 and we conclude with Sect. 5.

2 BACKGROUND AND RELATEDWORK
We now discuss the current state-of-the-art HTAP systems from the
industry [26, 27, 43, 44, 59] and academia [4, 6, 8, 9, 17, 29, 36, 40, 45,
49, 51, 60, 63] and classify their approaches into the HTAP design
space. Our goal is to present: (a) the relevant background on the
HTAP design space and the extension with NDP, (b) an overview
of important aspects in regard to NDP and today’s systems support
[5, 10, 11, 21, 22, 30, 32–34, 37, 50, 64, 65, 73, 74, 76], as well as
(c) a brief outline of the native storage concepts as they form the
foundation of the present system architecture.

2.1 HTAPWorkload and Systems
Today’s database systems persist and operate on large and ever-
increasing amounts of data. However, the processing no longer
involves only OLTP-style workloads, operating on a small but hot
portion of the entire data. Moreover, real-time analytical queries
(OLAP), often with very complex algorithms, operate on the cold
data from the storage tier as well as the freshest updates from the
OLTP workload. The combined workload, termed Hybrid Transac-
tional and Analytical Processing (HTAP), extends the problem space
of database architectures with the following aspects [17, 49, 60]:
• Data Freshness. For the analytical portion of the HTAP workload,

the given system architecture should aim for having the most
recent version of data resulting from updates performed in the
OLTP workload. Therefore, fast propagation of these updates
to the analytical snapshot is required, and optimally avoids any
performance drops for the transactional workload.

• Data Consistency. Regardless of the data freshness, the entire
system must ensure transactional guarantees for its transactions
so that transactional and analytical queries have a consistent
view on the data. Various mechanisms have been proposed and

1992

applied in databases to construct the so-called required snapshot.
Two of the most prominent are the Copy-on-Write (CoW) ap-
proach and Multi-Version Concurrency Control (MVCC). The
�rst ensures the visibility of older versions by creating a copy
for modi�cations. The second creates a new version for every
modi�ed record and extends it with the current timestamp.

• Data Transfers. Independently of the separation of the analytical
from the transactional engine, data transfers from the storage
tier to the host processing units account for a large part of the
overall performance. They result from: (a) HTAP processing of
cold- and hot-data likewise, and (b) the cold data being much
larger than the hot data and thus, causing bu�er pollution and
�nally high eviction rates. Overall, the result is limited scalability,
bandwidth boundness, and performance loss.

• Performance Isolation. DBMS are often used by business-critical
applications, for which robust performance in terms of latency
and throughput is essential. Interference between OLTP and
OLAP workload must be prevented, in particular for hybrid sce-
narios that run both of them concurrently [49].

• Memory Pollution.While OLTPworkloads operate on the hot data
(working set) that �ts in state-of-the-art largemainmemories, the
major portion for OLAP processing is the cold data that exceeds
the memory capacity. Hence, OLAP scans in hybrid scenarios
inevitably entail bu�er pollution in case the transactional and
analytical engines share the same bu�ers, e.g. database bu�ers
or OS page cache and device caches. Even though the bu�er size
is usually de�ned to be larger than the hot portion of the data
set, the analytical queries have to fetch large parts of the cold
data into the bu�er, and thus cause evictions of the hot data.
Current state-of-the-art architectures proposed for HTAP sce-

narios can be classi�ed into two major categories [60]. Firstly, Uni-
�ed Storage Systems build snapshots for every occurrence of an
analytical query. Consequently, this kind of system operates on
the freshest data and is optimal for in-memory OLAP processing.
Widely-known systems of this category are HyPer [36], Caldera [6],
DB2 BLU [59] or SAP HANA [26]. Secondly, Decoupled Storage
Systems continuously transfer modi�cations from the transactional
engine to the separate analytical engine. Thus, workload optimiza-
tions and performance isolation can be introduced at the cost of
data freshness. BatchDB [49], SQL Server [44] or Oracle’s Dual
Format [43] are representatives for this category.

Near-Data Processing emerges as another dimension in the
HTAP architecture design space, which is not yet considered widely.
Our update-aware NDP architecture, proposed here, can handle the
freshest data and ensure transactional consistency without the
drawback of bu�er pollution or lack of workload optimizations from
Uni�ed Storage Systems. Noticeably, update-aware NDP allows to
place data most e�ciently on the computational storage device to
leverage the hardware characteristics of the storage medium, but
also introduces compute placement, as today’s devices often come
with multiple heterogeneous processing capabilities.

2.2 Near-Data Processing
Early approaches of Near-Data Processing date back to the 1980s-
90s. Database machines [16] or Active Disk/IDISK [3, 35, 61] intro-
duced proprietary magnetic/mechanical storage hardware. How-
ever, manufacturing costs combined with the low bandwidth and
parallelism became limiting factors. With the advance in the semi-
conductor industry, Flash technologies and recon�gurable process-
ing elements arose, and Smart SSDs [22, 64] were proposed. Since
then, a variety of speci�c database and generic NDP frameworks
were introduced such as IBEX [73, 74], Minerva [21], Willow [64],
BlueDBM [50], JAFAR [10, 76], Kanzi [32], ISP [39], YourSQL [34],
Biscuit [30], PapyrusKV [37], DoppioDB [5, 65], Caribou [33], Batched
Writes [23], BlockNDP [11], Umbra [52], PolarDB [19] or nKV [68,
69]. Besides avoiding costly data transfers between host and device,
each NDP approach optimizes for speci�c characteristics.
Storage Properties. By moving the execution closer to the storage,
the opportunity to intensively leverage the hardware properties of
storage technologies emerged. Flash, NVM, and HBM are widely uti-
lized in NDP approaches due to their extremely parallel interfaces.
Thus, signi�cantly higher on-device bandwidths can be achieved
in contrast to communications with the host. Indeed, [38] makes
the case for 50 GB/s device-internal versus 6.4 GB/s device-to-host
bandwidth. This is due to the physical organisation of semiconduc-
tor storage devices, which involves multiple chips, connected over
independent channels to the on-device processing element. The
chip-level bandwidth increases with chip density, which in turn
increases due to modern 3D stacking technologies.

Similarly, latencies can be reduced as time-costly transfers through
several OS layers are avoided and the arbitration over the parallel
storage entities can be highly customized, reducing the load on
waiting queues. Often, low-level interfaces that are usually not
exposed to the host (e.g. multi-plane operations), allow for further
optimizations.
Computation Models and Compute Placement. Apart from the
storage technology, nowadays devices may comprise a variety of
heterogeneous processing elements such as CPUs, GPUs, or FPGAs.
Individual computations can be placed either traditionally on the
host, or on-device. In case of the latter, it is further possible to
split up and distribute processing across the various processing
elements in heterogeneous hardware. For example, nKV [68, 69]
demonstrated that moving computation to the device obtains sig-
ni�cant performance bene�ts. Yet, o�oading computation from
ARM cores to parallel FPGA pipelines can improve throughput even
further, especially for large scans. Depending on aspects such as
the actual operation, workload, and underlying storage technology,
the computation placement decision can vary and hardware can be
con�gured individually for each NDP invocation.
Disaggregation and shared-storage architectures. The pro-
posed NDP architecture is aligned to current disaggregated storage
architectures [19, 46, 70]. These aim at elasticity and pushdown of
database operations in the storage layer that decouples the CPU
resources on the compute nodes from those of the storage nodes.
The present work aims at NDP, which is a distinct subset of that
problem space targeting in-situ processing.

1993

2.3 Native Storage
Under native storage [56], the DBMS operates directly on the phys-
ical storage without intermediary layers of abstraction. Conse-
quently, functionality like address mappings or garbage collection,
that appears multiple times along the I/O path of traditional system
stacks, can be combined and deeply integrated into the DBMS. This
bene�ts not only the workload-aware scheduling, but also enables
leveraging the hardware characteristics. Especially with the advent
of Flash as general-purpose storage in today’s data centres, the
throughput is highly dependant on the utilization of parallel I/O
units, e.g. channels and LUNs [68]. Thus, native storage also es-
tablishes novel storage abstractions like Regions and Groups [31]
that can adapt to the workload at runtime per database object, and
improve throughput, latency, and reduce write-ampli�cation [67].
Other approaches, not yet as deeply integrated into the database as
native storage, are pursued by [15, 57].

2.4 Update-aware NDP Systems
The components of the update-aware NDP architecture (Sect. 3)
are generic, aligned with existing architectures of modern DBMS,
and are easy to integrate. Throughout this paper, we focus on two
systems: LSM-tree KV-Stores and multi-version DBMS.

Firstly, we employ nKV [68], a KV-store based on RocksDB,
which can be exposed as a MySQL storage engine by means of
MyRocks (MyRocks over nKV). It is a single-versioned, Copy-on-
Write system, supporting Repeatable Read as the highest isolation
level. The underlying data organisation is based on multi-level LSM-
Trees [48], with ⇠0 being an in-memory skiplist-based MemTable,
and ⇠1 ...⇠= organized as Sorted String Tables (SSTs) on persistent
storage. The latter comprise data blocks with the actual KV-Pairs,
and an additional index structure referencing these. As shown
in Figure 3, each active transaction is assigned a separate write
batch that contains transaction-local modi�cations before commit.
Thus, transaction reads are �rst issued against their batch, before
querying the MemTables or the persistent data. Modi�cations of a
transaction are invisible to other transactions as they go to separate
WriteBatches. Considering the example of Figure 3, a snapshot
taken during)-4 comprises only :4~_0 = 11 and :4~_1 = 2.

Secondly, we introduce neoDBMS [12], as a multi-version NDP-
DBMS based on PostgreSQL. neoDBMS stores all updates as physi-
cally materialized version records (Fig. 3). As such they are identi-
�ed by an implicit RecordID (<PageNr,SlotNr>). The version records

TX
5

TX
4

TX
3

TX
2

ta.v4 1 TX4

ta.v3 1 1 TX3

New-to-Old

MyRocks over nKV neoDBMS

SST12 SST1n

MemTable
MemTable

Flush

C
0

C
1

C
n

MemTable
Immutable MemTable

SST 1.1 SST 1.m

...

ta.v2 3 0 TX2

Version Chain:Entry Point:
RecIDTuple VID

VID(ta)
VID(tb)

tb.v2 9 TX5

tb.v1 2 TX1

......

... Compaction

key_a:11 . . . key_a:30

TX

WriteBatch
TX5

key_a = 5
key_b = 2 key_a=30 key_a=11 key_a = 1 key_b = 9

Past TX Active TX

Snapshot

key_b:9

ta.v1 5 TX1

Attr.RecId T.stampPtrLegend
key_a = ta.v*
 Visible records

Attr.RecId T.stampPtr

TX
1

Index
Block

DataBlock1

key_a:5

DataBlock N

SST 1.m

...
...

time

. . .

WriteBatch
TX4 key_a:1

SST n.m

. . .

SST n.1 SST n.2 SST n.3 ...

. . .

key_b:2 key_a:5
key_a:

Figure 3: Storage organization under nKV and neoDBMS.

of each tuple form a version chain organized as a singly-linked list
in a New-to-Old (N2O) manner, where every version has a forwards
reference to its predecessor [28]. The invalidation of a version is
handled implicitly by the presence of a successor version. All ver-
sion records in a chain have the same virtual id (VID, e.g. C0 or
C1) as they belong to the same tuple. To mark the entry-point of a
chain, neoDBMS introduces a + �⇡"0? containing the RecordID of
the latest version of each tuple. The N2O organisation yields fast
visibility checks, especially for fresh data. In addition to the VID
every physical record contains a transactional creation timestamp,
unique for each version chain. These are utilized by the version vis-
ibility check to construct a transactionally consistent snapshot. For
instance, to construct the snapshot between)-3 and)-4 (Fig. 3)
the version chain is traversed to determine the �rst visible version
of each tuple to a transaction, e.g. C0 .E3 and C1 .E1 to a transaction
starting at the time of the snapshot.

3 UPDATE-AWARE NDP ARCHITECTURE
We begin with an overview of the components of the proposed
architecture (Fig. 4) and elaborate on them in the sections to follow.

3.1 Shared State and NDP Execution Model
The core idea of the update-aware NDP architecture is to o�oad
the processing of read-only HTAP operations (e.g. complex queries
with massive scans) that require reading large parts of the cold
data on device, while ensuring transactional guarantees in presence
of frequent update transactions. To this end, we de�ne a small
shared state that accumulates modi�cations to main-memory data
and DBMS state. The shared state is the delta between: the large
working set in the main memory of the host DBMS with the most
up-to-date data, and themuch larger but colder and complete dataset
on computational storage. The shared state is regularly �ushed to
computational storage whenever it reaches a pre-de�ned size, but
most importantly, it is propagated as part of every NDP invocation.
Thus, at the time of propagation, the computational storage attains
a complete and transactionally consistent in-situ snapshot, and the
read-only NDP operation can execute with consistency guarantees.
The only caveat is that NDP processing must begin from the shared
state and only then move onto the cold data, as data items in the
latter may have been invalidated by their “newer versions” in the
former. Interestingly, the NDP execution is intervention-free, as it is
asynchronous and does not require any interaction with the host.
Therefore, it can achieve better scalability and performance.

In the following sections, we consider details of snapshot creation
in single-version and multi-version systems, concurrency control,
the NDP interface, and the execution model.
Shared State. DBMS usually maintain the freshest data, mapping
tables, status or system information, in the large and fast main mem-
ory of the host system. Modi�cations or newly inserted records are
scattered across the database address space (Fig. 5.A) and remain
there, until they get evicted. Beyond actual records, modi�cations
spill across various auxiliary structures, such as status and map-
ping tables, e.g. logical-to-physical address mapping. However, NDP
operations require all of the latest data and state, to ensure transac-
tional guarantees. In the words of Do et al. [22]: “If there is a copy

1994

Native Storage Manager

Parsers & Accessors

Flash
NVM

Flash
NVM

Flash
NVM

Flash
NVM

Flash
NVM

Flash
NVM

Flash
NVM

Flash
NVM

NDP Extension

Processing

SW (ARM)

HW (FPGA) Result-Set Manager

Execution Engine
NDP Execution Host Execution

Query Processor

NDP DBMS

Co
mp
ut

at
io
na
l
St

or
ag
e

Shared State
Data Dict

Delta Buffer

Address Mapping

Operations

UDF
Get/Scan Join Agg

NDP Pipelines

Transaction
Management

Buffer Manager

BEGIN TRANSACTION TX1:
 UPDATE tbl1 SET ...
 INSERT INTO tbl1 ...
COMMIT;

BEGIN TRANSACTION TX2:
 SELECT c FROM tbl1 ...
 INSERT c+1 INTO tbl1 ...
COMMIT;

@NDP_transaction(TX3)
BEGIN TRANSACTION TX3:
 SELECT TOP(BC(...)) FROM tbl1,tbl2...
COMMIT;

OLTP OLAP

HW
+S
W

Sc
he
du
le
r

Address Mapping Delta Buffer

Data Dict

Shared State

SYNC
SHARED
STATE

NDP
EXEC

Native Storage
Interface

Figure 4: Update-aware NDP enables a transactionally con-
sistent in-situ processing of OLAP operations.

of the data in the bu�er pool that is more current than the data in the
SSD, pushing the query processing to the SSD may not be feasible.”

In the update-aware NDP architecture (Fig. 5.B), we accumulate
the modi�cations to all of those structures in an incremental way
and place them together in shadow data structures that are collec-
tively referred to as the shared state. As a result, the original data
is left unmodi�ed in the large memory of the DBMS. The shared
state is small and con�gurable in the range of a few hundred KB to
a few MB at most and can be propagated at low overhead.

The Delta-Bu�er is a key element of the shared state. It accumu-
lates modi�cations as replacement records. Thus, records in the
delta-bu�er typically invalidate “older” versions present in memory
or on the computational storage. Processing thus begins always
with the delta-bu�er and the shared state. In a multi-version DBMS,
the delta-bu�er accumulates the versions newly created by active
transactions, while predecessor versions remain in memory and can
be accessed by concurrent transactions. In a single-version DBMS
(like RocksDB), the delta-bu�er contains replacement records.

The delta-bu�er is managed by an append-only double bu�er-
ing strategy. Records are appended until the size reaches a certain
threshold, upon which a new pre-allocated bu�er is made available,
while the old one is frozen. Committed records are prepared and
compacted on fewer pages, while data from uncommitted trans-
actions is pruned. Under speci�c systems like nKV, the process
is straightforward as the delta-bu�er (MemTables) is guaranteed
to contain only committed versions due to the WriteBatch tech-
niques. A possible low-space utilization is alleviated by lightweight
compaction. Along these lines, the corresponding entries in the
mapping tables are extracted and prepared. Both are then moved
to the DBMS memory bu�er, and are simultaneously �ushed to the
computational storage device. The traditional logging is orthogonal
and remains una�ected. The shared state and the delta-bu�er can

C
om

p.
 S

to
ra

ge

C
om

p.
 S

to
ra

ge

 Data Dict

Update TxUpdate Tx. Analytical Tx.

Bu
ffe

r

Persistent
Data

Delta
Buffer

Δ
Data

NDP
Op

hot

cold

ho
t a

nd
 c

ol
d

da
ta

Update TxUpdate Tx Analytical Tx.

? NDP
Op

cold

on
ly

 c
ol

d
da

ta

Traditional NDP Update Aware NDP

Bu
ffe

r

Δ-difficult

Shared State

Snapshot

 Addr.Mapping

A B

Persistent
Data

DBMSDBMS

Figure 5: Modi�cations are gathered in a small in-memory
shared state and propagated to computational storage, for
consistent snapshot-based hot and cold data processing.

be tailored to speci�c database objects. Thus, every DB-object can
be assigned to a separate and individually-sized delta-bu�er, to
account for di�erent levels of hotness and update patterns.

The concept of shared state is aligned with existing architectures
of modern DBMS and is easy to integrate. For instance, it resembles
the staging area in modern main-memory DBMS, such as SAP
HANA [66], the delta storage in multi-version DBMS [75] or the
batch-write transactional bu�er in RocksDB.
Shared State Propagation Modes. The shared state is propagated
to computational storage device in two distinct modes. First, Flush
& Append is the regular mode, which is triggered by a �ush of the
shared state. The �ushed state is prepared as described above, to
contain data from a committed transaction, and the corresponding
log records arewritten out in advance. Along the same lines, ahead of
the �ush, and based on the DBMS-controlled address mapping, the
native storage manager has allocated clean nonadjacent physical
pages. Noticeably, their physical addresses need not to be adjacent.
Next, all shared state pages are �ushed to storage and written
to those allocated locations. Thus, the �ush to persistent store is
realized as a logical append that is placed on pre-assigned and
nonadjacent locations. The �ush is atomic, as only if all pages
are successfully written, the storage manager atomically swaps
the address-mapping entries. Otherwise, all pre-assigned address-
mappings are dismissed, the corresponding locations are marked
for later garbage collection, and the process repeats. The delta
entries of themapping table aremerged atomically aswell. However,
the merge is performed only after the completion of active NDP-
operations (which thus remain una�ected).

The second mode is Pass Along & Cache: At the time of an NDP
invocation, the shared state is snapshotted and, together with the
list of transactions currently in-�ight, propagated to storage as part
of the NDP invocation. The state is merely cached on-device for
the duration of the call, and released/garbage-collected upon its
completion. This is possible, since the max. shared state size can be
con�gured to be smaller than memory limits of the NDP device.

In this mode, applying the shared state to persistent storage is
di�cult in the general case since (a) it contains possible modi�ca-
tions of the invoking transaction, yet it is unknown whether it will
commit; and (b) its space utilization may be low and incur overhead
to successive space management operations (compaction, garbage

1995

collection). With the shared state in place, the NDP operation ex-
ecutes in a shared-nothing manner without any intervention or
synchronization with the host. Thus, the DBMS and device can
operate independently and only synchronize at the end.

3.2 NDP Transaction Management
We now describe how transaction management must be adapted in
the light of update-aware NDP, HTAP workloads, and existing con-
currency control (CC) schemes. In that context, we face three issues:
(a) transactional consistency, (b) intervention-free NDP executions,
and (c) easy integration in various systems.

Any transaction containing NDP operations is called NDP trans-
action (annotated as @NDP_Transaction). Transactional consis-
tency mandates that the NDP operations from an NDP transaction
must only process modi�cations by transactions committed prior to
its beginning, while ignoring modi�cations from concurrent trans-
actions other than their own. The issue at hand is that, at the time of
the NDP invocation, it is unknownwhether concurrent transactions
will commit or abort, and thus, which records should be processed.
We tackle this by executing the NDP operation against a transac-
tional snapshot created for it in-situ (described below). Noticeably,
the snapshot construction and the execution are intervention-free,
since inside the shared state, a list of the in-�ight transactions is
propagated alongside the NDP invocation, and is thus available
on the device. This approach works well in the widespread gen-
eral MVCC case [14], where the snapshot comprises only the latest
committed version records prior to NDP transaction beginning. For
example, NDP operations from transaction)-3#⇡% (Fig. 6.A) can
only operate on data from)-1, ignoring modi�cations from)-2.
Transaction Scheduling. Depending on the DBMS design and
the CC �avor, modi�cations from concurrent transactions might
be visible. For instance, MySQL/MyRocks [25] mandates that the
visible record is the latest committed ahead of the NDP invocation
(snapshot creation), rather than the NDP transaction start. Thus,
modi�cations from)-2 might be relevant to)-3#⇡% (Fig. 6.B),
but will not be present on device. Propagating them is di�cult and
unscalable. To this end, we propose a transaction admission mecha-
nism for transactions with NDP operations (Fig. 6). Whenever such
NDP-transaction arrives (e.g.)-3#⇡%), it is assigned a transac-
tional timestamp, as usual. However, its admission is delayed until
after the completion of all transactions that were active when it
arrived. The delay is typically very short (2ms in our setup), since
OLTP transactions are fast relative to slow NDP/OLAP operations.
Currently, we allow a single NDP invocation at a time. At the time
the NDP-tx. is admitted for execution, no CC anomalies occur, since
modi�cations from)-2, but also from)-4 are ignored (Fig. 6.C).
Hence,)-3#⇡% has at least snapshot-isolation guarantees.

TX1 TX2
TX3NDP TX1 TX2

TX3NDP

timestamp(TX3NDP) admission

Visible versions

Invisible versions time

TX4

admission delay

TX1 TX2
TX3NDP

General MVCC

MyRocks

A

B

C

read

Figure 6: NDP transactions are delayed until concurrent
OLTP tx. complete ensuring an intervention-free execution.

TxHost TxNDP

BEGIN TX

WRITE(key)

COMMIT/
ROLLBACK

N
D

P

NDP_EXEC

READ(key)

delay

COMMIT

BEGIN TX

A TxHost TxNDP

BEGIN TX

WRITE(key)

COMMIT/
ROLLBACK N

D
P

NDP_EXEC

READ(key)

delay

COMMIT

BEGIN TX

B

WRITE(key)

Figure 7: Update-aware NDP o�ers transactional guarantees
depending on the integrated database.

Transactional Guarantees. We now analyze how update-aware
NDP supports transactional guarantees for read-only operations
in two transactional scenarios (Fig. 7). In particular, update-aware
NDP within nKV is bound to MyRocks’ highest isolation level
Repeatable Read and its MVCC implementation, and can avoid
Dirty Read and Non-Repeatable Read anomalies. Since NDP trans-
actions wait for all other active OLTP transactions to complete
(commit or rollback) before a snapshot of the current state is taken
and the pushdown to the device is issued (see Fig. 7.A), it is ensured
that the shared state and the delta-bu�er only include transaction-
ally consistent data for all previously started transactions. In case
another transaction is started right after the NDP transaction, but
before the NDP invocation (see Fig. 7.B), MyRocks stores all writes
of this transaction in a separate WriteBatch (Sect. 2.4), ensuring
that those updates will not be available to other transactions until
its commit. Even if the transaction commits during the pushdown
execution, the changes will not be present on device, as they have
not been propagated with the NDP_EXEC call.
In-situ SnapshotConstruction. In-situ snapshot creation is DBMS
speci�c and can be realized with (a) a Copy-on-Write mechanism
(MyRocks over nKV); as well as with (b) visibility-checking in multi-
versioned DBMS. In Copy-on-Write based systems such as nKV,
this snapshot is usually identi�ed via a snapshot identi�er, e.g. a
sequence number (see Fig. 8). Records with a newer identi�er are
simply skipped during processing. This is possible because the
write batching mechanism ensures that the delta-bu�er only com-
mitted data. For instance, under nKV (Fig. 8), the NDP transaction

C
om

p.
 S

to
ra

ge

C
om

p.
 S

to
ra

ge

Persistent
Data

Shared
State

NDP
Op

cold

MyRocks over nKV

Transaction

Write Batch

C0

Cn

NDP Transaction
WritesReads

Compaction

C1
Persistent

Data

Shared
State

NDP Op

cold

neoDBMS

Transaction NDP Transaction
WritesReads

TX3 Å TXId = 3

B
uf

fe
r

Delta
Buffer

Vis. Check

TX3 Å SeqNum = 0x1001

Tr
an

sf
er

Key SeqNum Value
k1 0xFFFF AAAATX0
k2 0x1000 BBBBTX1
k1 0x1001 FFFFTX2
k2 CCCCTX4

Visible
-
✓
✓
-

C
Cn
C1
C0

Batch

Rid Vid Value
r4990 0 AAAATX0
r4711 1 BBBBTX1
r2606 0 FFFFTX2
r0711 1 CCCCTX4

Visible
-
✓
✓
-

Pointer
Snapshot Construction: NDP TX3 Snapshot Construction: NDP TX3

Ev
ic

t

TXid
0
1
2
4

1

2
1

2

3

Commit

B
uf

fe
r

Delta
Buffer

Fl
us

h3

4

N
D

P
In

vo
ca

tio
n

N
D

P
In

vo
ca

tio
n

Figure 8: In-situ snapshot creation is DBMS speci�c.

1996

and invocation get a sequence number of 0x1001, and the in-situ
snapshot comprises keys k1 and k2, as k1 with sequence number
0xFFFF is skipped due to its lower component level.

In a multi-version system like neoDBMS, an in-situ visibility
checking is performed. To this end, the shared state also comprises
the version chain information and the list of in-�ight transactions at
the time of the NDP invocation. Given the invoking transaction id,
the visibility check can now traverse the version chain backwards
starting from the + �⇡"�% entry point (Fig. 4) to �nd the version,
visible to the NDP transaction. We utilize newest-to-oldest order
and thereby can ensure fast visibility checks, especially for fresh
data [28]. For instance, neoDBMS (Fig. 8) will only construct an
in-situ snapshot for)-83 =3 comprising version records r4711 for
VID/tuple 1 (as r0711 as higher creation timestamp) and r2606 for
VID/tuple 0 (as its creation timestamp is the highest)-3).

3.3 NDP Interface
To enable an e�cient pushdown of NDP commands, the lean in-
terface de�nition of native storage [68] is extended. It builds upon
NVMe, yet as a user-space module to avoid high user-/kernel-space
switching overhead. Our native NVMe leverages SPDK [2].
Interface Design. Native storage [56] allows operating directly
on physical memory, without any intermediary layers, by means of
read/write/erase commands. This interface is extended by a com-
mand that transmits the current shared state via the NVMe payload
to the device. Furthermore, an NDP_EXEC command extension
sends parameter sets to device and can trigger a variety of exe-
cutable functions (see Sect. 3.6). Its parameter set includes: (1) the
shared state, and (2) the operation-speci�c parameters. Moreover,
metadata and schema information are also included, i.e. column
families and their respective data formats, number of LSM levels,
assignment of SST per level, and many more.
Native integration. The NDP interface is deeply integrated into
the DBMS. The entire stack is optimized to avoid copies of memory
(zero-copy approach). Calls to computational storage are issued
either synchronously through a central polling manager, or asyn-
chronously through a callback function. The logical-to-physical
address mapping is maintained within the storage manager, and
updated on-the-�y with every I/O. Invalidated pages (e.g. after
compaction) are marked for later garbage collection.

3.4 Parsers and Accessors
NDP operations must access and interpret persistent binary data
in-situ without any interaction with the host. To this end, schema
and data dictionary information must be present on device, and is
propagated with the NDP call. It comprises information about DB-
objects, their columns, types, sizes, or their physical representation.
The on-device NDP infrastructure employs schema information to
support data layout accessors for in-situ navigation, and format
parsers for data interpretation [68, 72]. We also introduce physical
page pointers to reduce the overhead of large address mappings.
Layout accessors exist for every element of the persistent data
layout and help to navigate through the binary data organization
and to access sub-elements. For instance, for a given key (Fig. 9),
accessors allow navigating through the index block of an SST to
the physical location of a record within a data block. Accessors are

Index Block
Data Block 1 Data Block 2 Data Block 3

File (logical)

Data Organisation (logical): Table T1

File Representation Native Storage Representation

Data Block 1

Data Block 2

Data Block 3

...

Index Block

Storage (physical)

PPN 20

Address
Mapping
LBA PPN
1 20
2 100

303
... ...
7 40

...

PPN 30

PPN 40

PPN 100

Storage (physical)

PPN 20 PPN 30

PPN 40

PPN 100

Table T1

Fi
le

O

ffs
et

Physical
Page
Pointer

Table T1
Footer 3

5
8 90

PPN 90
2

4

6

C0 C1

Cn

SST SST SST... ...

Flash Page
Accessor

PPP Parser

21
1

LS
M

-T
re

e

Figure 9: Physical Page Pointers eliminate the overhead of
logical-to-physical address translation in �le-based designs.
The numbers indicate the necessary navigation steps.

simple to realize, with a microarchitecture resembling load units.
They can be instantiated multiple times to increase the parallelism.
Format parsers.While accessors handle in-situ navigation, format
parsers are required to extract persistent binary elements (records,
values), interpret them semantically, and allow for further process-
ing, mathematical operations, or comparisons. We actually distin-
guish �eld, record, and page formats and layouts for this purpose.
For instance, in MyRocks, each element of the LSM-Tree based data
organization (Fig. 9, right side) corresponds to a speci�c parser and
accessor. The index block is interpreted according to its format,
and the physical page pointers to the data blocks are extracted.
Similarly, the data block is processed by the respective parsers and
accessors to obtain the actual records, which themselves contain
elements such as (a) an identi�er, including a column_family_id, all
primary key �elds, the sequence number, and the key/value type;
and (b) the actual value formatted according to the DDL de�nition.
Generation. Parsers and accessors are not necessarily static. As for-
mats and layouts are declarative, parsers and accessors and can be
automatically generated as software and/or hardware counterparts
to support heterogeneous hardware, schema evolution [71].
Physical Page Pointers. Under native storage [56], the DBMS has
direct control over the physical storage and manages the logical-to-
physical address mapping. However, NDP-executions also necessi-
tate address information in-situ, for on-device address resolution
and intervention-free execution. The propagation of this informa-
tion incurs high synchronization overhead. For instance, the size of
the page-level address-mapping can be as large as 1 GB for 1 TB of
storage. To this end, we introduce Physical Page Pointers (PPP, Fig. 9)
that complement parsers and accessors, such that any reference
within the persistent dataset is based on a PPP. They are designed
for append-based storage (e.g. with LSM-Trees [48, 53], or Parti-
tioned B-Trees [62]), since persistent data is immutable and is only
modi�ed by DBMS-controlled storage maintenance (i.e. garbage
collection, compaction). PPPs eliminate the overhead of in-situ ad-
dress resolution and address-mapping synchronization. The latter
is still maintained, but only within the DBMS. For example, the
index block of an SST utilizes PPP parsers and accessors to refer
to the data blocks (Fig. 9). In contrast, traditional DBMS mostly
use �les and o�sets within them, which require on-device address-
mapping for in-situ navigation. To process an SST �le (Fig. 9), the

1997

DBMS extracts the address mappings for the �le (1), loads (2) and
processes (3) the index block (4). For each index block entry, the
DBMS resolves (5) the address for the data block and (6) loads it.

3.5 Software and Hardware-based NDP
Today’s computational storage devices come with various hetero-
geneous processing elements, ranging from classical scalar ARM
processors and SIMD units to highly �exible FPGAs. Di�erent NDP
processing tasks may pro�t from software- or hardware-based pro-
cessing, or from a combination of both.
Software. Software-based NDP is especially viable for low-latency
operations [68], such as point lookups, as these are less parallel, and
bene�t from the faster scalar units. The development of software-
based NDP functionality is straightforward and their software com-
pilation times are relatively short.
Hardware. In comparison, hardware design is relatively tedious,
error-prone, and requiresmore extensive debugging and testing [71].
Moreover, hardware compilation (e.g. FPGA-bitstream generation)
is time-consuming. However, hardware implementations can speed-
up processing signi�cantly. Particularly, large scans are good accel-
eration candidates, due to their intrinsically parallel execution [68].
Furthermore, hardware units typically have multiple instances. In
the proposed architecture, we con�gure the number of instances
individually for each NDP invocation.
Software-Hardware Co-Design. Often, software- and hardware-
based processing can be combined to form a �exible executionmodel.
In our full update-aware NDP architecture, we foresee a scheduling
engine, running in software, that dynamically decides whether to
schedule a processing task on a hardware processing element, or
to use the software-based alternative [68, 69].

3.6 NDP Pipelines and Operations
Even though the actual operation execution is not the primary focus
of this paper, we describe how the proposed architecture handles
the execution of sequences of NDP operations. With computational
storage, we propose a hybrid execution model, combining pipelined
block-at-a-time [58] and materialized execution strategies.

Inspired by [77], the operations in a demand-pull pipeline are
split into operation execution groups. Block-at-a-time (BaT) execu-
tion [58] (formerly termed vectorization [77] – not to be confused
with SIMD-vectorization) is achieved by embedding a bu�ering
phase between any two execution groups. All the operators in a
pipeline are connected through a record-at-a-time interface. The
output of an operator within a group is passed on-the-�y to the
next one, while the bu�ering stage, caches records internally until
a bu�er budget is reached. Once full, the next execution group can
pull the bu�ered records over the same record-at-a-time interface.
This mode leverages the device-internal memory hierarchy and het-
erogeneous processing elements, as the bu�er stage can be placed
in the device DRAM cache. Nonetheless, the bu�er/cache budget
remains a key limiting factor.

To this end, an operator can materialize intermediary or �nal
results on the device (Fig. 10), and the next operator can operate
on the materialized data (more details in Sect. 3.7). Local material-
ization allows: (a) the creation of complex NDP-pipelines, possibly

with size-reducing operators at the end; (b) in-situ handling of non-
size-reducing operations like joins or grouping, (c) the reduction of
data transfers to host and more e�cient DMA handling.

Currently, nKV supports the following NDP operations. Get re-
trieves the value for a given key and bene�ts from in-situ execution
with low-latency [68, 69]. Scan. Both key and value �lter-scans can
bene�t from parallel in-situ executions [68, 69]. Furthermore, our
format parsers realize projection. Depending on the query, the query
planner embeds it as an early projection [41] in the initial pipeline
stages to reduce the size of the result set. Furthermore, we support
Joins such as Block Nested Loop Join and Grace Hash Join that spill
intermediate partition results to the computational storage. This
is especially advantageous as joins are non-size-reducing. Finally
nKV also supports hash table-based GROUP BY and aggregation.

Betweenness Centrality (BC) is a UDF used as an analytical HTAP
operation. It performs a classical analysis on social graph data,
and measures the degree to which nodes stand among each other.
Our BC implementation in nKV is inspired by [18], and utilises the
Node and Link tables of LinkBench [7] as graph representation. The
logic , outlined in Algorithm [18, 68], sequentially scans the nodes
with the NodeTableParser. In case the type of the node complies
to the given search criteria, its neighbours are looked up via the
LinkTableParser and distances are calculated recursively. Finally,
the BC results are calculated according to the original algorithm
in [18]. Overall, BC yields a random and sequential I/O mix.

3.7 Result-Set Handling
A key goal of update-aware NDP is to leverage in-situ processing
capabilities and reduce data transfers to host. This encompasses the
intermediary or �nal results of NDP-operations. Clearly, a naïve
block-at-a-time strategy would cause excessive transfers.

A key insight is that, computational storage o�ers fast local
memory (BRAM, fast HBM or DRAM) as well as ample and cheap
storage. Furthermore, a native storage DBMS can exclusively allo-
cate and control on-device memory, allowing in-situ executions to
materialize intermediary or �nal results there (see Sect. 3.7). The
update-aware NDP architecture allows non-size-reducing opera-
tions, such as joins or grouping, to materialize their results in-situ to
reduce data transfers (Fig. 10), while the next operator in a pipeline
can operate on the materialized data.
Planning and execution. The planner estimates the upper bounds
of the sizes of intermediary and �nal results along an NDP-pipeline.

C
om

pu
ta

tio
na

l S
to

ra
ge

NDP Pipeline
σ(...) → BC → TOP3

DBMS

σ(...) TOP3

Persistent Data / Delta Buffer

Te
m

p
D

at
a

Res3 Final Result

N
D

P_
EX

EC

Scan

@NDP_transaction(TX1)
BEGIN TRANSACTION TX1:
 SELECT TOP(BC(...)) FROM tbl1,tbl2 … WHERE tbl1.type = 10 ...
COMMIT;

Pipelined block-at-a-time Exec Materialized

Res2Res1
BC

σ → ⋈

Control Flow
Legend

Data Flow

Figure 10: NDP-pipelines can be executed on the device, for
faster processing or reduction of data transfers. Result set
materialization is viable on computational storage.

1998

If the estimate exceeds the bu�er stage memory (BRAM, HBM), the
BaT execution group ends, a materialization stage is injected in the
NDP-pipeline, and another execution group begins.
Allocation. Depending on the size estimation, the planner and
the storage manager employ an allocation strategy that targets
fast levels of the on-device memory hierarchy �rst, i.e. static FPGA
memories like BRAM or URAM, followed by fast on-chip HBM, and
o�-chip DRAM. If these resources are insu�cient, a materialization
and spilling strategy to persistent storage (e.g. NVM or Flash) is
applied. To this end, every materialization stage is assigned an
exclusive physical address range by the native storage manager.
This may be the case for hash-join partitions, or aggregations with
a high number of groups. If the space turns out to be insu�cient
during execution, the pipeline stalls and computational storage
request more space from the DBMS in an extra roundtrip.
Space management and garbage collection. A native storage
DBMS controls storage directly, manages logical-to-physical ad-
dress mapping, and performs the garbage collection. It allocates and
assigns exclusive physical address ranges to each materialization
stage in a pipeline. Thus, the DBMS ensures that other transactions,
pipelines or NDP operations do not overlap in the same storage
space. Address ranges are preserved for the duration of the exe-
cution until the completion of the calling transaction. As part of
commit/rollback processing upon its completion, the DBMS marks
them for GC and schedules an asynchronous GC call.

4 EXPERIMENTAL EVALUATION
Experimental Setup. The experiments are conducted on two dif-
ferent system stacks (Fig. 11). The �rst, MyRocks over nKV, is based
on MyRocks with nKV [68, 69] as storage manager and is used
if not mentioned otherwise. The host is running Debian 4.9 OS
and is equipped with a 3.4 GHz clocked Intel i5 CPU and 4 GB
RAM. The COSMOS+ board [54] is attached over PCIe Gen 2.0
⇥8 and comprises a Zynq 7045 SoC with an FPGA, two 667 MHz
ARM A9 Cores, and an MLC Flash module con�gured as SLC. COS-
MOS+ is roughly equivalent to a consumer NVMe SSD or smart
storage device (e.g. Samsung SmartSSD [22]) in terms of price and
resources. The concrete con�guration depends on the evaluation
stack. MyRocks (MySQL 5.6) is con�gured with Repeatable Read
as Serializable is not supported. Unless mentioned otherwise,
the memory footprint is set to 7.5% of the dataset size (incl. 400 MB
block bu�er), and the mutable memtables are con�gured to 32 MB.

The second system stack, neoDBMS, is based on PostgreSQL12
and runs on an ARM Neoverse N1 System Development Platform
(SDP) as host with 4 2.6 GHz ARM N1-CPUs and 3 GB RAM. A
Xilinx Alveo U280 FPGA board with 2 GB DDR4 connected via PCIe
Gen4 ⇥8 serves as enterprise-grade smart storage.
Baselines.We evaluate update-aware NDP against two baselines
(Fig. 11): the block and the native stacks under nKV and neoDBMS.

Block/BLK (Baseline). The main baseline is the traditional, �le-
system stack with block-device storage. Out-of-the-box MySQL and
PostgreSQL process OLTP and OLAP queries on the host, trans-
ferring all data from storage. We use ext4 as �le system and con-
�gure Alveo U280 and COSMOS+ as block devices. COSMOS+ runs
GreedyFTL with 1 MB DRAM cache for block device compatibility.

PostgreSQLMySQL/MyRocks

NDP
stack

Native
(baseline)

LinkBench (OLTP)

Block
(baseline)

RocksDB

CO
SM

OS
+ GreedyFTL

JOIN/BC (OLAP)

RocksDB

Flash

nKV

NDP

NDP
stack

Block
(baseline)

Visibility Check

Ext4 file sys.

Al
ve

o
U2

80

neoDB

Visibility CheckRISC-V

Micro-benchmarks

ARM,FPGA
Parsers,

Accessors
Parsers, AccessorsNVM

HTAP:

Ext4 file sys.

Figure 11: System Setup.

Native (Baseline) stack is lean and eliminates the �le system and
block-device layers, in contrast to block. Like block, native transports
all necessary data from passive storage. It represents our second
baseline as it builds the foundation of native NDP. COSMOS+ is
directly exposed to nKV userspace through the native NVMe.

NDP. Both nKV and neoDBMS introduce the concept of native
NDP and build on top of native. This allows o�oading the OLAP
processing to the device where most of the data is already located,
while the OLTP workload fetches the required data to the host
on-demand. In MyRocks over nKV, one ARM core of the COSMOS+
exclusively handles foreground I/O, while the other one performs
the NDP/OLAP execution. Thus, NDP execution on the COSMOS+
is limited to a single execution at a time, while the host bene�ts
from its 4 core CPU. On-device, 200 MB DRAM are reserved as a
hashtable-based block bu�er for reading pages that can be used by
the OLAP operations. neoDBMS relies on 16 RISC-V [1] processors
on the FPGA that are operated via the TaPaSCo framework [42].
Workload. The workload is based on an HTAP-extended version of
LinkBench [7] (if not speci�ed otherwise). LinkBench [7] represents
a social graph that is larger than the database memory. The graph
is frequently updated by the OLTP-style transactional workload of
LinkBench [7]. In addition, we introduce new analytical workload
portions, performing graph analysis with either BC or JOIN/GROUP
BY queries (see Sect. 3.6). The initial dataset comprises a graph with
10M nodes and 20 GB of data. The workload is controlled by several
parameters described below.
• $!)%(⇢, : The OLTP workload operates on the hot portion of

the dataset. The workload parameter $!)%(⇢, sets the ratio
of hot to cold data accesses.

• $!�%(⇢! : To vary the complexity and runtime, the number of
input nodes to BC is limited to a certain threshold - $!�%(⇢! -
by �ltering on the type of the NODE table (normal distribution).

• $!�%%�*(⇢ : It controls the time between two OLAP query in-
jections. Due to the limited number of ARM cores on COSMOS+
(one used for I/O, the other for NDP), the OLAP workload is
currently restricted to only sequential executions.

Experiment 1: Update-aware NDP enables transactionally
consistent NDP executions of OLAP operations in presence
of OLTP updates in HTAP systems, without performance
drops. We open with a general experiment, demonstrating that
with NDP as part of the HTAP design space, analytical queries are
executed without degrading the performance of the concurrent
transactional workload, while analytical queries operate on the
freshest data. To conduct this experiment, the HTAP workload is
con�gured with $!�%%�*(⇢ = 100B and $!)%(⇢, = 40%.

1999

/

Stack BLK NATIVE NDP

90

100

110

120

130

Time [s]

Th
ro

ug
hp

ut
 [t

x/
s]

1800 1850 1900 1950 2000

60

80

100

120

140

160

Time [s]

Th
ro

ug
hp

ut
 [t

x/
s]

0 500 1000 1500 2000 2500 3000
A B

Spikes due to
compaction

Figure 12: A LinkBench with HTAP extension is executed
on the Block, Native, and NDP Stack. The throughput drops
during OLAP queries due to increased I/O and the related
bu�er pollution. B Enlarged detail of one drop.

Figure 12.A shows the OLTP throughput over time for all stacks.
The native and block baselines exhibit signi�cant performance drops
whenever an OLAP query is injected. These are due to the increased
number of read I/Os, as the cold data for the OLAP execution must
be fetched from storage. In contrast, no bu�er misses occur in the
NDP stack due to the in-situ OLAP execution (Fig. 12.B).

Several aspects need to be considered. Firstly, OLAP processing
incurs signi�cant bu�er pollution, as hot OLTP working set pages
are evicted to make room for cold data. Even after the completion
of OLAP processing and a workload switch back to OLTP, it takes
time for the bu�er to recover and retain the hot OLTP working
dataset in memory (Fig. 12.B). We investigate this e�ect in a further
experiment by varying the bu�er size (Fig. 13). Clearly, the larger
the DBMS bu�er, the longer the adjustment time upon a workload
change. Secondly, NDP and native have higher throughput (tx/s)
compared to the block stack baseline, due to the leaner I/O stack.
Lastly, each stack exhibits regular and sharp performance drops.
These relate to compactions and �ushes of the LSM-tree, and explain
the gradual performance degradation over time (Fig. 12.A). Overall,
the OLTP throughput of NDP is 30% better than block in the HTAP
phase, and 12% better than block during the OLTP phase.

Insight. Extending the HTAP design space with update-aware
NDP improves the overall performance. O�oading OLAP opera-
tions to computational storage preserves transactional consistency,
reduces data transfers, and minimizes DBMS bu�er pollution.
Experiment 2: Update-aware NDP is intervention-free, yield-
ing robust and resource-e�cient performance. Now we in-
vestigate the hypothesis that with intervention-free NDP in HTAP
settings, in-situ OLAP processing does not impact host-side OLTP
processing, yielding better CPU utilization and robust performance.
The experiment (Fig. 14) sets the HTAP phase so that the time
between two successive OLAP requests is $!�%%�*(⇢ = 1000B .
We report the host CPU utilization, for host-only HTAP (native
baseline), and for NDP OLAP-execution with concurrent host OLTP.

We observe signi�cant drops in CPU utilization (Fig. 14), during
the OLAP phase under the native stack. These are due to CPU stalls,
while waiting for I/O to fetch cold data from storage for host-only
HTAP processing. With NDP, these drops are minimized, as OLAP
processing is o�oaded to computational storage, and the in-situ
execution is asynchronous and intervention-free. Therefore, the free
host CPU resources are utilized for concurrent OLTP processing, as
the working OLTP dataset typically �ts in memory. Moreover, NDP

Buffer Size 1000M 400M

0K

1K

2K

3K

4K

Time [s]
2180 2200 2220 2240 2260

Buffer Recovery Time

 Throughput [tx/s]
--- Block Cache Miss Count

Figure 13: After an OLAP query, the cache misses (dashed)
decrease as the bu�er retains the hot dataset. The bu�er
recovery time (solid arrows) for the OLTP throughput (solid)
to reach the original level depends on the bu�er size.

leverages storage device resources that would otherwise remain
idle. In particular, we utilize both COSMOS+ ARM cores, the FPGA,
and exploit the full Flash parallelism. In addition, intervention-free
NDP translates into robust transactional throughput, as shown in
the previous experiment (Fig. 12). Insight. Intervention-free NDP
frees up host resources, making them available to other tasks.
Experiment 3: NDP can handle di�erent types of OLAP opera-
tions. Our architecture handles di�erent types of OLAP operations
with good overall HTAP performance, utilizing on-device I/O prop-
erties and due to intervention-free NDP. To this end, we investigate
BC/TOP and JOIN/GROUP BY as NDP-pipelines.

First, we consider Selection/BC/TOP to show how NDP damp-
ens the e�ect of varying selectivity on OLAP executions. Notably,
these are size-reducing operations. To this end, we vary $!�%(⇢! ,
which determines the number of NODE table records that BC is pro-
cessing. Thus, higher $!�%(⇢! yields higher OLAP read-intensity
and more data transfers, as well as more nodes to be processed
and longer OLAP runtimes (Fig. 15.B). Given the HTAP workload,
Figure 15.A shows the throughput of a frequent concurrent OLTP
transaction GetLinkList, with varying$!�%(⇢! . With increasing
$!�%(⇢! (Fig. 15.A), the average OLTP throughput decreases and
its variance expands under the block and native stacks. This is due
to the increasing OLAP duration, which causes more data transfers
and a larger performance drop as observed in Experiment 1. Insight.
With NDP, the throughput remains stable with varying $!�%(⇢! .

Second, we consider JOIN/GROUP BY/AGGREGATION pipeline to
show that NDP can handle non size-reducing operations, because
of the hybrid execution model. We use the query: SELECT n.type,
SUM(c.count) FROM node n JOIN count c ON n.id = c.id

Spikes due to compaction

CPU utilization
dents due to host-

side HTAP
processing

Figure 14: OLAP processing on the host, degrades CPU per-
formance due to I/O wait time. NDP yields robust utilization
of host resources, by leveraging on-device capabilities.

2000

O
LA

P
Ex

ec
. D

ur
a�

on
 [s

]

Stack BLK NATIVE NDP

300

350

400

450

500

550

600

O
LT

P
Th

ro
ug

hp
ut

 [t
x/

s]

1 105
OLAPSEL

0

100

200

300

400

1 5 10

BA OLAPSEL

0

100

200

300

400

500

O
LT

P
Th

ro
ug

hp
ut

 [t
x/

s]

OLAPSEL

0 20 40 60 80 100

0

20

40

60

80

100

120

140

O
LA

P
Ex

ec
. D

ur
at

io
n

[s
]

OLAPSEL

0 20 40 60 80 100
C D

Figure 15: Executing BC as OLAP workload avoids dropping
OLTP throughput A , with increasing selectivities and OLAP
runtimes B . NDP outperforms native/block under OLTP, C
although JOIN/GROUP BY queries are slower on-device D .

WHERE n.type <= ? GROUP BY n.type;. NDP and host plans resort
to a BNLJ, while the on-device we resort to hash-based grouping,
which does not spill to �ash in this query. Again we vary the selec-
tivity $!�%(⇢! . Fig. 15.D shows increasing OLAP execution times
with higher selectivities. Noticeably, NDP OLAP becomes compute-
bound due to the slow on-device ARMs. Nonetheless, we achieve
better overall HTAP performance due to intervention-free NDP.

Third, we vary the host resources for Selection/BC/TOP. In
the �rst step, we increase the block bu�er (Fig. 16.A/B), varying
memory footprint from 8% (1.6 GB) to 13% (2.6 GB) of the dataset
size. State-of-the-art approaches [20, 24, 47] aim at 10%. More host
memory, yields better OLTP throughput (Fig. 16.A) and OLAP times
(Fig. 16.B) under all stacks. With larger$!�%(⇢! andmore memory,
the OLAP gap between BLK and NDP shrinks, as larger memories
shorten the OLAP performance drop length (Fig. 12) by reducing the
bu�er pollution. Next, we attach COSMOS+ to another host with a
more powerful CPU. More logical cores improve OLTP performance
(Fig. 16.C), but entail higher bu�er pollution that slows down OLAP
queries on native (Fig. 16.D) due to increased bu�er contention,
while NDP OLAP remains una�ected due to intervention-free NDP.
In fact, the higher the host parallelism, the higher the potential
improvement through update-aware NDP, due to better relative
OLAP execution times. NDP preserves its advantage, whenever
both cores and memory are increased in a lockstep, since the bu�er
pollution caused by better OLTP (more cores) counters the positive
OLAP impact (more memory).
Experiment 4: Update-aware NDP reduces data transfers.One
major bene�t of NDP is that data is processed close to its physical
storage location, and thus, reduces costly data transfers. To quantify
this e�ect, we execute the read-only OLAP operation in isolation on
each stack. Again, we vary the selectivity $!�%(⇢! to to increase
the number of neighbours processed by BC, and the number of
Join/Grouping nodes for OLAP query from Experiment 3.

Stack BLK Native NDP

OLAP =10SELOLAP =5SELOLAP =1SELOLAP =10SELOLAP =5SELOLAP =1SEL

0

200
400

8 10 13 8 10 13 8 10 13

500

1,000

8 10 13 8 10 13 8 10 13
0K

1K

2K

4 8 4 8 4 8

0

200

400

4 8 4 8 4 8

A

B D

C

O
LT

P
Th

ro
ug

hp
ut

[t
x/

s]

O
LA

P
Ex

ec
.

D
ur

at
io

n
[s

]

Buffer/Dataset Ratio [%] Logical Cores

Figure 16: System performance behaviour with larger host
memory footprints A B and more logical cores C D .

Figure 17.A clearly shows that the native stack baseline outper-
forms the block under all settings. This is due to the leaner I/O stack,
reducing the amount of data to be read and transferred to host, and
due to the advanced native NVMe storage manager that reduces I/O
latencies (Fig. 17.B/C). Yet, NDP improves OLAP runtime by 52%
over native and 48% over block for a lower number of neighbours
(5K, 10K). With more neighbours, the number of nearest neighbour
searches within the analytical operation rises, as does the number
of nodes to be revisited by the algorithm as well. This behaviour
bene�ts vastly from large bu�ers, which is a major constraint on
commodity computational storage devices, given the limited COS-
MOS+DRAM capacity. Thus, bu�ermisses on the device entail more
Flash reads under NDP relative to native and block (see Fig. 17.B).
Regardless of these limitations, Figure 17.C clearly indicates that
the device-to-host data transfers can be reduced signi�cantly.

Figure 17.D shows the execution time of the OLAP query from
Exp. 3 under the same conditions. The low NDP performance is
due to the NDP BNL-JOIN compute-boundness, but also due to
its I/O intensity (Fig. 17.E), which grows as expected, due to the
small on-device join bu�er. Nonetheless, the whole NDP-pipeline
is size-reducing, keeping the number host-transfers low (Fig. 17.F).

Insight. NDP reduces reduces data transfers to host even further,
but is constrained by the on-device processing capabilities (ARM)
are signi�cantly weaker than host CPUs.
Experiment 5: Update-aware NDP can operate on fresh data
with low overhead. Operating on fresh data and supporting trans-
actional guarantees is achieved at the expense of transferring the

Stack BLK NATIVE NDP

0

2

4

6

Neighbours

D
at

a
Tr

an
sf

er
 [G

B
]

5K 10K 20K 50K
0

100

200

Neighbours

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

5K 10K 20K 50K
0

5

10

Neighbours

D
at

a
R

ea
d

Fl
as

h
[G

B
]

5K 10K 20K 50K
A B C

0

100

200

300

400

OLAPSEL

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

0 20 40 60 80 100
0

2

4

6

OLAPSEL

D
at

a
R

ea
d

Fl
as

h
[G

B
]

0 20 40 60 80 100

D E F

0

1

2

3

OLAPSEL

Tr
an

sf
er

 [G
B

]

0 20 40 60 80 100

Figure 17: A Processing BC, Native and NDP outperform
Block. B More neighbours yield more NDP I/O. C Yet, host-
device data transfers are reduced signi�cantly. Similar e�ects
are visible with JOIN/GROUP BY/AGGR query D , E , F .

2001

Exec. Type NDP-Delta NDP-NoDelta Exec. Phase delta exec

1

10

100

1,000

10,000

100,000

OLAP_SEL

D
ur

at
io

n
[m

s]
5 1 0

5
10
15
20
25
30

OLAP_SEL

Tr
an

sf
er

ed
 D

el
ta

B

uf
fe

r
[M

B
]

5 10

50

100

150

200

OLAP_SEL

D
ur

at
io

n
[s

]

5 1 CBA

Figure 18: A NDP operates on fresh data with low overheads
as B transfer times are low due to C small delta-bu�er sizes.

Stack neoDBMS (NDP) PostgreSQL (Block)

1

2

3

Number of Predecessor Versions

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

1 2 3A B 0

0.5

1.0

Update per Record

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

0 1 2 3

Figure 19: A The most recent tuple-version is retrieved with
overhead due to N2O in neoDBMS. B Accessing predecessor
versions is sped up by leveraging the on-device parallelism.

shared state to computational storage. We now quantify this over-
head by executing the HTAP experiments with and without shared
state transfers. We vary $!�%(⇢! to achieve di�erent shared state
sizes. Figure 18.A shows the average OLAP execution duration in
both settings. This execution time is broken down (Fig. 18.B) into
shared state transfer time to device, and the subsequent processing
time on a logarithmic scale. Figure 18.C shows the average size of
the shared state for those breakdowns.

The shared state transfers amount to just 1 second, irrespectively
of $!�%(⇢! , and represent a negligible portion (0.7%) of the over-
all execution time. The di�erent shared state sizes are due to the
parallel OLTP update activity: lower $!�%(⇢! entail lower OLAP
runtimes and more OLTP transactions that yield more updates and
larger shared states. The shared state size and thus the transfer
overhead can be controlled through con�guration parameters.

The remaining portion is due to operation dependent fresh data
processing. As BC’s execution time depends on the number of input
nodes and $!�%(⇢! , the gap of both scenarios (with and without
shared state propagation) increases with higher selectivities.

Insight. Even though the shared state increases the data trans-
ferred from host to device, the time overhead is negligible: 0.7% of
total NDP execution time of analytical queries.
Experiment 6: Computational storage can e�ciently return
the visible version or the transactionally consistent snap-
shot by means of NDP. So far we have investigated how CoW
shared state and in-situ snapshot creation facilitates NDP process-
ing. In this experiment, we investigate the impact of in-situ version
visibility checking for multi-version DBMS.

To this end, we execute a micro-benchmark on top of TPC-C
OrderLine table in the DB stack. It is subdivided into four phases.
In each phase, an update ()*) and a read ()') transaction are exe-
cuted after each other. The update transactions update all tuples
of the OrderLine table (the ol_amount column) and commit, thus
producing a new version of each tuple and increasing the dataset
size. The read transaction computes SUM(ol_amount).

In a follow-up micro-experiment, we start each)' , but leave it
open, while all)* commit, thus increasing the number of versions
to four. Now compute SUM(ol_amount) for each reading transac-
tion)' (Fig. 19.B) in-situ and on the host. Figure 19.B shows the
overhead of creating a snapshot at di�erent points in time, and
traversing the version chain to di�erent predecessors. The in-situ
snapshot creation time increases with the number of versions per
tuple to be skipped. Nonetheless, the in-situ creation is 2⇥ faster.

Insight. With update-aware NDP the storage device can provide
the visible version and construct snapshots on the device. The
runtime improves up to 4⇥ by leveraging hardware parallelism.
Experiment 7: Update-aware NDP reduces the power con-
sumption per transaction. Besides throughput, power consump-
tion plays an important role for the spread of NDP. We now present
the end-to-end power consumption of both the host and COSMOS+
during the executions of Experiment 1. Noticeably, the host is not op-
timized for power measurements and has idling energy consumers,
e.g. a graphics card. Overall, block demands the most power with
0.16 Watt/tx; Native is in the mid�eld with 0.14 Watt/tx; and NDP
improves the power consumption to 0.12 Watt/tx and thus, by up
to 26.1%. Thereby, the power draw of the storage device increases
from 13.8 Watt (block) to 14.7 Watt (NDP). This is expected, as NDP
o�oads processing to device. Host power consumption increases
as well from 44 Watt (block) to 50.5 Watt (native) due to the cur-
rent native storage manager implementation. Its power footprint
can be lowered with a better thread-management in future work.
Nevertheless, update-aware NDP relieves the host and decreases
the consumption to 47 Watt. Changing to a synchronous interface
lowers the host-side power consumption of native and NDP by
approx. 5% below that of block at the cost of some throughput.

Insight. Even though the total power draw is slightly higher
on the device and the host, native and NDP execute more work,
yielding 26.1% lower Watts/transaction compared to block.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce update-aware NDP as a generic archi-
tecture for transactionally consistent in-situ processing in HTAP
environments. The key idea is to propagate the most recent data,
status, and system information to smart storage. As a result, a trans-
actionally consistent snapshot can be constructed in-situ, on top
of which read-only analytical NDP operations are executed. The
evaluation indicates a 30% higher OLTP throughput in HTAP set-
tings and update-aware NDP with 26% less Watts/transaction. We
observe that shared state propagation overhead is marginal (0.7%)
and that in-situ snapshot computation is 2⇥/4⇥ faster.
Future Work. O�oading modifying NDP operations is an impor-
tant challenge for reducing data transfers. They require synchro-
nisation and invalidation mechanisms for disaggregated memory
environments for transactional consistency [13]. Furthermore, e�-
cient NDP logging space management techniques are necessary.

ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers for the valu-
able comments. This work has been partially supported by BMBF
PANDAS – 01IS18081C/D; DFG neoDBMS – 419942270; HAW Prom,
MWK, Baden-Würrtemberg, Germany.

2002

REFERENCES
[1] [n.d.]. RISC-V. https://riscv.org/.
[2] [n.d.]. SPDK. https://spdk.io.
[3] Anurag Acharya, Mustafa Uysal, and Joel Saltz. 1998. Active Disks: Programming

Model, Algorithms and Evaluation. In Proc. ASPLOS (San Jose, California, USA).
11.

[4] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O. In Proc.
SIGMOD. 1103–1114. https://doi.org/10.1145/2588555.2610502

[5] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara,
Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling Hardware/Software
co-design from a database perspective. In Proc. CIDR.

[6] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Aila-
maki. 2017. The case for heterogeneous HTAP. In Proc. CIDR.

[7] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph. In Proc. SIGMOD. 12.

[8] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018.
Janus: A Hybrid Scalable Multi-Representation Cloud Datastore. IEEE Trans.
Knowl. Data Eng. 30, 4 (2018), 689–702. https://doi.org/10.1109/TKDE.2017.
2773607

[9] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proc. SIGMOD,
Vol. 26-June-20. 583–598. https://doi.org/10.1145/2882903.2915231

[10] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. 2015. JAFAR : Near-Data
Processing for Databases. In Proc. SIGMOD.

[11] Antonio Barbalace, Martin Decky, Javier Picorel, and Pramod Bhatotia. 2020.
BlockNDP: Block-storage near data processing. In Proc. Middlew. 8–15. https:
//doi.org/10.1145/3429357.3430519

[12] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Carsten Heinz, Chris-
tian Knoedler Tobias Vinçon, Andreas Koch, and Ilia Petrov. 2022. neoDBMS:
In-situ Snapshots for Multi-Version DBMS on Native Computational Storage.
Proc. ICDE (2022).

[13] A. Bernhardt, S. Tamimi, F. Stock, A. Koch, T. Vincon, and I. Petrov. 2022. Cache-
Coherent Shared Locking for Transactionally Consistent Updates in Near-Data
Processing DBMS on Smart Storage. In Proc. EDBT.

[14] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (June 1981), 185–221.

[15] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem. FAST.

[16] Haran Boral and David J. DeWitt. 1989. Parallel Architectures for Database
Systems. In Database Machines, A. R. Hurson, L. L. Miller, and S. H. Pakzad (Eds.).
Springer Berlin Heidelberg, Chapter Database Machines: An Idea Whose Time
Has Passed? A Critique of the Future of Database Machines, 11–28.

[17] Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu.
2021. Polynesia: Enabling E�ective Hybrid Transactional/Analytical Databases
with Specialized Hardware/Software Co-Design. CoRR abs/2103.00798 (2021).
arXiv:2103.00798 https://arxiv.org/abs/2103.00798

[18] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality. Journal of
Mathematical Sociology (2001).

[19] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and
Tong Zhang. 2020. POLARDB meets computational storage: E�ciently support
analytical workloads in cloud-native relational database. In Proc. FAST. 29–41.

[20] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-O�s
for LSM-Tree Based Key-Value Stores via Adaptive Removal of Super�uous
Merging. In Proc. SIGMOD. 505–520.

[21] Arup De, Maya Gokhale, Steven Swanson, and et. al. 2013. Minerva: Accelerating
Data Analysis in Next-Generation SSDs. In Proc. FCCM.

[22] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. 2013. Query processing on smart SSDs. Proc. SIGMOD
(2013), 1221. https://doi.org/10.1145/2463676.2465295

[23] Jaeyoung Do, David Lomet, and Ivan Luiz Picoli. 2019. Improving CPU I/O
performance via SSD controller FTL support for batched writes. In Proc. SIGMOD.
https://doi.org/10.1145/3329785.3329925

[24] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. Evolution
of Development Priorities in Key-value Stores Serving Large-scale Applications:
The RocksDB Experience. In FAST).

[25] Facebook Inc., MyRocks. 2021. Transaction Isolation in MyRocks. https://github.
com/facebook/mysql-5.6/wiki/Transaction-Isolation.

[26] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An
Architecture Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33. http://dblp.uni-
trier.de/db/journals/debu/debu35.html{#}FarberMLGMRD12{%}5Cnhttp:
//sites.computer.org/debull/A12mar/issue1.htm

[27] Anil K Goel, Je�rey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz
Färber, Francis Gropengiesser, Christian Mathis, Thomas Bodner, and Wolfgang
Lehner. 2015. Towards scalable real-time analytics: An architecture for scale-out

of OLxP workloads. In Proc. VLDB Endow. Vol. 8. 1716–1727. https://doi.org/10.
14778/2824032.2824069

[28] Robert Gottstein, Ilia Petrov, and et al. 2017. SIAS-Chains: Snapshot Isolation
Append Storage Chains. In ADMS@VLDB.

[29] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. 2010. HYRISE-A main memory hybrid storage
engine. Proc. VLDB Endow. 4, 2 (2010), 105–116. https://doi.org/10.14778/1921071.
1921077

[30] Boncheol Gu, Andre S. Yoon, and et al. 2016. Biscuit: A Framework for Near-Data
Processing of Big Data Workloads. In Proc. ISCA.

[31] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P. Buchmann. 2016.
Revisiting DBMS Space Management for Native Flash. In Proc. EDBT.

[32] Masoud Hemmatpour, Mohammad Sadoghi, and et al. 2016. Kanzi: A Distributed,
In-memory Key-Value Store. In Proc. Middlew.

[33] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelligent Dis-
tributed Storage. In Proc. VLDB.

[34] Insoon Jo, Duck-ho Bae, and et al. 2016. YourSQL : A High-Performance Database
System Leveraging In-Storage Computing. In Proc. VLDB.

[35] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A Case
for Intelligent Disks (IDISKs). SIGMOD Rec. (1998).

[36] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In Proc. ICDE.
195–206. https://doi.org/10.1109/ICDE.2011.5767867

[37] Jungwon Kim and et al. 2017. PapyrusKV: A High-performance Parallel Key-
value Store for Distributed NVM Architectures. In Proc. SC.

[38] Sungchan Kim, Hyunok Oh, and et al. [n.d.]. In-storage Processing of Database
Scans and Joins. Inf. Sci. 2016 ([n. d.]).

[39] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and
Bongki Moon. 2016. In-storage processing of database scans and joins. Inf. Sci.
327 (jan 2016), 183–200. https://doi.org/10.1016/j.ins.2015.07.056

[40] Hideaki Kimura, Alkis Simitsis, and Kevin Wilkinson. 2017. Janus: Transactional
processing of navigational and analytical graph queries on many-core servers.
In Proc. CIDR.

[41] Christian Knoedler, Tobias Vincon, Arthur Bernhardt, Lukas Weber, Leonardo
Solis-Vasquez, Ilia Petrov, and Andreas Koch. 2021. A cost model for NDP-aware
query optimization for KV-stores. Proc. DAMON (2021).

[42] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch. 2019. The
TaPaSCo Open-Source Tool�ow for the Automated Composition of Task-Based
Parallel Recon�gurable Computing Systems. In Applied Recon�gurable Comput-
ing.

[43] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck Hua Lee, Juan
Loaiza, Neil Macnaughton, Vineet Marwah, Niloy Mukherjee, Atrayee Mullick,
Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez, and
Mohamed Zait. 2015. Oracle Database In-Memory: A dual format in-memory
database. Proc. - Int. Conf. Data Eng. 2015-May (2015), 1253–1258. https://doi.
org/10.1109/ICDE.2015.7113373

[44] Per Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical processing
with SQL server. In Proc. VLDB Endow. Vol. 8. 1740–1751. https://doi.org/10.
14778/2824032.2824071

[45] Juchang Lee, Wook Shin Han, Hyoung Jun Na, Chang Gyoo Park, Kyu Hwan
Kim, Deok Hoe Kim, Joo Yeon Lee, Sang Kyun Cha, and Seung Hyun Moon.
2018. Parallel replication across formats for scaling out mixed OLTP/OLAP
workloads in main-memory databases. VLDB J. 27, 3 (2018), 421–444. https:
//doi.org/10.1007/s00778-018-0503-z

[46] Rui Lin, Yuxin Cheng, Marilet De Andrade, Lena Wosinska, and Jiajia Chen. 2020.
Disaggregated Data Centers: Challenges and Trade-o�s. IEEE Communications
Magazine 58, 2 (2020), 20–26. https://doi.org/10.1109/MCOM.001.1900612

[47] Chen Luo. 2020. Breaking Down Memory Walls in LSM-Based Storage Systems.
In SIGMOD.

[48] Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393–418.

[49] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: E�cient isolated execution of hybrid OLTP+OLAP workloads for
interactive applications. In Proc. SIGMOD, Vol. Part F1277. 37–50. https://doi.
org/10.1145/3035918.3035959

[50] Sang-woo Jun Ming, Arvind, and et al. 2015. BlueDBM: An Appliance for Big
Data Analytics. Proc. ISCA (2015).

[51] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, and Thomas
Neumann. 2013. ScyPer: a hybrid OLTP&OLAP distributed main memory data-
base system for scalable real-time analytics. In Datenbanksysteme für Business,
Technologie und Web (BTW) 2044, Volker Markl, Gunter Saake, Kai-Uwe Sattler,
Gregor Hackenbroich, Bernhard Mitschang, Theo Härder, and Veit Köppen (Eds.).
Gesellschaft für Informatik e.V., Bonn, 499–502.

[52] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR.

2003

[53] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Inform. 33, 4 (jun 1996), 351–385.

[54] OpenSSD Project 2019. COSMOS Project Documentation. OpenSSD Project. http:
//www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources.

[55] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transac-
tional/Analytical Processing: A Survey. In Proc. SIGMOD 2017. 1771–1775.

[56] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon, and Christian Riegger.
2019. Native Storage Techniques for Data Management. Proc. ICDE (2019).

[57] Ivan Luiz Picoli and Philippe Bonnet. 2020. Open-Channel SSD (What is it Good
For). Cidr (2020).

[58] Orestis Polychroniou and Kenneth A. Ross. 2019. Towards Practical Vectorized
Analytical Query Engines (DaMoN’19). Article 10, 7 pages.

[59] Vijayshankar Raman, Gopi Attaluri, and Ronald Barber. 2013. DB2 with BLU
Acceleration: So much more than just a column store. Proc. VLDB 6, 11 (2013),
1080–1091. https://doi.org/10.14778/2536222.2536233

[60] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia
Ailamaki. 2020. Adaptive HTAP through Elastic Resource Scheduling. In Proc.
SIGMOD (Portland, OR, USA) (SIGMOD ’20). 2043–2054.

[61] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for
Large-Scale Data Mining and Multimedia. In Proc. VLDB.

[62] Christian Riegger, Tobias Vinçon, Robert Gottstein, and Ilia Petrov. 2020. MV-
PBT: Multi-version indexing for large datasets and HTap workloads. In Adv.
Database Technol. - EDBT, Vol. 2020-March. 217–228.

[63] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and
Mustafa Canim. 2018. L-Store: A real-time OLTP and OLAP system. In Proc.
EDBT, Vol. 2018-March. 540–551. https://doi.org/10.5441/002/edbt.2018.65
arXiv:1601.04084

[64] Sudharsan Seshadri, Steven Swanson, and et al. 2014. Willow: A User-
Programmable SSD. USENIX, OSDI (2014).

[65] David Sidler, Zsolt Istvan, Muhsen Owaida, Kaan Kara, and Gustavo Alonso.
2017. DoppioDB: A Hardware Accelerated Database. In Proc. SIGMOD.

[66] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. E�cient Transaction Processing in SAP HANA
Database: The End of a Column StoreMyth. In Proc. SIGMOD (Scottsdale, Arizona,
USA). 12.

[67] T. Vincon, S. Hardock, C. Riegger, J. Oppermann, A. Koch, and I. Petrov. 2018.
NoFTL-KV: Tackling Write-Ampli�cation on KV-Stores with Native Storage
Management. In Proc. EDBT.

[68] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch, and Ilia Petrov.
2020. nKV: Near-Data Processing with KV-Stores on Native Computational
Storage. In Proc. DaMoN.

[69] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Christian Riegger, Sergey
Hardock, Christian Knoedler, Florian Stock, Leonardo Solis-Vasquez, Sajjad
Tamimi, Andreas Koch, and Ilia Petrov. 2020. nKV in Action: Accelerating
KV-Stores on Native Computational Storage with Near-Data Processing. PVLDB
12 (2020).

[70] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Mo-
tivala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Dis-
aggregated Storage. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 449–462.
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

[71] Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias Vincon, Christian
Knoedler, Arthur Bernhardt, Ilia Petrov, and Andreas Koch. 2021. A Framework
for the Automatic Generation of FPGA-based Near-Data Processing Accelerators
in Smart Storage Systems. Proc. RAW@IPDPS (2021).

[72] Lukas Weber, Tobias Vinçon, Christian Knödler, Leonardo Solis-Vasquez, Arthur
Bernhardt, Ilia Petrov, and Andreas Koch. 2021. On the necessity of explicit
cross-layer data formats in near-data processing systems. Distributed and Parallel
Databases (2021).

[73] LouisWoods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An Intelligent Storage
Engine with Support for Advanced SQL O�oading. Proc. VLDB (2014).

[74] Louis Woods, J. Teubner, and G. Alonso. 2013. Less Watts, More Performance:
An Intelligent Storage Engine for Data Appliances. In Proc. SIGMOD.

[75] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-memory Multi-version Concurrency Control. Proc.
VLDB Endow. 10, 7 (March 2017), 781–792.

[76] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. 2015. Beyond the Wall:
Near-Data Processing for Databases. Proc. DAMON (2015).

[77] Jingren Zhou and Kenneth A. Ross. 2004. Bu�ering Database Operations for
Enhanced Instruction Cache Performance. In Proc. SIGMOD 2004 (Paris, France)
(SIGMOD ’04). 191–202.

2004

