
VIP Hashing - Adapting to Skew in Popularity of Data on the Fly
Aarati Kakaraparthy

University of Wisconsin, Madison

aaratik@cs.wisc.edu

Jignesh M. Patel

University of Wisconsin, Madison

jignesh@cs.wisc.edu

Brian P. Kroth

Microsoft Gray Systems Lab

bpkroth@microsoft.com

Kwanghyun Park

Microsoft Gray Systems Lab

kwpark@microsoft.com

ABSTRACT
All data is not equally popular. Often, some portion of data is more

frequently accessed than the rest, which causes a skew in popularity

of the data items. Adapting to this skew can improve performance,

and this topic has been studied extensively in the past for disk-based

settings. In this work, we consider an in-memory data structure,

namely hash table, and show how one can leverage the skew in

popularity for higher performance.

Hashing is a low-latency operation, sensitive to the effects of

caching and code complexity, among other factors. These factors

make learning in-the-loop challenging as the overhead of perform-

ing additional operations can have significant impact on perfor-

mance. In this paper, we propose VIP hashing, a hash table method

that uses lightweight mechanisms for learning the skew in popular-

ity and adapting the hash table layout on the fly. These mechanisms

are non-blocking, i.e, the hash table is operational at all times. The

overhead is controlled by sensing changes in the popularity distri-

bution to dynamically switch-on/off the mechanisms as needed.

We ran extensive tests against a host of workloads generated

by Wiscer, a homegrown benchmarking tool, and we find that VIP

hashing improves performance in the presence of skew (22% in-

crease in fetch operation throughput for a hash table with 1M keys

under low skew) while adapting to insert and delete operations,

and changing popularity distribution of keys on the fly. Our experi-

ments on DuckDB show that VIP hashing reduces the end-to-end

execution time of TPC-H query 9 by 20% under low skew.

PVLDB Reference Format:
Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun

Park. VIP Hashing - Adapting to Skew in Popularity of Data on the Fly.

PVLDB, 15(10): 1978 - 1990, 2022.

doi:10.14778/3547305.3547306

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/aarati-K/wiscer.

1 INTRODUCTION
Hash tables are widely used data structures that provide a point

lookup interface – mapping a key to a value. In database systems,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:10.14778/3547305.3547306

[0]

[1]

[2]

[3]

(a) Default configuration: VIPs at random
spots

[0]

[1]

[2]

[3]

(b) VIP configuration: VIPs at the front

Figure 1: Hash Table configurations with VIP keys (in yel-
low) at (a) random spots, vs. (b) at the front. The throughput
of the hash table can be improved by giving VIPs more fa-
vorable spots at the front of the bucket.

they are used for in-memory indexing and for query processing

operations such as hash joins and aggregation. The lightweight

computation involved and the constant time lookup guarantees

enable hash tables to achieve high throughput when processing

point queries.

However, not all keys contribute equally to the performance,

and requests are often skewed towards a smaller set of “hot" keys.

In multiple studies involving production workloads, fetch requests

have been observed to follow the power law [10, 15, 41] where

the popularity of keys exponentially decays with the rank. The

Very Important key-value Pairs (VIPs) are the keys with lower rank,

as they constitute a larger portion of requests and have a greater

impact on the throughput. It is possible to further improve the

throughput obtained from the hash table by leveraging the skew in

popularity, as we show in our work.

Fig. 1 shows the core motivation behind VIP Hashing – giving

more favorable spots to more popular keys. In the VIP configuration

(Fig. 1b), the keys are ordered in descending order of popularity

and the VIPs are at the front, analogous to seating VIPs in the front

row for an event. By placing the popular keys at the front, they

can be accessed faster as they require fewer memory accesses and

lesser computation (discussed in §4), which improves the overall

throughput obtained from the hash table.

1978

https://doi.org/10.14778/3547305.3547306
https://github.com/aarati-K/wiscer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547306
https://www.acm.org/publications/policies/artifact-review-and-badging-current

While attaining the VIP configuration is straightforward if the

popularity of keys is known in advance (keys can be inserted in

the right position in the chain according to their popularity), one

might not have this information up front. Also, the popularity of

the keys can change over time resulting in a different set of VIPs.

Thus, more generally, one needs to learn the popularity of keys and

adapt the configuration of the hash table on the fly.

It is important to note that learning requires additional computa-

tion and storage. In the case of disk-based data structures, the over-

head of learning can be relatively small compared to the latency of

accessing storage devices. However, hash tables are cache-sensitive

data structures that perform lightweight computation, and adding

overhead to hash tables can have significant impact on performance.

This makes learning with hash tables notoriously challenging, as

shown in §5.1 and prior work [34] as well. Thus, a key requirement

for designing fully online learning mechanisms for hash tables is

keeping the overhead in check compared to the gains.

Our contributions in this paper are as follows –

(1) Wiscer (§3) – We developed a benchmarking tool for mea-

suring the performance of hash tables. Wiscer can be used to

generate workloads with varying levels of skew in popular-

ity, with different ratios of fetch, insert and delete operations,

and shifting hot set of keys over time. To our knowledge, no

existing benchmarking tool captures all of this behavior in

one place.

(2) Roofline Analysis of the VIP configuration (§4) – We

study the benefit of the VIP configuration (Fig. 1b) given

prior knowledge of popularity. This analysis shows the max-

imum gain one can obtain from adapting to the skew (for

a hash table with 10M keys at load factor 0.6, we observe a

57% increase in throughput in the best case), as well as the

hardware trends resulting in performance gain for the VIP

configuration.

(3) Learning on a budget (§5) – We developed lightweight

mechanisms for learning the popularity distribution on the

fly, adapting to the skew, sensing changes in the popularity

distribution, and dynamically switching on/off the mecha-

nisms to control the overhead. Put together, they give us the

VIP Hashing method for adapting to the skew in popularity

on the fly.

(4) Application to hash joins (§6.1) –We study the application

of VIP hashing to PK-FK hash joins, and we obtain a 13-

23% reduction in canonical join query execution time (for

a cardinality ratio of 1:16 in the relations and a hash table

with load factor of 1.4). We implemented VIP hashing in

DuckDB [31] to speed up PK-FK hash joins in single-threaded

mode, and we obtain a net reduction of 20% in end-to-end

execution time of TPC-H query 9 [8] under low skew.

(5) Application to point queries (§6.2) – Another common

use of hash tables is processing point queries. We test VIP

hashing under a variety of workloads involving insert and

delete operations, shifting popularity distribution of keys,

different rates of shift, etc. A gain in throughput of 22% is

obtained under low skew, while our choice of parameters

ensures that the overhead of adapting on the fly is capped

in the worst case.

Figure 2: Popularity distribution of keys (number of keys
N = 100) for different Zipfian skew factors s. Skew factor
s = 0 corresponds to uniform popularity distribution, while
s = 1, 2, 3, 4 simulates low,medium, high, and very high skew
respectively.

Our experiments in §6 show that VIP hashing is a fully online

non-blocking hash table method that adapts to the skew in pop-

ularity on the fly, while transparently capturing changes in the

workload due to inserts, deletes, and shifting popularity distribu-

tion. We discuss related work in §7 and conclude in §8.

2 BACKGROUND
2.1 Hash Tables
A hash table [36] is an associative data structure that maps keys

to values. In our work, we focus on chained hashing (hereafter

referred to as hash table). A hash table (Fig. 1) uses a hash function

to map each key to a unique index or bucket. Since more than

one key can be mapped to the same bucket, the data structure

resolves these collisions by maintaining a chain (linked list) of

entries belonging to the bucket. The flexibility provided by this

data structure for performing insert and delete operations, along

with variable length keys and values make it a popular choice in

many data systems [4, 7, 22, 23].

2.1.1 On Properly Configuring the Hash Table. In this paper, we

focus on hashing of 8-byte integer keys and values, which is a

well studied problem in past research [13, 32]. It is important to

configure the hash table correctly to draw reliable conclusions, and

there are two important factors to consider. The first is the choice

of the hash function. In our work, we use MurmurHash [9], which

is a strong hash function that provides good collision resistance in

practice. The second critical aspect is the load factor, which is the

ratio of keys to the number of buckets in the hash table. Higher load

factors correspond to fewer buckets, which lead to longer chains on

an average, whereas lower load factors require more buckets and

consume more memory. Informed by parameter choices in popular

open-source systems [4, 23, 33], we maintain a load factor between

0.5 and 1.5 to ensure that collisions are at an acceptable level while

utilizing memory efficiently. Wherever applicable, we rehash the

hash table to maintain this range of load factor. The number of

buckets in the hash table are set to be a power of two, which is a

common choice [23, 29, 33] that speeds up the computation of the

hash function. If the load factor exceeds 1.5 (falls under 0.5), we

double (half) the number of buckets in the hash table.

1979

Table 1: Configuration options supported byWiscer

Option Description
zipf The zipfian factor of the popularity distribution. zipf = 0 corresponds to uniform popularity.

initialSize Initial number of keys in the hash table before running any operations.

operationCount Total number of operations (fetch, inserts, etc.) to run on the hash table.

(fetch/insert/delete)
Proportion Proportion of operations that are fetch/insert/delete.

distShiftFreq A shift in popularity distribution occurs after every distShiftFreq operations.

distShiftPrct The popularity distribution shifts by distShiftPrct% every distShiftFreq operations.

storageEngine
Which storage engine to benchmark. Options are

ChainedHashing (default), VIPHashing, and none (store workload to disk).

keyPattern The pattern of keys to generate – random (default) or sequential (1 to n).

keyOrder
The popularity rank of keys relative to the insertion order. Options are

random (default) and sorted (where keys are inserted in increasing order of popularity; a.k.a. latest).

randomSeed
The seed value (unsigned integer) to initialize the random number generator (default = 0).

The random number generator is used to populate the hash table and generate the workload.

Different seed values result in different instances of keys and the workload.

2.2 Some Probability Bounds and Theorems
Below we discuss some tools related to probabilistic random vari-

ables that we use in our work.

• Zipfian distribution: We use Zipfian distribution [43] to model

varying levels of skew in fetch operations issued to keys in a hash

table. Zipfian distribution has been adopted by multiple studies

in the past [10, 13, 44] to statistically model skew in popularity,

as it captures the power law [41] characteristics of workloads

that are often observed in practice [10, 15].

• Estimating mean and variance: Let X be a random variable

with mean µ and variance σ 2
. Let X1, X2, ... Xn be n indepen-

dent and identically distributed (i.i.d.) measurements of X . The
estimated mean µ̂ and estimated variance σ̂ 2

can be evaluated as

µ̂ =

n∑
i=1

Xi

n
, σ̂ 2 =

(n∑
i=1

X 2

i

n − 1
−

(n∑
i=1

Xi
)
2

n(n − 1)

)
• Gaussian tail bound confidence interval: For a random vari-

able X (refer above), the central limit theorem (CLT) [39] states

that the error in estimatedmean (µ̂−µ) is approximately Gaussian

distributedN(0, σ 2/n). By applying the Gaussian pdf, a confidence

interval can be obtained for the error (µ̂ − µ) as follows

P(|µ̂ − µ | ≤ t) ≥

(
1 − exp

(
−nt2

2σ 2

))
=

L

100

Thus, we can at least be L% confident that the error |µ̂ − µ | is less
than t . Note that the confidence increases exponentially with

n (number of samples Xi drawn). It is important to note that

(µ̂−µ) is only approximately Gaussian, so the confidence interval

obtained from applying Gaussian tail bound is a heuristic.

3 SKEWEDWORKLOAD GENERATIONWITH
WISCER

3.1 Overview
Wiscer is a benchmarking tool that we propose in this paper. Wiscer

has multiple configuration options (Table 1) that can be used to

generate workloads with different levels of skew, varying propor-

tions of fetch, insert, delete operations, different rates of popularity

shift, etc. Below are some key features of Wiscer:

• Level of skew: Increasing levels of skew in the popularity distri-

bution can be simulated by increasing the zipf factor. For instance,
zip f = 0 and zip f = 4 correspond to uniform distribution and

very high skew respectively (see Fig. 2).

• Simulating popularity distribution shift: The two related

configuration options are distShiftFreq and distShiftPrct. After
every distShiftFreq fetch operations, the topmost popular keys

that constitute distShiftPrct of the requests are randomly replaced

by less popular keys. This simulates a behavior where keys in

the hot set become less popular after some time, which has also

been observed in some real-world workloads [10].

• Benchmarking hash table implementations: Wiscer can op-

tionally be used to compare different hash table implementations

(option StorageEngine) to directly process the generated work-

loads without intermediate storage.

• Fine-grained performance metrics using hardware coun-
ters: Wiscer issues operations to the configured hash table in

batches of one million requests at a time, and fine-grained metrics

are collected per batch. Wiscer uses hardware counters provided

by the Intel’s Performance Monitoring Unit (PMU) [6] to get

low-level performance metrics such as cache misses, number of

cycles, retired instructions, etc.

3.2 Experimental Configuration
All experiments in this paper are run on a Cloudlab [21] machine

with two 10-core Intel Xeon Silver 4114 CPUs with a peak fre-

quency of 3.0GHz. The server is used exclusively for running Wis-

cer, and the benchmarking process is pinned to a single core to

avoid any overhead of context switching. The CPU scaling governor

of the core has been set to performance, thus fixing the frequency to
3.0GHz at all times. The CPU has an L3 cache of 13.75MB, and the

server machine has 192GB of RAM. This CPU belongs to the Sky-

lake Intel architecture family [2], and the PMU’s hardware counters

are programmed accordingly.

1980

displacement = 2

B

A

Hash
Function

C

[0]

[1]

[2]

displacement = 1

displacement = 3

Fetch Ops

A

A

B

B

C

C

＊

Total Displacement = 12 Effective Hot Set

(a) Default configuration. A total displacement of 12
(=2×(2+1+3)) is required to process the fetch requests. The less
popular keys in the path of popular keys need to accessed as
well.

A

B

C

Hash
Function

[0]

[1]

[2]

displacement = 1

Fetch Ops

A

A

B

B

C

C

＊

Total Displacement = 6 Effective Hot Set

displacement = 1

displacement = 1

(b) VIP configuration. A total displacement of 6 (=2×(1+1+1)) is
required to process the fetch requests. Only the popular keys
are accessed.

Figure 3: Processing fetch requests in the Default vs the VIP
configuration. Unpopular keys have been grayed out. The
total displacement (number of keys accessed) is higher in the
Default configuration requiring more pointer dereferences.
Also, the effective hot set is larger, increasing the likelihood
of cache misses relative to the VIP configuration.

4 ROOFLINE STUDY
In this section, we compare the performance of the Default and VIP

configurations when the popularity of keys is static and known in

advance. Since there is no overhead of learning involved in this case,

this roofline study shows the maximum gain one can get from the

VIP configuration for different levels of skew (§4.2) in popularity at

different load factors (§4.3) of the hash table.

4.1 Default vs VIP Configuration
4.1.1 Motivation. Fig. 3 shows an example of processing fetch

requests in the Default and the VIP configurations. A key parameter

to note is the displacement encountered, which is the total number

of keys that were accessed to process the fetch requests. Accessing

a key requires dereferencing a pointer and some computation. The

displacement encountered in the Default configuration is higher as

the less popular keys in the path to VIPs need to be accessed when

processing the fetch requests and effectively become part of the

hot set. A larger hot set increases the likelihood of cache misses,

and we observe this trend in our experiments described next.

4.1.2 Generating the configurations using Wiscer. In the VIP con-

figuration, keys in the hash table are arranged in descending order

of popularity in the bucket chains (see Fig. 3b). We attain this

configuration by running Wiscer with the default storage engine

(ChainedHashing) and inserting keys in increasing order of pop-

ularity (keyorder=sorted, default is random). Insert operations on

the hash table are performed at the front of the bucket chain (§2.1).

Thus, when inserting keys in the sorted order, entries are automati-

cally placed in decreasing order of popularity as more popular keys

are inserted later and are ahead in the bucket chain. The Default

configuration is generated using the default parameters of Wiscer.

4.2 Impact of Increasing Skew
4.2.1 Workload. We compare the throughput of fetch operations

in the Default and VIP configurations. We use Wiscer (Table 1) to

generate fetch requests with increasing levels of skew (zipf = 0 to

5 in steps of 0.5) which are issued to a hash table with 10 million

keys at a load factor of 0.6 (= 10
7/224). For each level of skew and

hash table configuration, Wiscer is run with 10 distinct random

seed values to populate the hash table and generate the workload.

Each random seed results in a different arrangement of keys in the

hash table. The popularity distribution is static, i.e., the rank of the

keys remains the same throughout a run. One billion fetch requests

are issued to the hash table for each random seed, and the data

points reported in Fig. 4 are the median statistics over the 10 runs.

We have run experiments on smaller (1M entries) and larger (100M

entries) hash tables and found the trends to be similar.

4.2.2 Results. The results of this experiment are shown in Fig. 4.

The gain in throughput ranges from 9%-57% depending upon the

level of skew in popularity. Below we discuss our takeaways from

the performance metrics measured using Wiscer:

• Throughput: The gap in performance between the VIP and

the Default configuration increases up to zip f = 2 (medium

skew), and gradually diminishes as the skew becomes very high

(zip f = 4.5 or 5). This behavior is correlated with the hot sets

becoming smaller as the skew increases and becoming (L1/2/3)

cache resident at different rates for the two configurations.

• Displacement: As expected, the displacement encountered in

the VIP configuration is lower than the Default (see Fig. 3). For

zip f = 1.5 and up, the total displacement becomes close to 1B (for

1B fetch requests), indicating that popular keys are at the front

of their chains (displacement = 1) in the VIP configuration. For

the Default configuration, the median displacement approaches

1B at higher levels of skew (zip f ≥ 4), but the variance is high as

some random seeds can result in the popular keys placed further

in the chains (however the likelihood of this happening is low as

the load factor is not very high).

• Instructions Executed: The instructions executed are lower

in the VIP configuration (up to 6% lower in the best case). The

relative trend observed is similar to that of displacement, as the

number of instructions executed is correlated with the number

of keys accessed.

• Cache misses: The VIP configuration becomes L3 and L1 cache

resident (at zip f = 2 and 2.5 respectively)more quickly compared

to the Default configuration (at zip f = 3.0 and 4.5 respectively),

which is expected as the hot set of the former is smaller than

the latter (Fig. 3). At very high skew (zip f = 4.5 and 5), both the

configurations are L1 resident and correspondingly, we do not

observe much difference in the throughput. This indicates that

caching has a big impact on the performance of hash tables.

1981

9% 25% 57% 53% 32% 18% 10% 5% 1% 0%

Zipf

Fe
tc

h
op

s/
s

 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.5

2.0

1.5

1.0

0.5

1e8

(a) Fetch operation throughput (b) Displacement

-2% -6% -5% -2% -2% -1% 0% 1% 0% 1%

Zipf

R
et

ir
ed

 In
st

ru
ct

io
n

s

 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1e10

4.1

4.0

3.9

3.8

3.7

3.6

(c) Retired instructions

(d) L1 cache misses

-10% -18% -13% -4% -2% -1% 0% -1% 1% 1%0%

Zipf

 L
2

m
is

se
s

(l
og

 s
ca

le
)

 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10
9

(e) L2 cache misses (f) L3 cache misses

Figure 4: Relative performance of the VIP vs the Default configurations as the skew in popularity increases. One billion fetch
requests are issued to a hash table with 10M keys (load factor 0.6) for varying levels of skew from zip f = 0 to zip f = 5. Each
reported data point is themedian over 10 runs with different random seeds. Percentages indicated at the top of each plot is the
difference betweenmedianmetrics of the VIP vs the Default configuration. The gain in fetch operation throughput varies with
skew, and we obtain 53% increase in throughput formedium skew (zip f = 2.0). Lesser number of cachemisses and instructions
executed contribute to the gain obtained from the VIP configuration. Further observations are discussed in §4.2.2.

Overall, we note that since the hot set of the VIP configuration

is smaller than the Default, we encounter lower cache misses at

all levels of cache. This contributes to the gain in performance we

obtain from the VIP configuration.

Another important observation we make is that the metric dis-
placement indicates the goodness of the hash table configuration.

The VIP configuration has lower displacement than the Default in

all cases (the VIP configuration has the lowest possible displace-

ment for a given data set, hash table size, hash function, and request

skew; see §5.2.3). We use this metric in building the mechanisms

for sensing and dynamically switching-on/off learning (§5.2.3).

4.3 Impact of Increasing the Load Factor
4.3.1 Workload. In this experiment, we increase the load factor

while holding the size of the hash table constant. Similar to §4.2.1,

we run one billion fetch operations on a hash table with 2
24

buck-

ets while varying the load factor from 0.5 to 1.5 in steps of 0.25

(this is achieved by increasing initialSize from 2
23

to 3 · 223). Each

configuration is run with 10 distinct random seeds and we compare

the median statistics over the 10 runs.

4.3.2 Results. Fig. 5 shows themedian gain obtained as we increase

the load factor – we obtain 1.6x, 2.6x, and 1.8x higher throughput

from the VIP configuration at low (zip f = 1), medium (zip f = 2),

and high skew (zip f = 3) respectively at load factor 1.5. In all

cases, the gain from the VIP configuration increases as the load

factor increases, which is expected as the likelihood of collisions

Skew
／

Load
Factor

Low
skew

(zipf = 1)

Medium
Skew

(zipf = 2)

High
Skew

(zipf =3)

◼
0.5 +21% +25% +5%

0.75 +30% +56% +20%

1.0 +40% +77% +36%

1.25 +50% +148% +68%

1.5 +58% +160% +80%

Figure 5: Roofline gain in throughput from the VIP vs the
Default configuration as the load factor increases. Keeping
the number of buckets fixed at 224, we increase the load fac-
tor from 0.5 to 1.5. The performance gain obtained from the
VIP configuration increases with the load factor, and can be
as high as 160% (2.6x) for medium skew at load factor 1.5.

is higher when more keys are present in the hash table. We find

that the performance metrics of the VIP configuration are mostly

stable (refer to Table 2) indicating a stable hot set size, while the

performance of the Default configuration becomes steadily worse

as the effective hot set grows larger with the load factor.

5 ADAPTING TO POPULARITY ON-THE-FLY
In this section, we first highlight the challenges of learning in-the-

loop (§5.1) which motivated the lightweight mechanisms we built

for VIP hashing. We then describe how we learn, adapt, sense, and

dynamically control the overhead on the fly (§5.2-5.3).

1982

Table 2: Relative Metrics of VIP vs Default configuration as
we increase the load factor (lf) at zip f = 2. The trends for
low and high skew are similar.

lf
Throughput
(fetch ops/s)

Avg. Disp-
-lacement

L3
Misses

L1
Misses

0.5

235M vs
188M (+25%)

1.0 vs 1.03
(-3%)

378M vs
385M (-1.8%)

380M vs
412M (-8%)

1

236M vs
134M (+77%)

1.0 vs 1.17
(-15%)

376M vs
387M (-2.6%)

380M vs
436M (-13%)

1.5

236M vs
90M (+160%)

1.0 vs 1.62
(-38%)

382M vs
392M (-2.6%)

382M vs
458M (-17%)

5.1 Learning In-the-Loop is Costly
Hash tables execute a tight loop of instructions – compute the hash

function, access keys in the bucket, and perform required operations

to process the request. Adding any amount of additional computa-

tion or storage to this loop can degrade performance considerably.

To demonstrate this behavior, we conduct a simple experiment of

adding a 1-byte requests counter per key in the hash table, such

that the entries become 17 bytes long (8 byte key and value, and 1

byte counter).

We use Wiscer to compare the performance of the vanilla imple-

mentation of hash table (16 byte entries) to the implementation with

request counters (17 byte entries). We issue 500M fetch requests to a

hash table with 1M entries (load factor 0.95 = 10
6/220) for different

levels of skew in the popularity distribution (zip f = 0 to 5 in steps

of 1). The remaining configuration options of Wiscer are set to the

defaults (refer to Table 1). Fig. 6 shows the relative performance of

the two hash table implementations at different levels of skew in

the workload. There is a significant loss in throughput ranging from

11-66% due to increase in cache misses and instructions executed.

Counting requests is a fundamental requirement for learning the

popularity distribution. However, this experiment shows that even

adding a small amount of additional memory can hurt performance

significantly. Thus, the challenge here is to work with a restricted

“budget" when learning in-the-loop, to balance the gains against

the overhead of learning.

5.2 VIP Hashing
From §5.1, we know that using additional memory and computation

can really hurt the performance of hash tables. In this section, we

describe how VIP hashing overcomes these challenges by using

lightweight mechanisms for learning and adapting to the popularity

distribution (§5.2.2), while controlling the overhead by sensing and

dynamically switching-on/off learning as necessary (§5.2.3). We

first give an overview of VIP hashing (§5.2.1) followed by describing

the mechanisms used in detail (§5.2.2-3).

5.2.1 Overview. Fig. 7 shows the VIP hashingmethod. At any given

time, there are three possible modes that the hash table implemen-

tation can be in – learn+adapt, sense, and default (or vanilla). In the

learn+adapt mode, the hash table learns the popularity distribution

and rearranges keys to move closer to the VIP configuration. This

mode is costly in terms of both computation and storage, and we

control how much we run this mode by configuring the parame-

ter NL. The learn+adapt mode is run at the start, and subsequent

-66%

-47%

-14%
-13% -16% -11%

0 1.0 2.0 3.0 4.0 5.0
Zipf

Fe
tc

h
op

s/
s

 (
lo

g
sc

al
e)

Vanilla implementation (16 byte entries)
Counting Requests (17 byte entries)

(a) Loss in performance when adding a 1-byte counter per key in
the hash table. Both hash tables are identical (in Default configu-
ration) except for the size of the entries (16 vs 17 bytes).

-66%

+22%

+11%

+14%

+28%

0%

(b) Relative metrics for zipf = 0. Instructions executed and
cache misses increase after adding the 1-byte counter.

Figure 6: The effect of adding a 1-byte requests counter per
key in the hash table. 500M fetch operations are issued to a
hash table with 1M keys at load factor 0.95. Performance can
take a significant hit – we observe a 66% loss in fetch opera-
tion throughput at zip f = 0. This experiment demonstrates
the sensitivity of hash tables to effects of caching and com-
putation, which makes learning on the fly challenging.

triggers of this mode happen only if the popularity distribution

changes, which is determined during the sense mode.

The sense mode is triggered after the learn+adapt mode to mea-

sure some statistics (γB) that characterize the popularity distribu-

tion. These statistics require a total of 24 bytes of memory for the

whole hash table (irrespective of the size) and a few additional arith-

metic operations in the loop. Since the memory and computation

footprint of this mode is low, it does not add much overhead to the

execution. The sense mode is run for NS requests at a time, and is

triggered periodically (every ND requests) to characterize the pop-

ularity distribution at the time (γC). Comparing the statistics (γB
and γC) helps determine if the popularity distribution has changed,

and informs the decision of whether to switch on learning.

The default mode is the vanilla implementation of chained hash-

ing (§2.1) with 16 byte entries. There is no additional overhead of

storage or computation. This mode is run most of the time (ND >

NL, NS), so the performance is close to the vanilla implementation

of hash table in the worst case.

In the following sections, we discuss the mechanisms we use

for the learn+adapt (§5.2.2) and sense (§5.2.3) modes. We discuss

our choice of parameters (NL, NS, ND, etc.) in §5.3, that allow us to

balance the performance gains against the overhead of learning.

1983

Learn +
Adapt

Sense Default Sense

Requests

...

T = 0

Yes Learn +
Adapt

Sense

...Default
No

Sense <><>

Yes

No
...

...

1. Learn the
popularity
distribution
and adapt for
N

L
 requests.

2. Sense the
popularity
distribution for
N

S
 requests.

Learn baseline
parameters .

3. Switch off
learning for the

next N
D

requests. Run in

default mode.

4. Sense the current
distribution, learn
parameters .
Compare to .

5. Learn and adapt if popularity
distribution has changed. Update
parameters .

6. Run in default
mode otherwise.

7. Periodically sense
the popularity
distribution.

8. Trigger learning
only if popularity
distribution has
changed.

N
L

N
S

N
D

Figure 7: Overview of VIP Hashing. At any time, the hash table is in one of the three modes – learn+adapt, sense, or default.
The amount of time spent on learn+adapt mode is controlled through the parameter NL to cap the overhead of executing on
the fly. The popularity distribution is sensed periodically and learning is triggered only when a change is detected.

Algorithm 1 Learning and Adapting on-the-fly

1: procedure FetchAdaptive(requests)
2: ht← getHashTable()

3: /* Requests are counted in a separate data structure*/

4: req_cnt_ht← getRequestsCountingHashTable()

5: for r in requests do
6: hash← murmurHash(r.key)
7: ht_entry← ht [hash]
8: req_entry← r eq_cnt_ht [hash]
9: /* Keep track of entry with minimum requests */

10: min_req_ht_entry = ht_entry
11: min_req_entry = r eq_entry
12: while ht_entry and ht_entry .key , r .key do
13: if r eq_entry .count < min_r eq_entry .count then
14: min_r eq_ht_entry = ht_entry
15: min_r eq_entry = r eq_entry
16: ht_entry = ht_entry .next()
17: r eq_entry = r eq_entry .next()
18: if ht_entry == null then
19: r .f ound = false

20: continue
21: r .f ound = true

22: r .value = ht_entry .value
23: r eq_entry .count = r eq_entry .count + 1
24: if r eq_entry .count > min_r eq_entry .count then
25: /* Swap this entry with the min requests entry */

26: swap(ht_entry, min_req_ht_entry)
27: swap(req_entry, min_req_entry)
28: /* Reclaim cache space by clearing r eq_cnt_ht */
29: clearCache(r eq_cnt_ht)

5.2.2 Learning & Adapting. Algorithm 1 describes how we learn

the popularity distribution and adapt to the skew on the fly. The

popularity of a key is estimated as the proportion of requests made

to the key (§2.2). Thus, learning the popularity distribution requires

counting requests, which we know is challenging from the experi-

ments in §5.1.

To overcome the challenge of counting requests in-the-loop, we

perform two optimizations. First, we count requests in a separate

data structure that mimics the hash table in arrangement (for ev-

ery entry in the hash table, there is a corresponding entry in the

request counting hash table). Although this temporarily requires

more memory (about 50-60% increase in memory usage depend-

ing on the load factor) than maintaining a counter per key in the

hash table, the cost is incurred only during the learn+adapt mode.

Second, at the end of the learn+adapt mode, we clear the requests

counting hash table (req_cnt_ht) from the cache by issuing cache

flush instructions (_mm_clflushopt on Intel CPUs [5]), which

mitigates the cache pollution caused by the requests counting data

structure used during the learn+adapt mode.

To attain the VIP configuration, we need to sort the keys in de-

scending order of popularity in the bucket chains. Given that the

proportion of requests made to a key is an estimate of popularity,

we use Algorithm 1 to stochastically sort the keys in descending

order of requests received on the fly. When performing a fetch

operation, we keep track of the entry with minimum requests

(min_req_ht_entry) encountered in the path to the entry being

fetched. If the entry being fetched has received more requests, then

it is swapped with themin_req_ht_entry and it moves forward in

the chain. We propose the following theorem which is formally

proved in Appendix A:

Theorem 5.1. Let there be a bucket chain withn keysK1,K2 ...Kn
which have popularity p1 > p2... > pn > 0. Let the keys be in a
random order in the chain. Then, by applying Algorithm 1, the keys
will converge to the sorted order of popularity as number of fetch
requests N →∞.

There are two noteworthy properties of Algorithm 1. First, the

VIPsmove to the front quickly, as they can skip overmultiple entries

in a single fetch request. This algorithm is, in essence, similar to

selection sort as we are moving the entry with minimum requests

to the end of the (sub-)chain being accessed. An alternative would

be to compare only adjacent keys (bubble sort), which empirically

requires more requests for a VIP to move to the front.

1984

Second, the cost of swapping is amortized, as there is at most

one swap performed per fetch operation. This approach is faster

compared to performing a full sort on every request, or sorting

at the end after counting requests for some time (we will have to

access all the buckets in order to perform a full sort, which will

block operation, incur cache misses, and pollute the cache).

5.2.3 Sensing & Dynamically Switch-on/off Learning. Algorithm 2

describes how we sense some key statistics of the popularity dis-

tribution, which enable us to dynamically switch-on learning only

when the distribution has changed (Algorithm 3). While there are

multiple ways to quantify the difference between two probability

mass functions (pmf s) [37, 38, 42], we choose a lightweight statistic
to compare distributions – average displacement. In §4.2.2, we saw

that displacement encountered indicates the “goodness" of the hash

table configuration. Every popularity distribution imposes a pmf

over the displacement encountered on a request, which is a derived

random variable. Formally stated:

Axiom 1. Let K1, K2, ..., KN be N keys in the hash table with
popularity p1, p2, ...,pN (

∑
pi = 1) at displacement d1, d2, ..., dN

(di ≤ N). Let D be the random variable of the displacement encoun-
tered on a successful fetch request. Then,

P(D = d) =
N∑
i=1

pi · 1di=d

i.e, the probability that displacement d is encountered on a fetch

request is the probability that any of the keys with displacement d
were fetched. The average displacement is calculated as

µD = E[D] =
N∑
i=1

i · P(D = i)

We make the following observation:

Axiom 2. The VIP configuration minimizes E[D] over all possi-
ble arrangements of keys in the hash table for a fixed load factor,
popularity distribution, and hash function.

The VIP configuration orders keys by popularity, thus giving

more “weight” to lower values of D which minimizes the average

displacement. It is straightforward to see that for a given hash table

configuration, two popularity distributions with different average

displacement will not be identical (although the opposite is not

true). Thus, a change in average displacement reflects a shift in the

popularity distribution.

The parameters we learn from sensing areγ = (µ̂D , ŵD) = (u,w)
(Algorithm 2), where µ̂D is the estimated average displacement, and

ŵD is thewidth of the confidence interval around µ̂D obtained using

Gaussian tail bounds (§2.2). Average displacement is estimated as

µ̂D =

NS∑
i=1

Di

NS

which is the sample mean
1
of displacement encountered Di (1 ≤

i ≤ NS) over NS fetch requests in the sense mode. Similarly, we

also estimate sample variance σ̂ 2

D (§2.2).

1
Note that instead of sampling, we could also use the request counting data structure

(r eq_cnt_ht in §5.2.2). However, this would incur cache misses and also pollute the

cache affecting performance (§5.1).

Algorithm 2 Sensing

1: procedure FetchSensing(requests)
2: ht← getHashTable()

3: /* Metrics to track */

4: disp← 0 ▷ cumulative displacement

5: disp_sq← 0 ▷ cumulative disp. square

6: count← 0 ▷ number of requests

7: c = 0.95 ▷ confidence level of the interval

8: for r in requests do
9: hash← murmurHash(r.key)
10: ht_entry← ht [hash]
11: d ← 1

12: while ht_entry and ht_entry→ key , r .key do
13: ht_entry = ht_entry .next()
14: d = d + 1
15: if ht_entry == null then
16: r .f ound = false

17: continue
18: r .f ound = true

19: r .value = ht_entry .value
20: count = count + 1
21: disp = disp + d
22: disp_sq = disp_sq + d × d
23: /* Estimating mean u, variance v, and C.I. width w*/
24: u = disp/count
25: v = disp_sq/(count − 1) − disp2/(count ∗ (count − 1))
26: w =

√
−2.v .loд(1 − c)/count ▷ Gaussian tail bound

27: γ = (u, w)
28: return γ

Algorithm 3 Dynamically Switch-on/off Learning

1: procedure HasDistributionChanged(γB, γC)
2: (uB, wB) = γB
3: (uC , wC) = γC
4: if |uB − uC | > (wB +wC) then
5: return true

6: else
7: return false

We further characterize the pmf by building a confidence interval

using Gaussian tail bounds (§2.2). The width (ŵD) of the interval

at confidence level c (c = 0.95 in our experiments) is calculated as

ŵD =

√
−2 · σ̂ 2

D · (1 − c)

NS

Note that σ̂D is estimated variance from a sample of NS observa-

tions, and (µ̂D − µD) only approximately Gaussian according to

CLT (§2.2). Thus, the width ŵD obtained by applying Gaussian tail

bounds is a heuristic.

We switch-on learning (Algorithm 3) only if we detect a sig-

nificant change in the average displacement. Given two sets of

parameters γB = (uB ,wB) and γC = (uC ,wC) where uB and uC are

estimated means, we check if the confidence intervals are disjoint.

If so, then heuristically with a probability c2 = (0.95)2 = 0.9, we

can be sure that the real means are not equal and the distributions

have diverged. Thus, we detect changes in popularity distribution

in a non-intrusive manner by computing lightweight statistics.

1985

5.3 Parameters
The parameters NL, NS, and ND determine how long the hash table

runs in learn+adapt, sense, and default modes respectively. Our

goal is to choose these parameters such that the gains of learning

are balanced against the overhead.

Our choice of parameters is general, made using theoretical and

empirical evidence that is independent of the popularity distribu-

tion. Thus, our techniques (§5.2) apply to any distribution with

skew irrespective of its specific properties. Note that it is possible

to further tune the parameters and the techniques with additional

knowledge such as total number of requests, patterns in the work-

loads, family of distribution, etc.

5.3.1 Allocating the budget for learning – NL vs ND. Learning in-
the-loop is costly. In our experiments, we find that the learn+adapt

mode can be as much as 4x slower than the vanilla implementation

in the worst case (under no skew for different hash table sizes from

1M to 100M keys). If a total of (NL + ND) requests are issued, the

loss in throughput due to the learn+adapt mode would be:

1 −
Tvanilla
Tvip

≤

(
1 −

ND .t + NL .t

ND .t + NL .4.t

)
assuming that the vanilla implementation takes time t on an

average to process each request. We cap the overhead of learning

to at most 5% by choosing ND = 60 · N L in our experiments (i.e,

learn+adapt mode is run for at most
1/61 of the total requests). More

generally, the cap on overhead is (1 − 61/(60 + k)), where k depends

on the experimental configuration (k = 4 on our hardware). Thus,

we cap the overhead of learning by fixing a budget for
NL/ND.

5.3.2 Choosing N L – how much to learn? The learn+adapt mode is

run for NL requests at a time. Our goal is to capture the popularity

distribution while learning for a finite number of requests. From

previous work [16], we know that it takes Θ(N) i.i.d. samples to

learn a probability mass function over N items (with error ϵ = 1 in

KL divergence compared to the true pmf). When the cardinality of

the hash table is not known/can vary, we choose NL = 1.5 · (htsize),
i.e, 1.5 times the number of buckets in the hash table. Since we

maintain a load factor of at most 1.5 at all times, the number of keys

in the hash table N ≤ 1.5 · htsize , which satisfies our requirements.

5.3.3 Parameters for sensing – N s and c. We sense the distribution

for NS requests at a time to estimate the average displacement µ̂D
and build an interval with confidence c . Since the load factor is low

and the longest chain length is likely to be low as well (except in

pathological cases), we have found that choosing NS to be a large

number (1000) has been sufficient in our experiments. We build a

c = 95% confidence interval that gives us a heuristic probability

of c2 = (0.95)2 = 0.9 when we detect a shift in the popularity

distribution. By increasing (decreasing) the confidence level, we

can be less (more) sensitive to changes in popularity.

6 APPLICATIONS
6.1 PK-FK Hash Joins
Hash tables are frequently used in database systems for processing

join queries. In this section, we describe how VIP hashing can

improve the performance of primary key-foreign key (PK-FK) hash

joins in the presence of skew.

Figure 8: Performance of PK-FK canonical hash join on ta-
bles R and S (|R | : |S | = 1 : 16) using the default and VIP
hash table implementations. For medium skew, we observe
a 22.5% reduction in median (over 10 random seeds) total ex-
ecution time.

Table 3: Relative metrics for default and VIP hash join at
zip f = 2, |R | : |S | = 1 : 16.

Metric Default VIP Diff
Time 3.4s 2.6s -22.5%

Avg. Displacement 1.23 1.0003 -18.7%

L3 Misses 75.5M 75.3M -0.3%

L2 Misses 127.9M 124.6M -2.6%

L1 Misses 161.2M 155.7M -3.4%

Instructions 8.5B 8.2B -3.5%

6.1.1 Experimental Setup. Motivated by past research [11, 13, 27],

we consider the canonical PK-FK join query on tables R and S
(|R | ≤ |S |) with 8-byte integer attributes (16-byte tuples). Skew

can arise in PK-FK relations [11, 13] when some keys occur more

frequently than others in the outer relation S . We use Wiscer to

instantiate R and S using the sequential key pattern for primary

keys in R, and varying the level of skew in the outer relation S
from uniform (zip f = 0) to high (zip f = 3) for 10 distinct random

seeds. We compare the performance of the canonical hash join

algorithm [11, 27] implemented using the default and VIP hash

tables, whilematerializing pointers to output tuple pairs.We assume

that the tuples in S are i.i.d, i.e, the popularity distribution is static.

We explore effects of dynamic popularity distribution in §6.2.

6.1.2 Default vs VIP Hash Join. Fig. 8 shows the relative execution
time of the default vs VIP hash join implementations. The cardi-

nalities of R and S are 12M and 192M respectively (|R | : |S | = 1 :

16) [11, 13], and the load factor is 1.4 (= 12 · 106/223). For medium

skew in the outer relation, the average displacement encountered

by the default hash join implementation is 1.23 (Table 3)2.

For the case of canonical hash join query, the learning budget

of the VIP hash table implementation can be calculated in advance

while maintaining NL : ND = 1 : 60 (§5.3) since we almost al-

ways know the cardinalities of the relations from system catalogs.

Learning is triggered at the beginning of the probe phase with a

2
Note that the average displacement is low for the default configuration in this case,

since the keys are sequential. Holding the load factor constant, randomly generated

keys result in a median (over 10 random seeds) average displacement of 1.48.

1986

Figure 9: Execution time of TPC-H query 9 (scale factor
= 1) on DuckDB. VIP hashing speeds up PK-FK hash join
probes, and results in 20% reduction in median (over 10 ran-
dom seeds) end-to-end query execution time at zip f = 1 and
zip f = 1.5.

budget of NL = min(|R |, |S |
61
) =

16· |R |
61
= 0.26 · |R | lookups from

the outer relation. Learning takes about 3% of the total execution

time, ranging from 70-600ms depending on the level of skew. Note

that the average displacement of the VIP hash join implementation

is very close to 1 (Table 3) indicating that the learning mechanism

efficiently captures the popularity distribution, and reduces cache

misses and instructions executed.

To show the impact of varying the learning budget, we repeated

the experiment for lower and higher cardinality ratios. For a ratio

of 1 : 4, we have a learning budget of
4· |R |
61
= 0.07 · |R | requests

and the overall reduction in execution time is 18.6%. On the other

hand, a cardinality ratio of 1 : 64 allows a learning budget of |R |

=min(|R |, 64· |R |
61
) and results in 25.8% reduction in execution time.

Thus, the available learning budget impacts the gain in performance.

6.1.3 Application to Skewed TPC-H. We focus our attention on

TPC-H query 9 [8], which is the most expensive TPC-H query

involving multiple PK-FK joins. We implemented VIP hashing in

DuckDB [31], an in-memory vectorized DBMS, to speed up PK-FK

hash joins in single-threaded mode. Fig. 9 shows the median execu-

tion time of VIP hash join relative to the default, tested on skewed

TPC-H data [26] at varying levels of skew for 10 different random

seeds. VIP hash join reduces the end-to-end query execution time

by 20% at zip f = 1 and zip f = 1.5, while the increase in execution

time at lower skew is negligible. The remaining TPC-H queries

spend < 1% of the total execution time in skewed PK-FK hash joins,

and consequently the impact of VIP hashing is negligible.

6.2 Point Queries
Another common use of hash tables is for in-memory indexing in

database systems [1, 22] and in key-value stores [4, 23] for pro-

cessing point queries. In this section, we evaluate VIP hashing

against a range of workloads generated using Wiscer that highlight

the robustness of our techniques for learning in-the-loop under

different conditions. In all the experiments, we assume no prior

knowledge of the characteristics of the request distribution. The

first two workloads (§6.2.1-§6.2.2) involve fetch operations, and the

last two (§6.2.3-§6.2.4) perform insert and delete operations.

We run these workloads on a hash table with 1M entries (load

factor 0.95 = 10
6/220) in the Default configuration. Each of these

workloads issue 500M operations to the hash table at low skew

(zip f = 1) unless specified otherwise. The performance gain under

medium skew (zip f = 1.5) is higher, and those results are included

in the extended version of the paper [26]. The remaining configura-

tion options of Wiscer are set to the defaults (Table 1). We compare

the performance of VIP hashing to the default hash table in Fig. 10.

6.2.1 Static Popularity. In this workload, the popularity of keys

in the hash table remains the same throughout. For the case of

uniform popularity distribution (zip f = 0), the loss in throughput

is 2% (Fig. 10a) which is within our budget of 5% (§5.3.1), whereas

for low skew (zip f = 1), we obtain a net gain of 22% (Fig. 10b).

Since the popularity distribution is static, the learn+adapt mode is

triggered only at the start of the experiment for 1.5 ·htsize requests.
The periodic runs of the sense mode do not detect a change in

popularity and the learn+adapt mode is not triggered again, thus

minimizing the overhead of learning.

6.2.2 Popularity Churn. In this workload, the popularity distribu-

tion shifts over time – we simulate a medium (25%) and high (50%)

rate of shift every 100M (about 3s) and 10M (< 1s) requests respec-

tively. Fig. 10c shows the behavior of VIP hashing under medium

churn – 3 out of the 4 times when the popularity shifted, there was

a substantial change in average displacement (accompanied by a

decrease in performance) which was detected in the sense mode,

and learning was triggered only when necessary. For the case of

high churn (Fig. 10d), popularity shift occurs 50 times during the

experiment, and every run of the sense mode detects a change in

distribution and learning is triggered. We obtain a net increase

of 19% and 12% in throughput for the case of medium and high

churn respectively. Thus, VIP hashing is able to sense changes in

distribution and re-learn on the fly.

6.2.3 Steady State. Next, we create a workload with 98% fetch, 1%

insert, and 1% delete requests. The cardinality of the hash table

doesn’t change substantially during the experiment, as the number

of insert and delete operations are balanced. The keys are inserted

(deleted) in random positions of the popularity order. We observe

that as new keys (which are less popular with high probability)

are inserted at the front of the chains, the hash table arrangement

steadily becomes worse and the performance of VIP hashing ap-

proaches the default. A change in average displacement is sensed

every time and learning is triggered, which bounces back the per-

formance of VIP hashing. We observe a 5.4% gain in throughput.

6.2.4 Read Mostly. In this workload, we issue 98% fetch requests

and 2% insert requests. New keys are inserted in arbitrary positions

in the popularity order. Similar to §6.2.3, we observe that the per-

formance steadily becomes worse as new keys are inserted at the

front of the bucket chains. Inserting new keys increase the load

factor, which degrades the throughput of the default implementa-

tion as well. Rehashing is triggered when the load factor exceeds

1.5 (happens every 75 · htsize requests), which bounces back the

performance for both the default and VIP hashing implementations.

The periodicity at which sensing is triggered (every 90 · htsize re-
quests) increases every time rehashing is performed, as we update

the parameters NS and NL according to the size of the hash table

(htsize). Given that the change in the distribution is substantial,

every run of the sense mode detects a change in popularity and

triggers learning. Overall, we obtain a gain of 1% in throughput.

1987

Periodic Sensing

Learning +
Adapting

(a) Static popularity (§6.2.1) with zipf = 0 (uniform distribution).
Since there is no skew in popularity, no performance gain can be
obtained fromVIP hashing. Learning adds overhead to VIP hashing
(4x slower), and is only triggered at the start for (1.5 · 220) requests
(0.3s). Subsequent sensing of the popularity distribution does not de-
tect any change, and learning is not triggered. Total loss in through-
put is 1.9%, which is within our allocated budget.

Periodic Sensing

Learning +
Adapting

(b) Static popularity (§6.2.1) with zipf = 1 (low skew). Learning is
only triggered at the start and is 3x slower than the default (0.13s vs
0.05s respectively). Sensing does not detect any changes to the popu-
larity distribution, so learning is not triggered again. The overhead
of learning is offset by the gain in performance from the VIP con-
figuration. We observe an overall increase in throughput of 21.8%.

Learning +
Adapting

Periodic Sensing

Popularity
Distribution

shift

(c) Medium churn rate (§6.2.2) with zipf = 1. Popularity distribu-
tion shifts every 100M requests by 25% (top 21 out of 1M keys are
replaced by less popular keys). Distribution shift increases average
displacement and can reduce performance (notice drop in perfor-
mance of VIP hashing at 200M requests). Sensing triggers learning
whenever it detects a significant increase in average displacement.
Throughput increases by 18.9% overall.

Learning+
Adapting

Periodic Sensing

....

Popularity
Distribution

shifts

(d) High churn rate (§6.2.2) with zipf = 1. Popularity distribution
shifts every 10M requests by 50% (top 750 out of 1M keys are re-
placed by less popular keys). The benefit of learning dimishes as
the popularity order becomes shuffled. Periodic sensing triggers
learning every time, as frequent distribution shifts cause significant
change in average displacement. Overall, 11.8% increase in through-
put is observed.

(e) Steady state (§6.2.3) with zipf = 1. 98% fetch requests, 1% insert
requests, and 1% delete requests. With new keys being inserted (at
the front of the buckets) and existing keys being deleted, the hash
table arrangement steadily becomes worse. Learning is triggered pe-
riodically which bounces back the performance. An overall gain of
5.4% is observed.

Periodic Sensing

Rehashing
Learning +
Adapting

(f) Readymostly workload (§6.2.4) with zipf = 1. We issue 98% fetch
requests and 2% insert requests. Rehashing is triggered when the
load factor reaches 1.5, which happens every 75 · htsize requests.
When rehashing occurs, we double the periodicity of sensing (NS)
and the duration of learning (NL), i.e., learning is triggered less fre-
quently for longer duration.We observe a gain of 1% in throughput.

Figure 10: Comparing the performance of VIP hashing to the default (vanilla) implementation of hash table when subjected
to identical workloads. Requests are issued in batches of 1M to a hash table with 1M keys (load factor 0.95 = 10

6/220) at the
start in Default configuration. Workload 10a has uniform popularity distribution (zip f = 0) and workloads 10b-10f are run
with low skew (zip f = 1). The loss in throughput2 is 2% in the worst case, while we obtain a gain in performance ranging from
1% to 22% depending on the workload.

2
The small periodic dips in throughput in both VIP hashing and the default implementation are due to monitoring activity performed by the Cloudlab environment [21] and are unrelated to our workloads.

1988

7 RELATEDWORK
Hash tables are well studied data structures in literature. Two major

categories of hash tables are chained hashing [36] where collisions

are resolved by chaining (§2.1), and open addressing [40] where

collisions are resolved by searching for alternate positions in an

array. Richter et al. [32] study different hash table implementations

spanning both the categories, hash functions, workload patterns,

etc. while highlighting the variability in the performance of hash

tables based on a host of factors. Similar to our work, they consider

the problem of hashing 8-byte integer keys and values.

Multiple open source hash tables [3, 12, 35] use both categories

of implementations. For instance, Google’s flat hash table [12] uses

open addressing, while the bytell (byte linked list) hash table [35]

uses chaining to resolve collisions. When it comes to data systems,

DBMS such as SQLite3 [7] and PostgreSQL [33], as well as key-value

stores such as Redis [29] and Memcached [23] use data structures

that involve chaining of entries. Thus, we find that chained hash

tables are a popular choice commonly used in practice.

Skew in popularity is a well studied phenomenon. Multiple stud-

ies involving production workloads have found fetch requests to

follow a power-law behavior [10, 15], which is often captured us-

ing the zipfian distribution [13, 20, 44]. For instance, the request

distribution in the core workloads of YCSB [19] is zipfian by default.

Alongside skew in popularity, previous work [10] also discusses

effects such as churn in popular keys in real world workloads. This

is a key feature captured byWiscer (§3), which is not present in any

of the existing workload generators to the best of our knowledge.

Broadly speaking, caching algorithms such as LRU-k [30] and

MRU [18] attempt to capture the current popularity distribution.

Key-value stores designed for disk-based settings, such as Anna [44]

and Faster [17] incorporate techniques to keep hot data in memory

for better performance. Recent work by Herodotou et al. [25] uses

machine learning (ML) to automatically move data between differ-

ent storage tiers in clusters. A recurring trend to note here is that

the complexity of these schemes depend on the “budget” available,

ranging from simple LRU approach used even in processor caches,

to a more complex approach involving ML in large-scale clusters.

The budget available for learning with hash tables is extremely

limited (Fig. 6). In the seminal paper on learned indexes [28], the au-

thors propose learning a hash function from the keys such that col-

lisions can be avoided altogether. However, recent work on learned

hash functions [34] shows that this approach encounters two ma-

jor limitations – cache sensitivity, and model complexity. While

larger models are necessary to accurately capture arbitrary key

distributions, the computation times become prohibitively high

(50x higher [34]) due to increased cache misses from accessing the

model parameters. The high cache sensitivity and low latency re-

quirements of hash tables preclude the use of costly ML techniques.

A noteworthy aspect of the VIP hashing method is that learning

is performed online, i.e., the hash table does not pause operation at

any time. In contrast, recent work [24, 34] involves learning from

the data offline before populating the hash table. Adapting to chang-

ing key distributions remains a challenge with these approaches,

as their fallback mechanism is reverting to the default hash table

implementation [24] or relearning [28, 34], both of which require

costly rehashing that pauses execution.

8 CONCLUSIONS & FUTUREWORK
The sensitivity of hash tables to effects of caching makes learning

on the fly very challenging (§5.1, [34]). In this paper, we describe

the VIP hashing method for adapting to the skew in popularity of

data on the fly. VIP hashing is comprised of four lightweight mech-

anisms – learning, adapting, sensing, and dynamically switching-
on/off learning – that execute in a fully online fashion. Our choice of

parameters (§5.3) carefully balances the gains against the overhead

of executing online. We evaluate VIP hashing using an extensive

set of workloads (Fig. 8, 10) that demonstrate the ability to learn

on the fly, while being robust to changes caused by insert/delete

operations, shifting distributions, etc. In our experiments, the gain

in performance obtained was 22% in the best case.

Possible future work could involve studying other low latency

data structures such as bloom filters [14], to see how cache locality

can be improved by adapting to the data. Learning tasks involving

such cache sensitive data structures will necessitate controlling the

overhead, potentially using our approach of budgeted learning and

non-intrusive sensing.

ACKNOWLEDGMENTS
This research was supported in part by a grant from the Microsoft

Jim Gray Systems Lab, by the National Science Foundation under

grant OAC-1835446, and by CRISP, one of six centers in JUMP, a

Semiconductor Research Corporation (SRC) program.

A PROOF OF THEOREM 1
Theorem 1 (§5.2.2) states that given keys K1, K2, ...,Kn in a bucket

with probability p1 > p2 > .. > pn , such that the keys are in a

random order initially. Then by applying Algorithm 1, the keys will

converge to the sorted order of popularity as the number of fetch

requests N →∞.
From the frequentist definition of probability, we can be sure

that a more popular key will receive more requests compared to a

less popular key as N →∞. This will hold pairwise for all the keys
K1, K2, ...,Kn in the bucket, which motivates the following claim.

LemmaA.1. Let {Ki } be keys in a bucket with probability {pi }, i ∈
[N]. Let K1 be the most popular key in the bucket, i.e., p1 > pj ∀j ∈
{2, ..,N }. Let the initial order of keys be random. Then, by running
Algorithm 1, K1 will be at the front of the chain as N →∞.

Proof. Suppose K1 is at displacement d > 1 and has received

n requests. Let there be keys K ′
1
, .., K ′d−1 in front of K1 that have

received requests n1, .., nd−1 respectively. From Lemma 2, we have

lim

N→∞
n > ni , ∀ i ∈ [(d − 1)]

Thus, K1 would have received more requests than all the keys in

front of it as N → ∞. From Algorithm 1, on the last request that

K1 received, it should have been swapped with a key with lower

number of requests ahead of it. This contradicts our assumption

that K1 is at position d > 1. □

Thus, the most popular key in the chain will be in the front as

number of requests approaches infinity. By recursively applying

Lemma 3 to the remaining keys in the bucket, we can prove that

the keys will be in the sorted order of popularity as N →∞.

1989

REFERENCES
[1] MariaDB 2013. MariaDB Storage Index Types. MariaDB. Retrieved June 23, 2022

from https://mariadb.com/kb/en/storage-engine-index-types/

[2] Intel Corporation 2017. Intel Xeon Silver 4114 processor. Intel Corporation.

Retrieved June 23, 2022 from https://intel.ly/3fDidSb

[3] Intel Corporation 2020. Intel TBB hash map. Intel Corporation. Retrieved June 23,
2022 from https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_

hash_map.html

[4] Redis Ltd. 2022. Data types in Redis. Redis Ltd. Retrieved June 23, 2022 from

https://redis.io/topics/data-types

[5] Intel Corporation 2022. Intel Intrinsics. Intel Corporation. Retrieved April 22,

2022 from https://intel.ly/3nxA416

[6] Intel Corporation 2022. Intel performance monitoring events. Intel Corporation.
Retrieved June 2, 2022 from https://perfmon-events.intel.com/

[7] SQLite 2022. SQLite hash table implementation. SQLite. Retrieved June 23, 2022

from https://sqlite.org/src/file/src/hash.c

[8] TPC 2022. TPC-H Benchmark (Version 3). TPC. Retrieved June 23, 2022 from

http://www.tpc.org/tpch/

[9] Austin Appleby. 2016. MurmurHash3. Retrieved June 23, 2022 from https:

//github.com/aappleby/smhasher/wiki/MurmurHash3

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload Analysis of a Large-Scale Key-Value Store. Sigmetrics Performance
Evaluation Review - SIGMETRICS (2012). https://doi.org/10.1145/2318857.2254766

[11] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-

memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In

2013 IEEE 29th International Conference on Data Engineering. https://doi.org/10.

1109/ICDE.2013.6544839

[12] Sam Benzaquen, Alkis Evlogimenos, Matt Kulukundis, and Roman Perepelitsa.

2018. Swiss Tables and absl::Hash. Google. Retrieved June 23, 2022 from

https://abseil.io/blog/20180927-swisstables

[13] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation of

Main Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data. https:

//doi.org/10.1145/1989323.1989328

[14] B. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM (1970). https://doi.org/10.1145/362686.362692

[15] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching

and Zipf-like distributions: evidence and implications. In IEEE INFOCOM ’99.
https://doi.org/10.1109/INFCOM.1999.749260

[16] Clément L. Canonne. 2020. A short note on learning discrete distributions. arXiv:
Statistics Theory (2020). https://doi.org/10.48550/ARXIV.2002.11457

[17] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,

James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store

with In-Place Updates. In 2018 ACM SIGMOD International Conference on Man-
agement of Data. https://doi.org/10.1145/3183713.3196898

[18] H. Chou and D. DeWitt. 2005. An Evaluation of Buffer Management Strategies

for Relational Database Systems. Algorithmica (2005). https://doi.org/10.5555/

1286760.1286772

[19] Brian F. Cooper. 2010. YCSB Core Workloads. Retrieved November 29, 2020 from

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC 2010). https://doi.org/10.

1145/1807128.1807152

[21] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-

sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). https://doi.org/10.5555/3358807.3358809

[22] Erik Frøseth. 2019. Hash join in MySQL 8. MySQL. Retrieved November 13, 2019

from https://mysqlserverteam.com/hash-join-in-mysql-8

[23] Holmes He. 2021. Understanding the Memcached source code. Retrieved January

1, 2021 from https://holmeshe.me/understanding-memcached-source-code-V

[24] Brian Hentschel, Utku Sirin, and Stratos Idreos. 2022. Entropy-Learned Hashing:

Constant Time Hashing with Controllable Uniformity. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22). https:

//doi.org/10.1145/3514221.3517894

[25] Herodotos Herodotou and Elena Kakoulli. 2019. Automating distributed tiered

storage management in cluster computing. Proc. of the VLDB Endowment (2019).
https://doi.org/10.14778/3357377.3357381

[26] Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun Park.

2022. VIP Hashing – Adapting to Skew in Popularity of Data on the Fly (extended

version). https://doi.org/10.48550/ARXIV.2206.12380

[27] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. 2009. Application

of hash to data base machine and its architecture. New Generation Computing
(2009). https://doi.org/10.1007/BF03037022

[28] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The

Case for Learned Index Structures. In Proceedings of the 2018 International Con-
ference on Management of Data (SIGMOD ’18). https://doi.org/10.1145/3183713.

3196909

[29] Kousik Nath. 2017. A little internal on Redis hash table implementation. Retrieved

June 23, 2022 from https://bit.ly/3pfVvTm

[30] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K

Page Replacement Algorithm for Database Disk Buffering. In Proceedings of the
1993 International Conference on Management of Data (SIGMOD ’93). https:

//doi.org/10.1145/170035.170081

[31] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-

cal Database. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). https://doi.org/10.1145/3299869.3320212

[32] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional

Analysis of Hashing Methods and Its Implications on Query Processing. Proceed-
ings of the VLDB Endowment (2015). https://doi.org/10.14778/2850583.2850585

[33] Egor Rogov. 2019. Indexes in PostgreSQL. Retrieved March 19, 2019 from https:

//bit.ly/3c7L52A

[34] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska. 2021.

When Are Learned Models Better Than Hash Functions? CoRR abs/2107.01464

(2021). https://arxiv.org/abs/2107.01464

[35] Malte Skarupke. 2018. Bytell hash map. Retrieved June 16, 2018 from https:

//bit.ly/3fB8NX6

[36] Wikipedia. 2022. Hash table. Wikimedia Foundation, Ltd. Retrieved June 23,

2022 from https://en.wikipedia.org/wiki/Hash_table

[37] Wikipedia. 2022. Hellinger’s distance. Wikimedia Foundation, Inc. Retrieved

May 24, 2022 from https://en.wikipedia.org/wiki/Hellinger_distance

[38] Wikipedia. 2022. Kullback-Leibler divergence. Wikimedia Foundation, Ltd.

Retrieved June 19, 2022 from https://en.wikipedia.org/wiki/Kullback-Leibler_

divergence

[39] Wikipedia. 2022. Lindeberg-Levy CLT. Wikimedia Foundation, Inc. Retrieved June

10, 2022 from https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_

CLT

[40] Wikipedia. 2022. Open addressing. Wikimedia Foundation, Ltd. Retrieved April

17, 2022 from https://en.wikipedia.org/wiki/Open_addressing

[41] Wikipedia. 2022. Power Law. Wikimedia Foundation, Ltd. Retrieved June 3, 2022

from https://en.wikipedia.org/wiki/Power_law

[42] Wikipedia. 2022. Z-test. Wikimedia Foundation, Inc. Retrieved April 18, 2022

from https://en.wikipedia.org/wiki/Z-test

[43] Wikipedia. 2022. Zipf’s law. Wikimedia Foundation, Ltd. Retrieved June 19,

2022 from https://en.wikipedia.org/wiki/Zipf’s_law

[44] Chenggang Wu, Vikram Sreekanti, and Joseph Hellerstein. 2019. Autoscaling

tiered cloud storage in Anna. Proceedings of the VLDB Endowment (2019). https:

//doi.org/10.14778/3311880.3311881

1990

https://mariadb.com/kb/en/storage-engine-index-types/
https://intel.ly/3fDidSb
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_hash_map.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_hash_map.html
https://redis.io/topics/data-types
https://intel.ly/3nxA416
https://perfmon-events.intel.com/
https://sqlite.org/src/file/src/hash.c
http://www.tpc.org/tpch/
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
https://abseil.io/blog/20180927-swisstables
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/INFCOM.1999.749260
https://doi.org/10.48550/ARXIV.2002.11457
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.5555/1286760.1286772
https://doi.org/10.5555/1286760.1286772
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.5555/3358807.3358809
https://mysqlserverteam.com/hash-join-in-mysql-8
https://holmeshe.me/understanding-memcached-source-code-V
https://doi.org/10.1145/3514221.3517894
https://doi.org/10.1145/3514221.3517894
https://doi.org/10.14778/3357377.3357381
https://doi.org/10.48550/ARXIV.2206.12380
https://doi.org/10.1007/BF03037022
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://bit.ly/3pfVvTm
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.14778/2850583.2850585
https://bit.ly/3c7L52A
https://bit.ly/3c7L52A
https://arxiv.org/abs/2107.01464
https://bit.ly/3fB8NX6
https://bit.ly/3fB8NX6
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_CLT
https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_CLT
https://en.wikipedia.org/wiki/Open_addressing
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Z-test
https://en.wikipedia.org/wiki/Zipf's_law
https://doi.org/10.14778/3311880.3311881
https://doi.org/10.14778/3311880.3311881

