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ABSTRACT
Graph neural networks (GNNs) have emerged due to their success
at modeling graph data. Yet, it is challenging for GNNs to e�ciently
scale to large graphs. Thus, distributed GNNs come into play. To
avoid communication caused by expensive data movement between
workers, we propose S�����, a staleness-aware communication-
avoiding decentralized GNN system. By introducing a set of novel
bounded embedding staleness metrics and adaptively skipping
broadcasts, S����� abstracts decentralized GNN processing as se-
quential matrix multiplication and uses historical embeddings via
cache. Theoretically, we show bounded approximation errors of
embeddings and gradients with convergence guarantee. Empiri-
cally, we evaluate S����� with common GNN models via di�erent
system setups on large-scale benchmark datasets. Compared to
SOTA works, S����� can avoid up to 74% communication with at
least 1.86⇥ faster throughput on average without accuracy loss.
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1 INTRODUCTION
The success of Graph Neural Networks (GNNs) [20] has laid the
foundation of recent advancement in the state of the art to model
real-life graphs. In essence, GNNs are structure-aware models that
construct the network architectures adapted to the original topol-
ogy of the input graphs. By iteratively aggregating the neighbor-
hood of the targets, GNNs can exploit the structure and feature
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information at the same time. Despite the promising performance,
the major challenge that limits the adoption of GNNs to large-scale
graphs lies in the inability to utilize all data in �nite time and the
scalability of the algorithm itself. To mitigate thememory require-
ment with ever-increasing data and model size, distributed GNN
processing is the inevitable remedy. Some e�orts have been made
towards sampling-based distributed GNN training, at the price of
information loss [3, 16, 34], sampling overhead [16], and no conver-
gence guarantee [5]. Thus, in this work, we focus on the distributed
training of full-GNNs.
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Figure 1: Distributed full-GNN example: nodes in same color are on same
GPU. On the left, a 6-node graph is stored on 4 GPUs. On the right are the
computational graphs of a 2-layer GNN for Node A and E. During GNN neigh-
borhood aggregation, intensive cross-device visits (10 times to update NodeA
and 9 for E) to fetch neighbor data cause expensive communication overhead.

Compared to traditional graph processing or machine learning,
new issues have emerged for distributed full-GNNs from the sys-
tem perspective. Aside from the substantial memory footprint, dis-
tributed GNNs are memory-intensive as well as compute-intensive
[33, 36] due to coupled irregular neighborhood access and iterative
learning procedure. Consequently, the intensive communication,
including not only gradients or parameters but also embeddings,
makes e�cient distributed GNN training more challenging. As
exempli�ed by Figure 1, the training process needs to constantly
query the target nodes, their neighbors, and their farther neighbors,
to transfer both embeddings and gradients among workers. Thus,
by virtue of such data movement in GNN aggregation, cross-device
data communication can be one major archenemy of e�cient
GNN processing. The incurred communication cost may account
for 80% and even more of the total training time [3, 13, 34].

In distributed training, the underlying system architecture of
how workers communicate is crucial, especially for GNNs with
substantial communication overhead. As illustrated in Figure 2,
two approaches exist: centralized and decentralized. Though most
distributed GNN systems [13, 16, 27, 30, 43, 45] work in the popular
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centralized parameter server (PS) scheme in Figure 2a, they often
pay the price of heavy preprocessing and complex work�ow, in pur-
suit of e�ciency and scalability. By nature of GNNs, the intensive
communication between all the workers and the central PS plus
the waiting time for stragglers may lead to high communication
overhead [3]. Decentralized architectures, however, can be more
robust and easier to deploy, by avoiding the inconvenience in im-
plementing and tuning a PS, centralized bottleneck bandwidth, and
single point of failure [22]. Especially for large neural networks, the
decentralized scheme is proven to be more superior theoretically
[23]. Hence, Tripathy et al. [34] o�er CAGNET – so far the only
SOTA decentralized parallel algorithms [14] adapted to GNNs. In
CAGNET, each worker keeps a full copy of parameters to alleviate
centralized communication overhead. However, it calls for redun-
dant and unnecessary broadcasts of all embeddings and gradients.
Besides, all the workers must wait for stragglers to synchronize,
leading to extra communication overhead.
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Figure 2: Centralized vs. decentralizedGNNprocessing example. In the cen-
tralized scheme, workers periodically send updates to a parameter server. In
the decentralized scheme, workers exchange them directly.

In this paper, to �ll this gap in e�cient GNN processing, we
propose S�����, a staleness-aware communication-avoiding de-
centralized GNN training system via adaptively skipping broadcast
and caching historical embeddings with bounded staleness. To by-
pass the irregular data communication between GPUs, we �rstly
revisit the parallel algorithms to distribute GNNs [34] and decrease
communication overhead in a fundamentally distinct way. As Fig-
ure 3 shows, by regarding the GNN processing purely as a sequence
of matrix multiplication operations in a decentralized scheme, each
GPU loads the split submatrices without taking the semantic mean-
ing into account. The excessively large adjacency and embedding
matrices are sliced into Ai and Hi (i 2 [1, 4]) and distributed to
GPUi�1 with the full weight matrixW . Then H1 to H4 are sequen-
tially one-to-all broadcast to all GPUs in parallel. After 4 broadcasts,
the whole embedding matrixH is updated for a layer. Thus, by mov-
ing intact matrix blocks, S����� takes advantage of data parallelism
to avoid communication caused by intensive neighbor fetching
in Figure 1. Secondly, to further avoid communication under
a decentralized scheme, we propose to cache and skip-broadcast
the histrocial embeddings We de�ne historical embeddings as the
embedding sub-matrices from earlier epochs in each distributed
process, i.e., the sub-matrix Hi individually computed on GPUi�1
in Figure 3. We utlize caching and design a novel skip-broadcast
operator to support historical embeddings in S�����. Thirdly,
to manage the system staleness caused by using mixed-version
embeddings on each GPU, we propose the generalization of the
widely-used bounded gradient staleness in centralized schemes [7],

to historical embeddings. We introduce a set of novel bounded
embedding staleness metrics in decentralized GNNs. Particularly,
S����� adaptively skip-broadcasts embeddings within bounds and
automatically reuses cached historical embeddings to directly avoid
communication; otherwise, if the embeddings become too stale,
the results are broadcast and updated in cache among GPUs to
keep the system staleness within bounds. Taking Figure 3 as a toy
example, the embeddings H3 is not too stale, then S����� can skip
broadcast once, now S����� only need 7 broadcasts to update all
the embeddings in the 2-layer GNN. Again, it should be emphasized
that there is no individual embedding fetching in GNN aggrega-
tion with S�����. Compared to the conventional distributed GNN
in Figure 1, only to obtain the embeddings for node A and E, 10
and 9 request-and-send operations are needed. To update all, 59
request-and-send operations are needed. However, S����� only
needs as less as 7 broadcasts in total as shown by Figure 3. Also, it
should be pointed out that S����� has few burden of preprocess-
ing and can be easily applied to any distributed GNNs based on
arbitrary matrix blocking and direct matrix operations.
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Figure 3: A toy 2-layer GNN example on S�����: GPUi�1 keeps its shards of
Hi andAi , with a fullW ;Hi are sent to all GPUs in order via one-to-all broad-
cast (arrows omitted without loss of generality). After 4 sequential broadcasts
!,!,!,! and on-device computation, since the broadcasts are in parallel,
all Hi updates for GPUi�1. Next, S����� may tolerate H3 to skip 1 broadcast
as shown byd. In total, only 4 + 3 = 7 broadcasts are needed.

In summary, our major contributions are: (1) Problem Explo-
ration.We share a new perspective to accelerate GNNs by introduc-
ing historical embeddings with bounded staleness to decentralized
GNNs, treating GNN processing purely as sequential matrix opera-
tions. (2) Novel Metrics.We introduce a set of novel bounded em-
bedding staleness metrics in decentralized GNNs to e�ectively man-
age the system staleness caused by historical embeddings. (3) New
Criterion. We provide the communication cost bound of S�����.
We prove the approximation errors of the embeddings and gradients
are bounded with convergence guarantee. (4) Prominent Perfor-
mance. We evaluate S����� on large-scale benchmark datasets
with prevalent GNN models via di�erent system setups, to show its
ability to generalize and superiority in e�ciency while preserving
e�ectiveness. S�����’s performance with little or no accuracy loss
demonstrates consistency with our theoretical �ndings.

2 PRELIMINARIES
In this section, we review the related concepts of our target problem,
and introduce necessary equations to set the background, then
formally de�ne the problem. The key notations are listed in Table 1.
2.1 Graph Neural Networks
Let G = (V , E) be an undirected graph of order N with a set of
edges E ✓ V ⇥V and nodes V = {�1 , �2 , ..., �N }. Consider the graph
adjacency matrix A, where the element Ai j in the matrix speci�es
the relation between the nodes vi and vj with Ai j = 1 if there exists
an edge �

�i , �j
�
2 E or otherwise Ai j = 0. A is symmetric since G
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is undirected. Denote Â = D̄�
1
2 ĀD̄�

1
2 as the adjacency matrix after

symmetric normalization in GCN [20], where Ā = A + IN denotes
the adjacency matrix with self-connections and D̄ 2 RN⇥N = D + IN
denotes the diagonal node degree matrix.

Without loss of generality, the `-th layer propagation process of
such GNNs [2, 37] can be formulated in matrix form as:

H(`) = �
⇣
H(`�1) , Â;W(`�1)

⌘
(1)

where � denotes the activation function such as ReLU and W 2
RF⇥F denotes the weight matrix. Initially, H(0) = X where X 2 RN⇥F is
the node embedding matrix whose i-th row represents the length-F
embedding vector of node vi . For convenience, the superscript (`)
notation is omitted when it is clear from context.
• Forward Propagation. Speci�cally, the neighbors’ (` � 1)-th

embedding vectors are combined for each node. Based on the
iterative scheme of GNNs, the computation process is given:

Z(`) = ÂH(`�1)W(`�1) (2)

H(`) = �
⇣
Z(`)

⌘
(3)

• Backpropagation. Firstly we derive the recurrence to backprop-
agate the gradient. Let rZ(`) L denote the gradient of the loss L
with respect to Z(`). To simplify, we de�ne a factor � (`) = rZ(`) L.
By the chain rule, the relation between � (`�1) and � (`) is:

� (`�1) =
@L

@Z(`�1) = �
(`)Â

⇣
W(`�1)

⌘|
� � 0

⇣
Z(`�1)

⌘
, (4)

where � 0 (·) is the derivative of the activation function � (·). Then,
the gradient rW(`) L of the loss L with respect to W(`) is:

rW(`�1) L =
@L

@W(`�1) =
@L

@Z(`)

@Z(`)

@W(`�1) = �
(`)Â

⇣
H(`�1)

⌘|
(5)

In GNNs, one training epoch consists of a forward propagation
and a backpropagation pass, with subsequent weight update:

W(`�1) =W(`�1)
� �rW(`�1) L (6)

where � represents the learning rate. The GNN trains a number
of epochs until the accuracy saturates and the model converges.

Table 1: Summary of the key symbols and notations.
Notation Description

A Adjacency matrix of the graph (N ⇥ N )

Â Adjacency matrix after symmetric normalization (N ⇥ N )

W(`) Weight matrix at the `th layer (F ⇥ F )
H(`) Embedding matrix at the `th layer (N ⇥ F )
Z(`) Input matrix to activation function at the `th layer (N ⇥ F )
T(`) Intermediate result matrix of the multiplication ÂH(`)

rZ(`) L = �
(`) Gradient matrix of the loss L with respect to Z(`) at the `th layer

rW(`) L Gradient matrix of the loss L with respect to W(`) at the `th layer

L Loss of the GNN
� Learning rate
� Staleness bound

P (i) i-th process in distributed GNN

2.2 Problem De�nition
In this work, we focus on the problem of node-level graph repre-
sentation learning with distributed GNNs.
De�nition 1 (Node-level Graph Representation Learning).

Input: A L-layer GNN model, with the undirected graph G =

(V , E), adjacency matrix A, initial feature matrix X, and labels Y.
Output: The representation matrix H(L) composed of learned low-

dimensional vector representation for each node.
Formally, given a loss function L and the target Y, the objective

function to solve is de�ned below:
min
W

L

⇣
H(L) , Y

⌘

s.t. H(`) = �
⇣
H(`�1) , Â;W(`�1)

⌘
8` 2 [1, L] .

3 THE SANCUS FRAMEWORK
First, we overview S����� step by step in Section 3.1. Algorithm 1
introduces the complete staleness-aware communication-avoiding
decentralized full-GNN training algorithm. To further elaborate on
avoiding communication, we propose historical embeddings and
skip-broadcast accordingly in Section 3.3 and Section 3.4. Tomanage
system staleness caused by historical embeddings, we propose a set
of novel metrics on bounded embedding staleness in Section 3.5.
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Figure 4: The overall architecture. The full graph and its node features are
distributed to each process on the workers. S����� has �ve major steps: (1)
Data Loading: load the split graph, embedding martix blocks, and full model
into each GPU; (2) Staleness Check: check if the embeddings become too stale
for the root GPU; (3) Embedding Broadcast: if the embeddings is too stale,
broadcast the up-to-date results among GPUs, otherwise other GPUs reuse
the cached historical results from current root GPU; (4) Model Computation:
compute the model either based on the latest or cached stale results; (5) Re-
sults Cache: update cache accordingly.

3.1 Overview
In this work, we propose S�����, an adaptive staleness-aware
communication-avoiding decentralized GNN system. Fundamen-
tally, S����� is simple yet e�ective which caches and reuses the
stale historical embeddings and skips broadcast accordingly during
the decentralized GNN training, based on a general communication-
avoiding matrix blocking algorithm for parallel computing.

We provide the overview of S����� in Figure 4. Primarily, there
are �ve steps: (1) data loading, (2) staleness bound checking, (3)
embedding broadcasting, (4) GNN model computing, and (5) re-
sults caching. Here, we brie�y clarify these steps: (1) to begin with,
the whole sparse adjacency matrix of the full graph and the dense
embedding matrix are split into matrix blocks, then loaded to indi-
vidual worker. Each worker keeps its own replica of the full model;
(2) on each GPU, before broadcasting the last computing results, we
check whether the staleness of historical embeddings are within
proposed bounds. If the staleness is within bounds, the embed-
ding broadcast is skipped and the cached historical embeddings are
reused for this iteration’s model computing; (3) otherwise, if the
staleness exceeds the limit, the latest results are broadcast to all
workers and updated in cache; (4) thus either latest embeddings
or cached historical embeddings are loaded to the GNN model to
compute; (5) �nally, updated embeddings are dispatched to next
iteration’s staleness check before the broadcast.
3.2 Staleness-Aware Communication-Avoiding

Decentralized Training
First, we present the comprehensive staleness-aware communica-
tion avoiding decentralized full-graph GNNTraining in Algorithm 1
and elaborate on its details. There are three keys: (1) Worker state
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�ag F(i) is equipped to indicate the worker state. The state is
recorded as either ACTIVE or STALE to support the Skip-Broadcast
operation in Section 3.4; (2) cache is utilized to store the historical
embeddings from other workers that can be repeatedly utilized
for future iterations to avoid communication; (3) bounded embed-
ding staleness is tolerated to manage system staleness, where each
worker may use embeddings from di�erent iterations.

Algorithm 1 The decentralized stale parallel GNN training algorithm based on
arbitrary general block row decomposition preprocessing strategy with a foward pass
procedure to compute Z in Equation (2) and H in Equation (3), a backpropagation
procedure to compute the gradients � in Equation (4) and rWL in Equation (5), and
the �nal weight update in Equation (6). The matrices Â and H are distributed on a
p ⇥ p process grid, where each process P (i) receives N /p consecutive block rows.

Input: G = (V , E); Sparse adjacency matrix Â; Dense feature matrix H(0) ;
Dense weight matrixW; Output: Node embedding matrix H(L) ;

1: Preprocessing: Block row partition;
2: for all process P (i) in parallel do
3: procedure F������ P���
4: for ` = 1, · · · , L do
5: for j = 1 to p do
6: if F(j) == ACTIVE then . Worker state �ag
7: BROADCAST(H(`�1)

j )

8: CACHE(H(`�1)
j ) . Cache latest H(`�1)

j from P (j)

9: . Compute intermediates with latest H(`�1)
j

10: T(`�1)
i  T(`�1)

i + Âi jH
(`�1)
j

11: else \\ Skip-Broadcast
12: . Compute intermediates with historical H̃(`�1)

j

13: T(`�1)
i  T(`�1)

i + Âi j H̃
(`�1)
j

14: Z(`)
i  T(`�1)

i W(`�1) . Input to activation

15: H(`)
i  �

⇣
Z(`)
i

⌘
. Update the embeddings

16: F(i) STALE(H(`)
i ) . Update state of worker i

17: procedure B������� P���
18: for ` = L � 1, · · · , 0 do
19: � (`)

i  GRADIENT_CLIP(� (`)
i )

20: BROADCAST(� (`)
i ) and Update weightsW` by gradients

For the preprocessing, S����� supports any partitioning algo-
rithms that split the graph and feature matrices into matrix blocks,
such as the classical METIS [18] adopted inmost existing distributed
systems including DistDGL [43] and AliGraph [45], or e�cient
random partitioning. As shown in Figure 5, S����� treats GNN
processing purely as sequential matrix multiplication operations
to avoid intensive neighbor fetching during GNN aggregation. To
start with, the sparse adjacency matrix Â and the dense embedding
matrix H are distributed to each processes P(i) where i 2 [1,p] on
workers. To further illustrate, recall that N denotes the node num-
ber and F denotes the feature embedding length, then the (N ⇥ N )

matrix Â is computed with p row partitions and p column partitions
while the (N ⇥ F ) matrix H is computed with p row partitions as
shown in Figure 5. The (F ⇥ F ) dense weight matrix W, however,
is fully replicated throughout every process P(i). Additionally, we
de�ne the intermediate results T(`)

i of the matrix multiplication ÂH(`)

as T(`)
i =

Õp
j=1 Âi jH

(`)
j for each process P(i).

For each distributed process P(i) in parallel, S����� proceeds
the forward pass and backpropagation with the help of collective
operations such as ring-based pipelined Broadcast and AllReduce.
At the beginning, the staleness of the intermediate embedding
results H(`�1)

j of process j is checked in Line 6 before broadcasting
to other workers. If the process state is ACTIVE, then H(`�1)

j is sent
to all workers in Line 7 from the root rank and copied to all ranks

via a One-to-All Broadcast sequentially and cached accordingly in
Line 8. Otherwise if the process state is STALE, S����� performs
Skip-Broadcast to swap out the process j from the communication
topology but leave it in the broadcast graph so that the worker j can
still receive updates. The process j stops broadcasting out H(`�1)

j for
this round, so all other workers repeatedly use their cached version
of stale embeddings H̃(`�1)

j . Thus, either the up-to-date results from
the last epoch are used in Line 10 or the cached stale results from
earlier epochs are automatically repeated for local computation in
Line 13. Next, the intermediate results T(`�1)

i are used to compute
the embeddings H(`)

i for each process P(i). After computing the
latest embeddings H(`)

i for process i , S����� checks whether H(`)
i

is within the staleness bound so that the worker state �ag F(i)
remains STALE to keep Skip-Broadcast H(`)

i or becomes ACTIVE to
send out H(`)

i in Line 16. Note that for staleness checking, S�����
either inspects staleness de�ned in De�nition 2, De�nition 3, or
De�nition 4 in Line 16, respectively.

In the backward pass, gradients �j are broadcast similarly. To
reduce communication of gradients sending, gradient clipping is
performed locally in Line 19, also as a regularizer of historical
embeddings. Conventionally, gradients are clipped whenever the
L2-norm | | · | |2 exceeds a threshold th. With decentralized P workers,
denote the local threshold as thi . Assume i.i.d. gradients on each
worker with variance � 2, then the sum of gradients on all workers
has variance P� 2. Hence, E | |�i | |2 ⇡ � and E | |� | |2 ⇡ P

1
2 � . It follows

that the local gradient threshold is scaled by P
1
2 , that is, thi = P

1
2 th.

Finally to update the model, an AllReduce operation is performed
to combine gradients from all workers and send them to all ranks.
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Figure 5: Communication-Avoiding Data-Parallel GNN training, from a se-
quential matrix multiplication processing perspective.

Since the GNN processing is treated purely as sequential matrix
multiplication operations as shown in Figure 5, matrix blocks are
directly moved among decentralized workers. Thus, S����� avoids
the irregular and complex request-send communication to fetch
neighbors in vertex-centric distributed GNNs. To further avoid
communication, we de�ne historical embeddings in Section 3.3 so
that S����� can cache and reuse historical embeddings.

3.3 Historical Embeddings
With P decentralized workers, the embedding matrix H split by
rows is denoted as Hi where i 2 [1, p] and is distributed to each
P(i) process. To compute the embedding H(`) in a general GNN
in Equation (1), we need to combine the matrix block Hi on each
GPU. Inspired by historical embeddings h̃(`) [5, 12], we generalize
the idea of historical embeddings as stale intermediate embedding
results computed by other workers in distributed GNNs. Thus,
the embedding matrix H(`) in Equation (2) consists of two parts –
the latest embedding submatrices from active workers which just
broadcast the results and the historical embedding submatrices
from stale workers whose embedding variation is small enough to
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be neglected. The historical embeddings are stored in the cache on
each GPU, only preserving the fresh ones.

Let [] denotes the vertical concatenation of matrix blocks. The
processor state ACTIVE and STALE denote whether the processor
P(i) is active to broadcast the latest result of embedding submatrix
H(`)
i or stale so the history H̃(`)

i is used:

H(`) = �
✓ h
H(`�1)
i

iP
i=1

, Â;W(`�1)
◆

⇡ �
✓ h
H(`�1)
i :P (i )(ACTIVE | H̃(`�1)

i :P (i )(STALE

iP
i=1

, Â;W(`�1)
◆
.

(7)

3.4 Skip-Broadcast
With the decentralized scheme, the question is how we can ad-
just the communication operation such as one-to-all broadcast to
support historical embeddings with bounded staleness. Since most
implementations of such decentralized scheme [34] is based on
bulk synchronism, it is challenging to directly enforce historical
embeddings. Thus, we propose a communication primitive that
is e�cient to implement and requires no centralized parameter
servers. Particularly, a Skip-Broadcast scheme is designed, allowing
seamless reshaping of the communication topology during training.
To realize Skip-Broadcast, S����� keeps the state �ag Flag(i) on
each worker i to indicate the corresponding worker status for the
embeddings Hi computed on that worker, where i 2 [1, p]. Specif-
ically, Flag(i)==ACTIVE means worker i needs to broadcast its
latest version of embeddings Hi. During the broadcast, the latest
embeddingsHi should be sent to all other workers and cached there
respectively. If Flag(i) turns to STALE, S����� can Skip-Broadcast
Hi and let other workers utilize their cached stale embeddings.

Take Figure 6 as an example, GPU 2 is noti�ed with Flag(2)
with STALE state so that other workers rely on their cached stale
version of the historical embeddings H2. Then the ring-based com-
munication topology is reshaped seamlessly to skip GPU 2 and
connect its neighbors directly. To receive updated embeddings and
gradients from other workers, it should be pointed out that GPU
2 is still preserved in the graph. Therefore, the Skip-Broadcast is
performed in replacement of the original broadcast operation when-
ever the portion of embeddings computed by the corresponding
worker is within the bounded staleness. By bypassing the STALE
worker to broadcast its stale embeddings, S����� further reduces
the communication overhead. The stale �ag Flag(i) is checked in
every iteration and updated if needed to help reshape the ring-based
communication topology.

G1G0

G3 G2 G2

G1G0

G3

G1G0

G2G3

G1G0

Figure 6: Skip-Broadcast Example, with STALE GPU worker marked red.

3.5 Bounded Embedding Staleness
With skip-broadcast to support embedding staleness, workers can
result with embeddings of di�erent iterations from others. To man-
age system staleness with such mixed-version issue, S����� sup-
ports bounded embedding staleness. Though bounded gradient
staleness is deeply investigated [7, 17, 38] in traditional distributed
ML for stochastic gradient descent (SGD), its main purpose is to
help SGD converge, mitigating negative e�ects from stale gradients.

However, we actively utilize stale embeddings to avoid communi-
cation. By introducing a set of novel bounded embedding staleness
metrics � , we can control the errors caused by stale embeddings.
3.5.1 Bounded Staleness Definition Variants.
We �rstly provide the de�nitions of three staleness of historical
embeddings, including one measured by the variation gap of em-
beddings. The �rst epoch-�xed embedding staleness of one local
update on each processor P(i) is formalized as follows:
De�nition 2 (Epoch-Fixed Embedding Staleness). For all pro-
cessors in the decentralized GNNs, let ẽ and e denote the epoch number
of the intermediate stale embeddings and the current epoch respec-
tively, the maximum number �E of stale epochs that can be tolerated
is de�ned as the �xed-epoch embedding staleness: |ẽ � e |  �E , where
the intermediate embeddings during model computation are only
broadcast after every �E epochs.

However, all workers can still be regarded as working in a fully
synchronous fashion. Thus, we propose two more �exible metrics
for the decentralized scheme, so workers may rely on stale em-
beddings of adaptive iterations from others. Thus, the system can
better manage its staleness where workers work at di�erent speed.
De�nition 3 (Epoch-Adaptive Embedding Staleness). For each
processor P(i) in the decentralized GNNs, let the maximum epoch gap
�A of embeddings between P(i) and all its in-coming neighbor proces-
sors be the epoch-adaptive embedding staleness. P(i) must broadcast
its latest results to others after receiving stale embeddings from all its
in-comoing neighbors at most �A epochs ago.
De�nition 4 (Epoch-AdaptiveVariation-GapEmbedding Stal-
eness). For each processor P(i) in the decentralized GNNs, let the
maximum variation gap �H in the values of the stale embeddings
that can be tolerated be de�ned as the epoch-adaptive variation-gap
embedding staleness: kH̃(`)

i � H
(`)
i k  �H , where the intermediate em-

beddings are adaptively broadcast whenever the embedding variation
gap exceeds �H regardless of the number of epochs skipped.

Since all above metrics are de�ned locally on each worker, we
need no centralized or global monitor to break the decentralized
scheme. Particularly, one can easily adapt the general de�nitions
above to any speci�c distributed GNN systems as the metrics to
study how the stale results a�ect the distributed training.
3.5.2 Bounded Staleness Check Procedure.
Now, we introduce the procedure to check whether the cached
historical embeddings exceed the staleness bound based on de�ni-
tions in Section 3.5.1, to manage system staleness caused by the
mixed-version problem. One crucial distinction from traditional
distributed ML is that the bounded staleness is enforced on the
intermediate embeddings Hi instead of gradients, with a new per-
spective to avoid unnecessary communication in distributed GNNs
by taking the initiative to utilize stale embeddings. However, we
need to control the errors caused by using stale embeddings. To
allow bounded embedding staleness in a decentralized setting, it
is natural to design a light-weighted local state tracker on each
worker for e�cient bounded embedding staleness check in S�����.

From the database community, we adapt the idea of version
control [19] but in a decentralized approach tomonitor the staleness
of the system. We use Ver to denote the current training epoch
number. Then on each worker i , upon the arrival of each latest Hj
from the worker j , we stamp Hj with version Veri (j), i.e., the epoch

1941



number where Hj is computed, correspondingly. We keep track of
the version number for all the Hj where j 2 [1, · · · , p].

Algorithm 2 Embedding Staleness Check based on De�nition 2.
Input: Current epoch number Ver; Cached embedding version Ver(j)

1: procedure STALE( )
2: if Ver � Ver(j) > �E then . Bounded staleness exceeded
3: F(i) ACTIVE . Set �ag ACTIVE to indicate too-stale state
4: else F(i) STALE . Staleness within tolerance

Firstly, we introduce the procedure to check the epoch-�xed em-
bedding staleness in De�nition 2. The �rst modi�cation to the de-
centralized stale parallel Algorithm1 is in Line 8: from CACHE(H(`�1)

j )

to CACHE(H(`�1)
j , Ver(j)). The version (epoch number) of latest broad-

cast H(`�1)
j is stampedwith Ver(j). After a forward and backward pass

are �nished, a new epoch is proceeded. The algorithm to check the
epoch-�xed embedding staleness is shown in Algorithm 2. Notice
that the subscript i for Veri (j) is omitted since this basic staleness
bound is uni�ed for all workers. An �E = 1 example in Figure 7(a)
shows the embeddings skip-broadcast every other epoch.
Algorithm 3 Embedding Staleness Check based on De�nition 3.

Input: Current epoch number Ver; Cached embedding version Veri (j)
1: procedure STALE( )
2: for all process P (i) in parallel do
3: for j = 1 to p do
4: . Worker i exceeds staleness bound on cached H̃`�1

j
5: if Ver � Veri (j) > �A then
6: F(j) ACTIVE . Indicate too-stale state for H̃`�1

j
7: EndProcedure for P (j)
Secondly, for the epoch-adaptive embedding staleness in Def-

inition 3, the modi�cation to Algorithm1 is also in Line 8: from
CACHE(H(`�1)

j ) to CACHE(H(`�1)
j , Veri (j)). The latest broadcast H(`�1)

j is
stamped with Veri (j) for each H(`�1)

j on processor i . Algorithm 3
depicts the staleness checking procedure. If the embeddings H̃`�1

j
of any other worker j cached on worker i is from �A epochs ago
(Line 5), the worker i is running too fast for the worker j and H̃j

is too stale, so F(j) is turned to ACTIVE to send out Hj soon. This
ensures that the worker only broadcasts latest results proceeded
in the new epoch when it receives updates from other workers
at most �A epochs ago. An example with �A = 1 is shown in Fig-
ure 7(b). In Epoch 9, the results H2_7 of worker 2 become too stale
since 9�7 = 2 > �A = 1 , worker 2 becomes ACTIVE and broadcasts
updated results to all others as shown in Epoch 10. Then worker 1
becomes ACTIVE because others are using H1_8 which is too stale.
Similarly, work 3 and 4 are designated as ACTIVE in Epoch 11.

Algorithm 4 Embedding Staleness Check based on De�nition 4.
Input: Current H`

i computed in P (i); Cached embeddings H̃`
i

1: procedure STALE( )
2: if | |H`

i � H̃
`
i | | > �H then . Bounded staleness exceeded

3: F(i) ACTIVE . Set �ag ACTIVE to indicate too-stale state
4: else F(i) STALE . Staleness within tolerance

Lastly, for the epoch-adaptive variation-gap embedding staleness
in De�nition 4, the staleness check is purely based on the embed-
ding variation locally on each worker. The checking procedure
is elaborated in Algorithm 4. If the embedding variation of H`

i is
within the bound, latest results need no broadcasting, and other
workers can use the stale historical embedding H̃`

i . Otherwise, the
embedding variation becomes too large, then the latest H`

i needs
broadcasting and caching. It is noticed that no version tracker is

required here. As Figure 7(c) shows, since the staleness is only based
on the embedding variation gap, workers may become STALE after
an adaptive number of epochs.
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Figure 7: Example training based on each bounded embedding staleness:
worker i is denoted by P (i) where i 2 [1, 4] and Hi_e denotes the results ob-
tained from process i in epoch e ; ACTIVE worker is colored green while STALE
worker is colored red. For Algorithm 3 and 4, the staleness bound �E = �A = 1.
For Algorithm 5, a toy example is given.

4 THEORETICAL RESULTS
In this section, we present the theoretical results. Firstly, we bound
the communication cost based on the � – � communication cost
analyzing model in Section 4.1. Then, we bound the approxima-
tion errors of the embeddings and gradients and guarantee the
convergence with S����� in Section 4.2.
4.1 Communication Cost Analysis
The reduced communication cost relates to the staleness tolerance
de�ned in Section 3.5. Naturally, the communication cost depends
on the scale of the tolerance: the larger the tolerance, the more the
communication overhead can be saved. To derive the bound for the
communication cost with staleness, we �rst deduce the communi-
cation cost without staleness based on the analysis by Tripathy et
al.[34] and Chan et al.[4], using the conventional communication
analyzing model � – � [4, 34]. Speci�cally, in this analyzing model,
� is the latency of constant time units despite the message size and
� is the bandwidth which denotes the corresponding time units
taken per word for making to the target worker. Note that the lower
bound for the communication cost of one single F -word broadcast
message to p processes is O (� + F � ) [34], where F is the embedding
vector length. Also, the lower bound for the communication cost
of all-reduce COST(ar ) in Equation (5) is O

⇣
logp � + 2 p�1p F �

⌘
[4].

Thus, if without tolerating staleness, the lower bound on the
communication cost for each process in Equation (2) in the for-
ward pass is (p � 1)

⇣
� + N

p F �
⌘
to broadcast the intermediate results

H(`)
j to other (p � 1) processes, while in the backpropagation it is

(p � 1)
⇣
� + N

p F �
⌘
for Equation (4) and

⇣
logp � + 2 p�1p F 2�

⌘
for Equa-

tion (5) which requires AllReduce on (F ⇥ F )-matrices.
Hence, the total communicationCOST(comm) has a lower bound:

O

✓
L
✓
(2 (p � 1) + logp)� + 2

p � 1
p

F (N + F ) �
◆◆

. (8)

Now assume that eT is the total epoch number and eR denotes
the number of epochs performing skip-broadcast and re-utilizing
historical embeddings, we can derive that the lower bound of the
communication cost COST(comm?

) for the proposed stale parallel
algorithms. As shown in the following, the cost is composed of two
parts: 1) for the normal epochs using latest results, the communica-
tion cost is the same as the COST(comm) in Equation (8); 2) for the
remaining epochs using historical embeddings, the communication
cost of broadcast is bypassed, leaving only the cost of AllReduce
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in Equation (5) on low-rank matrices COST(ar). Thus, the bound
for the communication cost is deduced as:

COST(comm?
) = (eT � eR )COST(comm) + eRL COST(ar )
= L {[2 (p � 1) (eT � eR ) + eT logp]�

+ 2 (p � 1)/p F [N (eT � eR ) + eT F ] � } .

Therefore, we obtain a tighter bound though the relative commu-
nication saving may still be obscure. It is left to be established by
the empirical studies in Section 5.3.1 that our framework can save
up to 74% communication cost.

4.2 Convergence Analysis
4.2.1 Proof Roadmap. In this section, on the basis of bounded em-
bedding staleness, we provide theoretical guarantees of S�����: the
approximation error bounds on the intermediate embedding results
and gradients, as well as its ensured convergence. We show that the
bene�ts of caching and repeatedly utilizing historical information
to reduce communication come at approximation errors that can be
bounded. Speci�cally, we deduce the convergence guarantee with
the following procedures in Section 4.2.2:

• Proposition 1 lays out necessary and basic inequality oper-
ations required in this theoretical analysis;

• Lemma 1 states that with bounded staleness on the embed-
dings, the approximations of the intermediate matrix results
are close to the exact ones in the training process;

• Lemma 2 further indicates the approximations of gradients
in the training process are close to the exact ones;

• Theorem 1 concludes that the changes of the weights dur-
ing training are slow enough for the gradients to be asymp-
totically unbiased, thus guarantees the convergence.

We only present the theoretical analysis on the stricter De�-
nition 4 due to space limit. The corresponding theoretical results
of the basic �xed-epoch staleness can be derived by the stricter
one via setting �H = max� kHk ⇥ �E where max� kHk denotes the
maximum value variation of H after any epoch.
4.2.2 Details. We derive Theorem 1 based on the proof [5, The-
orem 2]. Nonetheless, our proof is distinct from the proof [5] in
the following aspects, based on the assumption that the activation
� (·) and the gradients rL are �-Lipschitz continuous in view of
their possibly high non-linearity: 1) we perform full-batch GNN
training without sampling; 2) we train in a decentralized parallel
fashion; 3) we adaptively reuse the historical embeddings, where
the number of stale epochs is automatically determined rather than
just use stale activations from one epoch away in most works.

First of all, we extract the proposition [5, Proposition B] below
as it is needed in our proof:
Proposition 1. Denote kAk1 = maxi , j |A (i , j) | and col (A) as the col-
umn number of matrixA, we have kA+Bk1  kAk1+ kBk1, kA�Bk1 
kAk1 kBk1, and kABk1  col (A)kAk1 kBk1.

The proof [5, Appendix C] is omitted. We further denote C as
the maximum number of columns that exists in our proof:

C := max{col (Â), col (H(0)
), · · · ,

col (H(L)
), col (W(0)

), · · · , col (W(L)
)}.

Next, we derive that with bounded embedding staleness, the
approximation error of the intermediate results is bounded in de-
centralized training. Thus, we have theoretical grounds for skip-
broadcasting and embedding reuse without sacri�cing much.

Lemma 1. For any N /p input activations H̃(`)
i in each process P(i)

where i 2 {1, . . . , p }, given that 1) the activation function � (·) is �-
Lipschitz continuous; 2) the matrices Âi , H̃i , Hi , andWi are bounded by
some constant B; 3) the historical embeddings H̃(`)

i are close to the exact
embeddings H(`)

i with the staleness bound �H where kH̃(`)
i � H

(`)
i k1 

�H : then the approximation error of the intermediate outputs T̃i and
Z̃i are also bounded by some constants: (1) kT̃(`)

i � T(`)
i k1  pCB�H ;

(2) kZ̃(`)
i � Z

(`)
i k1  C

2B2�H , where ` 2 [1, L] denotes the `-th layer.
P����. In our decentralized GNN training, H̃i is either composed

of the up-to-date embeddings Hi or the historical embeddings H̃i =

Hs from stale epochs s < i where kHi � Hs k  �H .
By Proposition 1, we have

kT̃(`)
i � T

(`)
i k1 = k

p’
j=1

Âi j H̃
(`)
j �

p’
j=1

Âi jH
(`)
j k1

 p
p

max
j=1
kÂi j

⇣
H̃(`)
j � H

(`)
j

⌘
k1  pCB�H ,

and also
kZ̃(`)

i � Z
(`)
i k1 = kÂi H̃

(`�1)
i W(`�1)

i � ÂiH
(`�1)
i W(`�1)

i k1

 C2
kÂi k1 kH̃

(`�1)
i � H(`�1)

i k1 kW
(`�1)
i k1  C2B2�H .

⇤
Then, we show that the approximate gradients �̃ (`) = rZ̃(`) L̃ are

close to the exact gradients � (`)
i = r

Z(`)i
L.

Lemma 2. For each process P(i) where i 2 [1,p], given that 1) the ac-
tivation function � (·) and the gradient rL are �-Lipschitz continuous;
2) the matrices Âi , Wi , � (`) and � 0 (Zi ) are bounded by some constant
B: then the approximation error of the gradients r

Z̃(`)i
L̃ and r

W(`)
i

L̃

are also bounded by some constants: (1) kr
Z̃(`)i

L̃ � r
Z(`)i

L k1  K ;

(2) kr
W(`)
i

L̃ � r
W(`)
i

L k1  K ; where ` 2 {1, · · · , L} denotes the `-th
GNN layer and K depends on �, C , B, and �H .

P����. By the �-Lipschitz continuity of � (·) and rZ(`) L, Equa-
tion (4), Proposition 1 and Lemma 1, we prove the approximation
error bound of rZ̃(`) L̃ by induction.

Base case. For the �nal layer L, by the �-Lipschitz continuity of
rZ(`) L and Lemma 1, we have

kr
Z̃(L)i

L̃ � r
Z̃(L)i

L k1  � kZ̃(L)
i � Z

(L)
i k1  �C2B2�H .

So the statement holds for ` = L, where K(L) = �C2B2�H .
Induction hypothesis. Assume thatkr

Z̃(`
0)

i
L̃ � r

Z̃(`
0)

i
L k1  K(`0)

holds for all `0 > `. Then for layer `, by Equation (4), Proposition 1,
and Lemma 1, we have

kr
Z̃(`)i

L̃ � r
Z̃(`)i

L k1 = k�̃
(`+1)
i Âi

⇣
W(`)

i

⌘|
� � 0

⇣
Z̃(`)
i

⌘

� � (`+1)
i Âi

⇣
W(`)

i

⌘|
� � 0

⇣
Z(`)
i

⌘
k1

 C2
{ k�̃ (`+1)

i k1 kÂi k1 k
⇣
W(`)

i

⌘|
k1 k� 0

⇣
Z̃(`)
i

⌘
� � 0

⇣
Z(`)
i

⌘
k1

+ k�̃ (`+1)
i � � (`+1)

i k1 kÂi k1 k
⇣
W(`)

i

⌘|
k1 k� 0

⇣
Z(`)
i

⌘
k1 }

 C2 �B3�(C2B2�H ) + K(`+1)B3 � = C2B3 �K(L) + K(`+1)
�
.

Setting K(`) = C2B3 �K(L) + K(`+1)
�, we �nd the inequality also holds

for layer `, which completes the inductive step.
Conclusion. The above concludes the proof by induction.
The bound of the approximation error of r

W(`)
i

L̃ can be obtained
in a similar fashion, which is omitted due to space limitations. ⇤

Finally, we conclude the convergence guarantee of proposed
decentralized GNN training with bounded embedding staleness.
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Theorem 1.With the GNN model of L layers, given the local mini-
mizer W?, the initial weights W(1), and the staleness bound �H , sup-
pose that 1) the activation function � (·) and the gradient rL are
�-Lipschitz continuous; 2) for the matrices Â, H, and W, all the gradi-
ents of the loss function with respect to the weight matrix krW L̃ k1,
krWL k1 and krL(W)k1 are bounded by some constant G > 0; 3) the
loss L(W) is �-smooth: then there exists a constant K > 0 such
that 8N > L�H , if the distributed GNN is trained in parallel cor-
respondingly with bounded staleness for R  N iterations, where R 2
[1, · · · ,N ] is chosen uniformly and the learning rate � = min{ 1

� ,
1
p
N
},

we have
ER krL(W(R))k

2
F  2

L(W(1)) � L(W?
) +

�K
2

p
N

, (9)

where the learning rate � = min{ 1
� ,

1
p
N
}.

P����. For convenience, let �(i ) = rW(i ) L̃�rL(W(i )), by Lemma 2
and the �-smoothness of the L(W), we derive L(W(i+1))

 L(W(i )) + hrL(W(i )), W(i+1) �W(i ) i +
�
2
�2 krW(i ) L̃ k

2
F

= L(W(i )) � � hrL(W(i )), rW(i ) L̃ i +
�
2
�2 krW(i ) L̃ k

2
F

= L(W(i )) � � hrL(W(i )), �(i ) i � � krL(W(i ))k
2
F

+
�
2
�2

�
k�(i ) k

2
F + krL(W(i ))k

2
F + 2h�(i ) , rL(W(i ))i

�
 L(W(i )) � (� �

�
2
�2)krL(W(i ))k

2
F +

�
2
�2 k�(i ) k

2
F .

By Lemma 2, k�(i ) k
2
F  krW(i ) L̃ k1 + krL(W(i ))k1  2G2

 K . Thus,

L(W(i+1))  L(W(i )) � (� �
�
2
�2)krL(W(i ))k

2
F +

�
2
�2K . (10)

For all i , we sum up Equation (10) and rearrange the terms:

(� �
�
2
�2)

N’
i=1
krL(W(i ))k

2
F  L(W(1)) � L(W?

) +
�
2
�2KN . (11)

Recall � = min{ 1
� ,

1
p
N
}, we divide both sides of Equation (11) by

N (� � �
2 �

2
), then we obtain ER krL(W(R))k

2
F :

=
1
N

N’
i=1
krL(W(i ))k

2
F  2

L(W(1)) � L(W?
) +

�
2 �

2KN
N�(2 � ��)

 2
L(W(1)) � L(W?

)

N�
+ ��K  2

L(W(1)) � L(W?
) +

�K
2

p
N

.

In particular, ER krL(W(R))k
2
F ! 0 when N ! 1. The above con-

cludes that the convergence is guaranteed. ⇤

5 EXPERIMENTS
We empirically evaluate the proposed framework S�����, targeting
at answering the following major questions:

• Can it e�ectively avoid communication under di�erent se-
tups? In comparison to SOTAworks? (Section 5.3.1 and 5.3.2)

• Can it avoid communication while maintaining the accuracy
with staleness-awareness? (Section 5.3.3)

• What is the distribution of the skipped epochs in S�����?
Is it adaptive to manage staleness? (Section 5.3.4)

• How is the memory footprint with the proposed historical
embedding caching? (Section 5.3.5)

5.1 Datasets
We evaluate S����� on �ve commonly-used [2] large-scale bench-
mark datasets [15, 39], listed in Table 2. The task on Flickr and
Reddit is single-class node classi�cation, while on Amazon, ogbn-
products, and ogbn-papers100M is multi-class classi�cations. Specif-
ically, Flickr models the relations between images uploaded with

common properties. Reddit dataset consists of posts and user com-
ments to predict the topical communities that the posts belong
to. On Amazon and ogbn-product datasets with node representing
product and edge representing products purchased by one customer,
we need to categorize the product nodes with multiple labels. Ogbn-
papers100M is a citation graph to predict subject areas of papers.
All datasets follow the “�xed-partition” splits [15, 39].

Table 2: Summary of the graph data statistics used in our experiments to
evaluate the proposed framework (“m”: multi-class class�cation)

Dataset | V | | E | | F | # Class Byte size

Flickr 89,250 899,756 500 7 529 MB
Reddit 232,965 11,606,919 602 41 3.53 GB
Amazon 1,598,960 132,169,734 200 107 (m) 2.34 GB

ogbn-products 2,449,029 61,859,140 100 47 1.38 GB
ogbn-papers100M 111,059,956 1,615,685,872 200 172 56.2 GB

5.2 Implementation and Setups
We implement S����� on top of a general PyTorch [31] imple-
mentation of the classical parallel algorithms [14] adapted to dis-
tributed GNN training [34]. Fundamentally, S����� is di�erent,
since it avoids communication adaptively via the skip-broadcast of
cached historical embeddings based on proposed bounded embed-
ding staleness. We implement bounded staleness �E in De�nition 2
with Algorithm 1 and 2 as a baseline SCS-E that automatically
skip-broadcasts and reuses the cached stale results until every �E
epochs. Then, we implement �A in De�nition 3 with Algorithm 1
and 3 as SCS-A, and �H in De�nition 4 with Algorithm 1 and 4
as SCS-H, that skip-broadcast cached historical embeddings for
an adaptive number of epochs. Additionally, we implement SkipG
[29] on bounded gradient staleness from traditional distributed
training to prove bounded embedding staleness is more superior.

Particularly, S����� supports the following in decentralized
training: cache for historical embeddings; version controller and
bounded staleness checker; Skip-Broadcast operator. At each `-th
layer ` 2 [1, L], the staleness checker examines the gap between
the current epoch number and the version of cached results. Or it
compares the latest embeddings H`�1

i to the historical embeddings
to check if the staleness bound �E /�A/�H is exceeded. The cache
of historical embeddings is updated correspondingly if the results
turn too stale, where we only store the newly received embeddings.
Following the convention [5, 8, 12], warm-up epochs without skip-
ping any broadcasting are set up to protect the performance, since
the variation in results may be large in the early stage of learning.
Notably, S����� is orthogonal to any system that supports arbi-
trary partitioning of matrices. S����� is easy to deploy and extend
due to the wide adoption of PyTorch in communities.

Our experiments are performed on four di�erent GPU con�gu-
rations: ¨ eight RTX 2080 Ti connected by PCIe 3.0 ⇥ 16; ≠ two
servers connected by 10Gbps Ethernet - each has four RTX 2080 Ti
via PCIe 3.0; Æ four A100 40GB via NVLink; Ø four V100 32GB via
NVLink. We evaluate S����� with ¨ on Flickr, Reddit, Amazon,
and ogbn-products, and ¨≠Æ on ogbn-products. For the largest
ogbn-papers100M, Æ is used, while Ø, as a commonly used con�gu-
ration, is used for the overall comparison with other SOTA systems
[3, 16, 24, 33, 34]. We adopt the GCN model [20] of 3 or 4 layers
with variations on the hidden feature size (i.e., 16 for Flickr and
Reddit, 256 for Amazon, 128 for ogbn-products, and {16, 32, 64} for
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Figure 8: Communication-avoiding performance using all 8GPUs on Flickr/Reddit/Amazon/ogbn-products datasets. In each subplot, x-axis denotes themethods
compared: CAGNET [34], SkipG [29], SCS-E1/E2/E3 with �E = {1, 2, 3}, SCS-A1/A2/A3 with �A = {1, 2, 3}, SCS-H1/H2/H3 with �H = {0.01, 0.02, 0.03}; y-xis
denotes the time proportion during training, where blue bar denotes model computation cost and orange bar denotes communication cost.

            
(a) GPU Con�gurations.

                                    
(b) Number of GPUs.

              

 

(c) Number of Total GNN Layers.
       

 

(d) Size of Hidden Feature.
Figure 9: The performance with system architecture variants (GPU con�gurations/number of GPUs/GNN layer number/GNN hidden feature size) compared
to CAGNET on ogbn-products/Flickr/Reddit/ogbn-papers100M datasets, respectively. In each subplot, y-axis denotes the time proportion during training, where
blue bar denotes model computation cost and orange bar denotes communication cost. For the x-axis, we denote the method/GPU con�gurations in Fig. 9a,
method/number of GPUs in Fig. 9b, method/layer number in Fig. 9c, and method/hidden feature size in Fig. 9d.

ogb-papers100M). Moreover, we use 2/4/8 GPUs in ¨ for Flickr as
well as ¨≠Æ for ogbn-products. We also implement GAT [35] to
verify the generality of S����� on di�erent GNN models.

The total training epoch number eT is 300/300/400/500/200 for
Flickr, Reddit, Amazon, ogbn-products, and ogbn-papers100M. Fol-
lowing the convention to set warm-up epochs in staleness-tolerant
training [5, 8, 12], we set 50 warm-up epochs for all datasets. For
the staleness bound, we choose �E in [1, 7], �A in [1, 5] and �H in
[0.01, 0.05] to control the variation amplitude. Without loss of gen-
erality, we show the main outcomes with �E = {1, 5}, �A = {1, 5}
and �H = {0.01, 0.05} in Section 5.3.1 to 5.3.5, accompanied by an
analysis of the in�uence on staleness-aware training in Section 5.3.7.

5.3 Results
We answer the questions at the beginning of Section 5, speci�cally:
5.3.1 S����� is E�ective. First, we demonstrate the e�ectiveness
on communication reduction of S����� on di�erent benchmark
datasets. Note that the datasets are with increasing order of mag-
nitude to show the scalability. In Figure 8, we show results with
accuracy loss within 0.01. Compared to the SOTA CAGNET and
bounded-gradient method SkipG, all our system variants further
avoid communication by at least 35% to 74% with bounded embed-
ding staleness. Though SkipG via traditional gradient stalenss also
outperforms CAGNET since it skip-broadcasts gradients during
the training, it avoids communication sightlessly at the price of
accuracy. Compared to S����� variants, SkipG su�ers from seri-
ous accuracy deterioration up to 5% as shown in Figure 10, while
S����� can preserve the GNN performance on all datasets. Besides,
as Figure 8 shows, S����� variants can still outperform SkipG for
29% to 63% more communication reduction on di�erent datasets.

To highlight the best results, we avoid about 74% of commu-
nication on Flickr with SCS-H3 with �H = 0.03, 48% on Reddit
with SCS-A3, and 50% on ogbn-products with SCS-H3. It should
be noticed that though SCS-E shows competitive communication
avoiding performance, its accuracy degrades drastically with the

increasing �E as Figure 10b, 11a, and 12b shows, compared to SCS-
A/H. Also, the 35% communication avoding on Amazon and ogbn-
papers100M seems not impressive since Amazon is trained on a
deeper 4-layer GNN with the largest hidden feature size 256 to
guarantee the accuracy and ogbn-papers100M is the largest dataset,
both with intrinsically larger communication volume. Considering
the better performance preserving, the more adaptive SCS-A/H are
in fact more robust. Above analysis veri�es the e�ectiveness of
bounded staleness and the adaptive communication reduction.

Without loss of generality, we demonstrate the generality of
S�����with its worst-behaved baselines SCS-E1/A1/H1 of the least
communication avoiding, since our goal is to study the in�uence
of di�erent system con�gurations. We evaluate the varaints of
system architectures in terms of GPU con�gurations, number of
GPUs, number of total GNN layers, and hidden feature size on
ogbn-products, Flickr, Reddit, and ogbn-papers100M in Figure 9. To
further show the training time improvement, we present the epoch
time breakdown with computation and communication in Table 3.

Table 3: Summary of detailed time breakdown (second) measured in sec-
onds in one epoch with SCS-A/E/H compared to CAGNET, on Reddit dataset.

Con�g Operation CAGNET SCS-A1 SCS-E SCS-H

¨ 8*1
p2p: no

compute 0.365 0.359 0.359 0.343
communicate 1 0.687 0.697 0.675

≠ 4*2
p2p: no

compute 0.093 0.093 0.092 0.090
communicate 1 0.717 0.714 0.698

Æ 4*1
p2p: yes

compute 0.437 0.431 0.431 0.425
communicate 1 0.703 0.708 0.692

Speci�cally, in Figure 9a, the communication time under di�erent
GPU con�gurations varies greatly. However, S����� can achieve
consistent communication avoiding in all the con�gurations ¨≠Æ
– with both single-machine multiple-GPUs and multi-server envi-
ronment regardless of the speci�c GPU tpyes, though GPU con�g-
urations have a great impact on the communication itself. Further,
we examine the detailed time breakdown under ¨≠Æ in Table 3.
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(a) Accuracy on Flickr.
  

�

 
 

�

(b) Accuracy on Reddit.

 

(c) Accuracy on Amazon.
Figure 10: The accuracy results using all eight GPUs on Flickr/Reddict/Amazon datasets, respectively. In each subplot, x-axis denotes the methods compared:
CAGNET [34], SkipG [29], SCS-E1/E2 denotes �E = {1, 2}, SCS-A1/A2 �A = {1, 2}, SCS-H1/H2 �H = {0.01, 0.02}; y-xis denotes the time proportion.

(a) E�ects of �E
    

(b) E�ects of �A

 

(c) E�ects of �H , Reddit

 
 
 

(d) E�ects of �H , ogbn-products
Figure 11: The scatter plots of NLL loss with epochs performing broadcast on Reddit and ogbn-products: SCS-E1/E2/E3/E5 denotes �E = {1, 2, 3, 5}; SCS-
A1/A2/A3/A5 denotes �A = {1, 2, 3, 5}; SCS-H1/H2/H3/H5 denotes �H = {0.01, 0.02, 0.03, 0.05}

SCS-A1 can achieve the least overhead consistently in all the set-
tings, including the multi-server one. As Figure 9b shows, with
increasing GPU number, the total cost compared to CAGNET are
reduced continually. Though the communication cost increase with
the increasing GPU number, with SCS-H, we can reduce the com-
munication cost using all 8 GPUs to get close to the communication
cost of CAGNET using 2 GPUs, together with 67% reduction on the
computation cost. Importantly, the communication proportion we
avoid increases with the number of GPU used, which is hard for
the centralized PS architectures [23] to achieve. For the in�uence of
total GNN layers in Fig. 9c, we show that communication is avoided
for di�erent GNN depths. Further, when increasing hidden feature
size, Fig. 9d shows that compared to CAGNET, the communication
increasing of our epoch-adaptive strategy is much less and slower.
Above concludes the robustness and generality of our framework
on di�erent system variants.

5.3.2 S�����Outperforms SOTA Systems. In Table 4, we give
an overall throughput (epochs/second) comparison of S����� (SCS-
A1) to �ve related SOTA distributed systems over their commonly-
used Reddit dataset, including: CAGNET [34], RoC [16], Dorylus
[33], sampling-based PaGraph [24], and DGCL [3]. RoC proposes a
sophisticated memorymanagement method while PaGraph exploits
static caching of nodes with higher degree in the GPU memory,
both leveraging a nontrivial partitioning algorithm to balance the
workload and reduce the cross-device data visits. Dorylus adopts
bounded staleness asynchrony for low-cost distributed training
with CPU servers, while DGCL reduces communication by �nding
optimal communication routes in the speci�c system topology for
every node in the entire graph. For all the works, we report their
best results that can be compared.

The worst-behaved baseline SCS-A1 with the least communica-
tion avoiding, in fact, still outperforms all the related SOTA dis-
tributed GNN systems. We can process the fastest 10.3 epochs per

second with SCS-A1 with an average 1.86⇥ throughput. As com-
pared to Dorylus which aims at low-cost full-batch distributed GNN
training, we are 68.7⇥ faster and 80% cheaper.

5.3.3 S����� Converges Fast and Reserves the GNN Perfor-
mance. With repeated usage of historical embeddings to skip-
broadcast adaptively, S����� avoids communication while preserv-
ing the GNN accuracy. In Figure 10 and 12b, all proposed variants
converge to a very close (6 0.005), even the same, sometimes the
better accuracy results with communication avoiding, compared
to CAGNET. Besides, the convergence time to reach satisfying ac-
curacy is much faster. We also show that the traditional bounded
gradient method SkipG su�ers far more accuracy loss (6 0.02) com-
pared to our skip-broadcast historical embeddings. In general, we
draw the conclusion on the extremely close proximity of the model
performance between the proposed training framework and the
original GNN training, where the empirical results are in consistent
with the theoretical results as presented in Section 4.2.
Table 4: Throughput (epochs/second) of GCN on Reddit dataset over di�er-
ent distributed GNN systems. Note: 1) For RoC result, P100 (4.7 TFLOPs) is 67%
as fast as V100 (7 TFLOPS); 2) Dorylus costs 0.085/h*860s = $0.2 for 130 epochs,
while SCS-A costs 3.06/h*4*13s = $0.04 ; 3) PaGraph is sampling-based.

System Con�g Throughput Reference

SCS-A V100*4 1000/97.4 = 10.3 —

CAGNET V100*4 1/0.11 = 9 Fig 1 [34]

RoC P100*4 5 Fig 5 [16]

Dorylus Lambda on CPU*2 130/860 = 0.15 Sec 7.2 Table 4 [33]

PaGraph 1080ti*4 1 ⇤ 4.9 = 5 Sec 5.2 5.5; Fig 9 [24]

DGCL V100*4 ⇠ (1000/150) = 7 Fig 8(a) [3]

5.3.4 S����� is Staleness-Aware. We show the adaptivity in the
number of epochs that S����� skips when using cached historical
embeddings tomanage system staleness. As illustrated in Figure 12a,
we plot the corresponding epochs that actually perform broadcast-
ing in the training of the proposed framework. As the control group,
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epoch-�xed SCS-E1 in Figure 12a broadcast the latest results in ev-
ery 2 iterations. Thus its cached epochs – the orange dots, increase
regularly. As for epoch-adaptive schemes SCS-A and SCS-H, we
�nd the broadcasts exhibiting irregular patterns, by observing that
the interspaces between dots are at varying distances, especially
for SCS-H. The explanation is that the staleness in epoch number
is adaptively controlled by the staleness tolerance �H , also shown
by the earlier example in Figure 7. In accordance with Figure 8,
SCS-E1/A1/H1 cache the least epochs thus avoid the least commu-
nication as Figure 8 shows. Compared to the epoch-�xed SCS-E,
epoch-adaptive methods provide higher accuracy results (Figure 10).
It shows that managing system staleness can lead to better preserva-
tion of e�ectiveness. Notably, though SCS-E3 caches similar epochs
with similar communication avoiding in Figure 8, it su�ers from
the most accuracy loss in Figure 10. Taking all above into account,
we conclude that the adaptive strategy with staleness-awareness is
more robust and advantageous in communication avoiding with
little and even no loss of accuracy, sometimes even better accuracy.

(a) Cached epochs (b) NLL loss
Figure 12: The scatter plots with x-axis denoting epochs performing broad-
cast on Reddit, to show adaptive staleness-awareness. SCS-E1/E3 denotes
�E = {1, 2}; SCS-A1/A2/a3 denotes �A = {1, 2, 3}; SCS-H1/H2/H3 denotes
�H = {0.01, 0.02, 0.03}.

5.3.5 S����� is Memory-E�icient. Due to the GPU memory
constraints, the scalability of such distributed GNN training is in-
structed by the memory cost on GPUs. During S����� training,
there are three parts of GPU memory footprints: local data (i.e., em-
beddings, local adjacency matrix, and full weight matrix), memory
for matrix opertation, and cache of historical embeddings. Com-
pared to CAGNET, the only extra memory S����� consumes is
the cache of historical embeddings. Thus, we show the cache mem-
ory footprints in Table 5. Generally, the cache memory cost is a
particularly small proportion for modern GPUs on most datasets.

5.3.6 S����� is Easy to Generalize. Besides GCN, We addition-
ally generalize to another distinct full-GNN architecture GAT in Fig-
ure 13a and 13b. We simply verify that S����� can help avoid
communication on GAT while preserving accuracy. Note that GAT
does not achieve its best performance because machine learning
parameter-tuning is not a focus in our work. Also, we show the
performance of 1.5D CATNET too since 1D and 1.5D are reported
the best [34]. Though S����� can still avoid communication with
little harm to accuracy, the improvements on 1.5D is less due to its
intrinsically less broadcasts in the algorithm. Thus, S����� indeed
can be easily generalize to other models, where we stress that if
with parameter-tuning, the results can improve.

5.3.7 Analysis of the E�ects onBounded Staleness. We study
how the bounded staleness metrics a�ect the training in Figure 11,
with the e�ects of �E in Figure 11a, �A in Figure 11b and �H in Fig-
ure 11c and 11d, respectively. Particularly, with the increasing value

of the staleness bound, the convergence becomes more volatile with
larger �uctuation. Though the convergence speed may decrease,
the total training time is still less since more broadcasts are skipped
as shown in Fig. 10. With a larger value, the avoided communica-
tion becomes more as Fig. 8 shows, with negligible accuracy loss
in Fig. 10. Thus, combining the results in Figure 8 and 10, one can
adapt �E , �A and �H accordingly to speci�c applications, where
some focuses more on the accuracy (i.e., with smaller bound) while
others are more interested in the e�ciency (i.e., with larger bound),
respectively.
Choice of Staleness Bound. The tradeo� between the runtime
and error is di�cult to understand due to the entanglement of
model convergence and system performance, especially under the
distributed settings. Larger bounded staleness may help improve
the throughput, but it can pose a negative impact on the accuracy
[7, 9, 17, 21, 26]. Moreover, di�erences in applications, datasets,
implementations, and con�gurations may a�ect the practical stal-
eness in the GNN training as well. Take Figure 9 as an example,
we can have a glimpse of the changes that may happen. Despite
di�erent datasets response di�erently to varying staleness bounds
as Figure 11c and 11d show, a satisfying model performance can
be achieved for all our experiments with a negligible deceleration
in convergence. Though it still remains an open research problem
[9, 21], it can be concluded that in our GNN training, the more
superior adaptive strategies with �A = {2, 3} and �H = {0.02, 0.03}
can strike an acceptable balance between the runtime-error tradeo�.

Table 5: Cache Memory Footprints with ¨. Ogbn-paper100M is omitted
from the table since it only runs on 4 GPUs with 31GB cache size.

Dataset 2 GPUs 4 GPUs 8 GPUs

Flickr 170.2 MB 255.3 MB 297.9 MB
Reddit 0.5 GB 0.8 GB 0.9 GB
Amazon 1.2 GB 1.8 GB 2.1 GB

ogbn-products 0.9 GB 1.4 GB 1.6 GB

6 RELATEDWORK
Distributed Graph Neural Networks. The distributed GNNs are
still in its infancy [2], with a few prior works on GPU-based sys-
tems. Compared to distributed systems for large graph analysis
[6, 10, 11, 28, 32], the communication overhead in distributed GNNs
are even more challenging, since the intensive data movement
among workers to fetch neighbor embeddings is expensive. Cur-
rently, most existing systems utilized a centralized architecture. For
example, NeuGraph [27] proposes the GNN training framework
on a multi-GPU single machine with METIS [18] partitioning and
specialized optimization in scheduling and pipelining. However, it
is not released for public access. RoC [16] dynamically partitions
the graph with an online regression method and proposes a sophis-
ticated memory management method among workers, at the cost
of complex work�ow. PaGraph [24] exploits static caching of nodes
with higher degree in the GPU memory, leveraging a nontrivial
partitioning algorithm to balance the workload and reduce the data
movement in cross-device visits. G3 [25] leverages parallel graph
optimizations to improve graph operations in GPU systems, and
Zhou et al. [44] utilize channel pruning to accelerate GNN infer-
ence, while Grain [42] focuses on GNN data selection via social
in�uence maximization and RDD [41] uses unlabeled data. Yet,
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(d) E�ects of �H
Figure 13: Generalization to GAT [35] and 1.5D [34].

their evaluation does not focus on distributed training. AliGraph
[45] utilizes static cache as well but only supports CPU servers,
while AGL [40] uses MapReduce and optimizes both training and
inference. To reduce and balance the communication, DistDGL [43]
leverages partitioning with load balancing, while Min et al. [30]
present a GPU-oriented communication reduction via zero-copy
access. These specialized systems often come with heavy prepro-
cessing and complex work�ow. Moreover, such newly proposed
frameworks often pose challenges in their deployment and ex-
tension. All of aforementioned distributed GNN systems adopt a
centralized design, which may lead to centralized communicaion,
high communication overhead, and a single point of failure. Also,
it should be noted that only NeuGraph and Roc support full-GNN
processing, while all others need sampling. More recently, DGCL
[3], a communication library for distributed full-GNN training, tries
to reduce the communication by �nding optimal communication
routes in speci�c system topology for every node in the entire
graph. Regardless of the substantial overhead caused by planning
communication for each node before every execution, it still fol-
lows the conventional message passing paradigm for vertex-centric
computation. Tripathy et al. [34] incorporate matrix blocking tech-
niques into a set of parallel algorithms [14], to suit the sparse matrix
and dense matrix operations in distributed GNNs. Though being a
general implementation of distributed GNNswith high extensibility,
their proposed CAGNET still struggles in scalability, owing to the
communication bottleneck. Thus, we adapt the powerful parallel
algorithm [14, 34] and abstract the GNN processing as sequential
matrix multiplication so that its intermediate historical embeddings
are cached and re-utilized to reduce the communication overhead
further in a system environment with staleness for the �rst time.

Historical Embeddings and Bounded Staleness. VR-GCN
[5] �rstly maintains historical embeddings in sampling-based GNNs
to reduce the variance and further control the number of nodes to
sample, with a thorough theoretical analysis on variance and con-
vergence. Then, MVS-GNN [8] combines this method into one-shot
sampling without iterative exploration of nodes in each layer. More
recently, GNNAutoScale [12] proposes to use historical embeddings
to approximate the missing out-of-mini-batch information for each
layer, with theoretical analysis on the model expressiveness. GN-
NAutoScale aims to fuse their model into distributed training in
the future. However, all above models are sampling-based method
of stochastic training in single-memory systems.

Meanwhile, bounded staleness is widely studied in traditional
distributed machine learning to support bounded asynchrony, espe-
cially for the centralized PS architecture [7, 17, 38]. Only recently,
the decentralized scheme begins to draw more attention after its
proved superiority to the centralized architecture [23, 26]. Yet, tra-
ditional distributed ML systems do not consider the cross-device

embedding fetching, which limits their adoption on GNNs. Though
one recent work, Dorylus [33], adopts bounded asynchrony with
tolerance of stale embeddings in full-GNN training. It targets only
at low-cost distributed CPU servers using serverless threads by
AWS Lambdas [1]. Instead, we explore historical embeddings with
a set of novel bounded embedding staleness metrics in decentralized
full-GNN training accelerated by GPUs.

7 CONCLUSION
In this paper, we present S�����, the �rst staleness-aware commu-
nication avoiding scheme for decentralized GNN systems that can
adaptively avoid communication by caching historical embeddings
and manage system staleness by bounded embedding staleness,
while preserving the GNN model performance. We propose a set of
novel bounded embedding staleness metrics: the epoch-�xed stale-
ness, epoch-adaptive staleness, and epoch-adaptive variation-gap
staleness. Then, we integrate the historical embedding cache and
bounded embedding staleness check into decentralized GNNs to
adaptively skip broadcast among GPUs. Speci�cally, we reuse the
cached historical embeddings within the staleness bound. When-
ever the staleness exceeds the bound, we broadcast the latest results,
and update the cache. Theoretical analysis on the bound of com-
munication costs and approximation errors are presented, while
extensive experiments over large-scale benchmark graph datasets
are conducted to demonstrate the e�ciency and e�ectiveness of
S�����, as well as the necessity of the adaptive strategy to manage
system staleness. We also show that the cache to store histrocial
embeddings is memory-e�cient by summarizing the memory foot-
prints. One interesting future direction is to explore the optimiza-
tion on partitioning algorithms to further improve the e�ciency.
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