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ABSTRACT
When replacing a dirty victim page upon page miss, the conven-
tional buffer managers flush the dirty victim first to the storage
before reading the missing page. This read-after-write (RAW) pro-
tocol, unfortunately, causes the read stall problem on flash storage;
because of the asymmetric I/O speed and parallelism in flash stor-
age, the clean frames are quickly consumed, so the read for the
missing page often has to wait for the slow write to complete and
for the frame to be clean due to the resource conflict for the same
buffer frame. RAWwill thus make the performance-critical synchro-
nous reads often blocked by writes, severely worsening transaction
throughput and latency. In addition, its strict I/O ordering will make
flash storage with abundant parallelism under-utilized.

To avoid read stalls in the DBMS buffer, we propose RW (fused
read and write) as a new storage interface. Using RW on read stall,
the buffer manager can issue both read and write requests at once
to the storage. Then, once the dirty page is copied to the storage
buffer, it can immediately serve the read. In addition, to resolve read
stalls in the flash storage buffer, we propose R-Buf, where the read
buffer is separated from the write buffer so that reads can proceed
at no stall. RW and R-Buf, working at different layers, complement
each other when used together. We prototype RW and R-Buf on a
real Cosmos+ OpenSSD board. Evaluation results show that RW
alone improves TPC-C throughput over RAWby 3.2x and, combined
with R-Buf, does by 3.9x. In addition, we demonstrate that R-Buf
effectively mitigates the I/O interference in multi-tenancy.
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1 INTRODUCTION
The buffer manager is at the core of database management sys-
tems because it includes both replacement policy and interaction
with storage, which are critical to high performance. One common
scheme closely involved with this is read-after-write (RAW). On a
page miss, the buffer manager will choose a victim page based on its
replacement policy. If the victim is dirty, it will first write the victim
to the storage to clean the frame, and then read the missing page
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Figure 1: TPC-C Throughput: Vanilla vs. Proposed Scheme

from the storage into it. In this situation, each page-missed process
may suffer from the read stall problem because two I/O operations
share one buffer frame: it contains the dirty page to write, and at
the same time, the missing page will be fetched into it. However,
the dirty page happens to be chosen as a victim according to the
replacement policy and no other reason except for the resource
conflict exists to follow the strict ordering between write and read.

Meanwhile, the all-flash era has arrived in all areas of computing.
In particular, due to the superiority of flash storage in terms of
random IOPS/$ and power consumption [12], the database market
uses SSDs as the primary storage instead of hard disks. These SSDs
have one inherent characteristic distinguishable from hard disks
— the asymmetry of read and write speed. Also, they come up with
abundant internal parallelism. Thus, their read IOPS are higher
than the write IOPS.

Then, how does this asymmetry affect buffer management when
running OLTP databases on flash storage? An obvious implication
is that the rate at which the background writers produce free frames
lags far behind the rate at which the foreground processes consume
them. In RAW, even asynchronous batch-oriented background writ-
ers can hardly hide the slowwrite speed, so page replacements often
involve synchronous writes [14]. As a result, foreground processes
will experience frequent read stalls on SSDs.

Moreover, read stalls can also occur inside SSDs where the data
buffer is shared by read and write requests. In a shared buffer, when
no clean buffer frame is available, a read request from the host has to
wait for the frame keeping a dirty page to be flushed to the flash chip.
Thus, the host process with a missing page can experience even two
stalls in series while reading the page: one at the DBMS buffer and
the other at the storage buffer. Although synchronous reads are on
the critical path of database applications, the RAW protocol taken
by both buffers and the resulting read stalls will prolong the read
latency. This causes host processes to be idle longer, worsening
their throughput and latency. In addition, the strict write-then-
read serialization by RAW will under-utilize the parallelism in flash
storage. As shown in Figure 1, when running the TPC-C benchmark
using the existing RAW protocol for both buffers, the transaction
throughput (denoted as Vanilla) is consistently lower than the
potential (denoted as RW+R-Buf) across various buffer sizes.
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To avoid read stalls in the DBMS buffer, we first propose RW
(fused read and write) as a new storage interface for flash storage.
Upon read stalls, RW allows host applications to issue both read and
write requests via one I/O command to the storage. Upon receiving
the RW command, flash storage prioritizes read while handling
read and write in parallel: the read is served immediately once the
dirty page is copied to the storage buffer. In addition, to resolve the
interference between concurrent reads and writes at flash storage
buffer, we suggest R-Buf, a simple but effective read-dedicated buffer
architecture. In R-Buf, since the read buffer is separated from the
write buffer, read requests from the host can be handled faster
without interference with write requests. With the help of RW
and R-Buf prioritizing reads, slow writes are removed from the
critical path of host applications. This improve their throughput
and latency significantly. In addition, allowing write and read to
be issued in parallel to the flash storage and flash channels/ways,
RW and R-Buf can better utilize the internal parallelism of flash
storage [6]. The main contributions of this paper are as follows:

• We identify the RAW protocol as an intrinsic impediment
to the performance of transactional databases running on
flash storage. We also detail how RAW can make processes
vulnerable to read stalls at both host and storage buffer tiers
on flash storage with the I/O asymmetry.

• To address read stalls at the host and storage buffers, we
propose two solutions for flash storage: RW and R-Buf.
They complement each other when used together.

• We prototype RW and R-Buf on a real Cosmos+ OpenSSD
board by extending its firmware code. Experimental results
show that RW alone outperforms RAW by 3.2x in terms of
throughput and, combined with R-Buf, does by 3.9x.

• We also show that R-Buf is effective in mitigating the I/O
interference in multi-tenancy. R-Buf can make two tenants
perform more proportional than S-Buf, exploiting the inter-
nal parallelism of flash storage better.

2 BACKGROUND
This section explains the intrinsic I/O asymmetry of flash SSDs and
describes the RAW protocol in the DBMS and storage buffers.

2.1 I/O Asymmetry in Flash SSDs
The read and write speeds of NAND flash memory are asymmetric
because it takes longer to write a page than to read a page from flash
memory chips. For example, in the case of MLC flash memory chips,
a page write against a clean block takes 1,500us while a page read
does only 50us [26]. In addition, the costly but inevitable garbage
collection operations further widen the gap between read and write
speeds at the device level.

To evaluate the asymmetry ratio of today’s commercial SSDs, we
use the synthetic I/O benchmark tool FIO [3] to measure the 4KB
random read and write IOPS of four SSDs and one OpenSSD [21].
Each IOPS is measured with a queue depth of 32 for six hours on
each SSD half-filled with data. Results are summarized in Table 1.
For comparison, an enterprise-class hard disk is also presented in
the table. The asymmetric ratio is given in the last column of the
table, calculated by dividing the read IOPS by the write IOPS.

Table 1: Read and Write IOPS

Storage Capacity Random IOPS (4KB) Asym. Ratio

Media (GB) Read Write (R/W)

SSD-A† 1,024 529,977 51,077 10.4
SSD-B‡ 400 264,846 19,705 13.4
SSD-C¶ 1,024 723,241 70,983 10.2
SSD-D♯ 250 99,123 8,739 11.3

OpenSSD† 32 142,032 16,355 8.7
HDD§ 1,024 1,509 1,420 1.1

†Samsung 970 PRO NVMe, ‡Intel DC P3600, ¶Intel DC P4510,
♯Micron Crucial MX500, †Cosmos+ OpenSSD, §WDWD10EZEX

As shown in Table 1, the read IOPS of flash SSDs is at least
eight times higher than the write IOPS. In particular for SSD-B, its
read IOPS is higher than its write IOPS by more than thirteen-fold.
Contrariwise, the random read and write IOPS of the hard disk are
almost the same. To summarize, the asymmetry ratio varies with
the individual flash storage and over-provisioning capacity, but the
asymmetry is an inherent characteristic of flash storage [18, 26, 33].

2.2 RAW Protocol in DBMS Buffer
On a page miss, if no buffer frame is available, the page-missed
process has to obtain a frame by first writing the dirty page to the
storage and then read the missing page into the cleaned frame. We
call this strict write-then-read ordering in replacing dirty pages from
the buffer cache as the read-after-write (RAW) protocol. In this situ-
ation, the read operation is blocked by a write operation, which we
call a read stall. This paper assumes LRU as the buffer replacement
policy for simplicity of discussion. However, the problem of RAW
is equally applicable to other policies without loss of generality.

Meanwhile, given that the database durability is guaranteed by
forcing redo logs upon commit and that many database engines
follow the no-force policy in their buffer management [13], writes in
the database are asynchronous in nature. Therefore, major database
engines, including Oracle, IBM DB2, and MySQL, are equipped with
the background writers [4, 28, 39]. The background writer aims
to produce free frames in advance by pre-flushing dirty pages so
that each page-missed foreground process can immediately obtain
a free frame from the free list.

However, the backgroundwriter lags behind in pre-flushing dirty
pages on flash storage due to its asymmetric I/O speeds and high
internal parallelism. In other words, since SSD shows fast read speed
and its multi-level parallelism improves read processing, free frames
in the free list are quickly consumed by foreground processes. For
the same reason, the clean frames at the LRU tail are also promptly
exhausted. As a result, the speed of producing available buffer
frames cannot keep up with the speed of consuming them on top
of read-fast but write-slow SSDs. This leads to the situation where
foreground processes start experiencing undesirable read stalls [14].
As will be discussed in Section 5.1.1, the background writer still falls
behind in producing free frames in RAW, despite the best endeavor
to make it flush dirty pages actively by adjusting the flash-aware
configuration knobs.
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Figure 2: SSD Architecture and RAW Protocol in Storage Buffer

Table 2: Read Stalls in RAW Protocol (TPC-C on MySQL)

Hard Disk Flash SSDs

(HDD) SSD-A SSD-B SSD-C SSD-D OpenSSD

Read Stalls 0% 28% 28% 36% 33% 32%
(a) Varying Storage Devices (Buffer Size = 10%)

Buffer Size 10% 20% 30% 40% 50% 60%

Hit Ratio 92.6% 97.2% 97.6% 98.6% 98.8% 99.3%
Read Stalls 28% 32% 32% 31% 16% 0%

(b) Varying Buffer Size (SSD-B)

2.3 RAW Protocol in Storage Buffer
Flash storage devices also have a DRAM area used as a data buffer
for data transfer between the host system and the flash chips. In this
paper, the data buffer is referred to as S-Buf to emphasize that it is
shared for both read and write requests, thus distinguishing it from
our approach, R-Buf. Since there is no publicly available data about
the internal architecture and implementation details of commercial
SSDs, we describe the internal I/O handling process of SSDs based
on the recent research prototypes [21, 31]. S-Buf is where the data to
write is temporarily stored before being transferred to NAND flash
chips. It is also where data read from the flash chip is stored before
being sent to the host. Its main goal is to reduce the performance
gap between the host system and the physical device by temporarily
holding the I/O data. In particular, it tries to hide the long latency of
flash operations for writes by absorbing the write data in S-Buf [21].

Now let us explain how read requests are handled inside SSD
using Figure 2. When the host sends a read command, the host
interface controller interprets the command and forwards it to the
FTL. Then, the FTL generates a set of subsequent operations (e.g.,
DMA and flash operations) to service it and tries to allocate a data
buffer frame from S-Buf to store the read data. For this, a victim
frame is selected according to the replacement policy (e.g., LRU).
If the victim frame is clean, its content is simply discarded, but if
dirty, its content should be written to the NAND flash chip before
using it. That is, the read command should wait for the NANDwrite
to complete; thus, the read stall occurs in S-Buf. After securing a
free buffer frame through this process, the read operation is sent
to the corresponding flash operation queue. Then, the low-level
scheduler compares the priority of each operation in the queue
and issues the read operation to the NAND flash chips when ready.
When the NAND read completes, the read data is transferred to the
clean buffer frame through the flash DMA (direct memory access)
operation, and then it is finally transferred to the host memory

through the host DMA operation. In summary, the storage buffer
is also taking the RAW protocol, which can cause read stalls inside
SSDs.

3 READ STALL IN DBMS AND RW COMMAND
This section details why RAW in DBMS causes significant read
stalls on SSDs and demonstrates how serious the problem is in a
realistic workload. Then, as an explicit way to address read stalls
in the DBMS buffer, we propose a new storage command, RW.

3.1 Read Stalls in Relational DBMS Buffer
To check the severity of read stalls in real database systems, we
measure the ratio of read stalls out of all read requests while running
the TPC-C benchmark [24] onMySQL. In the experiment, the buffer
size is set to 10% of the initial database size. The same experiment
is repeated for each of five SSDs and one hard disk in Table 1. The
results are summarized in Table 2a.

In hard disk, all foreground processes obtain their free frames
without stalls. Due to its symmetric read and write speeds, the rate
at which the background writers produce free frames is balanced
with the rate at which foreground processes consume them.

On the other hand, all the five SSDs consistently suffer from
excessive read stalls. To be specific, more than one fourth of the
page-missed processes have to wait for the slow writes to complete
and free frames to be secured. This is because the read IOPS is at
least eight times higher than the write IOPS in flash storage, so
even if the background writers do their best to actively flush dirty
pages, free frames are promptly exhausted by foreground processes.
As outlined in Figure 1 and will be detailed in Section 5.3, such read
stalls severely limit the transaction throughput.

Meanwhile, the read stall problem can be alleviated or even
disappear with a large buffer, as fewer reads means fewer pending
writes. Hence, we measure the hit ratio and read stall ratio while
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running the TPC-C benchmark on SSD-B by changing the buffer
size from 10% to 60% of the database size. The results are presented
in Table 2b. As the buffer size increases, the hit ratio also does from
92% to 99%, and read IOPS accordingly drops. However, read stalls
remain consistently high until the buffer size becomes as large
as 40% of the database size. It drops to zero when the buffer size
reaches to 60%. For this reason, as illustrated in Figure 1 and will
be detailed in Section 5.3, the performance of RAW is suboptimal
over a wide range of buffer sizes.

In addition, to confirm the read stall problem in other DBMSs,
separate experiments are performed with the same configuration
used in Table 2a using PostgreSQL and Oracle on SSD-A. Experi-
mental results show that the read stall ratios are 36% in Oracle and
61% in PostgreSQL. Since both DBMSs use the RAW protocol upon
page miss [1, 4], read stalls are unavoidable for them. In summary,
the degree of read stalls varies depending on the DBMS engine, but
the problem is inherent in RAW-based DBMSs running on SSDs.

3.1.1 Problem Definition. When a page-missed process falls in a
read stall, a missing page 𝑃𝑅 can be read into a buffer frame 𝑓 only
after the dirty victim 𝑃𝑊 occupying 𝑓 is completely flushed and
𝑓 becomes clean. In this respect, the buffer frame 𝑓 is a shared
resource between the write for 𝑃𝑊 and the read for 𝑃𝑅 . Thus, two
I/O operations have to be performed in serial: the read has to wait
for the preceding write to complete. Except for this, no other reason
exists to follow the strict ordering between the two. That is, 𝑃𝑊
happens to be selected as a victim based on the replacement policy.
In summary, the resource conflict in RAW forces two unrelated read
and write to be serially requested to the storage, causing the read
stall problem. The write-then-read serialization at the database
buffer layer, in turn, blocks the opportunities to issue read and
write requests in parallel using the low-level asynchronous I/O
primitives (e.g., libaio or io_uring), combine them in the storage
command queue (e.g., native command queue) and process them in
parallel inside flash storage [6].

Now let us discuss how read stalls affect system utilization and
transaction performance. First, on a read stall, the page-missed
process becomes idle simply waiting for the previous write to com-
plete, degrading CPU utilization. Secondly, the strict I/O ordering
prevents the system from taking advantage of the parallel support
of SSDs, lowering storage utilization. Lastly, read stalls increase
transaction latency. In principle, the synchronous read should be
in the critical path of the ongoing transaction, but the write is not
in the path in the ideal case where dirty pages are asynchronously
pre-flushed in advance. However, when the transaction encounters
a read stall, the time taken to finish the write will be added to the
critical path of the transaction, prolonging its total latency.

3.2 RW Command
3.2.1 Key Idea. As mentioned in Section 3.1.1, the read stall prob-
lem is due to the resource conflict: write and read requests that
happen to share one buffer frame on a page miss must be executed
in serial rather than parallel. Therefore, the inevitable I/O serializa-
tion at the host buffer cannot fully utilize the parallelism of SSDs.
Meanwhile, recalling that the buffer manager knows the target page
addresses of both write and read requests on a read stall, two I/O
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Figure 3: How RWWorks: An Illustration

operations can proceed in parallel if they satisfy the following con-
dition: read a new page into the shared buffer frame only after the
dirty page copy is flushed to the storage buffer. If any I/O command
with this semantic does exist, the read stall problem can be avoided.
Unfortunately, the existing storage interface only provides separate
read and write commands. This recognition leads us to propose
a new block I/O command, RW (fused Read and Write), which is
used to write a dirty page to the storage and, in parallel, read the
missing page to the host in one I/O call.

3.2.2 Abstraction and Architecture. Since no matching command
exists in current storage interface, RW is added as an NVMe vendor
specific command. Its parameters and semantic are as follows:

rw(rdLBA, wrLBA, len, buf) The first and second parame-
ters, rdLBA and wrLBA, are logical block addresses of two
data pages to read and write, respectively. The third param-
eter, len, indicates the length of two pages: their sizes are
assumed to be same. The fourth parameter, buf, is the start-
ing virtual address of the host buffer space that holds the
dirty page to write and, at the same time, the destination to
read a new page. When the host issues an RW command,
both write and read requests are handled in parallel by
the NVMe controller. Once the dirty page with wrLBA is
copied to the storage buffer, and thus the host buffer frame
becomes reusable, the page with rdLBA can be read into
that host buffer frame. Therefore, the read operation can
proceed without interference from the write operation for
the dirty victim, so it can avoid read stalls. Note that RW
exploits in-storage buffer frames to resolve the resource
conflict between write and read operations.

Figure 3 overviews how RW works when a page 𝑃𝑅 is missing
and a dirty page 𝑃𝑊 becomes the victim for the replacement. Upon
receiving RW with two LBAs (𝑃𝑅_𝐿𝐵𝐴 for read and 𝑃𝑊 _𝐿𝐵𝐴 for
write) and a host buffer address (buf), the FTL first tries to obtain a
buffer frame for write from its storage buffer ( 1○). It then performs
a DMA to copy the host data pointed by buf to the obtained frame
( 2○). Next, after securing another buffer frame for read ( 3○), the
FTL reads the page of 𝑃𝑅_𝐿𝐵𝐴 from the flash chip into the frame
( 4○) and then performs the second DMA to transfer the page to the
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host ( 5○). The storage controller then sends an interrupt to the host
to indicate that RW completes successfully ( 6○). Meanwhile, the
data of 𝑃𝑊 _𝐿𝐵𝐴 is asynchronously written to the flash chip ( 7○).

Consistency and Durability In very rare cases, successive
RW calls to the same page can occur. To always return the latest
version of the page, there is a command queue on the host inter-
face controller. SSDs have a local host command queue to store
I/O requests from the host system. Host requests are put into this
queue and fetched in order [21, 31]. RW follows this existing com-
mand queue semantic to ensure consistency, so the out-of-order
problem does not occur. RW also does not peril the durability of
the I/O interface in the existing block device. That is, the durability
requirement for writes in the RW command is simply the same
as that of the existing write command. In fact, as mentioned in
Section 2.2, the write operation in the database is asynchronous in
nature, and the storage engine does not assume that the durability
for the existing write operation is guaranteed. Likewise, the RW
command assumes that the durability for the write operation is not
guaranteed, but the failed write is recoverable using the redo log.

Benefits To our best knowledge, RW is the first storage inter-
face that carries out two I/O operations in one call. This simple
feature will bring advantages in resolving the read stall problem.

First of all, RW is an intuitive and direct solution to address the
read stall problem because read and write requests are not serialized
but issued together at once, and the read request is serviced at
the earliest time. It will also make the parallelism in flash SSDs
better utilized. Second, RW will simplify the logic of the buffer
manager. A buffer manager suffices to simply invoke RW upon
read stall without resorting to any complicated software-based
mechanism in RAW. In other words, the process of writing the dirty
victim to storage, emptying the buffer frame, and then reading the
missing page into the frame is replaced by one RW call. Third, the
simplified buffer manager logic will mitigate the run-time overhead
due to buffer replacement. In RAW, a buffer frame holding the dirty
victim page has to move from the LRU tail to the free page list
and, after reading the missing page, has to move back to the LRU
head. This process will incur four mutex acquisitions and four list
modification operations: two for the LRU list and two for the free
list. In contrast, RW will require only two mutex acquisitions and
two list modifications for the LRU list since it can eliminate CPU
works such as free block acquisition. Lastly, RW reduces the kernel
I/O stack overheads. It is well known that one I/O call requires two
context switches and one interrupt [38]. Therefore, by replacing two
I/O calls for write and read with one call, RW can reduce the number
of I/O interrupts and the number of context switches accordingly.
In addition, recalling that these kernel I/O stack overheads are non-
marginal on top of flash storage with low latency [38, 43, 45], the
reduced I/O calls will reduce the CPU instructions consumed by the
kernel I/O stack. Though we illustrate its benefit using the database
buffer, RW will also be beneficial to the OS buffer cache with the
RAW protocol (e.g., Linux page cache with 2Q algorithm).

RW Abstraction for Multiple Devices The RW command
assumes that the write and read pages are on the same device. This
assumption may not be valid in large databases spanning multiple
storage devices where read and write pages are located in different

physical devices. Fortunately, however, those devices are usually
exposed to the database layer as one logical volume. Hence, the
effect of the RW command remains valid in such scenarios once
RAID-like solutions support the abstraction.

3.2.3 Prototype Implementation. We prototype RW by adding it
as a new NVMe command to an OpenSSD board and extending its
firmware code to support the semantic. In addition, to evaluate its
performance, we also modify the MySQL/InnoDB engine to call
RW on read stalls.

Changes made in OpenSSD An OpenSSD (open-source
SSD) platform allows to modify its hardware and software design
freely [16]. To implement RW and evaluate its performance, we use
a real OpenSSD, Cosmos+ board [21], which supports the NVMe in-
terface. We extend the NVM command set by defining an opcode for
RW and implementing a custom operation in the firmware. When
the host calls RW with the specified opcode, the host interface con-
troller identifies the given NVM command set and prepares each
read and write. Since addresses to read and write differ from each
other, the NAND device controller can perform two operations in
parallel utilizing multiple channels inside the SSD.

Changesmade inMySQL To leverage RWonMySQL/InnoDB,
we use the ioctl system call and modify the buffer manager of
MySQL. Since RW is not always available for MySQL and other
applications that access files through a file system, we extend ioctl
to allow the host to send the NVM command set for RW. Thus, RW
can pass through the file system to the storage device instead of
invoking the NVMe command directly from applications.

For MySQL, we modify the buffer manager (buf) and file I/O
(fil) modules. First, we newly implement an I/O function so that
the buffer manager can calculate LBAs for read and write and issue
RW to the storage. We also modify the read function of MySQL so
that, after RW returns, the transaction can proceed immediately
using the read data buffer without a separate free buffer acquisition
procedure. At this point, the read data buffer is moved to the head
of the LRU list according to the LRU policy. The code changes made
in MySQL/InnoDB are minimal, which is less than 130 lines of code
in mainly two modules: buf and fil. In addition, note that, on read
stall, due to its simplified buffer manager logic, RW can actually
run with at least 840 fewer lines of code than RAW.

4 READ STALL IN STORAGE AND R-BUF
Even when a read request can be made from the host without stall
with the help of RW, it could unfortunately encounter another stall
in the flash storage buffer for the same reason (i.e., resource conflict).
This section illustrates the impact of the RAW protocol taken by
the storage buffer in the existing SSDs on read performance and
then suggests R-Buf to address read stalls in flash storage.

4.1 Read Stalls in SSD Buffer
First, to check the impact of read stalls on read latency inside flash
storage, we measure the average read latency using the FIO tool. We
run two random I/O workloads, randread and randrw, separately
for each of the three commercial SSDs in Table 1. For Read-Only
(randread), we run four FIO threads each of which issues random
reads of 4KB pages with the queue depth of 32. For Reads+Writes
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(randrw), we run two threads for reads and the other two for writes.
In both cases, direct I/O is used to bypass the page cache of the
kernel. Because we cannot directly access the firmware of com-
mercial SSDs, we measure the read latency at the block I/O layer
rather than inside storage, using the blktrace utility in Linux. For
comparison, we also conduct the same experiment using Cosmos+
OpenSSD in two different buffer schemes: S-Buf and our proposed
technique R-Buf. The results are presented in Figure 4.

As shown in Figure 4, the latency of reads when mixed with
writes (Reads+Writes) increases significantly compared to that
of Read-Only across all commercial SSDs and Cosmos+ OpenSSD
with S-Buf (e.g., by up to 14.6 in SSD-B). In contrast, in the case of
Cosmos+ OpenSSDwith R-Buf, the read latency is nearly unaffected
by the concurrent writes. This is because in R-Buf, as detailed later,
write requests will not interfere with read requests.

4.1.1 Problem Definition. In S-Buf, when the victim buffer into
which data will be read is dirty, the read operation should wait until
the dirty victim is written to NAND. Since S-Buf holds both read
and write requests from the host and follows the RAW protocol,
reads are frequently blocked by the preceding dirty victim writes.
Further, when the preceding write triggers the costlier garbage
collection operation, the stalled read will be blocked much longer.
Therefore, one flash write (and a garbage collection in some cases)
will be added to the latency of stalled read requests. In addition to
prolonging the latency of read requests, the RAW protocol serializes
write and read requests to the underlying flash controller, which
makes the abundant parallelism in flash storage under-utilized.

In fact, a reordering policy in the SSD controller gives reads a
higher priority than writes, and even delays garbage collections and
proceed reads to minimize potential interference [21]. However,
this only guarantees the priority of reads at the channel level, thus
not solving the read-blocking problem at the storage buffer, which
occurs in the preceding layer of the channel. That is, the write-then-
read serialization caused by read stalls in the upper buffer layer
reduces the effect of the read priority at the controller.

The RAW protocol of S-Buf will also make multiple tenants inter-
fere with each other in multi-tenancy. Even when multiple tenants
issue their I/O requests independently, a read from one tenant will
be stalled at the storage buffer by writes from other tenants. Thus,
read-intensive tenants will be harmed by neighboring tenants with
writes. In addition, as the in-storage write amplification increases
over time, the detrimental effect of read stalls will exacerbate, re-
sulting in worse application throughput and latency.
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4.2 R-Buf
To address the challenges discussed in the previous section, we
decouple the buffer resources for reads from writes so that reads
are not interfered with by writes inside flash storage.

4.2.1 Key Idea. Selecting a dirty victim buffer for the replacement
significantly increases overall read latency. This observation sparks
an idea of choosing a clean victim instead of a dirty one. That is,
we implement CFLRU (Clean-First LRU) [35] in S-Buf. CFLRU is a
representative flash-aware buffer replacement algorithm that evicts
clean pages first from the buffer to reduce the number of costly
write operations. However, as will be detailed in Section 5.2.2, its
effect is limited in solving the read stall problem of S-Buf.

This observation from CFLRU leads us to the idea of separating
a data buffer for read requests. That is, the only way to ensure that
read andwrite requests do not collide against the same resource is to
make them use completely different resources. Thus, we propose a
simple but effective buffer architecture, R-Buf. R-Buf is an in-storage
DRAM buffer provisioned for read requests only, transferring read
data between the host system and the flash NAND chips.

The design goals of R-Buf are i) to eliminate resource sharing
between read and write requests, ii) to make reads faster by serving
read requests in a read-dedicated buffer, and iii) to improve overall
read latency from the storage buffer to the host application.

4.2.2 Read/Write Handling in R-Buf. Figure 5 overviews how I/O
requests are handled in R-Buf. We omit the host interface controller
and the flash controller in Figure 5 for simplicity. In R-Buf archi-
tecture, the in-storage buffer is split into two buffers: one for read
requests (read buffer) and the other for write requests (write buffer).
Both buffers are based on the LRU replacement policy. Let us detail
how reads and writes are handled in R-Buf.

Read When the host application sends a read request for the
page 𝑃𝑅 , the host interface controller in SSD fetches the request
and the FTL tries to retrieve 𝑃𝑅 from the storage buffer. Both read
buffer and write buffer manage the hash table by creating a hash
entry for each buffer entry to speed up the search. Write buffer is
searched first because it can contain the most recent version of 𝑃𝑅
( 1 ). If there is no matching page in it, read buffer is searched ( 2 ).
If 𝑃𝑅 is in either buffer, it is sent to the host system via a host DMA
operation. Otherwise, 𝑃𝑅 has to be read from the NAND chips. For
that, the FTL first takes a buffer frame at the LRU tail in read buffer
( 3 ). All buffer frames in read buffer are clean, so the victim data is
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simply discarded. Then, the FTL generates a flash operation for a
page read, then sends it to the flash controller to read 𝑃𝑅 from the
NAND flash array. The read data of 𝑃𝑅 is stored in the secured data
buffer using a flash DMA operation ( 4 ). Finally, 𝑃𝑅 is transferred
to the host system through a host DMA operation ( 5 ).

Write When the host sends a write request for the page 𝑃𝑊 ,
the host interface controller fetches the request. In the same way
as in handling reads, the FTL searches 𝑃𝑊 from the storage buffer
( 1 and 2 ). If 𝑃𝑊 is not in either buffer, it tries to get an available
data buffer frame in write buffer for a page write. If the victim is
clean, its data is discarded for reuse. This is a very rare case, right
after the first write request comes in. Otherwise, the dirty data
should be written to the NAND flash chips before being reused
for 𝑃𝑊 . For this, the FTL generates a flash operation for the dirty
victim write, then sends it to the flash controller to write the victim
data to the NAND flash chips ( 3 ). In general, almost every buffer
acquisition process will entail a dirty victim write because write
buffer holds dirty data buffers generated by write requests. After
buffer acquisition, 𝑃𝑊 in the physical memory of the host system is
transferred to the secured data buffer using a host DMA operation
( 4 ). Finally, an interrupt is sent to the host system to indicate that
the write for 𝑃𝑊 is complete ( 5 ). As the storage buffer is a write-
back cache, 𝑃𝑊 is transferred to the NAND flash array when it is
evicted from the buffer.

To sum up, R-Buf resolves resource conflicts between reads and
writes in the storage data buffer, so concurrent writes do not in-
terfere with reads. Therefore, even in multi-tenancy, read requests
from one tenant will not be blocked by writes from neighboring
tenants. In addition, read-intensive tenants will be serviced at a
constant time despite the increasing in-device write amplification.

Relation to Per-Channel Read Priority Because of the im-
portance of read performance, flash controllers eagerly give priority
to reads for queued I/O requests per channel [10, 31]. With S-Buf,
however, such priority mechanisms can not realize their full po-
tential. Often stalled at the storage buffer, read requests from the
host will reach per-channel request queue slowly and thus have
no chance to be prioritized. In contrast, with R-Buf, each read re-
quest from the host can be put to its corresponding per-channel
queue at the earliest time, so it has chance to be prioritized over the
already-queued writes. Fortunately, Cosmos+ OpenSSD supports
the read priority mechanism [21], so reads from R-Buf can preempt
the execution order over writes and even garbage collections that
are already queued.

R-Buf with RW In handling an RW command, while secur-
ing buffer frames for 𝑃𝑊 and 𝑃𝑅 (steps 1○ and 3○ in Figure 3, re-
spectively), the victim storage buffer could be dirty. Therefore, the
worst-case scenario is that both phases require the dirty victim to
be emptied. To address this problem, we combine R-Buf and RW.
This avoids the dirty victim eviction for 𝑃𝑅 because read buffer in
R-Buf only has clean data buffers. Furthermore, since there is no
preceding write for 𝑃𝑅 and the data buffers for reads and writes
are separate, the read request via RW can be processed completely
independently of the write request for 𝑃𝑊 .

4.2.3 Prototype Implementation. We implement R-Buf in Cosmos+
OpenSSD [21]. Its DRAM space used as the shared buffer (S-Buf) is
divided into two physically separate buffers: read and write buffer.

Given an I/O request, the FTL has first to perform a hash search
for both buffers. Since both buffers work in write-back mode, there
are four cases of buffer hit in R-Buf. For a read request, the FTL
simply transfers the found data to the host, regardless of where
the buffer hit occurs. For a write request, if it hits in write buffer,
the FTL simply uses the found data. However, if it hits in read
buffer, a slightly complicated process begins. Because two buffers
are physically separated, moving a data buffer from one to the
other is impossible. Therefore, we create a flag to indicate that the
property of the data buffer temporarily changes. That is, we set
the flag to temporarily switch the read data buffer frame to the
write data buffer frame. Then, the FTL gives the highest priority to
the flagged write request in the NAND scheduler. After the NAND
write, the data buffer frame becomes a clean state, its flag is unset,
and it is returned to read buffer.

In very rare cases, two copies of the same page can reside in
both buffers at the same time. In such a case, the FTL will return
the latest copy in write buffer to guarantee consistency, and the
old copy in read buffer can be safely discarded without causing any
inconsistency.

Tuning the Size of R-Buf The Cosmos+ OpenSSD allocates
32MB of DRAM to S-Buf by default. In R-Buf, the size of read buffer
might be critical to the I/O performance. To test the effect of read
buffer size on I/O performance and also determine the optimal
size empirically, we measure transaction throughput while running
the TPC-C benchmark on MySQL with different read buffer sizes
from 1MB to 16MB. We use the same TPC-C configuration used for
Table 2a. The results indicates that throughput is almost the same
regardless of read buffer size. This is because the TPC-C workload
generates random reads to logical address spaces which is larger
than the size of read buffer by several orders of magnitude. Hence,
its read requests are unlikely to hit in read buffer. Instead, host-side
DBMS buffer acts as an actual cache for read hits. Based on this
empirical result, we decide to allocate 2MB to read buffer and the
remaining 30MB to write buffer, respectively.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
We conduct all experiments on a Linux platform with 5.4 kernel.
It is equipped with Intel Core i7-4770 CPU with 8 total cores and
32GB main memory. To evaluate the effect of RW and R-Buf on a
real system, we implement them on Cosmos+ OpenSSD board [21].
The OpenSSD board includes two ARM Cortex-A9 cores on top
of Xilinx Zynq-7000 board with 32GB MLC NAND flash memory.
The board is connected to the host PC via PCIe interface, and the
size of over-provisioning area is set to 10%. We use the ext4 file
system, and the direct I/O option (O_DIRECT) is enabled to minimize
the interference from page caching of ext4. The benchmarking
clients are run with database processes on the same hardware to
avoid networking delays. Throughout all the experiments, unless
otherwise stated, database size is 10GB, buffer cache size is 20% of
the database size, the database page size is 4KB, and the number
of concurrently running client threads is 8. To deliver steady-state
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Figure 6: TPC-C on MySQL: S-Buf vs. R-Buf

performance results, we always precondition the SSD using the
dd command before the benchmark. Below are described the four
workloads used in the experiments:

FIO FIO (Flexible I/O tester) is a synthetic tool that is used to
generate various I/O patterns [3]. We use the random read and
write workloads for benchmarking RW and R-Buf.

TPC-C tpcc-mysql from Percona [36] is used for TPC-C bench-
mark on MySQL. TPC-C is an industry standard OLTP workload
for transactional database systems, consisting of heavy random
reads and writes. For all TPC-C experiments, the initial database is
set to 10GB (i.e., 100 warehouses).

YCSB YCSB is a popular key-value store benchmark [7]. We use
YCSB to benchmark R-Buf in MySQL on workloads with different
read and update ratios.

DB-Bench DB-Bench is a standard benchmark framework to
measure RocksDB performance [11]. We use the random I/O work-
load, readwhilewriting, performing random reads while writing.

TPC-H TPC-H is an OLAP benchmark consisting of 22 queries
with various aggregation and join operations for large data set [41].
So, it is read-intensive. The benchmark is run on PostgreSQL to
evaluate the effect of R-Buf on multi-tenant workloads.

5.1.1 Baseline RAW. Let us first clarify the baseline performance.
DBMSs have many tunable options that control their run-time
operation, and properly adjusting such knobs can achieve good
performance [9, 37, 40, 42]. Hence, to make the background writer
incessantly work, we tweak the knobs critical to I/O performance
in MySQL [27, 29, 30]. For example, we tune the maximum IOPS
used by the background writer to exploit high IOPS of SSDs. This
tuned RAW improves throughput by 1.6x over the untuned RAW.
It also reduces read stalls from 42% to 32%, but the ratio remains
quite high due to the intrinsic structure of RAW. Given that knob
tuning is an essential aspect of data-intensive applications [42], we
use this knob-tuned RAW as a baseline throughout this paper.

5.2 Effect of R-Buf
5.2.1 FIO. To investigate the impact of read stalls on performance
when writes co-run with reads, we run two separate FIO processes
simultaneously: one issues only random reads of 4KB pages while
the other does only random writes. Recall that, in Table 1, we exe-
cute reads and writes separately to measure each IOPS. As shown
in Table 3, R-Buf has 5x higher read IOPS and 93% lower tail read

Table 3: FIO Performance: S-Buf vs. R-Buf

S-Buf R-Buf

Read Write Read Write

IOPS (4KB) 5.4K 5349 28.1K 4156
Bandwidth (MB/s) 22.2 21.9 115 17.0
95th Latency (ms) 133 133 9 124

latency than S-Buf. This clearly shows that writes can stall reads
in S-Buf, worsening the read latency and, after all, that of the host
application. On the other hand, R-Buf can eliminate read stalls at
storage buffer, though sacrificing the write performance, achieving
higher read IOPS and lower latency than S-Buf.

5.2.2 TPC-C. Next, in order to evaluate the effect of R-Buf on real-
istic database workloads, we measure various performance metrics
while running the TPC-C benchmark on MySQL. We use different
buffer sizes for MySQL, from 5% to 25% of the database size.

Transaction Throughput Before discussing the performance
of R-Buf, let us look at the effect of CFLRU. In CFLRU, setting
an appropriate value for LRU scan depth is important because it
directly affects performance. For example, too large scan depth can
increase the search overhead by scanning too deep to the target
depth each time. Conversely, if the scan depth is too small, the
value may not be sufficient to find a clean buffer, which may not
properly validate CFLRU. To find a reasonable scan depth that can
sufficiently capture the meaningful effect of CFLRU on Cosmos+
OpenSSD, we conduct a separate experiment with different scan
depths and empirically set it to 64. As shown in Figure 6a, CFLRU
shows 8-29% higher throughput than S-Buf, but its performance
improvement is limited. This is because, the performance of CFLRU
varies depending on the presence of a clean buffer within the scan
depth. That is, CFLRU cannot avoid read stalls caused by shared
buffer resources when no clean buffer is available in the scan depth.

On the other hand, R-Buf shows 21-97% better throughput than
S-Buf and the performance gap remains as the buffer size increases
to 40%. This clearly shows that removing read stalls in the storage
buffer ultimately helps to improve the transaction throughput of
the host application. Another observation from Figure 6a is that
the performance of R-Buf spikes when the buffer pool size reaches
25% of the database size. The reason behind this performance spike
is captured in Figure 6b. In R-Buf, the read stall at the DBMS buffer
disappears when the buffer size reaches 25%. That is, after the buffer
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size reaches 25% or more, read stalls in both storage buffer and host
buffer are zero in R-Buf, resulting in a sharp increase in performance.
In contrast, with S-Buf, read stalls disappear only when the buffer
size reaches 40% of the database size. However, unlike R-Buf, it does
not show remarkable performance improvement because even a
larger host buffer cannot solve the storage-level read stalls.

Latency in Storage Buffer To validate the effect of R-Buf in
terms of latency, we measure the time taken to get a free buffer
frame at the storage buffer to service I/O requests and also the time
taken to complete NAND I/Os, while running the same experiment
used for Figure 6a, and present the result in Figure 6c. S-Buf has a
much longer read stall latency than R-Buf, by at least 17x and up
to 50x. This huge latency gap is because R-Buf can handle reads
almost immediately, whereas S-Buf has to evict dirty victims for
reads. With S-Buf, to be worse, the larger the MySQL buffer pool,
the higher the read stall latency. With a larger buffer pool, the
number of dirty pages in the buffer and the number of log writes
increase due to active transaction processing, resulting in frequent
checkpoint flushing. On the other hand, the number of read requests
decreases because the buffer is large enough to cache the active data.
As a result, the ratio of write requests to read requests increases,
the number of dirty buffers in the storage buffer increases, and the
probability of choosing a dirty buffer as a victim increases in S-Buf.
Thus, the total read latency becomes longer in S-Buf.

Meanwhile, R-Buf has about 2x higher write latency than S-Buf.
This is because the write buffer in R-Buf is full of dirty frames
and thus, for every write request, a dirty victim has to be flushed.
Though, since the transaction throughput is more dependent on the
synchronous read performance, the longer write latency in R-Buf
will be offset by the shorter read latency, as shown in Figure 6a.

5.3 Effect of RW Command
5.3.1 TPC-C Performance.

Throughput In R-Buf, when the buffer size is same to or larger
than 25% of the database size, read stalls at database buffer disap-
pear. Therefore, in order to evaluate the performance of RW, we
conduct the same TPC-C experiment using relatively small buffer
that causes read stalls in the database buffer. That is, we perform
the experiment by changing the buffer size of MySQL from 5% to
25% of the database size. In addition, to compare the performance
when read stalls are removed from the host and/or storage buffers,
we test all combinations of RW and R-Buf. The results are presented
in Figure 7.

Table 4: I/O Throughput: Vanilla vs. RW+R-Buf

Performance Metrics RAW+S-Buf RW+R-Buf

TpmC 15,857 49,668
Read IOPS 2,778 7,174
Write IOPS 2,477 4,901

We first analyze the effect of RW on S-Buf. In S-Buf, RW (RW+S-
Buf) can sustain 1.7x to 3.2x higher throughput than RAW (RAW+S-
Buf). In particular, as presented in Table 2b, the smaller the MySQL
buffer size, the more frequent read stalls occur. RW can avoid these
read stalls, so the relative performance gap between RW and RAW
becomes more significant with the smaller buffer size. In addition,
in RW, the reduction in costly tasks such as interrupts and context
switches contributes to the higher throughput of RW. On the other
hand, when the buffer size becomes larger than 35%, the perfor-
mance gap between RW and RAW shrinks since read stalls rarely
occur at large database buffer, as presented in Figure 6b.

Next, we discuss the effect of RW in R-Buf.With the smallMySQL
buffer size (e.g., less than 20% of database size), R-Buf alone (RAW+R-
Buf) achieves only a minor performance gain over S-Buf (RAW+S-
Buf). The main reason is that a large fraction of reads are stalled
at the upper MySQL buffer layer and thus only a small number
of reads can benefit from R-Buf. In contrast, when RW are used
together with R-Buf (RW+R-Buf), they eliminate read stalls at both
DBMS buffer and storage buffer, improving the throughput up to
3.9x over RAW (RAW+S-Buf).

I/O Throughput To validate that RW and R-Buf can utilize
the flash storage better than RAW and S-Buf, we measure read and
write IOPSs using iostat utility in the Linux while running the
TPC-C benchmark in Figure 7 in two modes, (RAW+S-Buf) and
(RW+R-Buf). Table 4 summarizes the average read and write IOPSs.
For a comparison, the TpmC metric is also presented in the table.

As shown in Table 4, all measured IOPS values are consistent with
transaction throughput (i.e., TpmC). Specifically, (RW+R-Buf) shows
3.1x better transaction throughput, 2.6x higher read IOPS, and
2.0x higher write IOPS than (RAW+S-Buf). These results confirm
that RW and R-Buf make flash storage better utilized, ultimately
increasing throughput of the host application.

System Metrics To confirm the benefit of RW in reducing
costly system tasks at run-time, we collect performance counter sta-
tistics, including interrupts, context switches, and CPU instructions,
while running the TPC-C benchmark in two modes: (RAW+S-Buf)
and (RW+R-Buf). For this, we use the Linux tools, perf and vmstat.
In the experiments, the buffer size is set to 20% of database size. We
calculate the number of each system metric per transaction and
present them in Table 5.

As shown in Table 5, (RW+R-Buf) reduces the number of inter-
rupts by 41% and context switches by 51% compared to (RAW+S-
Buf). Since RW issues read and write as a single command and
returns success only once to the host, the number of interrupts sent
to the host is reduced, and accordingly, that of context switches
decreases. This can save CPU cycles and memory requirements
for them; thus, the host application can process more transactions
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Figure 8: WAF and Sustained Performance (TPC-C, Buffer Size = 20%): Vanilla vs. RW+R-Buf

Table 5: System Metrics (TPC-C, Buffer Size = 20%)

Metrics (per Transaction) RAW+S-Buf RW+R-Buf

Interrupts 12.12 7.21
Context Switches 30.03 14.73
CPU Instructions 1,784K 1,227K

faster. It should be noted that considerable reduction in such met-
rics by (RW+R-Buf) purely explains the throughput gap between
(RW+R-Buf) and (RAW+R-Buf) in Figure 7. Meanwhile, the through-
put gap between (RAW+R-Buf) and (RAW+S-Buf) in the figure is
attributable to the read stall at the flash storage buffer.

Another observation from Table 5 is that (RW+R-Buf) can con-
siderably lower the number of CPU instructions to 31% compared
to (RAW+S-Buf). The main reason is that reduced I/O calls decrease
the CPU instructions used by the I/O stack. RW also avoids unnec-
essary CPU works required for the write-then-read process, such
as acquiring a free buffer and issuing write and read requests, re-
spectively. For example, RW can contribute to reduce the number
of mutex operations, as mentioned in Section 3.2.2. To quantify
the mutex overhead, we measure the average number of mutex
operations for the free list per transaction, and the results are 190
for RAW and 114 for RW. Converting to wait time for the mutex,
it takes 25us in RAW while it does 13us in RW. That is, RW can
save the per-transaction mutex wait time by 12us. Consequently,
the simplified buffer manager of RW can complete one transaction
with quite less CPU instructions.

Varying Read and Write Ratio Recalling that the goal of
both RW and R-Buf is to alleviate read stalls caused by the slow
writes, its effect is highly dependent on the relative ratio of read and
write operations issued from workloads. In particular, its effect will
reduce as the fraction of reads over writes increases because the
larger read ratio results in fewer pending writes and fewer stalled
reads. To demonstrate this, we conduct the YCSB benchmark by
changing the ratio of read and update operations from 5% to 95%,
respectively. The results are presented in Figure 9.

(RW+R-Buf) shows better throughput than (RAW+S-Buf) ex-
cept for the extremely read-intensive case (i.e., Read:Update=95:5).
As expected, the relative performance gain of (RW+R-Buf) over
(RAW+S-Buf) shrinks as the read ratio increases and thus read stalls
decrease. On the other hand, the effect of (RW+R-Buf) stands out
as the update ratio increases. In write-intensive workloads (e.g.,
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Read:Update=5:95), dirty victim evictions from both host and stor-
age buffers also increase on (RAW+S-Buf), so read performance ulti-
mately determines the overall performance. Therefore, (RW+R-Buf)
can reduce the 99th percentile latency by 87% for read operations
and 74% for update operations, compared to (RAW+S-Buf). This
results leads to 3.4x better throughput in (RW+R-Buf).

5.3.2 Other Workloads: LinkBench and SysBench. To verify the
effect of (RW+R-Buf) on other workloads, we run SysBench [20]
and LinkBench [2] with the same configuration as Figure 7. Though
not presented pictorially because of the space limit, the results
show that the relative performance gap between (RW+R-Buf) and
(RAW+S-Buf) is almost the same as that of TPC-C. This is rather
obvious recalling that the read-to-write ratios in three workloads
are almost the same.

5.4 WAF and Sustained Performance
The random write performance in flash storage is highly dependent
on the size of over-provisioning area available for garbage collec-
tion [22]. To understand the I/O interference impact over time, we
measureWAF, 99th transaction latency, and transaction throughput
while running the TPC-C benchmark on MySQL for 57 hours until
the initial database of 15GB fills the remaining 17GB space.

5.4.1 WAF and DB Performance. It is well known that with flash
storage, as the database grows and fills the capacity, the over-
provisioning area in effect decreases, resulting in high WAF and
penalizing writes [17]. Therefore, the read performance of (RAW+S-
Buf) is severely degraded on read stalls due to the preceding long-
write-latency, so its tail transaction latency increases over time, as
shown in Figure 8a. In addition, the latency fluctuates significantly
because the read latency is highly dependent on the state of the
victim buffer (i.e., clean or dirty). Consequently, unstable read la-
tency drops TPS from 500 to 80, as shown in Figure 8b. This result is
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consistent with that on commercial SSDs [17]. In contrast, (RW+R-
Buf) has a constant transaction latency of 90% lower than vanilla
on average. This clearly indicates that (RW+R-Buf) does not suffer
from read stalls, resulting in 4.9x higher throughput. Furthermore,
note that, at the end of the benchmark, the throughput gap between
the two (i.e., 5.3x) is larger than that in Figure 7 (i.e., 3.1x) due to
the impact of the write penalty caused by the increased WAF.

5.4.2 WAF and Read Latency in Storage Buffer. To quantify the
amount of time spent inside storage buffer when processing reads,
we measure the average in-storage read latency at three time points
during the TPC-C benchmark. In detail, we insert a time-measuring
function for OpenSSD firmware (XTime_GetTime() of Xilinx) be-
fore and after every read request execution to measure the elapsed
time from fetching a host read request to completing it.

As shown in Figure 8c, at the initial point of the benchmark, the
average in-storage read latency in S-Buf is only 21us because of
very few dirty victims in it. However, over time, the number of
dirty victims increases due to write requests from the TPC-C, so
the probability of selecting them for eviction also increases—54%
of read requests entail dirty victim writes. Besides, ever-increasing
WAF makes the penalty of read stalls high. As a result, at the final
point of the benchmark, the latency is increased by 26x (i.e., 557us).
This long in-storage read latency, in turn, increases the transaction
latency at the host application. Meanwhile, R-Buf shows a constant
read latency of around 21us. Read requests are handled immediately
using clean data buffers in read buffer, so they are not affected
by ever-increasing WAF. Consequently, R-Buf can process read
requests at the native speed of reads, guaranteeing stable read
latency at both in-storage and the host application layers.

5.5 Other Cases for R-Buf
Till now, we have shown how much traditional relational DBMSs
can benefit from RW and R-Buf. Meanwhile, since R-Buf enables
reads not to be interfered with by concurrent writes, it can benefit
other cases where reads and writes are concurrently issued from
multiple and independent processes. This section demonstrates that
R-Buf alone is useful for LSM-based KV-stores and multi-tenancy.
With the ever-growing capacity of SSDs, it is not uncommon for
multiple databases to share a single large SSD, which is particu-
larly true for the cloud environment [8, 25]. Under multi-tenant
workloads, S-Buf will stall read requests from one tenant due to
concurrent write requests from neighboring tenants. In contrast,
R-Buf can isolate noisy neighboring tenants in resource sharing
because it can eliminate the resource conflict between concurrently
issued read and write requests inside the same storage. For the
multi-tenancy experiments, we create two disk partitions and run
two tenants concurrently on each partition.

RocksDB To check how R-Buf responds to mingled reads
and writes in a popular LSM-based KV-store, RocskDB, and
affect the latency and throughput, we measure the 99th read
latency and throughput while performing random I/O using
readwhilewriting of DB-Bench. Figure 10 shows the results.

We first notice that the 99th read latency of R-Buf is 41% lower
than that of S-Buf. Furthermore, R-Buf achieves 1.7x better through-
put compared to S-Buf. In RocksDB, as more and more data is writ-
ten and updated over time, multiple versions for the same key can
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Figure 10: DB-Bench on RocksDB: S-Buf vs. R-Buf

exist across multiple levels (i.e., SST files). To remove these copies,
RocksDB periodically deletes duplicate keys and merges them, and
this is called compaction. To carry out compaction, RocksDB has
by default four background processes with sequential read and
write access patterns. Meanwhile, multiple foreground processes
will issue random reads to the storage to fetch data. And the la-
tency of such reads will determine the transaction latency as well as
throughput. With R-Buf, random reads from foreground processes
are not stalled by the concurrent compaction writes. However, such
reads can be stalled with S-Buf. For this reason, R-Buf outperforms
S-Buf in the experiment.

TPC-C and TPC-H Next, we demonstrate the performance
improvement of R-Buf in multi-tenancy. First, we concurrently
run two tenants—random I/O-intensive TPC-C (on MySQL) and
read-only TPC-H (on PostgreSQL)— and observe the impact of the
increased WAF by TPC-C on read-only queries in TPC-H.
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Figure 11: Query Time of Q1@TPC-H (Co-run with TPC-C)

Figure 11 shows the execution time of Query 1 in TPC-H over 11
hours. First, the query time of R-Buf is steady, whereas that of S-Buf
constantly increases over time by up to 4x. In a separate experiment
using the commercial SSD, SSD-D, the query execution time behaves
almost same as that in S-Buf in Figure 11. At the beginning of the
benchmark, R-Buf already shows a shorter query execution time
than S-Buf. This is because R-Buf is, unlike S-Buf, free from the
read stall problem. Furthermore, as the TPC-C database continues
to grow over time, the increased WAF prolongs the write latency
and thus exacerbates the read stall problem in S-Buf, increasing the
query time of TPC-H. In detail, the total query time of TPC-H in
S-Buf increases from 309s to 381s while remaining almost constant
at 222s in R-Buf. Meanwhile, R-Buf drops the throughput of TPC-C
just by 7%. Due to the write buffer in R-Buf, R-Buf suffers a little
performance loss in TPC-C, but in TPC-H, it greatly increases the
query performance compared to S-Buf. Consequently, R-Buf can
make two tenants perform more proportionally than S-Buf and
better utilize the parallelism of flash storage.
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Table 6: Multi-Tenancy Performance: TPC-C and DB-Bench

Performance Metrics S-Buf R-Buf

TpmC (TPC-C) 4,184 3,624
OPS (DB-Bench) 281 704

In-Storage Read Latency (us) 293.4 21.7

TPC-C and DB-Bench Finally, we study the multi-tenancy
performance of two I/O-intensive tenants using different database
engines: TPC-C on MySQL and DB-Bench on RocksDB. Table 6
shows the throughput of each tenant and the in-storage read la-
tency.

In TPC-C, the transaction throughput of R-Buf decreases by 13%
compared to S-Buf. In R-Buf, every write request from MySQL
entails a dirty victim write and thus takes a long time to complete,
while read requests proceed at no stall. Furthermore, since RocksDB
issues a lot of batch reads and writes, TPC-C will experience more
I/O interference than when running as a single tenant. On the other
hand, the throughput of R-Buf in DB-Bench is 2.5x higher than
that of S-Buf. Especially for RocksDB, R-Buf has 90% lower 99th
percentile read latency and 2% higher write tail latency than S-Buf.
This is because the sequential writes of RocksDB are less affected
by random I/O of TPC-C [5]; thus, the write performance loss of
DB-Bench is less than TPC-C. In addition, the interference between
reads and writes increases the in-storage read latency of S-Buf by
13.5x compared to R-Buf. Note that R-Buf has the same in-storage
read latency as single tenancy.

6 RELATEDWORKS
In that RW and R-Buf are flash-aware solutions for host buffer
and storage buffer, respectively, four types of existing works are
related: flash-aware buffer management at the host layer [32, 35]
and at the SSD layer [19, 44], read prioritization in flash storage
controller [21, 31], and flash-aware database systems [15, 23, 34].
Neither one, however, addresses the read stall problem. RW and
R-Buf are unique in that they focus on serving reads faster by
resolving RAW-induced read stalls at both buffers.

Flash-aware Buffer Management at the Host Several flash-
aware buffer management schemes have been suggested to address
the read and write asymmetry [32, 35]. For instance, Clean-First
LRU (CFLRU) [35] divides the host buffer space into working region
and clean-first region and preferentially selects victim pages for
replacement from the clean-first region. Trading fast reads to reduce
the number of slow writes and thus compromising the hit ratio, it
aims at optimizing the total cost of accessing flash storage. However,
unlike RW and R-Buf, CFLRU is not designed to remove read stalls.
It simply assumes the RAW protocol upon dirty victims.

Buffer Management in SSDs A few recent research have
investigated buffer management inside SSDs. CBM [44] focuses on
write buffer inside SSDs to reduce the negative impact of random
writes. It uses DRAM as a read cache to speed up read accesses and
NVM to manage dirty pages. R-Buf and CBM have in common that
they split the shared data buffer in two, but CBM focuses on using
the write buffer more effectively. BPLRU [19] allocates the DRAM

buffer inside the SSD only for write requests and simply redirects
read requests to the FTL. Since BPLRU is primarily concerned with
random write performance, it does not consider read requests and
excluded reads from the experiments. Unlike BPLRU, we mainly
focus on read requests; thus, it is hard to compare them on equal
terms. In summary, both CBM and BPLRU pay attention to the
performance of random writes, and they do not address the read
stall problem in the storage buffer layer.

Prioritizing Read in Flash Controller The read operation
has been prioritized over the write operation at the flash storage
controllers [10, 31] because it is critical to the latency as well as the
throughput of I/O-intensive applications. To be specific, to reduce
the read latency caused by the read-write interference, the preced-
ing write or even erase operations enqueued at a flash chip can be
suspended in favor of serving the following reads. Though effective
in reducing read latency [46], however, the read prioritization tech-
nique is orthogonal to the read stall problem in the storage buffer.
For example, although the Cosmos+ OpenSSD support read prior-
itization [21], the read stall problem still persists on it, as shown
in Figure 4 (S-Buf). It should be recalled that the prioritization
technique is intended to resolve the interference between writes
and reads at the channel level of the SSD but not to address the
read stall problem.

Flash-aware Database Systems A few proposals about flash-
aware database systems have been recently made [15, 23, 34]. One
common design objective among them is to minimize or even re-
move the I/O stack overhead on flash storage with short I/O latency.
However, they do not address the read stall problem at all. Consider-
ing that LeanStore [23] and DANA [15] are based on the background
writer and latency-critical reads, we assume that the read stall prob-
lem still exists in such flash-aware DB systems. Hence, they will
benefit from RW and R-Buf. In particular, in the case of SaS [34]
which should also undergo read stalls in its current form, it can
embody the idea of RW command by directly leveraging the DRAM
buffer as the resource to resolve read stalls.

7 CONCLUSION
This paper confirms that the RAW protocol and its resulting read
stall are sub-optimal on flash storage. To solve the problems, we
propose two simple but effective solutions: RW and R-Buf. They
allow performance-critical reads to proceed without being blocked
by slow writes in the DBMS buffer and storage buffer, respectively,
complementing each other. Thus, with the help of RW, R-Buf, and
the read priority mechanism at the flash channel, reads do not
experience any interference from writes on the I/O path from the
host buffer manager to the flash chips. As a result, they improve
transaction throughput, latency, and storage utilization.
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