
Towards Distributed Bitruss Decomposition on Bipartite Graphs
Yue Wang

∗

Shenzhen Institute of Computing

Sciences

yuewang@sics.ac.cn

Ruiqi Xu
∗

National University of Singapore

ruiqi.xu@nus.edu.sg

Xun Jian

Alexander Zhou

Lei Chen

Hong Kong University of Science and

Technology

{xjian,atzhou@connect,leichen@cse}.ust.hk

ABSTRACT

Mining cohesive subgraphs on bipartite graphs is an important task.

The k-bitruss is one of many popular cohesive subgraph models,

which is the maximal subgraph where each edge is contained in at

least k butterflies. The bitruss decomposition problem is to find all

k-bitrusses for k ≥ 0. Dealing with large graphs is often beyond

the capability of a single machine due to its limited memory and

computational power, leading to a need for efficiently processing

large graphs in a distributed environment. However, all current

solutions are for a single machine and a centralized environment,

where processors can access the graph or auxiliary indexes ran-

domly and globally. It is difficult to directly deploy such algorithms

on a shared-nothing model. In this paper, we propose distributed

algorithms for bitruss decomposition. We first propose SC-HBD

as the baseline, which usesH -function to define bitruss numbers

and computes them iteratively to a fix point in parallel. We then

introduce a subgraph-centric peeling method SC-PBD, which peels

edges in batches over different butterfly complete subgraphs.We then

introduce local indexes on each fragment, study the butterfly-aware
edge partition problem including its hardness, and propose an ef-

fective partitioner. Finally we present the bitruss butterfly-complete
subgraph concept, and divide and conquer DC-BD method with

optimization strategies. Extensive experiments show the proposed

methods solve graphs with 30 trillion butterflies in 2.5 hours, while
existing parallel methods under shared-memory model fail to scale

to such large graphs.

PVLDB Reference Format:

Yue Wang, Ruiqi Xu, Xun Jian, Alexander Zhou, and Lei Chen. Towards

Distributed Bitruss Decomposition on Bipartite Graphs. PVLDB, 15(9): 1889

- 1901, 2022.

doi:10.14778/3538598.3538610

1 INTRODUCTION

A bipartite graphG , which contains two disjoint node setsU (G) and
L(G), and edges from one set to another, is usually used to model re-

lationships between two types of entities in real-world applications.

For instance, consumer-product purchase records, author-paper

academic networks, actor-movie information, and so on. Dense

subgraph mining is an importance task in graph analysis. It has

real-world applications including spam detection, social recommen-

dation, anomaly detection, and the like. While many works have

∗
Co-first authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.

doi:10.14778/3538598.3538610

discovered hierarchical dense structures on unipartite networks,

such as k-core [21] and k-truss [11, 25], dense subgraph discovery

on bipartite graphs is now attracting research attention.

In this paper, we focus on thek-bitrussmodel, which is a butterfly-

based dense structure introduced in [23, 40]. A butterfly, or a (2, 2)-
biclique, is the smallest fundamental unit of a cohesive structure

in a bipartite graph. A k-bitruss Γk is such a maximal subgraph

of G that each edge is contained in at least k butterflies, and the

bitruss number ϕe of an edge e is the largest k such that a k-bitruss
contains e . We study the bitruss decomposition problem, which

computes ϕe for ∀e ∈ G. The k-bitruss model provides a compact

way to reveal the hierarchically dense structure on bipartite graphs,

and it can be viewed as the analogy of the popular k-truss model

on unipartite graphs. The k-bitruss model can be used in fraud

detection in social networks and recommendation over user-item

structures [34].

Recommendation System. Given a user-product bipartite graph, the

k-bitruss model can help identify cohesive subgraphs where users

and products are densely connected, showing similarities among

users and products. In a recommendation system, such similarities

can be used to recommend potential products to users, and associate

products with potential buyers [27].

Anomaly Detection. In social media such as Facebook, Twitter,Weibo

and TikTok, users often form a “following/followed by” relationship.

To increase popularity and influence, fake accounts may be created

to follow a particular group of users [4]. These vicious users tend to

form a closely connected group, and the k-bitruss model can help

locate those anomaly communities at different levels of granularity

for further investigation. Similarly, k-bitruss can be used to detect

a group of web attackers who access a set of webpages frequently

to make their rankings higher.

Owing to the large amount of data generated from various infor-

mation systems in daily life, it has becomemore andmore necessary

to process and analyse large-scale graphs. For example, during Sin-

gles’ Day 2017, Alibaba coped with 256 000 payment transactions

per second, and a total of 1.48 billion transactions were processed

by Alipay in the entire 24 hours [38]. This means the number of

user-product relations grew extremely fast. According to [37], Face-

book has 2.8 billion monthly active users (as of 31 December 2020),

indicating billions of following relations and user-post relations. On

such bipartite networks, finding k-bitruss structures is also useful in
hierarchical group finding, anomaly transaction detection, and per-

sonalized recommendations. Processing large-scale graph problems

efficiently is going beyond the capability of a single machine (or a

shared-memory model) due to its limited memory and restricted

concurrency. Developing efficient distributed algorithms for large-

graphs, which are too big to load and process in the memory, or

too costly to process on a single machine, is an urgent need.

1889

https://doi.org/10.14778/3538598.3538610
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538610

Most current methods can solve the bitruss decomposition prob-

lem on a single machine. However, none of them aim to design

effective algorithms on a shared-nothing model, where G is parti-

tioned among multiple workers to lower the memory requirement

of a single machine and enhance parallelism. Existing works [23, 40]

follow a similar sequential bottom-up peeling framework (details

in [36]), i.e., during each round the edge e with the minimum sup-

port is labeled and peeled from G, and the support of affected

edges is then updated. [34] further boosts the peeling process by

proposing the BE-Index, which compacts the edge-butterfly infor-

mation into bloom-edge structures, so that the redundant workload

of enumerating butterflies can be avoided. It is difficult to deploy

the above algorithms on a shared-nothing model, due to the fol-

lowing challenges: (1) peeling edges one by one is sequential by

nature, which restricts the granularity of parallelism; (2) the shared-

memory model allows globally random access to G, related auxil-

iary data structures and indexes, that are not directly supported

on a shared-nothing model; and (3) distributed algorithms incur

additional costs of synchronization and communication, which is

neither considered nor optimized in current methods.

Facing the above challenges, we aim to answer the following

basic questions in this paper: Q1: How to make the process of

bitruss decomposition parallelizable using multiple workers on a

shared-nothing model? Q2: Given parallel methodologies, how to

partition the graph to achieve better communication and overall

performance? Q3: How to accelerate computation for each worker

locally while guaranteeing correctness? Q4: How to further reduce

communication cost and synchronization overhead?

For Q1, firstly, as a baseline, we adopt an alternative interpreta-

tion of bitruss number usingH -function (which is currently used

as a second definition for core numbers). Based on this, we first

define the concept of butterfly-complete subgraph, and propose SC-

HBD, which computes bitruss numbers iteratively to a fix point by

thinking like a subgraph (Sect. 3). The convergence is shown. SC-

HBD incurs a large total workload, thus we present a second batch

peeling framework, which peels edges in batches (Sect. 4). Based on

that we introduce SC-PBD, a subgraph-centric peeling algorithm,

which performs peeling concurrently on different subgraphs and

guarantees the accuracy by communication and synchronization.

For Q2, to balance the local computation and reduce the commu-

nication cost for SC-HBD and SC-PBD, we formulate a butterfly-
aware edge partition problem, which is different from existing ones

that balance nodes or edges directly. We show the problem is NP-

hard and hard to approximate, and present a heuristic partitioner

with a quality guarantee, which estimates the workload of each

partition efficiently and accurately during partitioning (Sect. 6).

For Q3, to speed up local computation over multiple butterfly-

complete subgraphs for SC-HBD and SC-PBD, we build a local

index on each individual subgraph and use it to accelerate butterfly

retrieval locally (Sect. 5). The key observation is that we do not

need to store all wedges in the subgraph, and only those have at

least one of its inner edge.

For Q4, to further reduce the communication and synchroniza-

tion during batch peeling, we introduce the concept of bitruss
butterfly-complete subgraph, and present a divide-and-conquermethod

DC-BD (Sect. 7). It first divides G into such subgraphs that each

subgraph can perform peeling locally and independently, without

any further communication and synchronization among workers

in the conquer phase. We further show how to divide G under

this framework and propose optimization strategies to boost local

computation on local bitruss butterfly-complete subgraphs.

Using both real-life and synthetic datasets, we conduct extensive

experiments, and the results show the effectiveness and efficiency

of our proposed methods (Sect. 8): (1) Our optimizations speed up

SC-HBD, SC-PBD and DC-BD by 18, 26 and 6.4 times, respectively.

(2) Our methods are parallel scalable: the response time of SC-HBD,

SC-PBD and DC-BD reduce by 4.6, 3.1 and 3.6 times, when p grows

from 8 to 96. (3) DC-BD can process graphs with 30T of |▷◁G |, in
2.5 hours, whereas current methods like BiT-BU and BiT-PC fail to

handle such large graphs. (4) DC-BD consistently beats SC-HBD,

SC-PBD, BiT-BU and ParButterfly by at least 72, 3.9, 1.3 and 8.3
times, respectively, and is on average 1.9 times faster than BiT-PC.

2 PRELIMINARIES

In this section, we first present related definitions of bitruss decom-

position, then we introduce the environment of distributed graph

computation. Proofs of the paper are in [36].

Related Definitions.We consider an undirected bipartite graph

G (V (U ,L),E), where U (G) is the set of nodes in the upper layer,

L(G) is the set of nodes in the lower layer,U (G)∩L(G) = ∅,V (G) =
U (G) ∪ L(G) is the node set, and E (G) ⊆ U (G) × L(G) is the edge
set. Denote by (u,v) or (v,u) the edge between u and v . Denote by
NG (u) = {v : v ∈ V (G) ∧ (u,v) ∈ E (G)} the set of neighbors of u

in G. Given E
′

⊆ E, the subgraph of G induced by E
′

is the graph

formed by edges in E
′

.

Definition 2.1 (Butterfly). Given a bipartite graphG and four
nodes u,v,w,x ∈ V (G), where u,w ∈ U (G) and v,x ∈ L(G), a
butterfly induced by the nodes u,v,w,x is a (2,2)-biclique of G, i.e.,
both u and w are linked to w and x , respectively, by edges (u,v),
(u,x), (w,v) and (w,x).

Denote by
u
v ▷◁

w
x the butterfly induced by nodes {u,v,w,x }, ▷◁G

the set of butterflies in G, and ▷◁e,G the intersection of the set

of butterflies of G and those edge e takes part in. Here |▷◁e,G | is
called the butterfly support of e in G. Denote by ▷◁G1,G2

the set of

butterflies in G2 with edges in G1, i.e., ▷◁G1,G2
=
⋃
e ∈G1

▷◁e,G2
.

Definition 2.2 (k-bitruss). Given a bipartite graph G, and a
positive integer k , a k-bitruss Γk is a maximum subgraph of G such
that |▷◁e,Γk | ≥ k for each e ∈ Γk .

Definition 2.3 (bitruss number). The bitruss number ϕe of an
edge e ∈ G is the largest k such that a k-bitruss in G contains e .

Definition 2.4 (bitruss decomposition). Given a bipartite
graph G, the bitruss decomposition problem is to compute ϕe for
each e ∈ E (G).

Denote by δ (G) the minimum support of all edges in G, i.e.,
δ (G) = mine ∈E (G) |▷◁e,G |, ϕe also satisfies the following equation.

Lemma 2.1. ϕe = maxG′ ⊆G,e ∈G′ δ (G
′

).

Distributed Graph Computation. We use a coordinator-based

shared-nothing model, consisting of a master (coordinator)W0 and

a set of p workersW = {W1, · · · ,Wp }. The workers (includingW0)

are pairwise connected by bi-directional communication channels.

Meanwhile,G is fragmented into F = (F1, · · · , Fp) and distributed

among these workers, where each Fi = (Vi ,Ei) is a subgraph of G,
such thatV = ∪i ∈[1,p]

Vi and E = ∪i ∈[1,p]
Ei . Each workerWi hosts

1890

and processes a fragment Fi ofG . We follow the Bulk Synchronous

Parallel (BSP) model for computing. Under BSP, computation and

communication are performed in supersteps: at each superstep,

each workerWi first reads messages (sent in the last superstep)

from other workers, and then performs the local computation, and

finally sends messages (to be received in the next superstep) to

other workers. The barrier synchronization of each superstep is

coordinated byW0. One desired property of a distributed graph

algorithm ρ is parallel scalability, i.e.,Tρ (time taken by ρ) decreases
with an increasing p, indicating the more resources added, the more

efficient ρ is. To ensure parallel scalability, it is crucial to make

the workload of ρ balanced across different workers. In contrast,

existing methods for bitruss decomposition are based on shared-

memory model and are abstracted as SeqPeel, detailed in [36].

3 SUBGRAPH-CENTRIC H-FUNCTION

DECOMPOSITION

Peeling edges one by one is hard to parallelize in nature. Is there

any other paradigm that could make bitruss decomposition paral-

lelizable? Recently, [19] introduces an alternative interpretation for

k-core decomposition based onH -function (Def. 3.1). This results

in a parallel paradigm where each node v updates its coreness by

evaluatingH (·) on coreness of NG (v) at each round. [24] further

extends this idea for general parallel nucleus decomposition over

unipartite graphs on shared-memory model. Since k-bitruss is a
cohesive model following similar intuition with k-core/truss, it is
possible to extend above idea to parallel bitruss decomposition. In

the following, first we show this parallel diagram paradigm and

its correctness in Sect. 3.1, then present our subgraph-centric algo-

rithm SC-HBD in Sect. 3.2, which is a baseline.

Definition 3.1 (H -function). Given a multiset N of natural
numbers, the H -function H (N) returns the largest integer y such
that there are at least y elements in N whose values are at least y.

3.1 Overview

In this section, we present H-BD (Algo. 1). During H-BD, each

edge computes and maintains a value γ (i) (e) which is initialized as

|▷◁e,G | (line 1). At round i , γ
(i) (e) is updated as follows (lines 5-10).

For each butterfly ▷◁ of ▷◁e,G , the value ρ (e, ▷◁) is computed, which

is the minimum γ (e) (i − 1) among edges in ▷◁ other than e . Then

γ (i) (e) is updated as H (Ne), where Ne is the set of ρ (e, ▷◁)s that

evaluated on all butterflies in ▷◁e,G . H-BD terminates when γ (i) (e)
converges to ϕe for all edges. At each round of i , all edges update

γ (i) (e) locally and simultaneously (line 5). Next, we show γ (i) (e)
is non-increasing, and converges to ϕe . To show the correctness

of H-BD and make the paper self-contained, we follow similar

arguments to [24], with the specialization to bitruss model.

Lemma 3.1 ([24]). For all i ≥ 1, ∀e ∈ E,γ (i) (e) ≤ γ (i−1) (e).

Lemma 3.2 ([24]). For all i ≥ 0, γ (i) (e) ≥ ϕe .

Since γ (0) (e), · · · ,γ (i) (e), · · · is a non-increasing sequence and
has a non-negative lower bounds, it converges in finite steps.

Theorem 3.3 ([24]). ∀e ∈ E, the sequence γ (i) (e) for i ≥ 0 con-
verges to ϕe .

We show an upper bound for the number of iterations of H-

BD in Sect. 4.1, which is tighter than [24]. Next, we introduce our

distributed solution based on H-BD.

Algorithm 1 H-BD

Input: G (V , E)
Output: ϕe for each e ∈ E
1: γ (0) (e) ← |▷◁e,G |, ∀e ∈ E
2: converдe ← False, i ← 0

3: while not converдe do

4: i ← i + 1, converдe ← T rue
5: for all e ∈ E in parallel do

6: Ne ← ∅

7: for all ▷◁ ∈ ▷◁e,G do

8: ρe, ▷◁ = mine′∈▷◁,e′,e γ
(i−1) (e

′
), Ne ← Ne ∪ {ρe, ▷◁ }

9: γ (i) (e) ← H (Ne)

10: if γ (i) (e) , γ (i−1) (e) then converдe ← False
11: ϕe ← γ (i) (e), ∀e ∈ E

3.2 Subgraph-Centric Decomposition

We introduce subgraph-centric algorithm SC-HBD (Algo. 2). Sup-

pose E is partitioned into disjoint set E1, · · · ,Ep , and each Fi is the

subgraph induced by Ei . In order to update γ (·) (e) locally on Fi , it
is necessary to “enlarge" Fi to contain additional edges to retrieve

supporting butterflies for edges in Fi . This is because edges in a

butterfly may cross different fragments. Next, we introduce the

concept of butterfly complete subgraph.

Definition 3.2 (Butterfly complete subgraph). Given a sub-
graph Fi induced by Ei , the butterfly complete graph of Fi is F+i
induced by E+i , where E

+
i = Ei ∪ {e

′

: e
′

∈ E \ Ei and there exists
such an edge e ∈ Ei that e, e

′

are in the same butterfly of G }.

Briefly speaking, F+i includes those e
′

< Fi which forms butter-

flies with any e ∈ Fi inG (see [36] for building F+i). For any e ∈ E
+
i ,

if e ∈ Ei , we call e an inner edge (also denoted by e ∈ Fi), otherwise,
e is called an external edge.

Lemma 3.4. ∀e ∈ Fi , |▷◁e,G | = |▷◁e,F +i
|.

SC-HBD follows similar logic to H-BD, but has the following

differences: (1) SC-HBD only works on F+i ; (2) synchronizations

of γ (i) (e) among different fragments are performed to maintain

the consistency. SC-HBD first initializes γ (0) (e) as |▷◁e,F +i
| for each

inner edge e (lines 2-3). At each following superstep, SC-HBD

first receives updated γ (i) (e) in last superstep for external edges

(lines 7-7) and then computesγ (i) (e) (lines 9-12) for each inner edge.
Moreover, if any e is updated to a different value and is contained

as an external edge on another fragment F+j , message is sent to

F+j to notify the change (lines 13-15). SC-HBD terminates when it

converges, i.e., all workers volt to halt (line 15).

Cost Analysis. At each iteration, the number of butterflies accessed

(line 10 of Algo. 2) is

∑
e ∈Ei |▷◁e,F +i

|. Computing ρe, ▷◁ (line 11) can

be done in constant time, since each butterfly has exactly four edges.

Computing γ (i) (e) can be done in linear time by incrementally

building a hash table. Therefore, the computation time of each

iteration on F+i can be done in O (
∑
e ∈Ei |▷◁e,F +i

|) = O (|▷◁Fi ,F +i
|), by

exploiting the local index on F+i (introduced in Sect. 5). The number

of messages sent by F+i is

∑
e ∈Ei min{|▷◁e,F +i

|,p−1}, since messages

sent by any inner edge e is bounded by |▷◁e,G |, and is also bounded
by the number of remote workers p − 1. Therefore, the amount is

bounded by O ((p − 1) |Fi |) and O (|▷◁Fi ,F +i
|). The messages received

1891

Algorithm 2 SC-HBD (Subgraph-Centric Decomposition)

Input: F+i , MSGr
Output: ϕe for e ∈ Ei
1: s ← дetSuperstep ()
2: if s = 0 then /* Initialization */

3: for all e ∈ Ei do γ (0) (e) ← |▷◁e,F+i |

4: else /* Iterative Update */

5: if MSGr = ∅ then Wi volts to halt

6: else

7: for all (e, value) ∈ MSGr do γ (s−1) (e) ← value
8: MSGs ← ∅

9: for all e ∈ Ei do
10: for all ▷◁ ∈ ▷◁e,F+i

do

11: ρe, ▷◁ = mine′∈▷◁,e′,e γ
(s−1) (e

′
), Ne ← Ne ∪ {ρe, ▷◁ }

12: γ (s) (e) ← H (Ne), Ne ← ∅

13: if γ (s) (e) , γ (s−1) (e) then
14: if ∃F+j such that e ∈ F+j ∧ j , i then

15: Send message (e, γ (s) (e)) toWj
return γ (s−1) (e) for all e ∈ Ei when all workers volt to halt

Algorithm 3 BatchPeel

Input: G (V , E)
Output: ϕe for each e ∈ E
1: ∀e ∈ G, sup (e) ← |▷◁e,G | , i ← 0

2: while G , ∅ do
3: MS ← mine∈E (G) sup (e)
4: while ∃e ∈ E such that sup (e) ≤ MS do

5: S ← {e : sup (e) ≤ MS }, G ← G \ S
6: for all e ∈ S do ϕe ← MS
7: update sup (·) for edges affected by removing S , i ← i + 1

8: return ϕe for each e

by F+i is O (|F+i | − |Fi |). The total messages exchanged among all

workers during one iteration is O (
∑p
i=1
|F+i | − |Fi |).

Putting these together, we can see the cost of SC-HBD is in O (T ·
maxi ∈[1,k]

|▷◁Fi ,F +i
|). Here T is the number of iterations required

for convergence, which is decided solely by G (same as H-BD) and

is irrelevant to p. When the fragment is balanced (partitioning G is

discussed in Sect. 6) w.r.t. the number of butterflies, i.e., |▷◁Fi ,F +i | =
O (|▷◁G |/p), the algorithm is in O (T |▷◁G |/p).

4 SUBGRAPH-CENTRIC BATCH PEELING

Though H-BD is parallelizable and leads to our distributed solution

SC-HBD, the total workload of all workers of SC-HBD is O (T |▷◁G |).
This is larger than existing sequential counterparts. In this section,

we first introduce a batch peeling framework (Sect. 4.1), which has

the same workload as current sequential solutions, and then we

present a subgraph-centric program based on it (Sect. 4.2).

4.1 Batch Peeling Framework

Here we introduce BatchPeel (Algo. 3), which peels a batch of

edges at each round, to increase the granularity of parallelism

following SeqPeel. Specifically, BatchPeel initializes sup (e) as the
support of each e (line 1). At each round i , the minimum valueMS
of sup (e) is identified (line 3), then all edges with sup (e) ≤ MS
are repeatedly removed in batch (line 5), and labeled with MS as

ϕe (line 6). Meanwhile, sup (e) for remaining edges are updated,

this round continues until all edges have support number larger

thanMS (line 4-7). BatchPeel terminates when G becomes empty

(line 2).

Algorithm 4 SC-Peel (Subgraph-centric Peeling on k)

Input: F+i , k, MSGr
Output: e ∈ Ei whose ϕe > k
1: s ← дetSuperstep ()
2: if s = 0 then /* Initialization */

3: Q ← {e : e ∈ Fi ∧ |▷◁e,F+i | ≤ k }, R ← SubPeel(Q)

4: else/* Iterative Peeling */

5: R ← SubPeel(MSGr)

6: for all e ∈ R andWj , such that e ∈ F+j ∧ j , i do send {e } toWj

7: if no messages are sent thenWi volts to halt

8: function SubPeel(Q)

9: R ← ∅;
10: while Q , ∅ do
11: ϕe ← k ; e ← Q .pop ();
12: for all ▷◁ ∈ ▷◁e,F+i

∩ ▷◁Fi ,F+i
do

13: for all e
′
∈ ▷◁ and e

′
, e do

14: if e
′
is an inner edge on F+i then

15: supp (e
′
) ← supp (e

′
) − 1

16: if supp (e
′
) ≤ k then Q .add (e

′
)

17: F+i ← F+i \ {e }, R ← R ∪ {e }

18: return R;

We show the correctness of BatchPeel. Denote byMS (i) theMS

in i-th round, S (i) the set of edges removed in the i-th iteration, and

L(i) the subgraph of G induced by edges S (i) ∪ S (i+1) ∪ · · · .

Claim 4.1. For any 0 ≤ j < i ,MS (i) ≥ MS (j) .

Proof. This is guaranteed by the condition in line 4. □

Theorem 4.2. At the end of i-th round of BatchPeel (i ≥ 0), ∀ei ∈
S (i) , ϕei is correctly assigned, i.e., ϕei = MS (i) .

Corollary 4.3. For any i, j ≥ 0 and i ≥ j , for any ei ∈ Si , ej ∈ Sj ,
ϕei ≥ ϕej .

Note that there is another version of peeling by batchMinBatch-

Peel [26], which peels edges whose support is exactly the minimum.

On the contrary, BatchPeel peels edges whose support is ≤ MS (i) ,
which is at least theminimum of the current support ofG . Therefore,
BatchPeel can peel more edges than MinBatchPeel in an iteration

and take less iterations in total. BatchPeel also provides an upper

bound for T in H-BD.

Theorem 4.4. If e is removed at i-th iteration in BatchPeel (e ∈
S (i)), then γ (t) (e) = ϕe for t ≥ i , i.e., γ (·) (e) converges to ϕe within i
iterations.

4.2 Subgraph-centric Peeling

In this section, we introduce our subgraph-centric peeling approach

called SC-PBD. The basic idea is that, we treat each fragment as a

subgraph, and peel edges in each subgraph independently. During

the peeling, messages are only exchanged when it is necessary.

SC-PBD follows the skeleton of BatchPeel. However, SC-PBD

calls the subgraph-centric SC-Peel (Algo. 4) for the major peeling

phase, which corresponds to the main loop (lines 4-7) of Algo. 3.

Other parts of logic are controlled by coordinatorW0.

Given F+i and k (assigned asMS at each round invoked byW0),

SC-Peel peels such edges e ∈ Fi that sup (e) ≤ k , and updates the

support of the remaining inner edges. It consists of: (1) the initial

stage which peels edges affected by initial unqualified inner edges

1892

(lines 2-3); (2) and an iterative peeling stage which peels edges

affected by the removal of external edges (lines 4-5). Initial stage

has 1 superstep, it identifies those inner edges Q whose support

is ≤ k , and uses Q as the “seed” to perform the sequential peeling

algorithm SubPeel(Q), which returns a set R of removed inner

edges that can influence some other fragment F+j . The iterative

peeling stage has multiple supersteps. It first receives messages

MSGr which contain external edges of F+i that are removed as

inner edges in some other fragments in the last superstep. Next it

invokes SubPeel(MSGr) for peeling, then after peeling with Q or

MSGr , it checks whether R is empty or not. If R is empty,Wi volts
to halt since peeled inner edges in Fi do not affect other fragments

(line 7). Otherwise,Wi sends edges in R to corresponding fragments

for notifying the removal of the external edges (line 6). It terminates

when all workers volt to halt.

SubPeel(Q) is a sequential procedure works on F+i . Given a set

Q of starting edges to be removed, SubPeel(Q) views edges in Q
as “seeds” and peels edges in Fi affected by Q as much as possible.

For each e ∈ Q , it iterates over ▷◁ ∈ ▷◁e,F +i
∩ ▷◁Fi ,F +i

(line 12), i.e.,
butterflies associated with e with at least one edge in Fi . Then

for each edge e
′

∈ ▷◁ (line 13): if e
′

is an inner edge, its support

decreases by 1 (line 15). Furthermore, if |▷◁e ′,F +i
| ≤ k , e

′

is added to

Q for further peeling (line 16). After processing edges affected by

e , e is removed from F+i (line 17). In addition, if there exists some

other fragment F+i containing e as an external edge, then e is added
to R for further notifying other fragments in the next superstep

where e is removed (line 17). It terminates until Q becomes empty.

Next, we show the correctness of Algo. 4.

Theorem 4.5. When Algo. 4 terminates, for any remaining inner
edge e ∈ Fi , ϕe > k .

Cost of SC-PBD. We analyse the computation and communication

cost incurred by any fragment F+i during SC-PBD. The computa-

tion cost incurred by peeling an edge e ∈ F+i is bounded by the

number of butterflies associated with e in ▷◁Fi ,F +i
(line 13, detailed

implementation in Sect. 5). The total computation cost on F+i is

O (
∑
e ∈F +i

|▷◁e,F +i
∩ ▷◁Fi ,F +i

|) = O (|▷◁Fi ,F +i
|), since a butterfly in

▷◁Fi ,F +i
is accessed at most once (when it is destroyed). Next, we

analyse the communication cost of F+i . For each inner edge e , it has
at most min{|▷◁e,G |,p − 1} mirrors on other fragments, the same

as the message size of notifying other fragments of its removal.

The message amount sent by F+i is bounded by O ((p − 1) |Fi |) and
O (|▷◁Fi ,F +i

|). For an external edge e , it receives at most 1 message

from the other fragment Fj where e is an inner edge, notifying

the removal of e . Therefore, the total communication cost on F+i
is O (

∑
e ∈Fi |▷◁e,F +i

| +
∑
e<Fi 1) = O (|▷◁Fi ,F +i

|), since each external

edge is contained in at least one butterfly in ▷◁Fi ,F +i
.

It can been seen that SubPeel(Q) is similar to SeqPeel. The dif-

ferences are: (1) SubPeel(Q) is performed on a fragment F+i , while
SeqPeel is performed on G; (2) SubPeel(Q) is a subroutine of SC-
Peel for local peeling, and SC-Peel also performs communication

among fragments. This reveals the advantage of thinking like a

subgraph: the computation of a fragment is sequential, and multiple

fragments run in parallel. This makes it flexible to adjust the gran-

ularity of parallelism to improve the efficiency by graph partition.

Algorithm 5 Enumerating Butterflies in ▷◁Fi ,F+i

Input: Fi , F+i , edge e = (u, v), e ∈ F+i and local index Hi and H̄i
Output: The set of butterflies ▷◁e,F+i

∩ ▷◁Fi ,F+i
1: Suppose p (u) > p (v), otherwise swap(u, v); Be ← ∅;
2: for all w such that (w, v) ∈ F+i ∧ p (u) > p (w) do
3: if (w, v) ∈ Fi ∨ (u, v) ∈ Fi then
4: for all x ∠

w
u ∈ Hi (u, w) such that x , v do

5: Be ← Be ∪ {uv ▷◁
w
x }

6: else

7: for all x ∠
w
u ∈ H̄i (u, w) do

8: Be ← Be ∪ {uv ▷◁
w
x }

9: for all w such that (w, u) ∈ F+i ∧ p (w) > p (u) do
10: execute lines 2-8 with swapped u and v

return Be

5 LOCAL INDEX ON F+i
The key operation of both the subgraph-centric algorithm SC-HBD

and SC-Peel is to iterate over ▷◁e,F +i
for a given e (line 10 of Algo. 2

and line 12 of Algo. 4). This operation dominates the cost over F+i
for the two algorithms. In this section, we discuss how to build a

local index and use it to retrieve butterflies.

Enumerating Butterflies with Index. To efficiently enumerate

butterflies in ▷◁e,F +i
, we explicitly store the wedges shared by each

pair of vertices over F+i . Denoted as Hi , the index maps vertex pair

(u,w) ∈ V ×V to the set of wedges v ∠
w
u with u,w as endpoints. It

is formally defined as follows:

Hi (u,w) = {v ∠
w
u ∈ WF +i

}.

HereWF +i
denotes a subset of wedges in F+i , such that each wedge

v ∠
w
u in it satisfies p (u) > max(p (v),p (w)). The priority p () defines

a total order overV . It serves to reduce the size of index and speeds

up its construction (explained in [36]).

For each set Hi (u,w), we also explicitly maintain a subset of it,

denoted as H̄i (u,w), such that:

H̄i (u,w) = {v ∠
w
u ∈ WF +i

| (u,v) ∈ Fi ∨ (w,v) ∈ Fi }.

That is, H̄i (u,w) only contains wedges that have at least one inner

edge in Fi . We denote the collection of all H̄i (u,w) in F+i as
¯WF +i

.

Each pair of wedges in Hi (u,w) × H̄i (u,w) forms a butterfly in

▷◁Fi ,F +i
. We denote the corresponding set of butterflies as

▷◁i (u,w) = {uv ▷◁
w
x | v ∠

w
u ∈ Hi (u,w) ∧ x ∠

w
u ∈ H̄i (u,w) ∧v , x }.

Note that the butterfly sets of ▷◁i are not explicitly stored. They are

instead implied from the correspondingwedge sets ofHi . Since each
butterfly in ▷◁i (u,w) contains one wedge in H̄i (u,w) that consists
of at least one inner edge in Fi , we can see:

Lemma 5.1. ▷◁i (u,w) ⊂ ▷◁Fi ,F +i
.

Although Hi only contains a subset of all wedges in F+i , the
sets of butterflies in the induced ▷◁i covers all butterflies in ▷◁Fi ,F +i
without redundancy. More specifically:

Lemma 5.2. The butterfly sets ▷◁i in F+i form a partition of the
butterfly set ▷◁Fi ,F +i .

With the help of the index Hi , H̄i and their induced butterfly

sets ▷◁i (u,w), the algorithm for enumerating butterflies associated

with e in ▷◁Fi ,F +i
is seen in Algo. 5. The algorithm takes as input

the fragment Fi and its enlarged counterpart F+i , together with an

1893

edge e ∈ F+i and indexes of Hi and H̄i . It generates the subset of
butterflies in ▷◁Fi ,F +i

containing e . The algorithm first scans the

neighborw of v in F+i such that v ∠
w
u ∈ WF +i

(line 2). If the wedge

scanned contains at least one edge in Fi , the algorithm scans the

wedges of Hi (u,w) and adds the corresponding butterflies into the

set Be (lines 3-5). Otherwise, it only scans wedges in H̄i (u,w) and
enumerates the butterflies (lines 6-8). It then scans wedges with v
andw as wedge endpoints (lines 9 -10) in a similar way.

To see the algorithm is correct, note that 1) in the first loop

(lines 3-8), we scanned all butterflies in ▷◁e,F +i
∩ ▷◁Fi ,F +i

∩ ▷◁i (u,w)

for an edge e ∈ Fi ; 2) all wedges containing e inWF +i
are processed.

Putting this together with Lemma 5.2, we can see the Algo. 5 success-

fully returns all butterflies in ▷◁Fi ,F +i
that contains e for a given edge.

As for the cost of the algorithm, by Lemma 5.2, each of the butterflies

returned are scanned only once, and no butterflies outside of the

returned ▷◁i are scanned. Hence the cost is in O (|▷◁e,F +i
∩ ▷◁Fi ,F +i

|).

The building of the local index is simple and discussed in [36]. Note

that current index such as the BE-Index [34] cannot be directly used

here, since it retrieves ▷◁e,G instead of ▷◁e,F +i
∩ ▷◁Fi ,F +i

, and it does

not distinguish inner edges and external edges on F+i .

Pruned Indexes. For SC-PBD, we can further avoid scanning ex-

ternal wedges in Hi (u,v) \ H̄i (u,v), i.e., wedges with both edges

in F+i \ Fi . This is because the algorithm only processes edges of

▷◁e,F +i
that fall in Fi (at line 14 of Algo 4). Consequently, the indexes

can be pruned for SC-PBD by storing only
¯WF +i

, instead ofWF +i
.

In contrast, such pruned indexes are not available for SC-HBD. Be-

cause the algorithm needs to scan all sup (e ′) for edges e ′ ∈ ▷◁e,F +i
,

in order to compute Ne andH (Ne) on edge e ∈ Fi .

Lemma 5.3. The total size of pruned indexes is bounded, i.e.,∑
i ∈[1,p]

| ¯WF +i
| ≤ 2|WG |.

6 PARTITIONING

Given the subgraph-centric peeling algorithms of SC-HBD and

SC-PBD, we discuss how to partitionG in this section. We first for-

malize the graph partition problem and show its hardness (Sect. 6.1),

and then propose a partitioner that guarantees both efficiency and

effectiveness (Sect. 6.2).

6.1 Butterfly-Aware Edge Partition Problem

We first show why existing conventional partitions are not a fit

for the parallel computation of Algo.s 2 and 4. Then we formalize

this new partitioning problem as Butterfly-aware Balanced Graph
Partition Problem and present the hardness result.

Since each F+i expands Fi by including all associated butterflies,

it is easy to see random hash edge partition does not work well.

Such a partition may incur a high replication of edges and each

expanded fragment F+i will contain almost the entire graph G after

replication. Worse still, there are no partitioners that can be readily

applied to the problem. Conventional edge partitioners are devel-

oped based on objectives of 1) balancing the size of each partition

|Fi | and 2) minimizing the communication between edge copies.

However, the cost of SC-PBD and SC-HBD over F+i is determined

by |▷◁Fi ,F +i
|. Hence we need to balance |▷◁Fi ,F +i

|, rather than |Fi |.

Meanwhile, the communication also takes place among replicated

external edges, rather than among copies of vertices. Towards this

end, we formalize the problem of partitioning w.r.t. SC-PBD and

SC-HBD and show its hardness. Denote by C (G) a disjoint edge
partition over G of size p.

Definition 6.1 (Butterfly-aware Balanced Graph Parti-

tion (BABGP)). Given a bipartite graph G (V ,E), p, and ϵ , output
an edge partition C (G) such that for ∀i ∈ [i,p], |▷◁Fi ,F +i | ≤ ϵ · B, and
the total number of external edges on all fragments t is minimized,

where B =
∑p
i=1
|▷◁Fi ,F+i

|

p , ϵ ≥ 1, and t =
∑p
i=1

(|F+i | − |Fi |).

Theorem 6.1. BABGP problem is NP-hard.

Corollary 6.2. BABGP has no polynomial time approximation
algorithm with finite approximation factor unless P=NP.

6.2 Butterfly-Aware Balanced Partitioner

Given the NP-hardness of BABGP, we next develop a heuristic

parallel edge partitioner, named Butterfly-Aware Balanced Parti-

tioner (BABP). The partitioner efficiently divides the bipartite graph

into balanced fragments and effectively boosts the performance

of Algo.s 2 and 4. Next we present its sequential procedure for

simplicity, and how it is parallelized is shown in [36].

Recall the computation cost of Algo.s 2 and 4 are all bounded by

O (maxi ∈[1,p]
|▷◁Fi ,F +i

|). Hence the goal of our BABP is to speed up

the computation by reducing maxi ∈[1,p]
|▷◁Fi ,F +i

|.

In a nutshell, the partitioner begins with p empty partitions and

grows each partition simultaneously until all edges are partitioned,

so that: 1) maxi ∈[1,p]
|▷◁Fi ,F +i

| is bounded, 2) the total workload

of

∑
i ∈[1,p]

|▷◁Fi ,F +i
| is reduced, and 3) the cost of partitioner is in

o(|▷◁G |), so that the speedup introduced by the partition is not

canceled by the cost of partitioning.

As shown in Algo. 6, the partitioner takes as input G, p, and a

user-defined threshold ϵ , and it generates a p-way partition as out-

put. The algorithm first declares a set of edges Si for each initially

empty Fi . The set Si includes all edges e whose maximum heuristic

score falls into Fi , i.e., argj maxj ∈[1,k]
fgain (e, Fj) = i (line 3, the

heuristic score fgain is described later in this section). It also ini-

tializes sup (e) and indexes H (·) as auxiliary structures (line 4). It

declares a maximum workload as Bmax = 1/p ·
∑
e ∈E sup (e) (line 5)

and uses Bi as a workload estimation of |▷◁Fi ,F +i
|.

During the partitioning process (lines 6-13), the partitioner grows

one partition each time in a round-robin fashion. The partitions Fi
with a large Bi are prevented from growing (line 8). That is, when

1) Bi has already exceeds the workload limit of Bmax, or 2) Bi is
relatively too large compared with other fragments, characterized

by ϵ minj ∈[1,p]
Bj . If the fragment Fi is allowed to grow, it tries

to pick the edge e in Si with the maximum score of fgain (e, Fi ,G)
(line 10). The edge e is picked randomly if Si is empty (line 12). The

estimated workload Bi and Si are updated accordingly (line 13).

Next, we describe 1) how the workload over fragment Fi is es-
timated by Bi efficiently; and 2) how the heuristic score fgain is

defined for edge selection.

Workload Estimation. In order to reduce the workload and keep

them bounded, we need to keep track of the workload of the par-

titions. However, it is too costly to maintain the exact cost of

|▷◁Fi ,F +i
| for Fi , as it will require scanning butterflies in ▷◁e,F +i

upon

adding a new edge e into Fi . On the contrary, it is much faster

to use

∑
e ∈Fi |▷◁e,G | as an estimation of |▷◁Fi ,F +i

|, since computing

|▷◁e,G | for edges inG only requires scanning wedges inWG , where

1894

Algorithm 6 BABP (Butterfly-Aware Balanced Partitioner)

Input: G (V (U , L), E), a positive p , a user-defined threshold ϵ (ϵ > 1)

Output: A p-way edge partitions C (G) = {F1, F2, ..., Fp }.
1: for all i ∈ [1, p] do

2: Fi ← ∅; Bi ← 0;

3: let Si be the subset of unassigned edges with fgain (e, Fi) =
maxj∈[1,k]

fgain (e, Fj)

4: Initialize sup (e) = |▷◁e,G |, and indexes H (·);

5: Bmax =
1

p
∑
e∈E sup (e);

6: while

⋃
i∈[1,p]

Fi , G do

7: for all i ∈ [1, p] do

8: if Bi ≥ Bmax or Bi ≥ ϵ minj∈[1,p]
Bj then continue;

9: else if Si , ∅ then
10: e ← arge maxe∈Si fgain (e, Fi);
11: else

12: pick an unassigned edge e in G
13: Fi ← Fi ∪ {e }; update Bi and Sj for j ∈ [1, p] accordingly;

|WG | << |▷◁G | for real-life graphs. However, this estimation is not

accurate enough. It can not help us to reduce the total workload of∑
i ∈[1,p]

|▷◁Fi ,F +i
|, since

∑
i ∈[1,p]

∑
e ∈Fi |▷◁e,G | =

∑
e ∈G |▷◁e,G | =

4|▷◁G |. That is, the sum of this estimated workload is fixed and does

not reflect the replications of butterflies for a given edge partition.

Toward this, we strike a balance between efficiency and accuracy,

and estimate the cost of partition Fi (denoted as Bi) as follows,

Bi =
∑
e ∈Fi

|▷◁e,G | −
∑

u,v ∈V
|u ▷◁v |(σ1 (Fi ,u,v) + 2σ2 (Fi ,u,v)) (1)

Here the notion of u ▷◁v ,σ1 and σ2 are defined as follows:

• denote by u ▷◁v = {
x
u ▷◁

w
v | max(p (u),p (v)) > max(p (w),p (x))};

• σ1 denotes a boolean function with input of Fi and u,v ∈ V ,
it returns true if and only if: there exists y ∈ V , such that

p (y) < max(p (u),p (v)) and (u,y) ∈ Fi and (v,y) ∈ Fi ;

• σ2 denotes a boolean function with input of Fi and u,v ∈ V ,
it returns true if and only if: for each y ∈ V , such that p (y) <
max(p (u),p (v)), then (u,y) ∈ Fi and (v,y) ∈ Fi ;

The set u ▷◁v denotes a set of butterflies in G, associated of a pair

of vertices (u,v) (on the same side of V (L) or V (U)). Each of the

butterflies in this set are all formed by two edges with (u,v) as
endpoints inWG , and hence the cardinality of the set can be effi-

ciently computed as |u ▷◁v | =
(W

2

)
, whereW = |{w ∠

v
u ∈ WG }|. The

two boolean functions σ1 and σ2 indicate sufficient conditions for

situations where 1) all butterflies with in the set of u ▷◁v contain at

least two edges in Fi ; and 2) all butterflies within the set of u ▷◁v
consist solely of the edges in Fi , respectively.

Theorem 6.3. The estimated workload Bi is a tighter upper bound
of actual workload |▷◁Fi ,F +i | than the estimation

∑
e ∈Fi |▷◁e,G |, i.e.,

|▷◁Fi ,F +i
| ≤ Bi ≤

∑
e ∈Fi

|▷◁e,G | (2)

Heuristic Score. The selection of edge at line 10 is based on the

heuristic function, defined as follows:

fgain ((u,v), Fi) =




|{w | (v,w) ∈ Fi ∧ v ∠
u
w ∈ WG }|+ p (u) > p (v)

|{w | (u,w) ∈ Fi ∧ u ∠
w
v ∈ WG }|

fgain ((v,u), Fi) p (u) < p (v)

That is, the gain for including an edge e is defined as the number

of new wedges inWG with both edges in Fi . Intuitively, the gain

measures the locality of e in Fi : with a higher gain, expanding e
will introduce more wedges in WG to Fi , leading to more local

butterflies with all 4 edges in Fi . Consequently, a partition with

better locality has less replicated butterflies and incurs a lower total

workload of

∑
i ∈[1,p]

|▷◁Fi ,F +i
|.

Analysis of BABP.We next analyze the complexity and the quality

of BABP.

Cost of BABP. Algo. 6 assigns one edge to one partition each time.

For each edge e , the cost consists of 1) selecting the edge with the

maximum score (line 10), 2) updating Bi (line 13) and 3) updating

Sj for all affected edges (line 13).

Over an edge e = (u,v), 1) can be performed in O (log(|E |))
by popping the top element of a Fibonacci heap[10]. Each parti-

tion Fi maintains its own heap over the edges set of Si , where
fgain ((u,v), Fi) serves as priority. For 2) and 3), we need to scan all

wedges formed by the edge e and another adjacent e ′ inWG . For
each affected wedge, the updates to Bi and fgain (e

′, Fi) can be per-

formed in O (1). With an updated fgain (e
′, Fi) on e ′, the associated

sets Sj and corresponding heaps are updated accordingly. These can
be done in O (log(|E |)). Since the loop performs 1), 2) and 3) over all

wedges inWG , the loop is in O (log(|E |)
∑

(u,v)∈E min(d (u),d (v))).
The indexing cost at line 4 is in O (

∑
(u,v)∈E min(d (u),d (v))). To

sumup, we can seeBABP is inO (log(|E |)
∑

(u,v)∈E min(d (u),d (v))).

Quality of BABP. For ap-way edge partition outputC (G) = {F1, · · · , Fp },

we show that 1) maxi ∈[1,p]
|▷◁Fi ,F +i

| is bounded, and 2) the total

workload of

∑
i ∈[1,p]

|▷◁Fi ,F +i
| is greatly reduced from the worst

case of 4|▷◁Fi ,F +i
|. For 1), note that any partition with Bi ≥ Bmax are

prevented from growing (line 8). HenceBi < Bmax+maxe ∈G |▷◁e,G |.
Putting this together with Eq. 2, we can see Lemma 6.4 holds, i.e.,
|▷◁Fi ,F +i

| is bounded.

Lemma 6.4. |▷◁Fi ,F +i
| < 4

p |▷◁G | +maxe ∈G |▷◁e,G |.

For 2), by summing up Eq. 2 for each fragment Fi ∈ C (G), we
can see the reduced total workload compared with the worst case

of 4|▷◁G | is at least:

4|▷◁G |−
∑

i ∈[1,p]

|▷◁Fi ,F +i
| ≥

∑
i ∈[1,p]

∑
u,v ∈V

|u ▷◁v |(σ1 (Fi ,u,v)+2σ2 (Fi ,u,v))

(3)

Parallelizing BABP and its cost analysis are shown in [36].

7 DIVIDE & CONQUER

Previous subgraph-centric methods in Sect. 3.2 and 4.2 enable com-

puting bitruss in parallel over partitioned graphs. However, over

dense graphs, such solutions face the following challenges. 1) In

dense graphs, there are often a few edges with high butterfly sup-

port, i.e., “hub edges”. As is observed in [35], more than 80% of

updates are performed over the support of these “hub edges”. In our

distributed setting, it is even worse: the “hub edges” not only incur

high computation costs of updating butterfly support locally, but

also indicate large communication cost. This is because “hub edges”

are more likely to have copies in other butterfly-completed parti-

tions, where communications are required to synchronize the but-

terfly support . 2) Dense graphs also have very large ϕmax. For each

k in [1,ϕmax] such that the set of edges with ϕe = k is nonempty,

a few supersteps are required to peel them. This leads to a high

1895

number of total supersteps to compute all k-bitruss, and results in

a high communication and synchronization overheads.

To deal with these challenges, a natural question arises: can we

divide G into such p fragments, such that the bitruss of edges in

each fragments can be computed locally and independently with-
out communication? This will not only prevent updating support

of “hub edges” when peeling edges in remote fragments, but also

reduce communication and synchronization overheads. Next we

show the intuition.

Consider dividing a bipartite graph G as follows. For a given

t ∈ [1,ϕmax], we partition edges inG into two parts, i.e., Γt andG\Γt .
Then the bitruss of these two parts can be independently computed

as follows: 1) for any edge e in Γt , the bitruss number of ϕe in

G can be answered by computing the bitruss over the subgraph

of Γt , i.e., ϕe (G) = ϕe (Γt); 2) for any edge e in G \ Γt , consider
the butterfly-complete subgraph induced by G \ Γt , denoted as G ′,
then the bitruss number of e ∈ G \ Γt can be computed by running

bitruss decomposition over G ′, i.e., ϕe (G) = ϕe (G
′). On the one

hand, due to the hierarchical structure of the t-bitruss subgraphs, Γj
can be computed from Γt for all j ≥ t . On the other hand, for graph

G ′, consider running a peeling algorithm over G, the introduced
external edges inG ′ have bitruss number ϕe ≥ t , and are not peeled
before all edges of G \ Γt are purged. Hence the bitruss over G \ Γt
is also correctly computed.

Algorithm 7 DC-BD (Divide and Conquer Bitruss Decomposition)

Input: G (V , E), p
Output: ϕe for each e ∈ E
1: /* Phase I: Divide */

2: Generate p-way partition [1, t1), · · · , [tp−1, +∞) of bitruss numbers

3: for all i ∈ [1, p − 1] do

4: Γti ← compute the ti -bitruss of G , Fi = Γti−1
\ Γti

5: Fp = Γtp−1
;

6: /* Phase II: Conquer */

7: for all i ∈ [0, p − 1] in parallel do

8: Construct subgraph Fi on worker-i
9: F Bi ← the bitruss butterfly-complete graph of Fi in G
10: Initialize index H̄i and butterfly support sup (·) over F Bi
11: LocalPeel(sup (·), H̄i , F Bi)

12: function LocalPeel(sup (·), H̄i , F Bi)

13: while there exists some edge in Fi that is not peeled do

14: k ← mine∈Fi sup (e)
15: let Q = {e | e ∈ Fi ∧ sup (e) = k }
16: while Q , ∅ do Repeat lines 11-16 of Algo. 4

17: return ϕe for each e in Fi

We generalize the 2-way case to p-way as follows. The divide-

and-conquer based framework (DC-BD) is illustrated in Algo. 7.

The algorithm consists of two phases, namely the Divide phase

(lines 2-5) and the Conquer phase (lines 7-11). In the former phase,

the algorithm first divides the bitruss number interval of [1,+∞)
into sub-intervals of [ti−1, ti) for i ∈ [1,p], with t0 = 1 (line 2).

The i-th fragment Fi consists of the edges with bitruss numbers

falling into the interval [ti−1, ti), and can be computed as Γti−1
\ Γti

(lines 3-5). In phase Conquer, for each worker-i in parallel, we 1)

reconstruct the subgraph Fi induced by edges in Γti−1
\Γti , 2) expand

it by fetching edges in Γti , such that all butterflies with edges in Γti−1

are complete, 3) construct partial indexes H̄i over F
B
i and initialize

support sup (·), and 4) compute ϕe for edges e in Fi locally.

Next we first describe the Conquer phase and show the correct-

ness of the framework in Sect. 7.1. Then in Sect. 7.2, for the Divide

phase, we address the issue of bitruss number interval partition

and propose an efficient partitioner that generates Fi with balance

guarantees. Finally in Sect. 7.3, we equip the Divide phase with

additional optimizations to boost its efficiency.

7.1 Conquer Phase
In this section we first define the bitruss butterfly-complete subgraph,
which is different from a butterfly-complete one (Def. 3.2). Then

we prove that bitruss can be correctly computed on such subgraphs

independently without any communications. We describe how to

revise SC-Peel (Algo. 4) to efficiently compute bitruss on these

bitruss butterfly-complete subgraphs.

Definition 7.1 (bitruss butterfly-complete subgraph). Con-
sider the subgraph F of G, defined as F = Γj \ Γl (j < l), the bitruss
butterfly-complete subgraph of F , denoted as FB , can be defined as
the minimum subgraph of Γj that covers all butterflies in ▷◁F ,Γj .

The bitruss butterfly-complete subgraph FB induced by F = Γj \Γl
is to include all edges in Γj that share butterflies with edges in F .
In this way, we show that the bitruss number of edges within the

interval [j, l) can be correctly computed over FB . That is, denoted
by ϕe (G) the bitruss number of e over graph G, then:

Theorem 7.1. Let F = Γj \ Γl , (j < l), then for each e ∈ F ,
ϕe (F

B) = ϕe (G).

Lemma 7.2. Let F = Γj \ Γl , (j < l), then ▷◁F ,Γj = ▷◁Γj \ ▷◁Γl .

Corollary 7.3. Let F = Γj \ Γl , (j < l), then ▷◁F ,Γj = ▷◁F B .

Procedure LocalPeel. Next we show how to revise the sequen-

tial SubPeel and employ it as the Conquer phase running over

bitruss butterfly-complete subgraphs. The revised procedure, de-

noted as LocalPeel, is shown in Algo. 7 (lines 12-17). The procedure

takes in as input a bitruss butterfly-complete subgraph FBi , along

with the butterfly supports sup (·) and indexes H̄i over the subgraph.
It outputs ϕe for each e in Fi .

Here we only focus on the revisions made in the new algorithm,

listed as follows: 1) The procedure LocalPeel is a sequential peeling

algorithm that is locally executed on each worker without any

global communications. The outer loop peels edges that fall into

Γk \ Γk+1
each time, and terminates when k reaches ti+1. 2) The

index H̄i is similar with those employed in Algo. 4. However, it is

based on the bitruss butterfly-complete subgraphs FBi , instead of

F+i . Note that we only use the index H̄i without the complete Hi
one. This is because no edges in FBi \ Fi are peeled in the procedure.

Hence we do not need to access wedges that consist of both outer

edges in FBi \ Fi , and H̄i alone is sufficient.

Cost of phase Conquer. We can verify that the computation cost of

function LocalPeel over fragment FBi is inO (|▷◁Fi ,F Bi
|) = O (|▷◁F Bi

|)

(according to Corollary 7.3). With balanced partitions of |▷◁F Bi
| =

O (|▷◁G |/p) (shown in Sect. 7.2), the computation cost of phase

Conquer is in O (maxi ∈[1,p]
|▷◁F Bi

|) = O (|▷◁G |/p). That is, phase

Conquer is parallel scalable.

Note that, although both of the cost are in O (|▷◁G |/p), the but-
terflies peeled in a bitruss butterfly-complete subgraph FBi by Lo-

calPeel are much less than those by SubPeel over a corresponding

1896

butterfly-complete one F+i . This is because for LocalPeel we only
peel inner edges in Fi . Each butterfly in ▷◁G is enumerated only

once according to Lemma 7.2. Whereas SubPeel peels all edges in

F+i , and each butterfly in ▷◁G might be peeled by up to 4 times by

its 4 edges over 4 different fragments.

7.2 Divide Phase

It remains to answer how to divide G into p fragments. For the

Algo. 7 to work, the fragments must be balanced, so that the per-

formance of Conquer phase does not become degraded due to

skewness. To achieve this, next we define the problem of balanced
hierarchical bitruss partition, and propose an efficient heuristic par-

titioner with balance guarantee.

The phase Divide generates a hierarchical bitruss partition over

graph G, formally defined as:

Definition 7.2 (Hierarchical Bitruss Partition). Given a
bipartite graph G (V ,E) and p, an increasing sequence of positive
integers ⟨t1, · · · , tp−1⟩, a corresponding hierarchical bitruss partition
is defined as:

Fi = Γti−1
\ Γti , for each i ∈ [1,p] (t0 = 1 and tp = +∞).

The Partitioning Problem

The balance of the partition plays an important role in the fol-

lowing Conquer phase. Since the cost of the Conquer phase is in

O (maxi ∈[1,p]
|▷◁F Bi

|), a balanced partition with |▷◁F Bi
| ≈ |▷◁G |/p

will speed up the computation. We formally define the partitioning

problem as follows.

Definition 7.3 (Balanced Hierarchical Bitruss Partition

(BHBP)). Given a bipartite graph G (V ,E) and p, find an increasing
sequence t1, · · · , tp−1 such that over the corresponding hierarchical
bitruss partition, maxi ∈[1,p]

|▷◁F Bi
| is minimum.

Theorem 7.4. BHBP ∈ P .

Hierarchical Partitioner. Though BHBP ∈ P , the DP algorithm

used in the proof (in [36]) relies on computing ϕe of each edge

in advance. However, the number of ϕe is unknown unless we

run bitruss decomposition over G. To solve this chicken-and-egg
paradox, we propose the Hierarchical Partitioner (HierarchPart),

which efficiently partitions the graph with balance guarantees.

Algorithm 8 HierarchPart (Hierarchical Partitioner)

Input: G (V , E), p
Output: fragment Fi of G for each i ∈ [1, p], and ϕe for each e ∈ G \⋃

i∈[1,p]
Fi

1: Initialize index H and edge support sup (·) over G
2: Bmax = |▷◁G /p |, t0 ← 1

3: for all i ∈ [1, p − 1] do

4: ti ← EstimateBitruNum(Γti−1
, Bmax)

5: Γti ← k-Bitruss(Γti−1
, ti), Fi ← Γti \ Γti−1

6: while |▷◁Fi | > Bmax do

7: t ← mine∈Fi sup (e)
8: Peel all edges e with ϕe = t from Fi

Here we introduce the outline of HierarchPart in sequential for

simplicity. Readers can refer to [36] for details, including estima-

tion of the bitruss rank and the parallelization. Shown in Algo. 8,

HierarchPart takes as input a graph G and the number of partition

p. It outputs p disjoint subgraph Fi ofG , such that |▷◁F Bi
| ≤ |▷◁G |/p.

Note that

⋃
i ∈[1,p]

Fi may not cover all edges in G. For those left
out edges e , HierarchPart also outputs their bitruss numbers ϕe .
This way, after the Conquer phase is performed on the fragments

of Fi , ϕe for all edges e ∈ G are answered.

HierarchPart first initializes index H and edge support and de-

clares a maximum load of Bmax (lines 1-2). It then generates Fi =
Γti−1
\Γti for i ∈ [1,p] in an ascending order of ti (lines 3-8). For each

Fi , it first estimates a bitruss number ti by calling EstimateBitruNum
(line 4). The function EstimateBitruNum estimates the bitruss

number ti , such that for the new fragment Fi incurs a balanced load
of approximately |▷◁G |/p. The algorithm computes the subgraph of

Γti with the estimated ti by running k-Bitruss over the previously
computed Γti−1

, and the new fragment of Fi is computed as Γti−1
\Γti

(line 5). To enforce the balance constraint, when |▷◁F Bi
| > Bmax,

the algorithm further peels Fi , until |▷◁F Bi
| is reduced below Bmax

(lines 6-8). We revise the algorithm SeqPeel and employ it for the

computation of Γti at line 5 and the peeling at line 8. The revisions

made are addressed later in Section 7.3. The algorithm terminates

when all p fragments are computed.

7.3 Optimizations

Note that the Divide phase itself must be efficient, so that the

speedup of phase Conquer is not canceled by the cost of the Divide

phase. Although we can directly plug in the parallel SC-PBD in

Section 4.2 for the function k-Bitruss at line 5, it incurs redundant
computation and can be further sped up. Here we briefly describe

two optimizations for speeding up k-Bitruss, and show the intu-

itions behind them. Refer to [36] for details.

Recounting Butterfly

An alternative way for peeling a set of edgesQ from fragment F+i
is to directly deleteQ and recompute sup () for each edges in F+i \Q
afterwards. We denote this method as Recount, in contrast with

the peel-and-update-support based methods denoted as Peel. Note

that the cost of Recount is in O (|▷◁Q,F +i
|), and the cost of Peel is

in O (|WF +i \Q
|). It is possible for Recount to run faster when 1)

the set Q is large enough or 2) when F+i is dense enough, since in

both cases |WF +i \Q
| < |▷◁Q,F +i

|. By switching to the faster methods

among Recount and Peel, we are able to boost the computaion of

k-Bitruss, which only employs Peel as a subroutine by default.

Delta-based Peeling

In function k-Bitruss (line 5 in Algo. 8), we are computing Γti
from the current subgraph of Γti−1

, hence it is overkill to directly

plug in SC-PBD and compute ϕe for each peeled edge e in Γti \ Γti−1
.

To deal with this issue, we propose an optimization that boosts

k-Bitruss() by avoiding explicitly computing ϕe for all edges.

The key idea is to first accumulate changes in a delta index

∆Hi (u,v), for eachu,v . Thenwe propagate the accumulated changes

to udpate edge support for wedges indexed by Hi (u,v).
To see that this optimization works, observe that each time, sup ()

is decreased by an accumulated delta count indicated by ∆Hi (u,v),
instead of only 1. For instance, when set of edges to peel Q is the

whole fragment Fi , peeling via explicitly enumerating butterflies

will have to scan all |▷◁Fi ,F +i
| butterflies. In contrast, we can (1)

accumulate changes into ∆Hi (u,v) for each u,v , and (2) propagate

the changes to the associated edges. Both (1) and (2) can be done

by one pass scanning over the local indexes with the size of |WF +i
|,

which is much faster.

1897

Table 1: Datasets

Name Abbr. |G | |▷◁G | Network Type

Discog-lstyle DIS 1.1 × 10
6

5.2 × 10
9

feature

Medium lasf.FM-song LFS 4.4 × 10
6

3.2 × 10
10

interaction

Flickr FLK 8.5 × 10
6

3.5 × 10
10

affiliation

Delicious DEL 1.0 × 10
8

5.7 × 10
10

interaction

Epinions EPN 1.3 × 10
7

1.7 × 10
11

rating

Jester150 JST 1.7 × 10
6

2.7 × 10
11

rating

Large Movielens MV 1.0 × 10
7

1.2 × 10
12

rating

Livejournal LJ 1.1 × 10
8

3.3 × 10
12

affiliation

Reuters RTS 6.1 × 10
7

7.5 × 10
12

text

WebTracker TRK 1.4 × 10
8

2.0 × 10
13

hyperlink

10
3

10
4

10
5

DIS LFS FLK

timeout

T
im

e
 (

s)

Index OFF

Index ON

(a) Response Time

of SC-HBD

10
2

10
3

10
4

10
5

DIS LFS FLK

timeout

T
im

e
 (

s)

Index OFF

Index ON

(b) Response Time

of SC-PBD

10
1

10
2

10
3

10
4

10
5

DIS LFS FLK

M
em

o
ry

 U
sa

g
e

(M
B

)

SC-HBD

SC-PBD

(c) Space Cost of Index

Figure 1: Effectiveness of Local Indexes

10
3

10
4

10
5

DIS LFS FLK

timeout

T
im

e
 (

s)

Hash

BABP

(a) Response Time

of SC-HBD

10
2

10
3

DIS LFS FLK

T
im

e
 (

s)

Hash

BABP

(b) Response Time

of SC-PBD

 0

 1

 2

 3

 4

 5

DIS LFS FLK

N
o
rm

a
li

z
e
d
 P

a
rt

 S
iz

e

Hash

BABP

(c) Max Partition Size

Figure 2: Effectiveness of Partitioning

8 EXPERIMENTS

In this section, we conduct experiments with the aim of answering

the following research questions: (1) Can local indexes (Sect. 5)

speed up our distributed bitruss decomposition algorithms? How

much extra memory space is required for storing the indexes? (2)

Compared with naive hash based partitioning, can our partitioning

methods (Sect. 6) reduce the parallel computation costs ? (3) Do

our optimization strategies (Sect. 7.3) improve the efficiency of the

Divide phase in DC-BD? (4) Are our distributed algorithms parallel

scalable, i.e., taking less time with more computation resources? (5)

Can our methods scale to large datasets? (6) How do our methods

compare to existing parallel solutions?

Datasets. We use 10 real-life bipartite graphs of various categories.

The graphs summarized in Table 1, are ordered by their |▷◁G |. All
the datasets are available on KONECT

1
. Graphs containing parallel

edges including DIS, LFS, DEL and RTS are deduplicated before

testing. We also generate synthetic bipartite graphs controlled by

|▷◁G | for testing the scalability of our algorithms.

Algorithms. We test our decomposition algorithms including SC-

HBD (Sect. 3), SC-PBD (Sect. 4) andDC-BD (Sect. 7). Our algorithms

are equipped with all optimizations described in this paper, unless

otherwise stated. We also compare our algorithms with parallel

state-of-art solutions, including the BiT-BU and BiT-PC methods

in [35], and the ParButterfly algorithm in [26]. Note that there are

two BiT-BU methods described in [35], i.e., BiT-BU and BiT-BU
++
.

Since neither of the two consistently outperform one another, here

we only report the optimal results of the two BiT-BU methods.

1
http://konect.cc/

Implementation. The algorithms are all implemented in C++,

using openMPI for inter-process communications. They are tested

over a cluster of 8 machines, each equipped with an Intel Xeon

CPU E5-2692 v2 @ 2.20GHz (12 CPU cores) and 64GB memory.

Tests taking more than 24 hours are terminated and marked as

“timeout”. The parameter ϵ in BABP is set to 1.1 in our experiments.

For the shared-memory parallel algorithms of BiT-PC, BiT-BU and

ParButterfly, we use all 12 available cores on one machine, fixing

the thread number to 24.

8.1 Effectiveness of Optimizations

Over datasets DIS, LFS and FLK, we first verify the effectiveness of

our optimizations, including local index (Sect. 5), BABP partitioning

(Sect. 6) and optimizations for Divide in DC-BD (Sect. 7.3).

Local Index. For SC-HBD and SC-PBD, we compare the methods

equipped with index against their counterparts without index. All

four methods work on F+i derived from basic hash edge partitions.

Impact on efficiency. Fixing p = 96, the total response time of

SC-HBD (resp. SC-PBD) with and without local index is shown in

Fig 1a (resp. Fig 1b). Note that the time for index construction is

included in the total response time. We find that the local index sig-

nificantly speeds up both SC-HBD and SC-PBD. More specifically:

(1) SC-HBD with index is 11× faster than its counterpart over DIS,

and (2) the local index on SC-PBD speeds up its overall response

time by 7.1× and 21× on DIS and LFS, respectively. Taking less

than 12% of the overall total response time, the indexes boost the

overall efficiency by trading off space against time. By employing

indexes, SC-HBD and SC-PBD can enumerate the butterflies asso-

ciated with a given edge in time linear to the size of the butterfly

subset. In contrast, without index, one has to compute the butterfly

set from scratch each time. Thus, the redundant computation for

enumerating edges that do not form a butterfly is pruned.

Memory usage. In the same setting, we also report the space cost

of our indexes in Fig 1c. Note that over a fragment Fi , we have

two different indexes, namely the full indexes of Hi and its pruned

version H̄i . The former is used on SC-HBD and the latter is used

for SC-PBD and DVC. The results show that the pruned index

H̄i is on average 53 times smaller than the full indexes Hi . This
is because the total space cost of pruned indexes H̄i over each
fragment is bounded, i.e., each wedge inWG is indexed by at most

two fragments. Whereas for the full index Hi there is no such

guarantee. That is, our indexes successfully boost the computation

while only consuming moderate space.

Partitioning. Next, we verify the effectiveness of BABP over SC-

HBD and SC-PBD. We compare the algorithms running on hash

partitions, against those running on BABP partitions.

Impact on efficiency. Shown in Fig 2a-2b, we can see: (1) BABP

boosts SC-HBD by 59% and 85% over DIS and LFS, respectively,

compared with that running on hash partitions. (2) For SC-PBD, the

gap of BABP and hash partitioning is ≥ 31% over all three datasets.

(3) The partitioning cost are included in the total response time,

which is less than 12%.

Maximum partition size. In the same setting, in Fig 2c, we also report

the normalized maximum partition size, i.e., maxi ∈[1,p]
|▷◁Fi ,F +i

|/B′,

where B′ = |▷◁G |/p. The results show that: (1) the hash partition has

a normalized maximum size of at least 3.9 over all 3 datasets. This

means nearly all butterflies are replicated 4 times in the partitioned

1898

http://konect.cc/

10
1

10
2

10
3

DIS LFS FLK

T
im

e
 (

s)

Divide
=

Divide
-

Divide

(a) Response Time of

Divide

10
9

10
10

10
11

DIS LFS FLK
N

u
m

b
er

 o
f

U
p

d
at

es

Divide
=

Divide
-

Divide

(b) Number of Updates

Figure 3: Effectiveness of Optimizations

on Divide

SC-HBD SC-PBD DC-BD

10
2

10
3

10
4

8 16 32 64 96

T
im

e
 (

s)

(a) Varying p , DIS

10
2

10
3

10
4

10
5

8 16 32 64 96

timeout

T
im

e
 (

s)

(b) Varying p , LFS

10
2

10
3

10
4

10
5

8 16 32 64 96

timeout

T
im

e
 (

s)

(c) Varying p , FLK

10
3

10
4

10
5

6 12 18 24 30 (T)

timeout

T
im

e
 (

s)

(d) Varying |▷◁G |

Figure 4: Efficiency of Parallel Bitruss Decompositions

10
2

10
3

10
4

10
5

DIS LFS FLK JST EPN DEL MVL LJ RTS TRK

timeout

O
O

M

O
O

M

O
O

M
O

O
M

O
O

M

O
O

M
O

O
M

O
O

M

O
O

M
O

O
M

O
O

M

O
O

M
O

O
M

O
O

M

O
O

M
O

O
M

T
im

e
 (

s)

SC-HBD SC-PBD DC-BD BiT-BU BiT-PC ParButterfly

Figure 5: Comparison of Different Bitruss Decomposition Methods (p = 96, OOM denotes Out-Of-Memory Error)

butterfly-complete fragments. (2) In contrast, BABP reduces the

maximum partition size by at least 32%. That is, BABP successfully

boosts the computation by reducing the redundant computation

incurred by replicated butterflies across the fragments.

Workload balance. In addition to the normalized maximum par-

tition size, we also report the balance ratio of the partition, de-

fined in BABGP (Sec 6.1), i.e., maxi ∈[1,p]
|▷◁Fi ,F +i

|/B, where B =∑
i ∈[1,p]

|▷◁Fi ,F +i
|/p. When p varies from 8 to 96, the balance ra-

tio of BABP is at most 1.02, 1.1 and 1.07 over DIS, LFS and FLK,

respectively (not shown). These verify the balance of BABP.

Optimizations on DC-BD.

Next we verify the effectiveness of optimizations described in

Sect. 7.3 including 1) recounting butterflies and 2) delta-index based

peeling. We denote Divide without butterfly recounting as Divide
-
,

and the baseline with neither optimizations as Divide
=
. Note that

phase Divide derives from the distributed peeling of SC-PBD. As

the effectiveness of optimizations tailored for SC-PBD has already

been verified, they are equipped on Divide by default.

The overall efficiency of Divide is reported in Fig 3a. We find

that: 1) The butterfly recounting technique on Divide
-
on average

speeds up Divide
=
by 52%, and 2) Divide is at least 3.2× faster than

Divide
-
. Observe that the baseline Divide

=
is even slower than SC-

PBD. This is because it not only needs to scan all butterflies in ▷◁G ,
but also incurs the extra overhead of bitruss number estimations.

To see why these optimizations work, we also report the total

number of updates on edges in Fig 3b. The results show that: (1)

equipped with butterfly recounting, the total number of updates

over edges is cut down by 14%, on average. (2) The delta-index

based peeling further reduces the number of updates by at least

52%. That is, these optimizations reduce the number of edge updates

performed by Divide, leading to a significant boost in its effciency.

8.2 Efficiency

Fixing the algorithms as their optimized versions, we test the im-

pacts of varying 1) the number of CPU cores p and 2) the butterfly

size |▷◁G |, over the total response time of our algorithms.

Parallel Scalability. Varying p from 8 to 96, we tested the parallel

scalability of our parallel bitruss decompositions over DIS, FLS and

FLK. The results are shown in Fig 4a-4c.

(a) All three algorithms take less time to decompose with more com-

putation resources, as expected. SC-PBD and DC-BD on average

speeds up by 3.1× and 3.6×, respectively, when p increases from 8

to 96. SC-HBD fails to solve the decomposition with in 1 day when

p is low on LFS and LFS, while its speedup is 4.6× over DIS.

(b) For all p, SC-PBD consistently outperforms SC-HBD, by at least

9.7 times, whereas DC-BD is on average 4.3× faster than SC-PBD.

Scalability. Fixing p = 96, we test the impact of the number of but-

terflies on our algorithms. We generate synthetic bipartite graphs,

varying |▷◁G | from 6 Trillion to 30 Trillion. The results are shown in

Fig 4d. We can see that 1) DC-BD successfully computes the bitruss

decomposition of graphs with 30T butterflies in 2.5 hours. 2) When

the |▷◁G | grows from 6T to 30T, DC-BD is only 5.6× slower, i.e.,
DC-BD scales well w.r.t. |▷◁G |. 3) SC-PBD fails to compute graphs

with |▷◁G | ≥ 12T within limited time, while SC-HBD times out on

all synthetic graphs.

8.3 Comparison with Existing Methods

Fixing p = 96, we compare our methods against parallel algo-

rithms of BiT-BU, BiT-PC and ParButterfly, over all datasets listed

in Table 1. The results are shown in Fig 5. We find the following:

(a) DC-BD consistently beats other methods including BiT-BU and

ParButterfly, by at least 1.3× and 8.3×, respectively. DC-BD is

comparable with BiT-PC on JST with a gap of less than 2%, while

on other graphs like FLK the gap can be upto 3.0×.

(b) Methods including DC-BD, SC-PBD and ParButterfly are able

to handle large graphs, such as LJ, RTS and TRK. Among these three

methods, only DC-BD successfully completed bitruss decomposi-

tion over all datasets within 24 hours. These verify the efficiency

and scalability of DC-BD.

(c) BiT-BU and BiT-PC are not as scalable due to their exhaustive

memory usage on large graphs. Both fail to handle graphs including

DEL, LJ and RTS and reports OOM errors. This verifies the need for

distributed bitruss decomposition.

(d) Our method may take more time than sequential methods with

low number of workers on small graphs (not shown). For instance,

over DIS, DC-BD outperforms the sequential version of BiT-PC

only when p > 16. This is because on small graphs, very few edges

are peeled between two rounds of global synchronization, causing

a significant overhead of communication.

1899

Summary. Our distributed algorithms solve bitruss decomposition

in hours over graphs with trillions of butterflies. (1) Our optimiza-

tions effectively speed up the algorithms. Equipped with all opti-

mizations, SC-HBD, SC-PBD and DC-BD become on average 18,

26 and 6.4 times faster, respectively. (2) Our methods are parallel

scalable. When p grows from 8 to 96, SC-HBD, SC-PBD andDC-BD

speeds up by 4.6, 3.1 and 3.6 times, respectively. (3) DC-BD can

scale up to graphs with 30T of |▷◁G |, and terminate in 2.5 hours. (4)

DC-BD is the most efficient bitruss decomposition method. Fixing

p = 96, for all 10 real-life datasets, it consistently beats SC-HBD,

SC-PBD, BiT-BU and ParButterfly by at least 72, 3.9, 1.3 and 8.3
times, respectively, and is on average 1.9 times faster than BiT-

PC.(5) Existing methods of BiT-BU and BiT-PC run out of memory

space on dense graphs such as LJ, RTS and TRK. This highlights

the need for distributed bitruss decomposition.

9 RELATEDWORKS

Parallel Bitruss Decomposition. There are also works about

parallel bitruss decomposition [15, 26, 35] on shared-memory ma-

chines. [26] maintains a global bucketing structure which maps

each edge to a bucket by butterfly count. Throughout the peeling,

for each edge peeled, set interaction is performed to detect the

affected edges, then information is grouped to update the buck-

eting structure simultaneously. Recently, [35] extends [34] to the

multi-core environment, and presentsmethods for parallelBE-Index

construction and peeling, by reducing writing conflicts when op-

erating index using multiple threads. [15] partitions the BE-Index

firstly, and then performs peeling on different parts of the BE-Index

by dynamic task allocation. To design distributed methods, one

may partition the graph, directly use above parallel solutions, and

take the communication into account. However, it is challenging to

maintain and partition related global auxiliary structures (bucket-

ing in [26], BE-Index in [15, 35]) in addition to the graph itself, due

to the randomness of reading/writing operations.

Cohesive Structures onBipartiteGraphs. Several cohesive struc-

tures have been proposed on bipartite graphs. The (α , β)-core [18] is
a maximal subgraph where each node in the upper/lower layer has

at least α/β neighbors. Maximal biclique [1] and quasi-biclique [28]

are studied, while the latter is a maximal subgraph where each

node in the upper layer (resp. lower layer) has at most ϵ (a positive

integer) non-neighbors in lower layer (resp. upper layer). [20] finds

such a biclique in G whose (p,q)-biclique density is largest. A k-

tip [23] is a maximal subgraph in which each node takes part in at

least k butterflies. We compare the above cohesive structures with

k-bitruss. While enumerating maximal (quasi-)bicliques is NP-hard,

decomposing bitruss can be done in polynomial time. Compared

with (α , β)-core and density based (p,q)-biclique which need extra

user inputs/parameters, k-bitruss is a parameter-free model and

thus practical when users have not dived into the properties of the

underlying graph. Besides, k-bitruss can provide hierarchical com-

munities which can be used in different levels of granularity. The

k-tip is similar to k-bitruss but a measure on nodes. Since k-tip finds

vertex-induced subgraphs and k-bitruss finds edge-induced com-

munities, k-bitruss can identify overlapping communities where a

vertex can belong to multiple groups. This is practical in real-world

applications, e.g., a user can belong to different social groups based

on his different hobbies.

Graph Partitioning. Graph partitioning is crucial for distributed

graph computation. A number of methods (see surveys [5, 7]) are

proposed for vertex-cut [6, 8, 14, 16, 22, 31] and edge-cut [2, 12, 13,

29, 30, 39]. Vertex-cut (resp. edge-cut) partitions edges (resp. ver-

tices) into disjoint balanced subsets and reduce vertex (resp. edge)

replication. As pointed out by [8, 33], vertex-cut is more suitable for

power-law graphs with several nodes of high degree (hubs), since

it allows better load balance by distributing those nodes among

different machines; while edge-cut is better for graphs with many

low-degree nodes since their adjacent edges are also transferred to

the samemachine. Hybrid partitioners are also proposed. [9] and [8]

bond vertex-cut with edge-cut by cutting high-degree nodes con-

trolled by parameters. [17] further merges close low-degree nodes

into super nodes to avoid splitting them. Different from the above

partitioners, BABP aims to balance the number of butterflies as-

sociated with inner edges and minimize the size of external edges

incurred by completing butterflies. There also exists work about

motif-aware graph clustering [3, 32]. [3] firstly builds a motif ad-

jacency matrix, and then computes the spectral ordering from the

normalized motif Laplacian matrix, and finally finds the best high-

order cluster with the smallest conductance. [32] weights each edge

according to the number of triangles it is contained in, and then

simply removes edges whose weights are smaller than a threshold θ
and outputs connected components as clusters. The above methods

cannot be extended to solve BABGP since they cannot control the

number of partitions in advance, and do not balance the size of the

resulting components.

10 CONCLUSION

In this paper, we study the problem of distributed bitruss decompo-

sition. We first propose SC-HBD, which usesH -function to define

bitruss numbers and computes them to a fixed point. We then intro-

duce SC-PBD, a subgraph-centric batch peeling method executed

over different butterfly-complete subgraphs. We also discuss how

to build the local index on butterfly-complete subgraphs, and study

the partition problem. We finally propose the concept of a bitruss

butterfly-complete subgraph, and a divide and conquer method

DC-BD. We also introduce various optimizations that improve our

methods of SC-HBD, SC-PBD and DC-BD on average by 18, 26 and

6.4 times in practice. Extensive experiments show that the proposed

methods solves graphs with 30 trillion of butterflies in 2.5 hours,

while existing parallel methods under shared-memory model fail

to scale to such large graphs. One topic of possible future work is

to extend the framework to handle multipartite graphs.

ACKNOWLEDGMENTS

Yue Wang is partially supported by China NSFC (No. 62002235)

and Guangdong Basic and Applied Basic Research Foundation (No.

2019A1515110473). Ruiqi Xu is supported by the National Research

Foundation, Singapore under its Strategic Capability Research Cen-

tres Funding Initiative. Lei Chen’s work is partially supported by Na-

tional Key Research and Development Program of China Grant No.

2018AAA0101100, the Hong Kong RGC GRF Project 16202218, CRF

Project C6030-18G, C1031-18G, C5026-18G, CRF C2004-21GF, AOE

Project AoE/E-603/18, RIF Project R6020-19, Theme-based project

TRS T41-603/20R, China NSFC No. 61729201, Guangdong Basic

and Applied Basic Research Foundation 2019B151530001, Hong

Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft

Research Asia Collaborative Research Grant, HKUST-NAVER/LINE

AI Lab, Didi-HKUST joint research lab, HKUST-Webank joint re-

search lab grants and HKUST Global Strategic Partnership Fund

(2021 SJTU-HKUST).

1900

REFERENCES

[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2021. Pivot-based maximal

biclique enumeration. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence. 3558–3564.

[2] Amine Abou-Rjeili and George Karypis. 2006. Multilevel algorithms for par-

titioning power-law graphs. In Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium. IEEE, 10–pp.

[3] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[4] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep

behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web. 119–130.

[5] Charles-Edmond Bichot and Patrick Siarry. 2013. Graph partitioning. John Wiley

& Sons.

[6] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge

partition. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 1456–1465.

[7] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent advances in graph partitioning. Algorithm engineering
(2016), 117–158.

[8] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.

2019. Powerlyra: Differentiated graph computation and partitioning on skewed

graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019), 1–39.
[9] Dong Dai, Wei Zhang, and Yong Chen. 2017. IOGP: An incremental online graph

partitioning algorithm for distributed graph databases. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing.
219–230.

[10] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the ACM (JACM)
34, 3 (1987), 596–615.

[11] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[12] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1

(1998), 359–392.

[13] George Karypis and Vipin Kumar. 1999. Parallel multilevel series k-way parti-

tioning scheme for irregular graphs. Siam Review 41, 2 (1999), 278–300.

[14] Mijung Kim and K Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph

partitioning using structural balance vertices. Data & Knowledge Engineering 72

(2012), 285–303.

[15] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2021. Parallel Peeling of

Bipartite Networks for Hierarchical Dense Subgraph Discovery. arXiv preprint
arXiv:2110.12511 (2021).

[16] Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K John. 2015.

Data partitioning strategies for graph workloads on heterogeneous clusters. In

SC’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[17] Dongsheng Li, Yiming Zhang, Jinyan Wang, and Kian-Lee Tan. 2019. TopoX:

Topology refactorization for efficient graph partitioning and processing. Proceed-
ings of the VLDB Endowment 12, 8 (2019), 891–905.

[18] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019.

Efficient (α , β)-core computation: An index-based approach. In The World Wide
Web Conference. 1130–1141.

[19] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The

H-index of a network node and its relation to degree and coreness. Nature
communications 7, 1 (2016), 1–7.

[20] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale

networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815–824.

[21] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2012. Dis-

tributed k-core decomposition. IEEE Transactions on parallel and distributed
systems 24, 2 (2012), 288–300.

[22] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-

gio Iacoboni. 2015. Hdrf: Stream-based partitioning for power-law graphs. In

Proceedings of the 24th ACM international on conference on information and knowl-
edge management. 243–252.

[23] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense

Subgraph Discovery. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February
5-9, 2018, Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.). ACM,

504–512. https://doi.org/10.1145/3159652.3159678

[24] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for

Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43–56.
https://doi.org/10.14778/3275536.3275540

[25] Yingxia Shao, Lei Chen, and Bin Cui. 2014. Efficient cohesive subgraphs detection

in parallel. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer

Özsu (Eds.). ACM, 613–624. https://doi.org/10.1145/2588555.2593665

[26] Jessica Shi and Julian Shun. 2020. Parallel Algorithms for Butterfly Computations.

In 1st Symposium on Algorithmic Principles of Computer Systems, APOCS@SODA
2020, Salt Lake City, UT, USA, January 8, 2020. SIAM, 16–30. https://doi.org/10.

1137/1.9781611976021.2

[27] Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative filtering beyond

the user-item matrix: A survey of the state of the art and future challenges. ACM
Computing Surveys (CSUR) 47, 1 (2014), 1–45.

[28] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. 2009. Mining

maximal quasi-bicliques: Novel algorithm and applications in the stock market

and protein networks. Statistical Analysis and Data Mining: The ASA Data Science
Journal 2, 4 (2009), 255–273.

[29] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large

distributed graphs. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 1222–1230.

[30] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel, Tommy

Minyard, Susan Mehringer, Eric Wernert, H Tufo, D Panda, et al. 2017. Stampede

2: The evolution of an xsede supercomputer. In Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact. 1–8.

[31] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan

Vojnovic. 2014. Fennel: Streaming graph partitioning for massive scale graphs.

In Proceedings of the 7th ACM international conference on Web search and data
mining. 333–342.

[32] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.

Scalable motif-aware graph clustering. In Proceedings of the 26th International
Conference on World Wide Web. 1451–1460.

[33] Shiv Verma, Luke M Leslie, Yosub Shin, and Indranil Gupta. 2017. An Experi-

mental Comparison of Partitioning Strategies in Distributed Graph Processing.

Proceedings of the VLDB Endowment 10, 5 (2017).
[34] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

Bitruss Decomposition for Large-scale Bipartite Graphs. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 661–672. https://doi.org/10.1109/ICDE48307.2020.00063

[35] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2021. Towards

efficient solutions of bitruss decomposition for large-scale bipartite graphs. The
VLDB Journal (2021), 1–24.

[36] Yue Wang, Ruiqi Xu, Xun Jian, Alexander Zhou, and Lei Chen. 2022. Towards

Distributed Bitruss Decomposition on Bipartite Graphs–Full Version. https:

//keithyue.github.io/files/vldb22-DBitruss.pdf [Online; accessed 5-May-2022].

[37] Wikipedia contributors. 2021. Facebook — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Facebook&oldid=1010764584 [On-

line; accessed 5-May-2022].

[38] Wikipedia contributors. 2021. Singles’ Day — Wikipedia, The Free Encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Singles%27_Day&oldid=

1007941275 [Online; accessed 5-May-2022].

[39] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A computation-centric distributed graph processing system. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 301–316.

[40] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In Database
Systems for Advanced Applications - 21st International Conference, DASFAA 2016,
Dallas, TX, USA, April 16-19, 2016, Proceedings, Part II (Lecture Notes in Computer
Science), Shamkant B. Navathe, Weili Wu, Shashi Shekhar, Xiaoyong Du, X. Sean

Wang, and Hui Xiong (Eds.), Vol. 9643. Springer, 218–233. https://doi.org/10.

1007/978-3-319-32049-6_14

1901

https://doi.org/10.1145/3159652.3159678
https://doi.org/10.14778/3275536.3275540
https://doi.org/10.1145/2588555.2593665
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1109/ICDE48307.2020.00063
https://keithyue.github.io/files/vldb22-DBitruss.pdf
https://keithyue.github.io/files/vldb22-DBitruss.pdf
https://en.wikipedia.org/w/index.php?title=Facebook&oldid=1010764584
https://en.wikipedia.org/w/index.php?title=Singles%27_Day&oldid=1007941275
https://en.wikipedia.org/w/index.php?title=Singles%27_Day&oldid=1007941275
https://doi.org/10.1007/978-3-319-32049-6_14
https://doi.org/10.1007/978-3-319-32049-6_14

