
Efficient Secure and Verifiable Location-Based SkylineQueries
over Encrypted Data

Zuan Wang, Xiaofeng Ding, Hai Jin
BDTS, SCTS, CGCL,

School of Computer Science and Technology,
Huazhong University of Science and Technology

{zuanwang,xfding,hjin}@hust.edu.cn

Pan Zhou
Hubei Engineering Research Center on Big Data Security,

School of Cyber Science and Engineering,
Huazhong University of Science and Technology

panzhou@hust.edu.cn

ABSTRACT

Supporting secure location-based services on encrypted data that

is outsourced to cloud computing platforms remains an ongoing

challenge for efficiency due to expensive ciphertext calculation over-

head. Furthermore, since the clouds may not be trustworthy or even

malicious, data security and result authenticity has caused huge

concerns. Unfortunately, little work can enable query efficiency,

dataset confidentiality and result authenticity to be commendably

guaranteed. In this paper, we demonstrate the potential of support-

ing secure and verifiable location-based skyline queries (SVLSQ).

First, we devise a novel and unified structure, named semi-blind

R-tree (SR-tree), which protects the query unlinkability. Based on

SR-tree, we propose an authenticated data structure, named secure

and verifiable scope R-tree (SVSR-tree). Then, we develop several

secure protocols based on SVSR-tree to accelerate the query ef-

ficiency and reduce the size of verification objects. Our method

avoids compromising the privacy of datasets, queries, results and

access patterns. Meanwhile, it authenticates the soundness and

completeness of the skyline results while preserving privacy. Fi-

nally, we analyze the complexity and security of SVLSQ. Findings

from the performance evaluation illustrate that SVLSQ is a dramat-

ically efficient method in terms of query (no less than 3 orders of

magnitude faster than other solutions) and verification.
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1 INTRODUCTION

Outsourcing data to cloud platforms allows data owners to use

tremendous computing power and massive storage capacity. How-

ever, in order to offer efficient location-based services in this fashion,

data confidentiality and result authenticity are the primary issues.

Concretely, the cloud cannot be trusted since it may capture and

deduce the sensitive content of data. Meanwhile, the cloud may

actually be compromised or even malicious rather than be semi-

honest [39]. In this case, it could send incorrect results to clients

for program glitches or commercial interests, where users have no
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Figure 1: Sample of the skyline query

ability to determine whether results are authentic. Hence, guaran-

teeing data confidentiality and result authenticity becomes a crucial

and urgent issue to be tackled.

In this paper, we focus on one of the most prevalent location-

based services, as called secure and verifiable location-based skyline

queries (SVLSQ) on encrypted datasets (e.g., restaurants, hotels, and

plazas). As shown in Fig. 1, we provide an example on how to choose

a suitable hotel, where P = {P1, ...,P6} indicates a 2-dimensional

dataset, namely: location and price, and q is a query with user’s

location. We employ the skyline query to calculate 1NN records

based on the weight of each attribute so that it filters hotels in

advance for tourists with different preferences.

Thus, the tourist obtains real skyline results {P3,P4} for q from

Fig. 1. However, the cloud may return tampered results {P3,P2,P
′
}

due to commercial factors, e.g., P2 is a hotel sponsoring the cloud

platform and P
′
is a forged hotel with high consumer prices to

serve as a foil to P2. Obviously, the user cannot validate the re-

liability of results. Therefore, our SVLSQ provides a verification

mechanism to guarantee the authenticity of results in two ways

[4, 21, 38]: 𝑖) soundness, i.e., no tampered results (e.g., P2 and P
′
)

and 𝑖𝑖) completeness, i.e., no discarded results (e.g., P4). In addition,

without security guarantee, the content such as dataset P, query

q and result R may be leaked to the cloud server. To this end, our

SVLSQ also aims to protect four widely adopted aspects [9, 18, 24]:

𝑖) data privacy: the dataset P; 𝑖𝑖) skyline result privacy: the skyline
result R; 𝑖𝑖𝑖) query privacy: the query q; and 𝑖𝑣) access patterns
privacy: the positions of results in P, which include spatial and

non-spatial attributes of the data points.

Recently, there have been a number of solutions to tackle the

problem of data confidentiality in privacy-preserving queries, but

they cannot guarantee the above requirements completely [27, 31,

37]. Some works [7, 36, 42] use AES (a symmetric encryption),

OPE [32] or ORE [6, 20] to encrypt datasets and then implement

secure queries. However, calculations in this ciphertext domain,

such as distance, cannot be achieved, which is a necessary procedure

involved in location-based services. Moreover, these works [7, 36,

42] cannot guarantee the requirement of access patterns privacy
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Table 1: Summary of representative approaches

Approach Data Privacy Query Privacy Result Privacy Verifiable Supporting Skyline Access Patterns Privacy Distance Calculation

Wu [38] � � � � × − −

Cui [9] � � � � × − −

Choi [7] � � � × × − −

Elmehdwi [11] � � � × × − −

Liu [24, 25] � � � × � � �
Wang [36] � � � × � × ×

Liu [27] × � � × � × �
Zeighami[42] � � � × � × ×

Our work � � � � � � �
‘�’ denotes the method meets the requirement; ‘×’ denotes it violates the requirement; ‘−’ represents it is ignored for not supporting skyline.

without oblivious RAM structures [34]. As indicated in [17], when

attackers launch an inference attack with several prior information

about the data, the query can be recovered if attackers know the

positions of results among P. Hence, approaches based on the partial

homomorphic encryption (PHE) [1] are proposed to solve secure

queries [11, 25]. However, as shown in [11], the efficiency of secure

𝑘NN query is too poor to be practical. Similarly, the efficiency of

secure skyline queries [25] using Paillier [29] (a PHE) is also low

on large-scale datasets without parallelism.

Besides, the above works assume that the cloud is semi-honest.

That is, it may return real results. In fact, it may be malicious

enough to return tampered results for program glitches, security

vulnerabilities, and commercial interests. However, little work has

so far focused on secure and verifiable skyline queries. Recently,

in [9], the authors process a secure 𝑘NN query based on a PHE.

Another approach [38] addresses secure range queries using the se-

cure and verifiable tree, but some sensitive information other than

results is exposed to users during the verification process. Further-

more, neither of them are appropriate for the skyline computation.

For demonstration purposes, we exhibit several representative ap-

proaches in Table 1. It is worth notice that none of the published

solutions can be sufficiently efficient to address the problem about

location-based skyline queries while simultaneously provide veri-

fiability (i.e., to guarantee the soundness and completeness of the

results) and four aspects of privacy as mentioned above.

Inspired by this, our ongoing goal is to devise an efficient solution

that guarantees all privacy requirements to process location-based

skyline queries on static or infrequently updated datasets (e.g.,

hotels and carparks).1 However, there are several key differences

that render existing techniques inapplicable to SVLSQ. First, most

existing secure skyline query techniques [25, 36, 42] cannot provide

result verificaton for clients. Second, most existing variants of R-

tree indexes (e.g., Merkle R-tree [40, 41]) and their query methods

cannot guarantee the privacy of datasets, results, queries and access

patterns simultaneously. Third, one naivemethod is to directly build

an R-tree index with encryption. However, this method cannot

preserve the query unlinkability, i.e., the cloud can track visiting

paths of two queries to determine whether they are from the same

query. Moreover, this unsophisticated method cannot provide result

verification without privacy leakage since the verification object

decrypted to the client contains original contents of the dataset.

1The problem of guaranteeing the freshness of query results is beyond the scope of
our study. We cannot provide queries over the most up-to-date outsourced dataset.

Clearly, there are two key technical challenges that need to be

addressed. 1) How do we devise an authenticated data structure (ADS)

for secure skyline queries while guaranteeing data confidentiality

and result authenticity? To this end, we firstly propose a unified

index structure called semi-blind R-tree (SR-tree) to preserve the

query unlinkability. Due to the semi-blind structure, the positions

of results among P are hidden from the cloud. Then, according to

SR-tree, we build the secure and verifiable R-tree (SVR-tree) index

using Paillier, ORE and hash function. After that, we propose a sky-

line searching algorithm named basic and verifiable location-based

skyline queries (BVLSQ) based on SVR-tree. However, in BVLSQ,

the dominance operation drags down the query efficiency, and the

size of verification objects (VOs) is too large partly due to the ci-

phertext of ORE. Furthermore, although ORE protects contents of

the data (in VOs), the ordering of some data is leaked to clients.

These lead to the next technical challenge. 2) How do we further

accelerate the efficiency, optimize the communication bandwidth and

enhance data security? We observe that the dominance relationships

of points can be pre-computed by the data owner such that the

query and verification time could be further reduced. To decrease

the communication burden as caused by the ciphertext of ORE,

we devise a novel leaf node structure, which takes into account

data confidentiality during the query and verification. In general,

with the semi-blind idea of SR-tree as the cornerstone, we propose

a newly developed secure and verifiable scope R-tree (SVSR-tree)

merely using Paillier and hash function, which stores the encrypted

data objects and verification information (instead of encrypted data

points themselves). After that, we present secure and verifiable

location-based skyline queries (SVLSQ) protocol, where the posi-

tions of results could be preserved from the cloud.

Using intervals instead of points to represent data objects makes

SVR-tree and SVSR-tree variants of R-tree indexes [12]. However,

in contrast to the initially proposed techniques, our approach allow

us to (1) efficiently support secure skyline queries in the ciphertext

domain, (2) verify the result authenticity without privacy leakage,

and (3) preserve the query unlinkability. Furthermore, none of those

existing techniques could commendably guarantee query efficiency,

data confidentiality and result authenticity simultaneously.

Observations from extensive experiments show that the query

performance of our proposed SVLSQ (BVLSQ) is no less than 3

orders of magnitude faster than the other approaches from [24, 25].

Moreover, compared with SVR-tree, the VO size belonging to SVSR-

tree is reduced notably.

To summarize, we present our contributions as follows.
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• As far as we are aware, this is the first work to study the

secure and verifiable location-based skyline queries over en-

crypted data, which preserves the aforementioned privacy

requirements and guarantees the authenticity of results

while achieving considerable efficiency.

• We propose a novel unified index structure named semi-

blind R-tree (SR-tree), which could protect the query un-

linkability. Furthermore, we devise an SVR-tree and present

the BVLSQ protocol to process the query efficiently and

reduce the size of verification objects dramatically.

• Combining the properties of location, we also devise an-

other ADS named SVSR-tree based on SR-tree. Then, we

propose the SVLSQ protocol which is more efficient and

adaptive at constructing VOs for smaller sizes.

2 PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Cryptographic Tools

Paillier Cryptosystem [29]. In order to ensure the semantic se-

curity of the ciphertext for distance calculation, the Paillier cryp-

tosystem serves as the encryption scheme. Paillier encrypts the

plaintext 𝑥1 by the public key 𝑝𝑘 (denoted by �𝑥1�) and decrypts the
ciphertext𝑚1 by the private key 𝑠𝑘 (denoted by 𝐷𝑠𝑘 (𝑥1)), where
�·� and 𝐷𝑠𝑘 (·) respectively represent encryption and decryption

functions. It also has additive homomorphic properties as follows:

𝐷𝑠𝑘 (�𝑥0� × �𝑥1� mod 𝑁 2) = 𝑥0 + 𝑥1 mod 𝑁, (1)

𝐷𝑠𝑘 (�𝑥0�
𝑥1 mod 𝑁 2) = 𝑥0 × 𝑥1 mod 𝑁, (2)

where 𝑥0, 𝑥1 ∈ Z𝑁 , 𝑁 is the product of two large primes.

Order-Revealing Encryption [6, 20]. To implement ciphertext

comparison, we use the order-revealing encryption (ORE) scheme

to encrypt data with any secret key by 𝐸𝑛𝑐 (·). Then, we compare

𝐸𝑛𝑐 (P1) and 𝐸𝑛𝑐 (P2) by 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (·, ·), and it returns {−1, 0, 1}.
Cryptographic Hash Function. We generate a fixed-length

string by a one-way and collision-resistant hash function 𝐻𝑎𝑠ℎ(·)
(such as SHA-1) to build a new ADS. The data owner can cal-

culate the digital signature 𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(P1),K1) of 𝐻𝑎𝑠ℎ(P1) with

private key K1. For ease of presentation, hereafter, we replace

𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(·),K1) with 𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(·)).

2.2 System Model

In the cloud environment, we adopt two collude-resistant clouds [9,

25], as shown in Fig. 2. Usually, these two clouds named data service

provider (DSP) and data assistance provider (DAP) are supposed to

be competitive companies, generally from prestigious enterprises

like Amazon and Microsoft. Moreover, in order to complement the

verification function, we add the verification object VO into the

model. The specific description of the model is as follows:

(1) Data Owner (DO). As a trusted entity with dataset P, the

DO generates the Paillier cryptosystem’s keys < 𝑝𝑘, 𝑠𝑘 > and a

hash function 𝐻𝑎𝑠ℎ(·), then it builds a secure and verifiable index 𝐼
and additional encrypted information𝑇𝑎𝑔 according to P. Next, the

DO sends 𝑝𝑘 , 𝐼 to DSP, and < 𝑝𝑘, 𝑠𝑘 >, 𝑇𝑎𝑔 to DAP, respectively.

After successfully auditing the registration information from the

requester, the DO assigns 𝑝𝑘 and 𝐻𝑎𝑠ℎ(·) to it.

Figure 2: System model

(2) Queries Requester (QR). An authorized client sends an

encrypted query �q� to DSP. After receiving query results and VOs

from DSP and DAP, referred to as < R1,𝑉𝑂1 > and < R2,𝑉𝑂2 >,
respectively, the client further computes skyline results and checks

their authenticity.

(3) Two Cloud Servers. The data service provider (DSP), one

cloud server, processes secure and verifiable skyline queries over 𝐼
and �q� in collaboration with the data assistance provider (DAP)

when receiving query request from QR. When the query finishes,

DSP and DAP respectively return < R1,𝑉𝑂1 > and < R2,𝑉𝑂2 >.

2.3 Security Model

In our security model, there are the following threats: 𝑖) since the
clouds are untrustworthy, the results returned from them may not

be correct; 𝑖𝑖) the clouds are so curious that they collect confidential
content during query processing.

To address the first threat, the client can verify query results R

based on a secure and efficient authenticated data structure (ADS),

which involves the following definition.

Definition 1. (Soundness and Completeness) Given a dataset P,

a query function𝑄𝑢𝑒𝑟𝑦 (·) and a query q, the cloud returns the result
R ⊆ P, if for ∀R𝑖 ∈ R, R𝑖 ∈ 𝑄𝑢𝑒𝑟𝑦 (q, P), then we say R is sound. If

for ∀P𝑗 ∈ P − R, P𝑗 ∉ 𝑄𝑢𝑒𝑟𝑦 (q, P), then we say R is complete.

To address another threat, we devise two secure indexes and

protocols to process queries with privacy guarantee. We also sum-

marize the following privacy requirements similar to [9, 24].

(1) Data Privacy. The content about the original data cannot be

gained by two clouds; likewise, the client knows nothing about the

data except the query result R.

(2) Result Privacy. No one can gain the plaintext of query

results R except the corresponding client.

(3) Query Privacy. Two clouds cannot know the content of q.

(4) Indirect Privacy. Two clouds know nothing about the posi-

tions of the results (i.e., access patterns) in the dataset. Furthermore,

they cannot realize whether two queries are identical by tracking

visiting paths, which is also named query unlinkability.

Note that we present the formal security definition and analysis

in Section 6.2.

2.4 Problem Definition

Let P = {P1, ...,P𝑛} be a dataset, and each point P𝑖 ∈ P (1 ≤ 𝑖 ≤ 𝑛)
is associated with two spatial attributes (denoted by (P𝑖 [1],P𝑖 [2]))
and several non-spatial attributes (denoted by (P𝑖 [3], ...,P𝑖 [𝑑])),
where 𝑑 denotes the number of all dimensions and 𝑑∗ denotes the
number of non-spatial dimensions of P𝑖 .
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Definition 2. (Non-Spatial Dominance [16]) Given two points

P𝑖 and P𝑗 , for any non-spatial dimension 𝜐 (3 ≤ 𝜐 ≤ 𝑑), if P𝑖 [𝜐] ≤
P𝑗 [𝜐], we say P𝑖 non-spatially dominates P𝑗 , and P𝑖 is a non-spatial

dominator of P𝑗 , denoted by P𝑖 � P𝑗 . The set of P𝑗 ’s non-spatial

dominators is denoted as 𝐷𝑜𝑚(P𝑗 ).

Definition 3. (Location-Based Dominance [13]) Given a location

query point q = (q[1], q[2]) and two pointsP𝑖 andP𝑗 , if (1)P𝑖 � P𝑗

and (2) P𝑖 is closer to q than P𝑗 , then we say P𝑖 dominates P𝑗 w.r.t.

q, denoted by P𝑖 ≺q P𝑗 .

Definition 4. (Location-Based Skyline Query, LSQ [13]) Given a

dataset P, the location-based skyline result R of a query point 𝑞 is a

subset of P, 𝐿𝑆𝑄 (P, 𝑞), such that for each P𝑖 ∈ R,∀P𝑗 ∈ P,P𝑗 ⊀q P𝑖 ,

and for each P𝑗 ∈ P − R, ∃P𝑖 ∈ R,P𝑖 ≺q P𝑗 .

Definition 5. (Secure and Verifiable Location-Based Skyline Query,

SVLSQ) Given the secure index 𝐼 over P, and an encrypted query �q�,
SVLSQ aims to securely provide VOs and results R = 𝐿𝑆𝑄 (P, 𝑞) to the
client by using 𝐼 and �q� such that for eachP𝑖 ∈ R,∀P𝑗 ∈ P, �P𝑗 � ⊀q
�P𝑖�, and for each P𝑗 ∈ P−R, ∃P𝑖 ∈ R, �P𝑖� ≺q �P𝑗 �. According to
VOs, the client is able to verify the soundness and completeness of R.

3 SEMI-BLIND R-TREE

To protect the query unlinkability, a novel structure named semi-

blind R-tree (SR-tree) is devised. It is a height-balanced tree similar

to R-tree. Concretely, the leaf node in SR-tree contains data objects

referring to encrypted points in P. The common non-leaf node con-

tains index objects in the form of (�𝑀𝐵𝑅�, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ), where 𝑝𝑜𝑖𝑛𝑡𝑒𝑟
is the address of lower node in SR-tree and �𝑀𝐵𝑅� is an encrypted

minimum bounding rectangle (MBR) which is denoted as:

�𝑀𝐵𝑅� = (�𝑚𝑏𝑟1�, �𝑚𝑏𝑟2�, ..., �𝑚𝑏𝑟𝑑�), (3)

where �𝑚𝑏𝑟𝑖� is a closed bounded interval
[
�𝑚𝑏𝑟 𝑙𝑜𝑤𝑖 �, �𝑚𝑏𝑟

𝑢𝑝𝑝
𝑖 �

]
describing the encrypted extent of each object along dimension 𝑖 .
We use Paillier with 𝑝𝑘 (i.e., �·�) to encrypt each element in𝑚𝑏𝑟𝑖 ,
where �·� denotes the Paillier encryption function. The special non-

leaf node at the penultimate level in SR-tree contains intermediate

entries (called blind objects) of the form (�𝑀𝐵𝑅�,B(·)), where B(·)

is the function calculating its corresponding children nodes. Notice

that the index object corresponds to a lower leveled node with

encrypted MBR, while the object of leaf node corresponds to en-

crypted data point in P. We present the formal definition of SR-tree

as follows.

Definition 6. (Semi-Blind R-tree) Given the semi-blind R-tree

𝑆𝑅𝑇 and a node 𝑁𝑖 , 𝑆𝑅𝑇 ’s level is {𝐿0, 𝐿1, ...} from bottom to top.

Thereupon 𝑆𝑅𝑇 can be formalized as:

𝑆𝑅𝑇 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{�P𝑗 �}1≤ 𝑗≤𝑐 , 𝑁𝑖 ∈ 𝐿0

{(�𝑀𝐵𝑅 𝑗 �, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )}1≤ 𝑗≤𝜃 , 𝑁𝑖 ∈ {𝐿𝑘 }𝑘≠0,1
{(�𝑀𝐵𝑅 𝑗 �,B(·))}1≤ 𝑗≤𝜃 , 𝑁𝑖 ∈ 𝐿1

, (4)

where �P𝑗 �, 𝑐/𝜃 , �𝑀𝐵𝑅 𝑗 �, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 and B(·) respectively refer to an

encrypted point, the capacity of a leaf or non-leaf node, an encrypted

minimum bounding rectangle, the address of a node at the lower level

and the function of calculating the corresponding children nodes.

Next, we illustrate how the data owner build SR-tree. A naive

but effective method is to encrypt each element in R-tree with

Paillier cryptosystem. However, this method fails to protect query

unlinkability. To this end, the data owner needs to hide visiting path

from the blind object to the data object. Concretely, the leaf nodes

(for ease of understanding, a leaf node is denoted as an encrypted

vector �𝑁𝑖� =
[
�P1�...�P𝑐�

]
, where 𝑐 is the capacity of leaf node) of

the same parent node are structured into a set called a node bucket

𝑁𝐵, which is denoted as 𝑁𝐵 =
[
�𝑁1�

T ...�𝑁𝜃 �T
]T

and 𝜃 (𝜃 ≤ 𝑐)
is the capacity of this parent node. For example, as shown in Fig.

3(b), leaf nodes corresponding to 𝑜1 and 𝑜2 at node 𝑁6 are 𝑁1 and

𝑁2, respectively. So, 𝑁1 and 𝑁2 are structured into a node bucket

𝑁𝐵 (i.e., 𝑁𝐵 =
[
�𝑁 1�T�𝑁2�

T
]T
). For each blind object, we set up

an encryption vector 𝐼𝑉 , which is consisted of �1� and �0�. If the
blind object corresponds to the 𝑘-th node in 𝑁𝐵, then 𝐼𝑉 [𝑘] = �1�
and {𝐼𝑉 [𝑖] = �0�}1≤𝑖≤𝜃,𝑖≠𝑘 . Hence, in the semi-blind structure,

with the encrypted vector 𝐼𝑉 and the node bucket 𝑁𝐵 as input, an

encrypted leaf node �𝑁𝑖� is calculated through B(·) as follows.

�P𝑗 � =
𝜃∏
𝑘=1

SM(𝐼𝑉 [𝑘], 𝑁𝐵𝑘 𝑗 ), (5)

�𝑁𝑖� = B(𝐼𝑉 , 𝑁𝐵) =
[
�P1� · · · �P𝑗 � · · · �P𝑐�

]
, (6)

where SM(·, ·) is the secure multiplication (SM) protocol from [11].

Note that the data owner uploads the SR-tree except the en-

crypted vector 𝐼𝑉 to DSP, and the set of encrypted vector 𝐼𝑉 is

uploaded to DAP as an additional encrypted information𝑇𝑎𝑔. When

the blind object is accessed, DSP requests DAP to obtain the cor-

responding 𝐼𝑉 . Before returning 𝐼𝑉 to DSP, DAP updates 𝐼𝑉 by

calculating 𝐼𝑉 = 𝐼𝑉 × �0�. Then, DSP calculates the leaf node by

B(·). Owing to the probabilistic property of Paillier, the ciphertext

of identical leaf nodes are different. Hence, each node is ‘read’ from

𝑁𝐵 blindly and the cloud cannot know its exact position in P.

4 BASIC METHOD

4.1 Secure and Verifiable R-tree

Based on SR-tree, we devise a secure and verifiable R-tree (SVR-

tree) to preserve the privacy and offer verification information.

Concretely, the leaf node𝑁𝑖 in SVR-tree contains entries in the form
of < �P𝑖�, �𝐸𝑛𝑐 (P𝑖 )�, �D𝑖�, �S𝑖� >, where �P𝑖�, �𝐸𝑛𝑐 (P𝑖 )�, �D𝑖�
and �S𝑖� respectively refer to P𝑖 encrypted by Paillier, 𝐸𝑛𝑐 (P𝑖 ) (i.e.,
P𝑖 encrypted by ORE) encrypted by Paillier, the encrypted hash

value of 𝐸𝑛𝑐 (P𝑖 ), i.e., �D𝑖�=�𝐻𝑎𝑠ℎ(𝐸𝑛𝑐 (P𝑖 ))�, and the encrypted

digital signature of P𝑖 and 𝐸𝑛𝑐 (P𝑖 ), i.e.,

�S𝑖�=�𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(P𝑖 ) |𝐻𝑎𝑠ℎ(𝐸𝑛𝑐 (P𝑖 ))))�. (7)

The non-leaf node 𝑁𝑖 contains intermediate objects (i.e., 𝑜𝑖 ) of the
form < �𝑀𝐵𝑅�, �𝐸𝑛𝑐 (𝑀𝐵𝑅)�, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟/B(·), �H� >, where �𝑀𝐵𝑅�,
�𝐸𝑛𝑐 (𝑀𝐵𝑅)� and �H� refer toMBR encrypted by Paillier,𝐸𝑛𝑐 (𝑀𝐵𝑅)
(i.e., MBR encrypted by ORE) encrypted by Paillier, and the en-

crypted hash value of the corresponding node at lower level. In

specific, 𝑜𝑖 .�H� is calculated as:

𝑜𝑖 .�H�=

{
�𝐻𝑎𝑠ℎ(...|P𝑧 .D|...)�, 𝑁𝑖 is a leaf node

�𝐻𝑎𝑠ℎ(...|𝑜𝑦 .𝑀𝐵𝑅 |𝑜𝑦 .H|...)�, 𝑁𝑖 is a non-leaf node
, (8)

where P𝑧 (𝑧 ∈ [1, 𝑐] and 𝑜𝑦 (𝑦 ∈ [1, 𝜃 ]) are covered by 𝑁𝑖 . Through
the above calculation, the root hash value of SVR-tree is denoted
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Figure 3: An example of SVR-tree index. (a) is the dataset of 4D data points. (b) is an SVR-tree, where each leaf node 𝑁𝑖 (1 ≤ 𝑖 ≤ 5)

has 3 data objects (the objectswith green are padding objects), all ofwhich contain < �P𝑗 �, �𝐸𝑛𝑐 (P𝑗 )�, �D𝑗 �, �S𝑗 � > (1 ≤ 𝑗 ≤ 15). The

entries of non-leaf nodes at 𝐿1 (we call them blind objects, such as 𝑜1, 𝑜2,...,𝑜5) contain < �𝑀𝐵𝑅�, �𝐸𝑛𝑐 (𝑀𝐵𝑅)�,B(·), �H� >which is a

semi-blind structure. The entries of non-leaf nodes at 𝐿2 (i.e., index objects𝑜6 and𝑜7) contain < �𝑀𝐵𝑅�, �𝐸𝑛𝑐 (𝑀𝐵𝑅)�, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, �H� >.
(c) and (d) respectively visualize the spatial and non-spatial information.

asH𝑟𝑜𝑜𝑡 . To guarantee the data authenticity, we need to generate

an encrypted signature �𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 )�.
Intuitively, as shown in Fig. 3(a), given a dataset P = {P1, ...,P13},

points in P, such as P1, P2 and P3, which are close to each other are

grouped into the same leaf node 𝑁1 (node capacity 𝑐 = 3). Although

the efficiency of R-tree is generally considered to deteriorate rapidly

for high-dimensional spaces, since most location-based scenarios

involve no more than five dimensions [19], thus our proposed SVR-

tree still keeps high efficiency and effective in real situations. In Fig.

3(b), it is an SVR-tree with a typical semi-blind structure (𝑐 = 3 and

𝜃 = 3). Fig. 3(c) visualizes the spatial attributes of objects and �q�,
while the non-spatial dimensions of objects are vividly presented

in Fig. 3(d). The shaded parts in Fig. 3(c) and 3(d) indicate that their

locations are hidden from the clouds due to query unlinkability.

Since some leaf nodes may not be fully filled, to defend against

inference attacks according to the number of data points in leaf

nodes (e.g., DSP determines whether two queries have visited the

same nodes based on the number of objects), some crafted points

are generated by the data owner. By doing so, noise points are

appended into nodes lacking sufficient entries, e.g., the green points

in Fig. 3(b). Note that the fake points do not affect the precision of

queries because a certain point will always dominate them (their

values are set to be large enough). Similar to SR-tree, SVR-tree

of P is constructed by the data owner. Then, SVR-tree except the

encrypted vector 𝐼𝑉 is uploaded to DSP. Furthermore, an additional

encrypted information 𝑇𝑎𝑔 composed of 𝐼𝑉 and the corresponding

hash value H is uploaded to DAP. The traversal method used to

retrieve skyline results adopts the branch-and-bound paradigm, the

detailed query procedure is given in Section 4.3.

Discussion. Since the leaf node is calculated from the node

bucket 𝑁𝐵 rather than read from the index for each query, the

cloud cannot determine whether two queries are same by tracking

access paths. Therefore, DSP cannot distinguish which points in𝑁𝐵
or P are the results (i.e., the positions of results). Although the semi-

blind structure incurs additional computational cost, secure skyline

queries with SVR-tree only perform dominance operations on few

data points without traversing the entire datasets. Meanwhile, the

number of semi-blind structure triggered is only related to that

of skyline results, which is very beneficial for most applications

with sparse results and massive data. For example, the semi-blind

structure is only triggered 3 times for 13 tuples in Fig. 3(b).

4.2 Location-Based Secure Dominance
Algorithm

The purpose of location-based secure dominance (LSDM) algorithm

is to calculate the dominance relationship among the encrypted

object 𝑜 and result object 𝑠 . The DSP has 𝑠 from R, an encrypted

Euclidean distance �𝑑𝑠� between 𝑠 and �q�, 𝑜 from 𝐼 , and an en-

crypted Euclidean distance �𝑑𝑜� between 𝑜 and �q�, where 𝑜.𝑀𝐵𝑅
(or 𝑜.P) and 𝑠 .P are not revealed to both clouds. The basic thought

of LSDM algorithm is to determine who is closer to q from 𝑠 and
𝑜 . Then, the non-spatial dominance relationship is calculated by

returning 1 if 𝑠 ≺q 𝑜 , otherwise, 0 is returned.
Concretely, DSP sends �𝑑𝑜 + 𝑟� and �𝑑𝑠 + 𝑟� with noise 𝑟 to

DAP, where 𝑟 ∈ Z∗𝑁 and is generated by pseudo-random func-

tion 𝑓 . Upon receiving values, DAP decrypts them to obtain 𝑑
′

𝑜

and 𝑑
′

𝑠 . If 𝑑
′

𝑠 < 𝑑
′

𝑜 , DAP gets Ψ = 1, which means 𝑠 is closer to
q than 𝑜 . Otherwise, DAP gets Ψ = 0. Then, DAP sends Ψ to

DSP. Subsequently, DSP calculates u
′
[𝑖 − 2] = 𝑠 .�𝐸𝑛𝑐 (P)[𝑖]� ×

𝑜.�𝐸𝑛𝑐 (𝑚𝑏𝑟 𝑙𝑜𝑤𝑖 )�𝑁−1/𝑜.�𝐸𝑛𝑐 (P)[𝑖]�𝑁−1 for 3 ≤ 𝑖 ≤ 𝑑 and sents

them to DAP. Once these values are received, DAP decrypts them

and returns the numerical relationship u[ 𝑗] = 1 if 𝐷𝑠𝑘 (u
′
[ 𝑗]) ≤ 0,

otherwise, if𝐷𝑠𝑘 (u
′
[ 𝑗]) > 0, u[ 𝑗] = 0, where 𝑗 ∈ [1, 𝑑 − 2]. Finally,

DSP calculates the dominance relationshipΦ = Ψ∧u[1] ...∧u[𝑑−2].

4.3 BVLSQ Protocol

To begin with, we present an important notion about the dis-

tance over all dimensions (i.e., mindist) from object 𝑜 to query

point q. If 𝑜 is a data object (i.e., P), we denote the distance by

𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (P, q) = 𝑑𝑖𝑠𝑡 (P, q)+
∑𝑑
𝑖=3 P[𝑖], where𝑑𝑖𝑠𝑡 (P, q) is the spa-

tial distance between P and q. If 𝑜 is an index object, the distance

from 𝑜 to q is denoted as𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (𝑜, q) = 𝑑𝑖𝑠𝑡 (𝑜, q)+
∑𝑑
𝑖=3 𝑜.𝑚𝑏𝑟

𝑙𝑜𝑤
𝑖 ,

where 𝑑𝑖𝑠𝑡 (𝑜, q) is the minimum spatial distance between 𝑜 and

q. Then, we demonstrate a basic method named BVLSQ based on

SVR-tree to help DSP to prune dominated index objects to decrease

the size of VO, while guaranteeing the ability to verify the results.

Obviously, in our BVLSQ, all data is encrypted. Therefore, un-

der the premise of protecting data privacy, how to calculate an

encrypted𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (denoted as �𝑚𝑖𝑛𝑑𝑖𝑠𝑡�) becomes a primary prob-

lem. Since the squared spatial distance �𝑑𝑖𝑠𝑡2� is easier to compute

than �𝑑𝑖𝑠𝑡�, we employ the former one to calculate. With the help

of secure squared Euclidean distance (SSED) protocol [22], �𝑑𝑖𝑠𝑡2�
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Figure 4: Squared distance �𝑑𝑖𝑠𝑡2� between 𝑜 and �q�

between 𝑜.�P� and �q� is calculated in ciphertext form without

privacy leakage if 𝑜 is a data object. Otherwise, if 𝑜 is an index

object, �𝑑𝑖𝑠𝑡2� between 𝑜.�𝑀𝐵𝑅� and �q� is calculated based on

the position of 𝑜 relative to q using SSED (see Fig. 4). Then, DSP

calculates �𝑚𝑖𝑛𝑑𝑖𝑠𝑡2 (·)� instead of �𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (·)� as Eq. 9.

�𝑚𝑖𝑛𝑑𝑖𝑠𝑡2 (𝑜, q)�=

{
�𝑑𝑖𝑠𝑡2 (𝑜, q)�×

∏𝑑
𝑖=3𝜛𝑖 , o is a data object

�𝑑𝑖𝑠𝑡2 (𝑜, q)�×
∏𝑑
𝑖=3𝑚𝑖 , o is an index object

, (9)

where 𝜛𝑖 = �𝑜.P[𝑖]2� and𝑚𝑖 = �𝑜.𝑚𝑏𝑟 𝑙𝑜𝑤𝑖
2
� can be calculated by

the secure multiplication (SM) protocol [11].

In the sequel, we present the BVLSQ protocol. The skyline results

and VOs are respectively stored in R and 𝑣𝑜𝑇𝑟𝑒𝑒 . First, R is initial-

ized to empty and the root of SVR-tree is added into 𝑣𝑜𝑇𝑟𝑒𝑒 . The
SMIN-Queue SQ is maintained to keep the index (data) objects to be

scanned with the object of minimum �𝑚𝑖𝑛𝑑𝑖𝑠𝑡2 (·)� at top through

the secure minimum (SMIN) protocol [11]. For each loop iteration,

the top object 𝑜 is popped up from SQ. Then, DSP and DAP cooper-

atively use LSDM to determine whether 𝑜 is dominated by some

point in R and retun the intermediate result 𝜁 . If 𝜁 = 1, DSP dis-

cards 𝑜 and keeps (𝑜.�𝐸𝑛𝑐 (𝑀𝐵𝑅)�, 𝑜 .�H�) or (𝑜.�𝐸𝑛𝑐 (P)�, 𝑜 .�D�)
in this node. Otherwise, if 𝜁 = 0, DSP processes 𝑜 based on its type.

In the case where 𝑜 is an index object, DSP needs to calculate its

children by B(·) with input 𝑜.𝐼𝑉 from DAP if 𝑜 is a blind object,

where 𝑜.𝐼𝑉 is obtained by hash value H . If 𝑜 is a common index

object, child objects are obtained directly from the index. For each

child object 𝑜𝑖 of 𝑜 , 𝑜𝑖 is discarded and (𝑜𝑖 .�𝐸𝑛𝑐 (𝑀𝐵𝑅)�, 𝑜𝑖 .�H�) is
inserted into 𝑣𝑜𝑇𝑟𝑒𝑒 if 𝑜𝑖 is dominated by some point in R with

LSDM. Otherwise, 𝑜𝑖 is inserted into SQ and 𝑣𝑜𝑇𝑟𝑒𝑒 . In the case

where 𝑜 is a data object, 𝑜.�P� and (𝑜.�𝐸𝑛𝑐 (P)�, 𝑜 .�D�, 𝑜 .�S�) are
respectively inserted into R and 𝑣𝑜𝑇𝑟𝑒𝑒 . The algorithm continues

until SQ = ∅.

Returning R and 𝑣𝑜𝑇𝑟𝑒𝑒 . For each encrypted element �𝑒𝑖� in
R and 𝑣𝑜𝑇𝑟𝑒𝑒 , the DSP chooses a random number 𝑟𝑖 and calculates

𝜈𝑖 = �𝑟𝑖� × �𝑒𝑖�, where 𝑟𝑖 ∈ Z
∗
𝑁 and is generated by 𝑓 . Then, the

random vector r composed of 𝑟𝑖 is sent to client and 𝝂 is sent to

DAP. Next, DAP decrypts 𝝂 as 𝜼 = 𝐷𝑠𝑘 (𝝂) and sends 𝜼 to the client.

Finally, the client calculates the result as s = 𝜼 − r.

Verification Processing. To verify the soundness and complete-

ness of skyline results, the client should check three aspects as fol-

lows: 𝑖) any two objects inR are not dominated by each object; 𝑖𝑖) no
skyline point is tampered; 𝑖𝑖𝑖) no valid skyline point is missed. For

the first aspect, it is easy to determine objects in R are dominated

by each other because the result set is plaintext. After that, the client

calculates the signature Ŝ𝑖 = 𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(P𝑖 ) |𝐻𝑎𝑠ℎ(𝐸𝑛𝑐 (P𝑖 )))).

Next, if calculated signature Ŝ𝑖 matches S𝑖 from 𝑣𝑜𝑇𝑟𝑒𝑒 , it means

the skyline point is not tampered, and vice versa. Furthermore,

if the signature can be matched, it indicates that P𝑖 and 𝐸𝑛𝑐 (P𝑖 )
are related, that is, 𝐸𝑛𝑐 (P𝑖 ) denotes that P𝑖 is encrypted by the

ORE algorithm, which provides a basic guarantee for subsequent

completeness verification. For the last aspect, the client checks the

dominance relationship according to 𝑣𝑜𝑇𝑟𝑒𝑒 from bottom to top,

and calculates the signature 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) of the root node of 𝑣𝑜𝑇𝑟𝑒𝑒 .

Finally, the client compares whether 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) is consistent with

the signature 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) returned from DSP.

5 IMPROVED METHOD

5.1 Secure and Verifiable Scope R-tree

Although BVLSQ securely calculates the skyline results over SVR-

tree on the fly, it still has the following drawbacks.
• The VO size is too large due to the ciphertext of ORE, which

becomes a huge burden for communication bandwidth.
• The VO exposes the ordering of partial original data to clients

due to the use of ORE encryption.
• Since some skyline points for static datasets can be pre-computed,

query and verification time can be further reduced.

To overcome these drawbacks, a notion of skyline scope is pre-

sented (see Def. 7). Intuitively, the skyline scope of P𝑖 indicates

that if P𝑖 is a skyline point of query q, then q should be in the area

defined by its skyline scope. In other words, if no object can non-

spatially dominate P𝑖 (i.e., 𝐷𝑜𝑚(P𝑖 ) = ∅), P𝑖 is one of the skyline

points for any query q, we call them non-spatial skyline points.

Therefore, the data owner pre-computes and signs them ahead,

which can be omitted in the following discussion. Otherwise, if P𝑖
is not farther from q than any of its non-spatial dominators, then it

is one of the skyline points w.r.t. q. That is, the skyline scope can

be calculated as a Voronoi cell of P𝑖 under the set {P𝑖 ∪𝐷𝑜𝑚(P𝑖 )}.

Definition 7. (Skyline Scope) For a point P𝑖 ∈ P, we denote the

skyline scope of P𝑖 by 𝑆𝑆 (P𝑖 ) = {q|q ∈ A ∧ P𝑖 ∈ 𝑆𝑉𝐿𝑆𝑄 (P, q)},
where A is a two-dimensional plane.

Intuitively, the naive method is to pre-compute the skyline scope

and its encryption. However, such an approach is difficult to promptly

construct the verification object VO, and we need to traverse all

skyline scopes to search for points that meet query conditions. To

this end, we devise an effective data structure to achieve the pur-

pose of speeding up query and verification. Simultaneously, the

privacy of datasets, queries, results and access patterns is guaran-

teed during the processes of query and verification. Therefore, the

primary technical challenge is to build a secure and effective ADS.

According to the above analysis, we propose a secure and ver-

ifiable scope R-tree (SVSR-tree) index as shown in Fig. 5. The

skyline scopes of all points in SVSR-tree are structured in the

form of SR-tree, where skyline scopes are encrypted by Paillier

algorithm. To benefit the result verification, along with the en-

crypted skyline scopes, some auxiliary verification information

is also recorded in the leaf nodes. Concretely, each object in a

leaf node stores 1) an encrypted point �P𝑖�; 2) the point’s skyline
scope expressed as an encrypted tuple set �T𝑖� = (�t1�, ..., �t𝜅�),
where �t𝜅� ∈ �T𝑖� is an encrypted vertex and 𝜅 is the number

of vertices of the polygon formed by its skyline scope; 3) the en-

crypted approximate polygon �V𝑖� = (�v1�, ..., �v𝜙 �) that roughly
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(a) Spatial information (b) Secure and verifiable scope R-tree hierarchy

Figure 5: An example of SVSR-tree index with node capacity 𝑐 = 3. (a) visualizes the spatial information. (b) shows a secure and

verifiable scope R-tree hierarchy, where each leaf node has 3 objects (the objects with green are padding ones) and each object

contains < �P𝑖�, �T𝑖�, �V𝑖�, �D𝑖�, �S𝑖� >. Each object in the non-leaf node contains < �𝐸𝑖�, �H𝑖�, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟/B(·) >.

covers the skyline scope from the inside, where �v𝜙 � is the ver-

tex of �V𝑖� and 𝜙 > 𝜅; 4) the encrypted object’s digest �D𝑖� =
�𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(v1) |...|𝐻𝑎𝑠ℎ(v𝜙 ))�; and 5) the encrypted object’s di-

gest signature �S𝑖� = �𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(P𝑖 ) |D𝑖 ))�, where “|” is a
concatenation operator. Since VO constructed based on T𝑖 may ex-

pose the privacy of datasets during the result verification, we set

an extra component V𝑖 , an approximate polygon inside T𝑖 , whose

vertices are not consistent with those of T𝑖 . Meanwhile, the client

only needs to determine q does not fall inV𝑖 of the non-result point.

We use some simple approximate methods construct V𝑖 , such as

selecting the point on the line segment 𝐴1𝐴2 of V𝑖 close to vertex

𝐴1 or the point on the diagonal 𝐴2𝐴5 ofV𝑖 close to vertex 𝐴2.

For the index object, it consists of an encrypted MBR �𝐸𝑖� =
(�n1�, ..., �n4�) (n𝑗 is the vertex of MBR), an encrypted digest �H𝑖�
of the child node, and a pointer to the node 𝑁𝑖 at the lower level
or a function B(·) for calculating the leaf node. We calculate the

encrypted digest of the object as:

�H𝑖�=�𝐻𝑎𝑠ℎ(𝐸𝑐1 |H𝑐1 |...|𝐸𝑐𝑐 |H𝑐𝑐 )�, (10)

where 𝐸𝑐𝑖 denotes the 𝑖-th object in 𝑁𝑖 , and H𝑐𝑖 denotes the di-

gest of the corresponding object. Significantly, in an index object,

𝐸𝑐𝑖 = (n1, ..., n4), while in a data object, 𝐸𝑐𝑖 = V𝑖 and H𝑐𝑖 = D𝑖 .

Therefore, the digest of each object is calculated recursively through

a bottom-up way. Finally, the root hash is denoted asH𝑟𝑜𝑜𝑡 and its

digital signature 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) is generated by the data owner. Note

that SVSR-tree except the encrypted vector 𝐼𝑉 is uploaded to DSP,

while the additional encrypted information 𝑇𝑎𝑔 composed of 𝐼𝑉
and the corresponding object’s digest is uploaded to DAP.

Although the access path is hidden between the leaf node and

its parent node, DSP obtains leaf nodes by Eq. 5 and Eq. 6. Since

the data object is ‘read’ from 𝑁𝐵 blindly, its exact location avoids

being exposed to the cloud. Meanwhile, to avoid suffering inference

attacks, we consider two aspects: 1) how to hide the number of

vertices in the skyline scope and approximate polygon; and 2) how

to hide the number of data objects in the leaf node. For the first

aspect, we set a fixed number of vertices. That is, we fill the skyline

scope and approximate polygon lacking sufficient tuples by using

their own vertices clockwise and circularly. For the other aspect,

the data owner generates some crafted data objects with virtual

elements and pads them into the leaf node lacking sufficient objects.

To ensure that each query is not in skyline scopes of crafted objects,

skyline scopes are devised to overlap two segments. By randomly

adding some noise objects, the number of objects in the leaf nodes

is consistent and at least one inveracious object is included, which

further protects the query unlinkability. Moreover, to meet the

fixed number of vertices, we also use the vertices of the segments

clockwise and circularly to fill skyline scopes.

5.2 SVLSQ Protocol

Based on SVSR-tree, the SVLSQ protocol is simplified to determine

whether the encrypted query point is in the area of the skyline

scope. To protect the privacy of queries and datasets , the vertices

that make up the scope are encrypted and the query point is also

encrypted. Therefore, it is a huge challenge for the cloud server

to calculate the results and construct the VO without decrypting

them. Specifically, the challenges include the following two aspects:

1) how to build the verification object VO; 2) how to securely deter-

mine whether q is located in MBRs or skyline scopes.

To address the first challenge, VOs are indexed in the form of a

tree. Hereafter, this new structure is called 𝑣𝑜𝑇𝑟𝑒𝑒 , which includes

the following elements: 1) an encrypted approximate polygon �V𝑖�
and an encrypted digest �D𝑖� of the non-result object; 2) an en-

crypted digest �D𝑖� and a corresponding signature �S𝑖� of the

skyline object; 3) two encrypted MBR �𝐸𝑖� and digest �H𝑖� of the
traversed index object (including the pruned object). The reason

why �𝐸𝑖� of the pruned index object and �V𝑖� of the non-result

object are involved is for the client to easily verify whether the

query is located in the corresponding MBR or skyline scope.

Lemma 1. Given a convex polygon Ω, for each edge 𝑙 , the interior
points in Ω are all on the same side of the line that the edge 𝑙 defines.

To address the second challenge, we propose a secure query

positioning (SQP) algorithm, the underlying idea of which comes

from Lemma 1 [35]. We observe that the convex polygon vertices

form an array of vertices in clockwise order, with two vertices in

turn forming a sequence of segments. If the point falls inside the

convex polygon, the point must be on the same side of all segment

sequences. Thus, in three-dimensional space, point 𝐴 and 𝐵 are

on the same plane, with 𝐴 as the starting point and 𝐵 as the end

point to form the vector
−→
𝐴𝐵 = (𝑥1, 𝑦1, 0). In order to determine the

position of point𝐶 relative to
−→
𝐴𝐵, we calculate the cross product of

−→
𝐴𝐵 and

−→
𝐴𝐶 is (𝑥1 · 𝑦2 − 𝑥2 · 𝑦1)�𝑘 , where the vector

−→
𝐴𝐶 = (𝑥2, 𝑦2, 0).

Therefore, DSP calculates the encrypted location relationship �𝛾� =
�𝑥1 · 𝑦2 − 𝑥2 · 𝑦1� using the SM protocol [11] based on the additive
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Algorithm 1: SVLSQ Protocol

Input: DSP has the root of SVSR-tree 𝑠𝑅𝑜𝑜𝑡 and �q�. DAP has 𝑠𝑘 .
Output: DSP← skyline set R, VOs 𝑣𝑜𝑇𝑟𝑒𝑒 .

1 initialize 𝑣𝑜𝑇𝑟𝑒𝑒 with 𝑠𝑅𝑜𝑜𝑡 ; insert 𝑠𝑅𝑜𝑜𝑡 into a queue𝑄 ;

2 if there is no object in𝑄 then
3 return R and 𝑣𝑜𝑇𝑟𝑒𝑒 ;

4 pop up the top encrypted object 𝑜 from𝑄 ;

5 if 𝑜 has the blind child object then

6 request IVs = {𝑜.𝐼𝑉1, ..., 𝑜 .𝐼𝑉𝜉 }, IVs
′
= {𝑜.𝐼𝑉1, ..., 𝑜 .𝐼𝑉𝜃−𝜉 } from DAP

based on whether �q� is located in MBRs of 𝑜’s children {𝑜1, .., 𝑜𝜃 };
7 for 𝑖 = 1 to 𝑠𝑖𝑧𝑒 (IVs) do
8 𝑜𝑖 =

∏𝜃
𝑗=1 SM(𝑜.𝐼𝑉𝑖 [ 𝑗 ], 𝑜 𝑗 ) , where 𝑜 𝑗 is from {𝑜1, .., 𝑜𝜃 } ;

9 insert 𝑜𝑖 into 𝑣𝑜𝑇𝑟𝑒𝑒 ;

10 {𝑜1, .., 𝑜𝑐 } = B(𝑜𝑖 .𝐼𝑉 , 𝑜𝑖 .𝑁𝐵) ; request {𝑀,𝑀
′
} from DAP

based on whether �q� is located in skyline scopes of {𝑜1, .., 𝑜𝑐 };
11 for 𝑘 = 1 to 𝑠𝑖𝑧𝑒 (𝑀) do
12 �P𝑘� =

∏𝑐
𝑗=1 SM(𝑀𝑘 [ 𝑗 ], P𝑗 ) ;

13 R = R ∪ �P𝑘�, insert {�D𝑘�, �S𝑘�} into 𝑣𝑜𝑇𝑟𝑒𝑒 ;

14 for 𝑘 = 1 to 𝑠𝑖𝑧𝑒 (𝑀
′
) do

15 �P𝑘� =
∏𝑐

𝑗=1 SM(𝑀𝑘 [ 𝑗 ], P𝑗 ) ;

16 discard P and insert {�V𝑘�, �D𝑘�} into 𝑣𝑜𝑇𝑟𝑒𝑒 ;

17 for 𝑖 = 1 to 𝑠𝑖𝑧𝑒 (IVs
′
) do

18 𝑜𝑖 =
∏𝜃

𝑗=1 SM(𝑜.𝐼𝑉𝑖 [ 𝑗 ], 𝑜 𝑗 ) ; insert {�𝐸𝑖�, �H𝑖�} into 𝑣𝑜𝑇𝑟𝑒𝑒 ;

19 else
20 for each child 𝑜𝑖 of 𝑜 do
21 if SQP(𝑜𝑖 , �q�) then
22 insert 𝑜𝑖 into𝑄 and 𝑣𝑜𝑇𝑟𝑒𝑒 ;

23 else
24 discard 𝑜𝑖 and insert {�𝐸𝑖�, �H𝑖�} into 𝑣𝑜𝑇𝑟𝑒𝑒 ;

25 GOTO Line 2;

homomorphic property. Then, DSP permutes 𝜓
′
= 𝜋1 (�𝛾�) using

random permutation function 𝜋1. Next, DSP sends𝜓
′
to DAP. Upon

receiving the value, DAP decrypts𝜓
′
and obtains𝜓 . Next, if each

𝜓𝑖 is not greater than 0 or not less than 0, then DAP returns result

𝛿 = 1 to DSP, otherwise, DAP returns 𝛿 = 0 to DSP.

As shown in Alg. 1, VO and skyline results are respectively stored

in 𝑣𝑜𝑇𝑟𝑒𝑒 and R. The 𝑣𝑜𝑇𝑟𝑒𝑒 is initialized with the root 𝑠𝑅𝑜𝑜𝑡 of
SVSR-tree. Then, 𝑠𝑅𝑜𝑜𝑡 is added into the queue𝑄 . Subsequently, the

objects in SVSR-tree are traversed with queue 𝑄 . Concretely, DSP
pops up the encrypted object 𝑜 from 𝑄 . If 𝑜 has blind child objects

{𝑜1, .., 𝑜𝜃 }, DSP needs to confuse the order of them. Thereupon,

DSP calculates an encrypted location relationship (i.e., �𝛾� in SQP)

about whether �q� falls in the MBR of 𝑜 𝑗 ∈ {𝑜1, .., 𝑜𝜃 } and sends

it to DAP. Next, by decrypting �𝛾�, DAP can determine whether

�q� is located in the MBR of 𝑜 𝑗 . If so, DAP generates an encrypted

vector 𝐼𝑉𝑖 , where 𝐼𝑉𝑖 [ 𝑗] = �1� and the remaining dimensions of

𝐼𝑉𝑖 are �0�. Note that 𝐼𝑉𝑖 [ 𝑗] = �1� indicates the 𝑗-th blind object

covers �q�. Then, DAP assembles all 𝐼𝑉𝑖 into matrix 𝐼𝑉𝑠 , which is

used to determine blind objects that cover �q�. Similarly, DAP also

generates a matrix 𝐼𝑉𝑠
′
, which is used to determine blind objects

that do not cover �q�. To obtain this blind object, SM is employed

to calculate an encrypted product between 𝐼𝑉𝑖 [ 𝑗] and 𝑜 𝑗 . Since all
other objects except the one covers �q� will be �0�, DSP sums all

encrypted products to obtain 𝑜𝑖 . Thereupon, 𝑜𝑖 is added to 𝑣𝑜𝑇𝑟𝑒𝑒
(Lines 8-9). Similarly, DSP can obtain the blind object that does

not cover �q� and insert {�𝐸𝑖�, �H𝑖�} into 𝑣𝑜𝑇𝑟𝑒𝑒 (Lines 18). It is
noteworthy that the order of blind objects is random due to 𝐼𝑉𝑠

Figure 6: Verifiable object 𝑣𝑜𝑇𝑟𝑒𝑒

and 𝐼𝑉𝑠
′
, so the access path between the blind object and its child

node of two queries is indistinguishable for DSP.

Subsequently, DSP needs to blindly “read" the results and non-

results from {𝑜1, ..., 𝑜𝑐 } (i.e., {P1, ...,P𝑐 } that can be calculated by

B(·) with the input 𝑜𝑖 .𝐼𝑉 from DAP, where 𝑜𝑖 .𝐼𝑉 is obtained ac-

cording to the digestH𝑖 ). Next, DSP provides encrypted location

relationship (i.e., �𝛾� in SQP) about whether �q� falls in the child

object’s skyline scope to DAP. By decrypting �𝛾�, DAP can deter-

mine whether �q� is located in the skyline scope of 𝑜 𝑗 ∈ {𝑜1, ..., 𝑜𝑐 }.
If so, DAP generates an encrypted vector 𝐿𝐼 , where 𝐿𝐼 [ 𝑗] = �1� and
the remaining dimensions of 𝐿𝐼 are �0�. Otherwise, if �q� is not
located in 𝑜 𝑗 ’s skyline scope, DAP generates an encrypted vector

𝑁𝐿𝐼 , where 𝑁𝐿𝐼 [ 𝑗] = �1� and the remaining dimensions of 𝑁𝐿𝐼

are �0�. DAP assembles 𝐿𝐼 and 𝑁𝐿𝐼 into matrices𝑀 and𝑀
′
, respec-

tively. Subsequently, DSP obtains a vector𝑀𝑘 , where𝑀𝑘 [ 𝑗] = �1�
indicates that the 𝑗-th object is a result. To achieve this result, SM is

employed to calculate an encrypted product between𝑀𝑘 [ 𝑗] and P𝑗 .

Since all other objects except the one that is a skyline object will be

�0�, DSP sums all encrypted products to obtain a skyline point �P𝑘�.
Thereupon, �P𝑘� is added to the result R and {�D𝑖�, �S𝑖�} is in-
serted into 𝑣𝑜𝑇𝑟𝑒𝑒 . Similarly, as for the non-result object, �V𝑖� and
�D𝑖� are inserted into 𝑣𝑜𝑇𝑟𝑒𝑒 . If 𝑜 is an index object without blind

child objects, DSP and DAP cooperatively use the SQP algorithm to

examine whether �q� falls in MBRs of 𝑜’s children. When accessing

a child object 𝑜𝑖 of 𝑜 , if its MBR covers �q�, 𝑜𝑖 is added into 𝑄 for

expansion; otherwise, 𝑜𝑖 is discarded. Simultaneously, DSP inserts

{�𝐸𝑖�, �H𝑖�} into 𝑣𝑜𝑇𝑟𝑒𝑒 . The algorithm continues until 𝑄 = ∅.

As illustrated in Figs. 5(a) and 5(b), we take an example to show

how SVLSQ works with node capacity 𝑐 = 3 and �q�. Assume

that �q� is covered by �P7� and �P8�. The root node is visited

first, followed by its children objects 𝑜1 and 𝑜2. Since 𝑜2 covers

�q� while 𝑜1 does not, 𝑜2 is inserted into 𝑄 and 𝑣𝑜𝑇𝑟𝑒𝑒 , while
{�𝐸1�, �H1�} is inserted into 𝑣𝑜𝑇𝑟𝑒𝑒 . Next, 𝑜2 is popped up from 𝑄 .

As 𝑜2 has blind children objects, the DSP calculates his children ob-

jects 𝑜5 and 𝑜6. Therefore, the DAP generates 𝐼𝑉𝑠 = [[�0��1�]T]T

and 𝐼𝑉𝑠
′
= [[�1��0�]T]T. The DSP blindly obtains 𝑜6 that is in-

serted into 𝑣𝑜𝑇𝑟𝑒𝑒 according to 𝐼𝑉𝑠 , while the DSP blindly obtains

𝑜5 whose {�𝐸5�, �H5�} is into 𝑣𝑜𝑇𝑟𝑒𝑒 according to 𝐼𝑉𝑠
′
. After that,

the DSP calculates 𝑜6’s children �P6�, �P7� and �P8�. Since �P7�
and �P8� cover �q� while �P6� does not, the DAP only generates

𝑀 = [[�0��1�[�0�]T, [�0��0�[�1�]T]T and 𝑀
′
= [[�1��0�[�0�]T]T

Thus, �P7� and �P8� are the final skyline results. Moreover, the

DSP inserts {�D7�, �S7�} and {�D8�, �S8�} into 𝑣𝑜𝑇𝑟𝑒𝑒 , whereas
{�V6�, �D6�} is inserted into 𝑣𝑜𝑇𝑟𝑒𝑒 . As shown in Fig. 6, it is a

verifiable object 𝑣𝑜𝑡𝑟𝑒𝑒 , where �H2�, �H5� and �D6� are omitted

to reduce the communication overhead.

Returning R and 𝑣𝑜𝑇𝑟𝑒𝑒 . The return method is the same as

BVLSQ, so we omitted here for space limitation.

Verification Processing. The verification aspects to be exam-

ined by the client are the same as BVLSQ. For the first aspect, it is
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easy to check the objects in R are dominated by each other under

the plaintext. Next, the client examines the second aspect using

the signature of each object in R. Concretely, the client knows

the skyline point (P𝑖 ,D𝑖 ). Therefore, it can calculate the signature

Ŝ𝑖 = 𝑆𝑖𝑔(𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(P𝑖 ) |D𝑖 )). Next, if the calculated signature Ŝ𝑖
matches S𝑖 from 𝑣𝑜𝑇𝑟𝑒𝑒 , it means the skyline point is not tampered,

and vice versa. After that, the client checks whether approximate

polygons of the non-results and MBRs of the pruned index objects

cover q. Note that the approximate polygon will not expose the

content of original data, because its vertices are different from those

of the skyline scope. To maintain platform reputation and revenue,

DSP avoids discarding or tampering with results since the values

of approximate polygons are not known by DSP and this malicious

behavior will be detected with high probability. Simultaneously,

the client compares whether the calculated signature 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) is

consistent with 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) returned from DSP.

Discussion. Since SVSR-tree builds an index by pre-computing

skyline scopes, the query efficiency of SVLSQ is more efficient than

that of BVLSQ (our baseline), and SVLSQ is adept at constructing

VOs for smaller sizes. Furthermore, with a simple data partitioning,

we implement a parallel version (see Section 7.3) for SVLSQwhereas

this method does not work for BVLSQ. However, compared to SVR-

tree, SVSR-tree takes more time to be constructed. Meanwhile, since

SVR-tree uses intervals to describe the extent of each point along all

dimensions, BVLSQ can be well extended to general skyline queries

such as dynamic skyline queries [25] and reverse skyline queries

[10]. On the contrast, SVSR-tree utilizes the nature of location-based

data, which is not suitable for general skyline queries.

6 COMPLEXITY AND SECURITY ANALYSIS

6.1 Complexity Analysis

We exhibit the computational load of SVLSQ as follows. For SQP, it

requires 6𝜅 encryptions and 4𝜅 decryptions to obtain the encrypted

position relationship �𝛾�. It also requires 𝜅 decryptions to obtain

the value𝜓 . Hence, it leads to 6𝜅 encryptions and 5𝜅 decryptions in

total. Then, suppose that 𝑛 denotes the number of data objects and

𝜆𝑠 is the number of skyline results without considering non-spatial

skyline points. Since the height of SVSR-tree is at most
⌈
log𝑐 𝑛

⌉
−

1, SVLSQ approximately requires O(𝜆𝑠𝜅 log𝑐 𝑛) encryptions and
O(𝜆𝑠𝜅 log𝑐 𝑛) decryptions. As for BVLSQ, �𝑚𝑖𝑛𝑑𝑖𝑠𝑡

2 (·)� requires
3𝑑 encryptions and 𝑑 decryptions for one object. Thereupon BVLSQ

approximately requires O(𝑑𝑛) encryptions and O(𝑑𝑛) decryptions.
Clearly, as 𝑛 increases, SVLSQ is more efficient than BVLSQ and

the efficiency gap becomes more pronounced. Only when 𝑛 is small

enough (𝑛 < 1000, 𝑐 = 3, 𝑑 = 4), the efficiency of BVLSQ will be

close to or even better than that of SVLSQ.

For communication complexity, it takes 3 ‖𝑁 ‖ bits to execute SM,

where ‖𝑁 ‖ denotes the bitsize of𝑁 . Hence, it takes 3𝜅 ‖𝑁 ‖+1 bits to

run SQP. Based on the above assumption, it takesO(𝜆𝑠𝜅 log𝑐 𝑛 ‖𝑁 ‖)

bits for SVLSQ. Similarly, it takes O(𝑑𝑛 ‖𝑁 ‖) bits for BVLSQ.

6.2 Security Analysis

First, we give the following formal definition of the leakage collec-

tion L(P, q) = (dim, num).
• Dimension of a point (dim). dim = |P𝑖 |, where P𝑖 ∈ 𝑃 and |𝑥 |

is denoted as the size of 𝑥 .

• Numbers of elements in𝜓 that are greater than 0, less than 0,

and equal to 0 (num). Let𝑋1 (𝜓𝑖 ) =

{
1, 𝜓𝑖 ≥ 0

0, 𝜓𝑖 < 0
,𝑋2 (𝜓𝑖 ) =

{
1, 𝜓𝑖 ≤ 0

0, 𝜓𝑖 > 0
,

𝑋3 (𝜓𝑖 ) =

{
1, 𝜓𝑖 = 0

0, 𝜓𝑖 ≠ 0
. Then, num is an array such that for 1 ≤ 𝑗 ≤ 3,

num[ 𝑗] =
∑
1≤𝑖≤𝜅 𝑋 𝑗 (𝜓𝑖 ).

Then, the security of SVLSQ is formally defined by the standard

simulation-based model that has been proverbially used in secure

computation [9, 22, 23].

Definition 8. (Security) Let 𝜆 be a security parameter and Π
be the SVLSQ protocol. Let S be a simulator and L be the leakage

collection. We define two games RealA and IdealA,S as follows.

• RealA(𝜆): A chooses a dataset P. The game generates key

pairs (𝑠𝑘, 𝑝𝑘) of Paillier. Then it calculates and gives the se-

cure index 𝐼 toA. After that,A outputs a polynomial number

of queries: 𝑄𝑠 = {q1, ..., q𝑞}. Next, the game generates an en-

crypted query 𝜏𝜏𝜏𝑖 = �q𝑖� and gives it to A. Next, A takes 𝐼 as
input to get the encrypted results by running Π. Finally, A
returns 𝑏 ∈ {0, 1} which is output by the game.

• IdealA,S (𝜆): Given L, the index 𝐼∗ is simulated by S. Sub-

sequently, 𝐼∗ is sent to A. Then, A outputs a polynomial

number of queries: 𝑄𝑠 = {q1, ..., q𝑞}. S simulates an en-

crypted query 𝜏𝜏𝜏∗𝑖 for each query q𝑖 ∈ 𝑄𝑠 and sends it to A.

After that, A obtains the encrypted results by running Π.
Finally, A returns 𝑏 ∈ {0, 1} which is output by the game.

Π is L-secure if for all probabilistic polynomial time (PPT) adver-

saries A, there exists a PPT simulator S such that��Pr[RealA(𝜆) = 1]−Pr[IdealA,S (𝜆) = 1]
��≤𝑛𝑒𝑔𝑙 (𝜆),

where 𝑛𝑒𝑔𝑙 (𝜆) denotes a negligible function.

With the above definition, we give the following theorems.

Theorem 1. The SVLSQ protocol is L-secure if 𝑓 and 𝜋1 are

pseudo-random, as well as Paillier is semantically secure.

Proof. We build a polynomial-time simulator S such that for

any probability polynomial time (PPT) adversary A, the outputs of

RealA(𝜆) and IdealA,S (𝜆) are computationally indistinguishable.

Hence, we describe the real view RealA(𝜆) and the simulated view

IdealA,S (𝜆) as follows.
In the game RealA(𝜆), given the inputs 𝐼 and �q𝑖�, the DSP

determines which skyline scopes cover �q𝑖�. Then, the encrypted
points ‘read’ from 𝑁𝐵 blindly are added to the results. Finally, the

DSP outputs the results by the experiment.

In the game IdealA,S (𝜆), given dim and num, S simulates the

input 𝐼∗ and �q∗𝑖 � such that for each object 𝑜∗ ∈ 𝐼∗, |𝑜∗ | = dim

and
∑
1≤𝑖≤𝜅 𝑋 𝑗 (𝜓

∗
𝑖 ) = num[ 𝑗] with 1 ≤ 𝑗 ≤ 3, where 𝜓∗ is the

intermediate result w.r.t. �q∗𝑖 � and 𝑜∗. By doing so, S builds the

simulated input 𝐼∗ and �q∗𝑖 �. Then, it runs the SVLSQ protocol to

output the results by the experiment.

Based on the simulator S, no PPT adversary can distinguish the

output of IdealA,S (𝜆) from that of RealA(𝜆) since the outputs of
them are encrypted by Paillier that is semantically secure. Mean-

while, since 𝑓 and 𝜋1 are pseudo-random, intermediate results in

SVLSQ are obscured and indistinguishable to A. Due to the semi-

blind structure,A cannot track the position of data points based on
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(a) 𝑑∗ = 2, 𝑐 = 3 (b) 𝑛 = 1000, 𝑐 = 3 (c) 𝑛 = 1000, 𝑑∗ = 2

Figure 7: Memory consumption cost

(a) 𝑑∗ = 2, 𝑐 = 3 (b) 𝑛 = 1000, 𝑐 = 3 (c) 𝑛 = 1000, 𝑑∗ = 2

Figure 8: Index construction time

Figure 9: Total time overhead of skyline query (𝑑∗ = 2, 𝑐 = 3)

the access path, which protects the indirect privacy. Since verifica-

tion objects do not contain contents of the original data, the client

only knows the results during the verification procedure. Overall,

A cannot distinguish views in games Real and Ideal. �

Theorem 2. If the signature Ŝ rebuilt from each object in R can

match the signature S from VO, the results of SVLSQ are sound; if the

query q is outside the range of skyline scopes of all non-result objects,

the results of SVLSQ are complete.

Proof. Since 𝑆𝑖𝑔(·) can resist forged data, the soundness of the

results is effectively guaranteed by signature matching. For the

completeness, 𝑆𝑖𝑔(H𝑟𝑜𝑜𝑡 ) guarantees that all non-result objects are

not discarded and not tamperedwith. Therefore, examiningwhether

the skyline scopes of non-result objects cover q guarantees that the

results are complete. These two scenarios are easy to demonstrate

based on VO (details see Verification Processing). Therefore, the

results of SVLSQ are sound and complete. �

7 PERFORMANCE EVALUATION

7.1 Experiment Setup

Our protocols are implemented with Java (JDK 1.7) on a PC (Intel

Core I5-8400 2.8GHz, Windows 10). We also implemented the com-

munication using sockets, so it can be run on two machines without

modification to evaluate the communication overhead. To highlight

the efficiency, we use BVLSQ as a baseline. Moreover, we com-

pare our protocols with another two solutions, namely basic secure

skyline computation (BSSP) and fully secure skyline computation

(FSSP) [24, 25], which are the only two methods for location-based

skyline queries without result verification.

Datasets. We produced correlated (CORR), independent (INDE),

and anti-correlated (ANTI) datasets similar to work [24]2. Further-

more, we adopted the real-world dataset about hotels (HOTE) from

the version of Kaggle3. We extracted the latitude and longitude

attributes as spatial dimensions, and the remaining 5 attributes

such as Hospitality, Facilities, Cleanliness, Value for Money and

Food as non-spatial dimensions.

2All dimensions satisfy the distribution corresponding to this dataset.
3https://www.kaggle.com/PromptCloudHQ/hotels-on-makemytrip

Table 2: Index building on three datasets (𝑛=1000, 𝑑 =2, 𝑐 =3)

Index datasets CORR INDE ANTI

R-tree
𝑠1 (KB) 472.1 470.4 472.8

𝑠2 (ms) 9 7 29

SVR-tree
𝑠1 (MB) 4.46 4.45 4.47

𝑠2 (s) 9.01 8.99 9.03

SVSR-tree

𝑠1 (MB) 4.85 4.79 4.72

𝑠2 (s) 18.27 17.02 14.83

𝑠3 321332 243525 103402

Table 3: Total number of non-spatial dominators on ANTI

𝑑∗(𝑛 = 1000, 𝑐 = 3) 𝑑∗ = 1 𝑑∗ = 2 𝑑∗ = 3 𝑑∗ = 4 𝑑∗ = 5

𝑠3 of SVSR-tree 499500 103402 39889 17876 11915

Parameter Settings. We evaluate the efficiency of the algo-

rithms through varying the number 𝑛 of tuples from 1000 to 11000,

the non-spatial dimension 𝑑∗ of the point from 1 to 5 and node

capacity 𝑐 from 3 to 11. We also fix the key bitsize of Paillier and

noise as 512. Note that, we randomly choose the query points and

report the performance by averaging the values of repeated mea-

surements. Meanwhile, the computation time refers to the total

computation time of DSP and DAP for one query.

7.2 Secure and Verifiable Index Construction

SVR-tree is constructed based on R-tree [12]. Apart from encrypting

data and adding verification information, the DO structures leaf

nodes belonging to the same parent node into a node bucket 𝑁𝐵
that is pointed by a pointer from an object at a higher level, and

construct its corresponding encrypted vector 𝐼𝑉 . As for SVSR-tree,

the DO first calculates 𝐷𝑜𝑚(P𝑗 ) by traversing the whole dataset

P for P𝑖 ∈ P. Then, a Voronoi cell of each object P𝑖 under the set

{P𝑖 ∪ 𝐷𝑜𝑚(P𝑖 )} is calculated using a branch and bound approach

from [3, 13]. Subsequently, SVSR-tree is constructed based on the

idea of SR-tree.

As Table 2 shows, 𝑠1 represents the memory consumption cost

of the index, 𝑠2 represents the construction time of the index, and 𝑠3
represents the total number of non-spatial dominators of all objects.

We observe that for SVR-tree, the impact of data distribution on

index construction is extremely slight. However, constructing SVSR-

tree on CORR (ANTI) takes the most (least) time, and it has the

most (least) memory cost. This is because CORR has the greatest

number (i.e., 𝑠3) of non-spatial dominators, which increases the

cost to construct the scopes. We also observe that the memory

cost and construction time of our indexes are more than those of

the traditional R-tree, which are mainly sacrificed for security and

verification reasons. However, this is only a one-time cost.

Next, we choose the ANTI dataset to evaluate the impact of other

parameters on memory consumption cost. From Figs. 7(a) and 7(c),

1831



FSSP BSSP BVLSQ SVLSQ

1 3 5 7 9 11
number of tuples n ( 103)

100

102

104

tim
e(

s)

(a) CORR

1 3 5 7 9 11
number of tuples n ( 103)

100

102

104

tim
e(

s)

(b) INDE

1 3 5 7 9 11
number of tuples n ( 103)

100

102

104

tim
e(

s)

(c) ANTI

Figure 10: Query effect of 𝑛 (𝑑∗ = 2 and 𝑐 = 3)
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Figure 11: Query effect of 𝑑∗ (𝑛 = 1000 and 𝑐 = 3)
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Figure 12: Query effect of 𝑐 (𝑛 = 1000 and 𝑑∗ = 2)
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Figure 13: Query effect of 𝑑∗ (or 𝑐) on HOTE
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Figure 14: Serial vs. multi-threading (𝑛 = 100000, 𝑐 = 3)

SVSR-tree requires more memory than SVR-tree. This is because

SVSR-tree stores additional information, such as skyline scopes

and approximate polygons. Meanwhile, the memory cost of two

secure indexes increases linearly with 𝑛 increasing. However, as 𝑐
increases, their memory cost decreases sub-linearly in Fig. 7(c). This

is because as 𝑐 continues to increase, both the height of the tree and

the number of nodes will decrease. Along with varying 𝑑∗, Fig. 7(b)
shows that when 𝑑∗ ≥ 3, SVSR-tree requires less memory cost than

SVR-tree. This is mainly because SVSR-tree is built based on two

spatial dimensions. Furthermore, as Table 3 shows, the memory

cost of SVSR-tree decreases with 𝑑∗ increasing, this is because the
number of non-spatial dominators is gradually becomes small (thus

constructing the scope is cheaper). As expected , we draw similar

conclusions on construction time in Fig. 8.

7.3 Secure Query Processing

Efficiency of Communication. To reflect the real communication

overhead, DSP and DAP were run on different machines. Fig. 9

shows the total time cost of computation and communication w.r.t.

SVLSQ and BVLSQ under varying 𝑛 on CORR. We observe that the

communication time is slightly more than half of the total time.

Efficiency of Computation. Along with respectively varying

𝑛, 𝑑∗ and 𝑐 , we evaluate the query efficiency of our protocols (in-

cluding VO construction time) by comparing with BSSP and FSSP.

Fig. 10 illustrates the computation time cost (s) on different

datasets by varying 𝑛. Our BVLSQ and SVLSQ are more secure

than BSSP. Moreover, similar to the FSSP protocol, our protocols

can protect indirect privacy. However, our protocols are more ef-

ficient than FSSP. This is because BVLSQ emloys the SVR-tree

index, which reduces unnecessary computational overhead by se-

cure pruning operations. Furthermore, SVLSQ is significantly more

efficient than BVLSQ, the reason is that the computational overhead

is reduced further by pre-computing datasets. Meanwhile, we also

observe that as 𝑛 increases, SVLSQ is very friendly to 𝑛, which is

consistent with the computational complexity analysis.

Fig. 11 illustrates the computation time cost (s) on different

datasets by varying 𝑑∗. We observe that BVLSQ is more efficient

than BSSP. For SVLSQ, it is more efficient than BSSP and BVLSQ.

Meanwhile, when 𝑑∗ > 5, the efficiency gap between SVLSQ and

BVLSQ becomes wider. This is because SVSR-tree of SVLSQ is only

constructed on two-dimensional spatial attributes. From Fig. 13(a),

we also observe that HOTE has a higher computation time cost

than our protocols running on the CORR dataset. This is because

HOTE shows weaker correlated relationships than CORR.

Fig. 12 illustrates the computation time cost (s) on different

datasets by varying 𝑐 . According to our observation, the computa-

tional time overhead increases with the number of node capacity 𝑐 .
The reason is that as the node capacity increases, the pruning effect

of two tree indexes will become worse. Meanwhile, the efficiency

of BVLSQ is also better than that of BSSP when 𝑐 ≤ 7, and SVLSQ

has better query performance than other protocols. From Fig. 13(b),

we draw a similar conclusion on the dataset LOCA.

Scalability. We also evaluate SVLSQ on larger datasets (𝑛 =
100000, up to 5M). Meanwhile, to further improve the performance,

we implement a multi-threading version using the data partitioning

on server (Intel Xeon E5-2670 2.6GHz, 16 threads). Specifically, we

pre-compute non-dominators of each object on the entire dataset P.

Then, we divide P into 10 sub-datasets to respectively build SVSR-

trees. Each SVSR-tree is assigned to an idle thread whose results are

skyline points without further computation. As shown in Fig. 14(a),

as 𝜒 increases, the computation time cost drastically decreases with

𝑛 = 100000, 𝑐 = 3. Compared to BBS [30] that is IO optimal for

skyline queries (without encryption) where the data is indexed by

an R-tree, our serial version is only an order of magnitude slower

(due to ciphertext calculation) when 𝑑∗ = 5. Moreover, Fig. 14(b)
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Figure 15: Verification effect of 𝑛 (𝑑∗ = 2 and 𝑐 = 3)
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Figure 16: Verification effect of 𝑑∗ (𝑛 = 1000 and 𝑐 = 3)
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Figure 17: Verification effect of 𝑐 (𝑛 = 1000 and 𝑑∗ = 2)

indicates the efficiency of our multi-threading version gradually

approaches BBS with an increasing number of threads 𝜒 .

7.4 Result Verification

In Fig. 15, SVLSQ requires less memory cost for 𝑣𝑜𝑇𝑟𝑒𝑒 than BVLSQ
since it provides less information for result verification. That is,

SVLSQ does not involve non-spatial skyline points and its 𝑣𝑜𝑇𝑟𝑒𝑒
only includes 2-dimensional verification objects. For 𝑣𝑜𝑇𝑟𝑒𝑒 of

BVLSQ, it includes 𝑑-dimensional verification objects. Meanwhile,

SVLSQ takes less verification time than BVLSQ. As expected, the

memory cost of 𝑣𝑜𝑇𝑟𝑒𝑒 in both of them increases with the number

of 𝑛, and their verification time also increases roughly with the

increase of 𝑛. From Fig. 16, we observe that the verification time of

both BVLSQ and SVLSQ increases significantly, almost exponential,

when 𝑑∗ grows. The memory cost of 𝑣𝑜𝑇𝑟𝑒𝑒 in BVLSQ increases

approximately linearly with the number of dimensions 𝑑∗. Incon-
sistent with the growth trend of memory cost of SVSR-tree, 𝑣𝑜𝑇𝑟𝑒𝑒
memory overhead of SVLSQ increases roughly with the number

of 𝑑∗. The reason is that as 𝑑∗ increases, more objects covering the

query point are inserted into 𝑣𝑜𝑇𝑟𝑒𝑒 , which takes up more memory

cost. From Tabs. 4 and 5 (𝑠4 and 𝑠5 separately represent verification

time and memory cost for 𝑣𝑜𝑇𝑟𝑒𝑒), we observe similar conclusions

on the real-world dataset LOCA. As illustrated in Fig. 17, the 𝑣𝑜𝑇𝑟𝑒𝑒
memory overhead and verification time of two protocols become

roughly larger with the increase of 𝑐 , which is reasonable since

𝑣𝑜𝑇𝑟𝑒𝑒 has more leaf nodes composed of dominated objects.

8 RELATEDWORK

The skyline query algorithm named block nested loop first proposed

by Börzsönyi et al. [2]. After that, a number of approaches have

been demonstrated, such as the nearest neighbor (NN) [19], the

sort filter skyline [8], the branch-and-bound skyline (BBS) [30], etc.

Table 4: Verification time/memory cost on HOTE (𝑑∗=2)

𝑛(𝑐 = 3) 1000 1500 2000 2500 3000

BVLSQ, 𝑠4(ms)/𝑠5(MB) 8/0.26 10/0.31 11/0.35 14/0.43 16/0.47

SVLSQ, 𝑠4(ms)/𝑠5(MB) 2/0.20 4/0.29 5/0.30 7/0.36 6/0.38

Table 5: Verification time/memory cost on HOTE (𝑛=1000)

𝑑∗(𝑐 = 3) 1 2 3 4 5

BVLSQ, 𝑠4(ms)/𝑠5(MB) 6/0.13 8/0.26 26/0.45 45/0.63 56/0.73

SVLSQ, 𝑠4(ms)/𝑠5(MB) 2/ 0.09 2/0.20 13/ 0.29 24/ 0.38 27/ 0.41

After that, a number of works begin to extend the skyline query, and

integrate with location-based services. Considering the interaction

of the spatial points with their dominance relationship, Huang et al.

[16] proposed an efficient location-based skyline query protocol for

moving clients. Zheng et al. [43] focused on the query processing

and result verification of location-based skyline queries over static

objects. Sharifzadeh et al. [33] exploited a variation of the spatial

skyline queries issue from a geometric perspective. Lo et al. [28]

focused on reducing communication cost and presented a method

for authenticating spatial skyline queries. However, the privacy is

generally understudied.

Considering data security, some secure skyline query protocols

have recently proposed. Liu et al. [26] proposed a secure skyline

query solution on multiple encrypted databases. Hua et al. [15]

developed a secure skyline computation method to implement an

online medical diagnosis. Then, Hua et al. [14] continued to study

secure skyline queries on the data encrypted by Paillier cryptosys-

tem and developed a medical primary diagnosis framework. Chen et

al. [5] studies the problem about how to verify skyline query results,

but this method exposed the data privacy. Liu et al. [25] proposed

a fully secure skyline query protocol (FSSP) over encrypted data,

which is not efficient because of expensive calculation. Wang at

al. [36] utilized the ORE cryptography to devise a dynamic skyline

computation framework. Zeighami at al. [42] focused on a secure

and efficient approach to calculate dynamic skyline according to

result materialization. Neither of these two works [36, 42] enables

the distance calculation under ciphertext. Our solutions are inspired

by these works, but address the problem of secure and verifiable

location-based skyline queries.

9 CONCLUSION

We focus on the issue of secure and verifiable location-based sky-

line queries with the secure authenticated data structure. To pre-

serve the privacy of datasets, queries, skyline results and access

patterns, we have presented two solutions for skyline queries and

VO construction: one is BVLSQ based on SVR-tree and another

one is SVLSQ based on SVSR-tree. As is extensively illustrated in

experiments, SVLSQ significantly outperforms existing methods.

However, as it needs more time to construct the ADS, this solution

is more functional for static datasets. In the future research, we

plan to investigate verification issues about secure skyline queries

with frequent data updates.
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