Facilitating Database Tuning with Hyper-Parameter
Optimization: A Comprehensive Experimental Evaluation

Xinyi Zhangﬁ§*, Zhuo Changﬁ*, Yang Lif, Hong Wu?, Jian Tan?, Feifei Li*, Bin Cui'l
"Key Laboratory of High Confidence Software Technologies (MOE), School of CS, Peking University *Database and
Storage Laboratory, Damo Academy, Alibaba Group ¥Center for Data Science, Peking University TInstitute of
Computational Social Science, Peking University (Qingdao)
+{zhang_xinyi, z.chang, liyang.cs, bin.cui}@pku.edu.cn i{hong.wu, j.tan, lifeifei}@alibaba-inc.com

ABSTRACT

Recently, using automatic configuration tuning to improve the per-
formance of modern database management systems (DBMSs) has
attracted increasing interest from the database community. This is
embodied with a number of systems featuring advanced tuning ca-
pabilities being developed. However, it remains a challenge to select
the best solution for database configuration tuning, considering the
large body of algorithm choices. In addition, beyond the applica-
tions on database systems, we could find more potential algorithms
designed for configuration tuning. To this end, this paper provides a
comprehensive evaluation of configuration tuning techniques from
a broader perspective, hoping to better benefit the database com-
munity. In particular, we summarize three key modules of database
configuration tuning systems and conduct extensive ablation stud-
ies using various challenging cases. Our evaluation demonstrates
that the hyper-parameter optimization algorithms can be borrowed
to further enhance the database configuration tuning. Moreover, we
identify the best algorithm choices for different modules. Beyond
the comprehensive evaluations, we offer an efficient and unified
database configuration tuning benchmark via surrogates that re-
duces the evaluation cost to a minimum, allowing for extensive
runs and analysis of new techniques.

PVLDB Reference Format:

Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, Bin Cui.
Facilitating Database Tuning with Hyper-Parameter Optimization: A
Comprehensive Experimental Evaluation . PVLDB, 15(9): 1808 - 1821, 2022.
doi:10.14778/3538598.3538604

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/PKU-DAIR/KnobsTuningEA.

1 INTRODUCTION

Modern database management systems (DBMSs) have hundreds of
configuration knobs that determine their runtime behaviors [16].
Setting the appropriate values for these configuration knobs is cru-
cial to pursue the high throughput and low latency of a DBMS.

*Xinyi Zhang and Zhuo Chang contribute equally to this paper.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538604

1808

Knob . He k iTuned
omob [sa J[tasso) pBA) SHAP eic !
i | uneful
y OtterTt
Configuration {0\ " N - . e OtterTune
Optirisation . SMAC il Vanll:a E:o l DDPG\) TPE fetc. | el

e RESTUNE

Knowledge

Transferring CDBTune

v 'Y N
[None][Workload Mapping][RGPE][FineTune]v etc. |

Figure 1: Algorithm Choices of Configuration Tuning Sys-
tems: Black boxes denote the algorithms adopted by existing
database tuning systems (indicated by colored paths), and
grey boxes denote the algorithms in the HPO field.

Given a target workload, configuration tuning aims to find config-
urations that optimize the database performance. This problem is
proven to be NP-hard [79]. To find a promising configuration for
the target workload, database administrators (DBAs) put signifi-
cant effort into tuning the configurations. Unfortunately, manual
tuning struggles to handle different workloads and hardware en-
vironments, especially in the cloud environment [67]. Therefore,
automatic configuration tuning attracts intensive interests in both
academia and industry [3, 17, 42, 58, 74, 75, 77, 93, 99].

Recently, there has been an active research area on automatically
tuning database configurations using Machine Learning (ML) tech-
niques [4, 19, 25, 30, 46, 50, 58, 96, 98]. We summarize three key mod-
ules in the existing tuning systems: knob selection that prunes the
configuration space, configuration optimization that samples promis-
ing configurations over the pruned space, and knowledge transfer
that further speeds up the tuning process via historical data. Based
on the techniques used in configuration optimization module, these
systems can be categorized into two major types: Bayesian Opti-
mization (BO) based [4, 19, 25, 98] and Reinforcement Learning (RL)
based [50, 96] systems. Owing to these efforts, modern database sys-
tems are well-equipped with powerful algorithms for configuration
tuning. Examples includes Lasso algorithm in OtterTune [4], Sen-
sitivity Analysis (SA) in Tuneful [25] for automatic knob selection;
Bayesian Optimization (e.g., iTuned [19], ResTune [98]), Reinforce-
ment Learning (e.g., CDBTune [96], Qtune [50]) for configuration
optimization; and workload mapping in OtterTune, RGPE [27] in
ResTune [98] for knowledge transfer. The various algorithms in each
module of the configuration tuning systems enrich the solutions
for database optimization and demonstrate superior performance
and efficiency compared to manual tuning.

1.1 Motivation

Whilst a large body of methods have been proposed, a comprehen-
sive evaluation is still missing. Existing evaluations [4, 19, 50, 96, 98]

https://doi.org/10.14778/3538598.3538604
https://github.com/PKU-DAIR/KnobsTuningEA
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538604
https://www.acm.org/publications/policies/artifact-review-and-badging-current

compare tuning systems from a macro perspective, lacking analysis
of algorithm components in various scenarios. This motivates us to
conduct a comprehensive comparative analysis and experimental
evaluation of database tuning approaches from a micro perspective.
We now discuss the issues of the existing work.

M1: Missing comparative evaluations of intra-algorithms in
different modules. Emerging database tuning systems are charac-
terized by new intra-algorithms (i.e., algorithms in each module)
such as OtterTune with Lasso-based knob selection and workload
mapping, CDBTune with DDPG optimizer, ResTune with RGPE
transfer framework. Figure 1 plots the three key modules and the
corresponding intra-algorithms we extracted from the designs of
these systems. When designing a database tuning system, we can
construct many possible “paths” across the intra-algorithm choices
among the three modules, even not limited to existing designs. For
example, each knob selection algorithm determines a unique con-
figuration space and can be “linked” to any of the configuration
optimization algorithms. Given so many possible combinations, it
remains unclear to identify the best “path” for database configura-
tion tuning in practice. Existing researches focus on the evaluation
of the entire tuning systems [4, 25, 96] or limited intra-algorithms
in some of the modules [5], failing to reveal which intra-algorithm
contributes to the overall success. For example, the choice of intra-
algorithms in knob selection module is often overlooked, yet impor-
tant, since different algorithms can lead to distinct configuration
spaces, affecting later optimization. To this end, it is essential to
conduct a thorough evaluation with system breakdown and fine-
grained intra-algorithm comparisons.

M2: Absence of analysis for high-dimensional and hetero-
geneous scenarios. There are two challenging scenarios for
configuration optimization: high dimensionality and heterogene-
ity of configuration space. DBMS has hundreds of configuration
knobs that could be continuous (e.g., innodb_buffer_pool_size and
tmp_table_size) or categorical (e.g., innodb_stats_method and inn-
odb_flush_neighbors). We refer to the scenario with knobs of various
types as heterogeneity. And, the categorical knobs vary fundamen-
tally from the continuous ones in differentiability and continuity.
For instance, existing BO-based methods tend to yield the best re-
sults for low-dimensional and continuous spaces. However, as for
the high-dimensional space, they suffer from the over-exploration
issue [73]. In addition, vanilla BO methods assume a natural order-
ing of input value [86], thus struggling to model the heterogeneous
space. Consequently, when analyzing the optimizers, it is essential
to compare their performance under the two scenarios.

M3: Limited solution comparison without a broader view
beyond database community. The database configuration tuning
is formulated as a black-box optimization problem over configura-
tion space. Thanks to the efforts of recent studies, today’s database
practitioners are well-equipped with many techniques of config-
uration tuning. However, when we look from a broader view, we
can find plenty of toolkits and algorithms designed for the black-
box optimization, especially hyper-parameter optimization (HPO)
approaches (7, 32, 52, 62, 87, 94]. HPO aims to find the optimal
hyper-parameter configurations of a machine learning algorithm
as rapidly as possible to minimize the corresponding loss function.
Database configuration tuning shares a similar spirit with HPO

1809

since they both optimize a black-box objective function with expen-
sive function evaluations. We notice that recent advances in HPO
field have shown promising improvement in high-dimensional and
heterogeneous configuration spaces [23, 37, 40, 89, 91]. Despite
their success, such opportunities to further facilitate database con-
figuration tuning have not been investigated in the literature.
M4: Lack of cheap-to-evaluate and unified database tuning
benchmarks. Evaluating new algorithms in database tuning sys-
tems can be costly, time-consuming, and hard to interpret. It re-
quires DBMS copies, computing resources, and the infrastructure
to replay workloads and the tools to collect performance metrics.
It takes dozens of hours to conduct a single run of optimization
with ceaseless computing resources. Moreover, obtaining a sound
evaluation of more baselines takes several-fold times longer with
expensive computing costs. In addition, the database performance
can fluctuate across instances of the same type even though the
configuration and workload are the same [5]. Therefore, we cannot
run the optimizers in parallel to reduce the evaluation time, making
the evaluation more troublesome. These problems pose a consider-
able barrier to the solid evaluation of database tuning systems. An
efficient and unified tuning benchmark is needed.

1.2 Our Contributions

Driven by the aforementioned issues, we provide comprehensive
analysis and experimental evaluation of database configuration
tuning approaches. Our contributions are summarized as follows:
C1. We present a unified pipeline with three key modules
and evaluate the fine-grained intra-algorithms. For M1, we
break down all the database tuning systems into three key modules
and evaluate the corresponding intra-algorithms. We evaluate and
analyze each module’s intra-algorithms to answer the motivating
questions: (1) How to determine tuning knobs? (2) Which optimizer
is the winner? (3) Can we transfer knowledge to speed up the target
tuning task? With our in-depth analysis, we identify design trade-
offs and potential research opportunities. We discuss the best “paths”
across the three modules in various scenarios and present all-way
guidance for configuration tuning in practice.

C2. We construct extensive scenarios to benchmark multi-
ple optimizers. For M2, we construct specific evaluations and
carry out comparative analysis for the two challenges. For high
dimensionality, we conduct evaluations of the optimizers over con-
figuration spaces of three sizes: small, medium, and large. We specif-
ically analyze the different performances when optimizing over
small/medium and large configuration spaces. For heterogeneity, we
construct a comparison experiment with continuous and hetero-
geneous configuration spaces to validate the optimizers’ support
for heterogeneity. Such evaluation setting assists us in better under-
standing the pros and cons of existing database optimizers.

C3. Think out of the box: we apply and evaluate advanced
HPO techniques in database tuning problems. For M3, we
survey existing solutions for black-box optimization. We find that
many recent approaches in the HPO field could be borrowed to
alleviate the challenges in database tuning. Therefore, besides the
configuration tuning techniques proposed in the database com-
munity, we also evaluate other advanced approaches in the HPO
field under the same database tuning setting. Through evaluations,

Table 1: Taxonomy and Brief Description of Existing Database Configuration Tuning Systems.

Category | Configuration Tuning System Application Design Highlight
iTuned [19] Performance tuning for DBMS First adopting BO
OtterTune [4] Performance tuning for DBMS Incremental knob selection, workload mapping
BO-based Tuneful [25] Performance tuning for analytics engines Incremental knob selection via Sensitivity Analysis
ResTune [98] Resourse-oriented tuning for DBMS Adopting RGPE to transfer historical knowledge
RelM [46] Memory allocation for analytics engines Combining white-box knowledge
CGPTuner [15] Performance tuning for IT systems Adopting Contextual BO to adapt to workload variation
RL-based CDBTune [96] Performance tuning for DBMS First adopting DDPG
QTune [50] Performance tuning for DBMS Supporting three tuning granularities

,,,,,,,
—_—

i Database Instance Tuning Server Data Flow sweeee » Control Flow

i ﬁ 1 (2) Observation
i (1)iReplay
] WorkloadI s

)

]

Knob
Selection

i@ Configuration |¢onfig
Space

Controller

Optimization Knowledge
;) speed Transferring
(3)Knobs l— up

]) (3 Knobs

(2) Observ.

Database

Figure 2: Architecture of Configuration Tuning System.

we have that the best knob selection approach achieves 38.02%
average performance improvement, and the best optimization ap-
proach achieves 21.17% average performance improvement as well
as significant speedup compared with existing methods. We demon-
strate that database practitioners can borrow strength from the
HPO approaches in an out-of-the-box manner.

C4. We define an efficient database configuration tuning
benchmark via surrogates. We summarize the difficulties dis-
cussed in M4 lie in the cost and fluctuation of performance evalu-
ations under configurations. We propose benchmarking database
configuration tuning via a regression surrogate that approximates
future evaluations through cheap and stable model predictions [22].
Specifically, we train regression models on (configuration, perfor-
mance) pairs collected in an expensive offline manner and cheaply
evaluate future configurations using the model’s performance pre-
dictions instead of replying workloads. The tuning benchmark of-
fers optimization scenarios that share the same configuration spaces
and feature similar response surfaces with real-world configuration
tuning problems. Significantly, it reduces the evaluation cost to a
minimum and achieves 150~311 X overall speedup. The benchmark
is publicly available to facilitate future research. With the help of
the benchmark, researchers can skip time-consuming workload
replay, conduct algorithm analysis and comparison efficiently, and
test new algorithms with few costs.

The rest of the paper is organized as follows: Section 2 intro-
duces the preliminaries of this paper, demonstrating the taxonomy
and workflow of existing database tuning systems as well as the
background knowledge for HPO. Next, we present a survey on algo-
rithms for the three modules in Section 3 and describe the general
setup in Section 4. Then, the experimental analysis are presented
in Sections 5-7, followed by the the database tuning benchmark in
Section 8. We summarize the lessons learned and research opportu-
nities in Section 9. Finally, we conclude the paper.

2 PRELIMINARIES

We first formalize the database configuration tuning problem. Then
we review the architecture and workflow of database configuration
tuning systems and present the taxonomy and description about
the existing systems. Finally, we introduce the background of hyper-
parameter optimization.

2.1 Problem Statement

Consider a database system having configuration knobs 61, . .., O,
we define its configuration space @ = ©1 X -+ X Oy, where
041, ...,0, denote their respective domains. A configuration knob
0 can be continuous or categorical. We denote the database perfor-
mance metric as f which can be any chosen metric to be optimized,
such as throughput, 99%th percentile latency, etc. Given a workload
and a specific configuration 0, the corresponding performance f(6)
can be observed after evaluating it in the database. We denote the
historical observations as Hy = {(6;, yi)}’i. Assuming that the ob-
jective is a maximization problem, database configuration tuning
aims to find a configuration 6* € ©, where

0" = argmax f(0). (1)
6cO

2.2 System Overview and Workflow

The database configuration tuning systems share a typical architec-
ture as shown in Figure 2. The left part shows the target DBMS and
the replayed workload. The right part represents the tuning server
deployed in the backend tuning cluster. The tuning server main-
tains a repository of historical observations from tuning tasks. The
controller monitors the states of the target DMBS and transfers the
data between the DBMS side and the tuning server side. It conducts
stress testing to the target DBMS through standard workload test-
ing tools (e.g., OLTP-Bench [18]) or workload runner that executes
the current user’s real workload [76]. There are three main modules
in the tuning system: (1) knob selection, (2) configuration optimiza-
tion, (3) knowledge transfer. The knob selection module prunes the
configuration space by identifying important knobs. The pruned
configuration space is passed to the optimizer, which suggests a
promising configuration over the pruned space at each iteration.
Furthermore, the knowledge transfer module speeds up the current
tuning task by borrowing strength from past similar tasks stored
in the data repository or fine-tuning the optimizer’s model.

The configuration optimization module functions iteratively, as
shown in the black arrows: (1) The controller replays the workload
to conduct stress testing. (2) After the stress testing finishes, the per-
formance statistics are uploaded to the data repository, and is used

1810

for updating the model in the configuration optimizer. Optionally,
the knowledge transfer module can speed up the optimization with
historical observations. (3) The optimizer generates a promising
configuration over the pruned configuration space, and the config-
uration is applied to the target DBMS through the controller. The
above procedures repeat until the model of the optimizer converges
or stop conditions are reached (e.g., budget limits).

2.3 Taxonomy

Table 1 presents a taxonomy of existing configuration tuning sys-
tems with ML-based techniques. We classify the systems into two
classes based on the algorithms of their optimizers: (1) BO-based
systems and (2) RL-based systems.

2.3.1 BO-based. The existing BO-based systems adopt BO to
model the relationship between configurations and database per-
formance. They follow BO framework to search for an optimal
DBMS configuration: (1) fitting probabilistic surrogate models and
(2) choosing the next configuration to evaluate by maximizing ac-
quisition function.

iTuned [19] first adopts vanilla BO models to search for a well-
performing configuration. It uses a stochastic sampling technique —
Latin Hypercube Sampling [63] for initialization and does not use
the observations collected from previous tuning sessions to speed
up the target tuning task.

OtterTune [4] selects the most impactful knobs with Lasso algo-
rithm, and increases the size of configuration space incrementally.
It proposes to speed up the target tuning by a transfer framework
via workload mapping. Concretely, it re-uses the historical obser-
vations of a prior workload by mapping the target workload based
on the measurements of internal metrics in DBMS.

Tuneful [25] proposes a tuning cost amortization model and
demonstrates its advantage when tuning the recurrent workloads.
It conducts incremental knob selection via Gini score as an impor-
tance measurement to gradually decrease the configuration space.
Similar to OtterTune, it also adopts the workload mapping frame-
work to transfer knowledge across tuning tasks.

ResTune [98] defines a resource-oriented tuning problem and
adopts a constrained Bayesian optimization solver. It uses an ensem-
ble framework (i.e., RGPE) to combine workload encoders across
tuning tasks to transfer historical knowledge.

RelM [46] is designed to configure the memory allocation for
distributed analytic engines, e.g., Spark. It builds a white-box model
of memory allocation to speed up Bayesian Optimization.
CGPTuner [15] proposes to tune the configuration of an IT system,
such as the Java Virtual Machine (JVM) or the Operating System
(OS)) to unlock the full performance potential of a DBMS. It adopts
Contextual BO [45] to adapt to workload variation, which requires
an external workload characterization module.

2.3.2 RL-based. RL-based systems adopt Deep Deterministic Pol-
icy Gradient (DDPG), which is a policy-based model-free reinforce-
ment learning agent. It treats knob tuning as a trial-and-error pro-
cedure to trade-off between exploring unexplored space and ex-
ploiting existing knowledge.

CDBTune [96] first adopts DDPG algorithm to tune the database.
Its tuning agent inputs internal metrics of the DBMS and outputs

1811

Table 2: Importance Measurements in Knob Selection.

Measure Category Brief Description
Variance Based on coefficient of linear regression,
Lasso [84] . e
based effective for when existing irrelevant features.
Gini Variance Based on the times a feature is used in tree splits,
score [65] based successful in high-dimensional feature selection.
Variance Decomposing the variance of the target function,
fAl A
NOVA [38] based commonly used in the HPO field.
Ablation | Tunability | Comparing feature difference between configurations,
analysis[13] based straightforward and intuitive.
Tunability| Decomposing the performance change additively,
SHAP [56] 5 .))
based |solid theoretical foundation derived from game theory.

proper configuration by modeling the tuning process as a Markov
Decision Process (MDP) [9].

QTune [50] supports three tuning granularities, including
workload-level tuning, query-level tuning, and cluster-level tuning.
It embeds workload characteristics to predict the internal metrics
for query-level tuning, and clusters the queries based on their “best”
knob values for cluster-level tuning.

Scope Illustration. To make our evaluation focused yet compre-
hensive, we employ some necessary constraints. We focus on eval-
uating the configuration tuning techniques at the workload level
since query-lever or cluster-lever tuning are only available on
QTune. In this paper, we concentrate on performance tuning in
DBMS. As for the systems targeting the other applications (i.e., per-
formance tuning for analytic engines, resource-oriented tuning), we
implement their core techniques (e.g., RGPE transfer framework)
and evaluate them in a unified setting.

2.4 Hyper-Parameter Optimization

HPO aims to find the hyper-parameter configurations A* of a given
algorithm A’ with the best performance on the validation set [31]:
A* = argmin L(A%, 1). (2)
AeA;
HPO is known as black-box optimization since nothing is known
about the loss function besides its function evaluations. BO has
been successfully applied to solve the HPO problem [8, 60, 90]. The
main idea of BO is to use a probabilistic surrogate model to describe
the relationship between a hyper-parameter configuration and its
performance (e.g., validation error), and then utilize this surrogate
to guide the configuration search [72]. It is common to use Gaussian
processes (GP) as surrogates [61, 76] and SMAC [37] and TPE [10]
are two other well-established methods.

3 METHODOLOGIES

In this section, we survey the methodologies for the three com-
ponents, respectively. We not only cover the techniques used in
existing configuration tuning systems for DBMS but also discuss
the representative approaches from the HPO field.

3.1 Knob Selection

The knob selection module identifies and selects important knobs to
tune. Although the database system has hundreds of knobs, not all
of them significantly impact database performance [82]. Selecting
important knobs can prune the configuration space and further
accelerate configuration optimization.

To conduct knob selection, we first need to collect a set of obser-
vations under different configurations. Given the observations, we
adopt an algorithm to rank the knobs in terms of their importance.
(We refer to the ranking algorithm as “importance measurement” to
distinguish it from the other techniques.) Finally, the configuration
space is determined by selecting the top-k knobs according to the
importance rank. There are various choices for importance measure-
ments, leading to distinct configuration spaces and affecting later
optimization. They can be classified into two categories as shown
in Table 2: variance-based measurements and tunability-based mea-
surements [92]. Variance-based measurement selects the knobs that
have the largest impact on the database performance. It has been
adopted by existing tuning systems for DBMS. Tunability-based
measurement [69] quantifies the tunability of a knob, measuring
the performance gain that can be achieved by tuning the knob from
its default value. It has been applied successfully to determine the
importance of hyper-parameters of ML algorithms, especially when
given a well-performing default configuration [92].

3.1.1 Variance-based Measurements. We introduce three variance-
based measurements due to their widely-used applications and
representativeness, including Lasso [84] adopted in OtterTune, Gini
score [65] adopted in Tuneful, and functional ANOVA [38], a state-
of-the-art importance measurements from the HPO domain.
Lasso [84] uses the coeflicient of linear regression to assess the
importance of knobs. It penalizes the L1-norm of the coefficients and
forces the coefficients of redundant knobs to be zero. The L1-norm
penalization makes Lasso effective when there are many irrelevant
knobs in the training samples [20]. However, Lasso assumes the
linearity of the knob space [44] and is not able to capture the non-
linear dependencies from knobs to the performance metric.

Gini Score [65] is derived from tree-based models, like random
forest model [80]. The Gini score of each knob is defined as the
number of times the given knob is used in a tree split across all the
trees since important knobs discriminate the larger number of sam-
ples and are used more frequently in tree splits. Gini score has been
successfully applied to high-dimensional feature selection [64].
fANOVA [38] (i.e., Functional analysis of variance) measures the
importance of knobs by analyzing how much each knob contributes
to the variance of the target function across the configuration
space. Based on a regression model (e.g., random forest), functional
ANOVA decomposes the target function into additive components
that only depend on subsets of its inputs. The importance of each
knob is quantified by the fraction of variance it explains. Functional
ANOVA is commonly used in the HPO domian due to its solid
theoretical foundation [35, 57, 85].

3.1.2 Tunability-based Measurements. While Variance-based mea-

surements are interested in the global effect of a knob, tunability-
based measurements focus on “good” regions of the space which
are better than the default configuration. It can be used directly to
determine the necessity of tuning a knob from the given default
value. We introduce two typical local algorithms that can measure
the tunability — ablation analysis [13] and SHAP [56].

Ablation Analysis [24] selects the knob whose change contributes
the most to improve the performance of configurations. It identifies
the difference between configurations by modifying each knob

1812

Table 3: Algorithms for Optimizers. v means the optimizer
has specific design for the case in the column and — means
the optimizer does not have such design.

Algorithm
Vanilla BO
One-Hot BO
Mixed-Kernel BO [41]
SMAC [37]

TPE [10]
TurBO [23]
DDPG [55]

GA [49]

High-dimensionality | Heterogeneity

AN

ANENANAN

NN

<

iteratively from its default value to the value of well-performing
configurations and evaluating the performance change [24]. For
speedup, the evaluations are replaced by cheap predictions obtained
from surrogates, e.g., random forest. Given a set of observations, we
fit a surrogate and conduct ablation analysis between the default
configuration and the better ones.

SHAP [56] (i.e., SHapley Additive exPlanations) is a unified frame-
work to interpret the performance change derived from classic
Shapley value estimation [78] in cooperative game theory [36].
The performance change is decomposed additively between knobs.
SHAP computes each knob’s contribution (i.e., SHAP value) for
pushing the default performance to the target one. Given a set of
observations, each knob’s tunability is calculated by averaging its
positive SHAP value (assuming a maximization problem).

3.2 Configuration Optimization

In the configuration optimization module, an optimizer suggests
promising configurations and updates its model based on the evalu-
ation results iteratively. We introduce six state-of-the-art optimizers
used by the database tuning systems or from the HPO community.
We also summarize their designs in Table 3.

Vanilla BO denotes the BO-based optimizer that adopts vanilla
GP as its surrogate model. Vanilla GP is widely used for objective
function modeling in database configuration systems [19, 25], due
to its expressiveness, well-calibrated uncertainty estimates and
closed-form computability of the predictive distribution [39]. A
GP N (1(60), 0%(8)) is fully specified by mean y(0) and a variance
function o%(#), which is expressed as:

u(6) = kT (K+UZI)_1 4,
. 3
o2(0) = k(6,0) — kT(K + JZI) K,

where k = [k(601,0), ..., k(6n, 0)]T and K is the covariance matrix
whose (i, j)-th entry is Kj j = k(8;, 8;). The kernel k(6, 9/) models
the overall smoothness of the target function. For Vanilla BO, the
kernel function (e.g., RBF kernel in OtterTune) is calculated based
on the Euclidean distance between two configurations, assuming
the natural ordering property and continuity of configuration space.
One-hot BO denotes the BO-based optimizer that adopts one hot-
encoding for categorical variables, as original GPs assume contin-
uous input variables. Specifically, each categorical feature with k
possible values is converted into k binary features.

Mixed-kernel BO [41] denotes the BO-based optimizer that
adopts a mixed-kernel GP as its surrogate model. It uses Matérn

kernel for continuous knobs, Hamming kernel for categorical knobs
(also one-hit encoded), and calculates their product. Matern kernel
is a continuous kernel that generalizes the RBF with a smoothing
parameter. Hamming kernel is based on hamming distance, which
is suitable to measure the distance between categorical variables.
The mixed-kernel BO has shown promising performance over the
heterogeneous configuration space empirically [41].

SMAC [37] (i.e., Sequential Model-based Algorithm Configuration)
adopts a random forest based surrogate, which is known to per-
form well for high-dimensional and categorical input [14]. SMAC
assumes a Gaussian model N (y|1, 52), where the ji and 62 are the
mean and variance of the random forest. SMAC supports all types
of variables, including continuous, discrete, and categorical features.
It has been the best-performing optimizer in Auto-WEKA [83].
TPE [10] (i.e., Tree-structured Parzen estimator) is a non-standard
Bayesian optimization algorithm. While GP and SMAC modeling
the probability p(y|6, H) directly, TPE models p(0|y, H) by tree-
structured Parzen density estimators. TPE describes the configura-
tion space by a generative process and supports categorical features.
TPE has been used successfully in several papers [11, 12, 83].
TuRBO [23] (i.e., Trust-Region BO) proposes a local strategy for
global optimization using independent surrogate models. These
surrogates allow for local modeling of the objective function and
do not suffer from over-exploration. To optimize globally, TuURBO
leverages a multi-armed bandit strategy to select a promising sug-
gestion from local models. TuRBO exhibits promising performances
when solving high dimensional optimization problems [23, 81].
DDPG [55] denotes the Deep Deterministic Policy Gradient
(DDPG) algorithm that is adopted to learn the configuration tuning
policy for DBMS. It has been successfully adopted by CDBTune
and Qtune. While other reinforcement learning algorithms, such
as Deep-Q learning [59], are limited to setting a knob from a fi-
nite set of predefined values, DDPG can work over a continuous
action space, setting a knob to any value within a range. DDPG
consists of two neural networks: the actor that chooses an action
(i.e., configuration) based on the input states, and the critic that
evaluates the selected action based on the reward. In other words,
the actor decides how to suggest a configuration, and the critic
provides feedback on the suggestion to guide the actor.

GA [49] (i.e., Genetic Algorithm) is a meta-heuristic inspired by the
process of natural selection. In a genetic algorithm, a population of
candidate solutions to an optimization problem is evolved toward
better solutions, iteratively. In each iteration, the fitness of each
solution, which is usually the value of the objective function, is
evaluated. The candidates with higher fitness will have more chance
to be selected, and their features (i.e., encoded configuration) will
be recombined and mutated to form new candidates for the next
iteration. Genetic algorithms are simple yet effective and naturally
support categorical features. They have been applied to various
problems [47], including hyper-parameter optimization [70, 95].

3.3 Knowledge Transfer

The knowledge transfer module is designed to accelerate the target
tuning task by leveraging the experience from historical tuning
tasks. We introduce three knowledge transfer frameworks - work-
load mapping, RGPE, and fine-tuning.

1813

Table 4: Profile information for workloads.

Workload Class Size Table Read-Only Txns
JOB Analytical 9.3G 21 100.0%
SYSBENCH Transactional 24.8G 150 43.0%
TPC-C Transactional 17.8G 9 8.0%
SEATS Transactional 12.7G 10 45.0%
Smallbank Transactional 2.4G 3 15.0%
TATP Transactional 6.3G 4 40.0%
Voter Transactional ~ 0.06M 3 0.0%
Twitter Web-Oriented 7.9G 5 0.9%
SIBench Feature Testing 0.5M 1 50%

Workload Mapping is proposed by OtterTune. It matches the
target workload to the most similar historical one based on the
absolute distances of database metrics and reuses the historical ob-
servations from the similar workload. This strategy can be adopted
by any BO-based optimizers assuming a Gaussian model.

RGPE [27] (i.e., ranking-weighted Gaussian process ensemble) is
an ensemble model for BO-based optimizers. RGPE combines simi-
lar base GP models of historical tasks via distinguishable weights.
The weights are assigned using relative ranking loss to generalize
across different workloads and various hardware environments.
The ensemble manner avoids the poor scaling that comes with
fitting a single Gaussian process model with all the observations
from similar tasks. RGPE is adopted in ResTune to accelerate the
tuning process of the target tasks.

Fine-tune is used in the RL-based optimizers [50, 71, 96]. For ex-
ample, CDBTune and Qtune could pre-train a basic DDPG model
by replaying historical workloads. During the later practical use of
the tuner, the tuner continuously gains feedback information and
updates its model by gradient descent (fine-tune). Such a process
is claimed to help the optimizer adapt to different workloads with
fewer observations instead of training from scratch.

4 GENERAL SETUP OF EVALUATION

Our study conducts experimental evaluation for the three key mod-
ules of configuration tuning systems: knob selection, configuration
optimization, knowledge transfer. The evaluation is driven by the
practical questions we encountered when tuning the databases:
Q1: How to determine the tuning knobs? (i.e., Which importance
measurements to use and how many knobs to tune?)

Q2: Which optimizer is the winner given different scenarios?

Q3: Can we transfer knowledge to speed up the target tuning task?
We describe the general setup of the evaluation in this section and
leave the specific setting (e.g., procedure, metrics) when answering
the corresponding questions.

4.1 Hardware, Workloads and Tuning Setting

Hardware. We deploy the target DBMS (version 5.7 of RDS MySQL)
on a cloud instance with 8 vCPUs and 16 GB RAM. We use the
MySQL default configuration as the default in our experiments
except that we set a larger and reasonable buffer pool size (60%
of the instance’s memory [2]), since the default size (128 MB) in
MySQL document largely limits the database performance.

Workloads. To answer Q1 and Q2, we use an analytical work-
load JOB and a transactional workload SYSBENCH. JOB contains

113 multi-joint queries with realistic and complex joins [48]. SYS-
BENCH is a multi-threaded benchmark frequently used for database
systems. To answer Q3, we use three OLTP workloads (SYSBENCH,
TPC-C and Twitter) as target workloads, which have been adopted
in previous studies [4, 96, 98]. And we construct diverse source
workloads, including Smallbank, SIbench, Voter, Seats, and TATP.
They cover various size and read-write ratios, as shown in Table 4.
Tuning Setting. There are 197 configuration knobs in MYSQL 5.7,
except the knobs that do not make sense to tune (e.g., path names
of where the DBMS stores files). According to the proprieties of
black-box optimization [21], we choose three configuration spaces
with different sizes: small, medium, and large, where we tune the
most important 5, 20, and 197 (all) knobs ranked by the impor-
tance measurement, respectively. we run three tuning sessions per
optimizer and report the median and quartiles of the best perfor-
mances. Each tuning session is comprised of 200 iterations without
specification. We conduct a three-minute stress testing to replay
the given workload. For OLTP workload, we use throughput as
maximization objective, and for OLAP workload, we use the 95%
quantile latency as minimization objective. For a failed configura-
tion (i.e., the one causing DBMS crash or unable to start), we set its
result the worst performance ever seen in order to avoid the scaling
problem [5]. Following iTuned and OtterTune, we initialize each
tuning session for BO-based optimizers by executing 10 configura-
tions generated by Latin Hypercube Sampling (LHS) [63]. When
reporting the results, we calculate the performance improvement
against the default configuration.

4.2 Implementation

Importance measurements. We compare the five importance
measurements listed in Table 2. For Lasso [84], we adopt the imple-
mentation in OtterTune, which includes second-degree polynomial
features to enable Lasso to detect interactions between pairs of
knobs. For ablation analysis, we use random forest implemented by
scikit-learn [68] as the surrogate. For fANOVA [38], we adopt its
official library [1]. As for SHAP [56], we adopt the implementation
released by the authors except that we use the given default as the
base configuration when calculating performance gain.
Optimizers. We compare the optimizers in Table 3. For Vanilla
BO and one-hot BO, we use a similar design with OtterTune [4]:
Gaussian process as the surrogate and Expected Improvement as the
acquisition function. We implement they via Botorch library [6]. We
adopt the OpenBox [53]’s implementation for mixed-kernel BO and
GA. For SMAC and TurBO, we adopt the implementation released
by the authors [23, 37]. We implement DDPG via PyTorch [66] with
the same neural network architecture as CDBTune [96].
Knowledge transfer frameworks. For workload mapping, we
implement the methodology in OtterTune. For RGPE [27], we adopt
the implementation in OpenBox [53]. We fine-tune DDPG’s pre-
trained models’ weight when obtaining the target observations.

5 HOW TO DETERMINE TUNING KNOBS?

In order to conduct configuration tuning, we need to choose tuning
knobs that decide the configuration space. Specifically, it connotes
the following two questions:

1814

——_— n
4k ¢ 4k +
R f[
S3F S3rm —
o o
2k m + 2 - ¢ ¢
1 1 - i 1 = 1k 4 1 1 1
Gini Lasso fANOVA Ablation SHAP Gini Lasso fANOVA Ablation SHAP
(a) Small Space (JOB) (b) Medium Space (JOB)
5 5
i @ o @
X~ X~
G3r FEL
o o
[il %
1

L L " L L '
Gini Lasso fANOVA Ablation SHAP Gini Lasso fANOVA Ablation SHAP

(c) Small Space (SYSBENCH) (d) Medium Space (SYSBENCH)
Figure 3: Performance ranking of importance measurements.
(Notch denotes medium and plus sign denote mean.)

Table 5: Overall performance ranking (bold values are best).

Measurement ~ Gini Lasso fANOVA Ablation Analysis SHAP
Average Ranking 2.62 4.18 3.06 3.45 1.67
—6— Gini Lasso —— fANOVA —¥— Ablation —A— SHAP

60%
~ 40%
x

20%

0%

1250 2500 3750 5000 6250 1250 2500 3750 5000 6250
Samples # Samples

Figure 4: Sensitivity analysis for importance measurements.

0

Q5.2: Which importance measurement to use to evaluate the im-
portance of configuration knobs?

Q5.3: Given the importance measurement, how many knobs to
choose for tuning?

5.1 Setup

To conduct knob selection, we first collect 6250 samples (i.e., ob-
servations) respectively for the two workloads SYSBENCH and
JOB via Latin Hypercube Sampling (LHS) [63]. LHS attempts to
distribute sample points evenly across all possible values over the
197-dimensional space. Then, we apply different importance mea-
surements to generate knob importance rankings and compare the
tuning performances on each importance ranking. We perform
configuration optimization on small spaces (top-5 knob sets) and
medium spaces (top-20 knob sets), using the eight optimizers in
Table 3. We collect the performance rankings of the importance
measurements in terms of the best configuration found by each
optimizer. To further understand the performances of different im-
portant measurements, we conduct sensitivity analysis varying the
number of training samples to compare their stability and model
accuracy. Finally, we vary the number of tuning knobs to analyze
the effect of configuration space with different sizes.

5.2 Which Importance Measurement to Use?

Figure 3 presents the performance ranking over the knob sets gen-
erated by different importance measurements, and Table 5 sum-
marizes their overall performance ranking. We observe that the

= —o— Performance Improvement Tuning Cost

o
w— <
c 9100% 600 W
o c
€4 1450 .8
SLrswr a4 b —F——— 9 {300
°% : . {150 &
gs *

50% L 1 111 . L PR

N 10 20 50 197

a # Knobs

= (a) JOB.
€ T3009 0
S 5300% 600 ¥
== s 1450 8
2 2200% r T {300 @
o3 9}
52 ? : 4150 =
E |_E 100% 1 Lo Il 1 il L LI | [l 0 :h:
== 5 10 20 50 197

Knobs

(b) SYSBENCH.
Figure 5: Performance improvement and tuning cost when
increasing the number of tuning knobs.

tunability-based method SHAP achieves the best performance. This
is due to that SHAP recommends the knobs worthy tuning. When
changing a knob’s value from the default only leads to the down-
grade of database performance, SHAP will recommend not to tune
the knob, while variance-based measurements will consider this
knob to have a large impact on the performance and need tuning.
The default values of database knobs are designed to be robust and
can be a good start. Therefore, the variance-based measurements
will be less effective. Ablation analysis yields the second last overall
performance since it largely depends on the high-quality training
samples better than the default and its performances are unstable
as shown in Figure 3. Among the variance-based measurements,
Gini score performs the best overall, while Lasso tends to yield the
worst improvement. Lasso assumes a linear or quadratic configura-
tion space, while in reality there exist complex dependencies from
configurations to database performance.

To further understand the different performance of importance
measurements, we conduct sensitivity analysis on the number of
training samples for SYSBENCH workload as shown in Figure 4.
The samples are randomly chosen from the 6250 samples, and the
final result is the average of 10 executions for each importance
measurement. The y-axis in the left figure is the similarity score
(intersection-over-union index [34]) of the top-5 important knobs
ranked using the subset of training samples against that of the
baseline (6250 samples). A larger similarity score indicates that the
importance measurement is more stable since the measurement
can find the final important knobs with fewer observations. The
right figure plots the Coefficient of Determination [33] (i.e., R?)
on the validation set. A larger R? indicates that the surrogate can
better model the relationship between configurations and database
performance. We have that Lasso fails to model this relationship,
while it is very stable. Ablation analysis has the lowest stability,
and its calculation highly depends on the high-quality samples.
Gini score has the highest similarity score, indicating its sample
efficiency. In the meantime, SHAP has a similarity score comparable
to the variance-based measurements. Considering that SHAP has
the best overall performance and comparable stability, we use SHAP
as the default measurement for the remainder of our study.

1815

5.3 How Many Knobs to Choose for Tuning?

We further conduct experiments to explore the effect of different
numbers of tuning knobs. To measure the effect, we observe the
tuning performance of vanilla BO over knob sets of different sizes
ranked by SHAP. For each set, we conduct tuning for 600 iterations
on SYSBENCH and JOB. We report the maximum performance
improvement and the corresponding tuning costs (i.e., the iterations
needed to find the configurations with the maximum improvement).

As shown in Figure 5, for JOB, the improvement is relatively
stable, but the tuning cost increases when increasing the number
of knobs. For SYSBENCH, the improvement is negligible at the be-
ginning because a small number of tuning knobs have little impact
on the performance. As the number of knobs grows from 5 to 20,
the improvement increases from 133.10% to 250.33% since a larger
configuration space leads to more tuning opportunities. Afterward,
the improvement decreases as the tuning complexity increases. We
conclude that it is better to tune the top-5 knobs for JOB and to
tune the top-20 knobs for SYSBENCH. There is a trade-off between
performance improvement and tuning cost. Given more knobs to
be tuned, the tuned performance is better, and more tuning iter-
ations are required to achieve it. With a limited tuning budget, it
is vital to set the number of tuning knobs to an appropriate value
since a small set of knobs only has a minor impact on the database
performance, and a large set would introduce excessive tuning cost.
Incremental Knob Selection. Previously, we have enumerated
the number of tuning knobs and conducted extensive tuning ex-
periments. Using such a procedure to determine the configuration
space is not practical in production due to the high costs. As dis-
cussed in Section 2.3, there are two incremental tuning heuristics to
determine the number of knobs: (1) increasing the number of knobs,
proposed in OtterTune [4], and (2) decreasing the number of knobs,
proposed in Tuneful [25]. We implement the two methods. For in-
creasing the number of knobs, we begin with tuning the top four
knobs and add two knobs every four iterations. For decreasing the
number of knobs, we begin with tuning all the knobs and remove
40% knobs every 20 iterations. Figure 6 presents the results. For
JOB, neither increasing nor decreasing the number of knobs surpass
tuning the fixed 5 knobs. In contrast, for SYSBENCH, increasing the
number of knobs has better performance, but decreasing the num-
ber limits the potential performance gain. As previously discussed,
the number of important knobs for JOB is relatively small, thus
the incremental knob selection on a larger space will not bring ex-
tra benefits. Instead, on SYSBENCH, the increasing method allows
optimizers to explore a smaller configuration space of the most
impacting knobs before expanding to a larger space.

5.4 Main Findings

Our main findings of this section are summarized as follows:

Given a limited tuning budget, tuning over the configuration
space with all the knobs is inefficient. It is recommended to
pre-select important knobs to prune the configuration space.
Configuration spaces determined by different importance mea-
surements will impact tuning performance significantly.

SHAP is the best importance measurement based on our evalua-
tion. Compared with traditional measurements (i.e., Lasso and

—6— 5 Knobs 20 Knobs —b— Increase —v— Decrease
165 550
>
2 140 490 -
(9 =
® 2c
- ~115 S'9430
[T o w
2 {
o 3 ¥
2 90 2 E370p
- =]
B es 310 |
o
40 50 100 150 200 0, 50 100 150 200
Iteration Iteration
(a) JOB. (b) SYSBENCH.

Figure 6: Best performance of incremental knob selection
methods over iteration (for JOB, bottom left is better; for
SYSBENCH, top left is better). We use top-5 knobs tuning and
the top-20 knobs tuning as baselines.

Gini score), it achieves 38.02% average performance improve-
ment. When training samples are limited, Gini score is also ef-
fective.

o When determining the number of tuning knobs, there is a trade-
off between the performance improvement and tuning cost. In-
creasing/decreasing the number of tuning knobs has good perfor-
mances in some cases. However, how to determine the number
theoretically is still an open problem with research opportunities.

6 WHICH OPTIMIZER IS THE WINNER?

In this section, we aim to find the best optimizer regarding the
different sizes of configuration spaces. Furthermore, we construct
two scenarios - continuous configuration space and heterogeneous
configuration space to validate the optimizers’ support for hetero-
geneity. In addition, the algorithm overheads are also studied.

6.1 Setup

We first evaluate the eight optimizers’ performance over different
spaces on workloads — JOB and SYSBENCH. To further validate
the support for heterogeneity, we focus on the well-performing
optimizers and construct a comparison experiment on JOB where
we use the configuration space of top-20 integer knobs as a control
group (continuous space) and the space of top-5 categorical knobs
and top-15 integer knobs as a test group (heterogeneous space).
In addition, we measure the execution time of recommending a
configuration (i.e., algorithm overhead) of different optimizers.

6.2 Performance Comparison

6.2.1 Performance over configuration spaces of different sizes. Fig-
ure 7 presents the results, where each solid line denotes the mean
of best performance across three runs, and shadows of the same
color denote the quartile bar. We summarize the average ranking of
optimizers in terms of the best performance they found in Table 6.

We have that SMAC achieves the best overall performance, and
TPE performs worst. SMAC adopts random forest surrogate, which
scales better to high dimensions and categorical input than other
algorithms. TPE fails to find the optimal configuration, and the
main reason could be the lack of modeling the interactions between
knobs [12]. It is almost certain that the optimal values of some knobs

Mixed-Kernel BO
—— SMAC

—v— TPE —&— DDPG
—A— TuRBO GA

—6— Vanilla BO
—<— One-Hot BO

—
o
S

©
o

80

70|

Throughput (trx/sec)

60

95th %-tile Latency (sec)

50
0

50 100 150 200 0 50 100 150 200
Iteration Iteration

(a) Small Space (JOB) (d) Small Space (SYSBENCH)

560

95th %-tile Latency (sec)
Throughput (trx/sec)

45
0 50 100 150 200 0 50 100 150 200

Iteration Iteration
(b) Medium Space (JOB) (e) Medium Space (SYSBENCH)

150 550
130 l 500
110

70

Throughput (trx/sec)

95th %-tile Latency (sec)

50 300 .
0 50 100 150 200 0 50 100 150 200

Iteration Iteration
(c) Large Space (JOB) (f) Large Space (SYSBENCH)

Figure 7: Best performance of optimizers over iteration (for
JOB, bottom left is better; for SYSBENCH, top left is better).

depend on the settings of others. For instance, the tuning knobs
tmp_table_size and innodb_thread_concurreny define the maximum
size of in-memory temporary tables and the maximum number of
threads permitted. Intuitively, the larger number of threads running,
the more in-memory temporary tables created. The relationship
can be modeled by the considered optimizers, while TPE does not.
In addition, the meta-heuristic method — GA also performs poorly.
Over small and medium configuration spaces, SMAC and mixed-
kernel BO exhibit outstanding performance. While both adopting
the Gaussian Process, the BO-based optimizers have distinct per-
formance due to their different design with the categorical knobs
(see the detailed analysis in Section 6.2.2). One-hot BO performs
better than vanilla BO, but is inferior to mixed-kernel BO. In ad-
dition, DDPG has relatively bad performance on the small and
medium spaces. It learns a mapping from internal metrics (state)
to configuration (action). However, given a target workload, the
optimal configuration is the same for any internal metrics, leading
to the fact that action and state are not necessarily related [98]. We
also notice that the tuning cost of DDPG is constantly high due
to the requirement of learning a great number of neural network
parameters, which is consistent with the existing evaluation [5].

1816

Table 6: Average ranking of optimizers in terms of the best
performance. VBO, OHBO, MBO denote vanilla BO, one-hot
BO, mixed-kernel BO respectively. (bold values are the best.)

Optimizer VBO OHBO MBO SMAC TPE TuRBO DDPG GA
Small 5.33 4.00 2.17 3.33 5.83 3.83 5.00 6.50
Medium 5.17 3.83 2.33 1.33 7.17 4.00 5.50 6.67
Large 7.33 6.50 5.17 1.00 6.50 5.00 3.17 5.83
Overall 5.94 4.78 3.22 1.89 6.50 4.28 4.56 6.33
—6— VBO —<— OHBO MBO —— SMAC —&— DDPG
135 115
> >
2 120 2 100
(9]]
8 3
© ©
— 5105 58
29 L9
ze R Sl
L 90 ® 70 3
e ey
n 75 n 55 -
()] [e)]

@
=)

400 50 100 150 200

Iteration

1 L i
100 150 200

Iteration

50

(a) Continuous Space.
Figure 8: Comparison experiment for knobs heterogeneity
(bottom left is better).

(b) Heterogeneous Space.

Over the large space of JOB, only SMAC and DDPG have found
the configurations better than the default latency (about 200s)
within 200 iterations. The success of DDPG can be attributed to
the good representation ability of the neural network to learn the
high dimensional configuration space. Over the large space of SYS-
BENCH, all methods have found improved configurations, among
which SMAC still performs the best. And TuRBO ranks the second-
best since its local modeling strategy avoids the over-exploration
in boundaries, especially in the high dimensional space. The effec-
tiveness of global GP methods (vanilla BO and mixed-kernel BO)
further decreases when the number of tuning knobs increases.

6.2.2 Comparison Experiment for Knobs Heterogeneity. Figure 8
demonstrates the performance of vanilla BO, one-hot BO, mixed-
kernel BO, SMAC, and DDPG on continuous and heterogeneous
spaces, respectively. While the BO-based optimizers perform simi-
larly on continuous space, they reach quite different performances
on heterogeneous space. Mixed-kernel BO could find better config-
urations and with a faster convergence speed than the others. The
reasons are as follows: vanilla BO cannot handle categorical knobs
since it assumes a partial order between the different values of a cat-
egorical knob [86]. Although one-hot encoding converts categorical
knobs into binary ones, its RBF kernel struggles to capture the dis-
tance between categorical knobs. Mixed-kernel BO adopts different
kernels for the integer and categorical knobs, thus better measuring
the distance in heterogeneous spaces. In addition, SMAC performs
well over the two spaces due to its random forest modeling, and
DDPG has high tuning costs for finding good configurations.

6.3 Algorithm Overhead Comparison

Algorithm overhead is the execution time taken by an optimizer
to generate the next configuration to evaluate per iteration, and
does not include the evaluation time. Precisely, it consists of the
time for statistics collection, model fitting, and model probe [46].
Figure 9 shows the statistics when tuning workload - JOB over

1817

—»— SMAC —¥— TPE —A— TuRBO —B— DDPG GA

H L \ H
200 250 300 350
Iteration

Figure 9: Algorithm overhead for different optimizers.

L 1
100 150

1
50

400

Algorithm Overhead

medium configuration space. GA has the lowest algorithm overhead.
DDPG, SMAC, and TPE also have negligible overhead (< 1 second).
However, due to the cubic scaling behavior of GP, the overhead of
BO-based methods become extraordinarily expensive as the number
of iterations increases. In particular, it takes > 10 seconds to select
the next configuration after 200 iterations and > 1 minute after 400
iterations. TuURBO’s overhead is comparable to SMAC. TuRBO uses
a collection of simultaneous local GPs instead of a global GP and
terminates unpromising GPs, which mitigates the scaling problem.

6.4 Main findings

Our main findings of this section are summarized as follows:

e SMAC has the best overall performance and could simultaneously
handle the high-dimensionality and heterogeneity of configura-
tion space. Compared with traditional optimizer (i.e., vanilla BO,
DDPG), it achieves 21.17% average performance improvement.
TPE is worse than other optimizers in most cases since it strug-
gles to model the interaction between knobs.

DDPG has considerable tuning costs (more iterations) in small
and medium configuration spaces due to its redundant MDP
modeling and complexity of the neural network. Meanwhile, it
has a relatively good performance in a large configuration space.
On small and medium configuration spaces, SMAC and mixed-
kernel BO rank the top two, while on the large configuration
space, SMAC, DDPG, and TuRBO all have good performance
rankings. The effectiveness of global GP methods decreases as
the number of tuning knobs increases.

Mixed-kernel BO outperforms other BO-based optimizers in
heterogeneous space due to its Hamming kernel measurement.
Global GP-based optimizers (i.e., vanilla BO, one-hot BO and
mixed-kernel BO) have cubic algorithm overhead.

7 CAN WE TRANSFER KNOWLEDGE TO
SPEED UP THE TARGET TUNING TASK?

In the previous sections, different optimizers are compared from
scratch without knowledge transfer. In this section, we test whether
we can utilize the historical data to speed up target tuning tasks
and compare the applicability of different transfer frameworks.
Baselines. The transfer learning framework is used to speed up
base optimizers. To narrow down the candidate baselines, we evalu-
ate workload mapping and RGPE accelerating the best-performing
BO-based optimizers — SMAC and mixed-kernel BO.

Metrics. We use three metrics to evaluate the performance of trans-
fer frameworks: performance enhancement, speedup, and absolute
performance. The performance enhancement and speedup focus

Table 7: Evaluation results for different transfer frameworks (the bold values are the best). We report speedup, performance
enhancement (i.e., PE) against the base optimizers and the absolute performance ranking (i.e., APR).

Transfer Framework RGPE Workload Mapping Fine-Tune
Base Optimizer Mixed-Kernel BO SMAC Mixed-Kernel BO SMAC DDPG
Metric Speedup PE APR | Speedup PE APR | Speedup PE APR | Speedup PE APR | Speedup PE APR
TPCC 9828 10.44% 1 8.03 2.18% 2 x 248% 4 035 243% 3 171 375% 4
SYSBENCH 4.76 0.53% 4 0.78 13.32% 1 x 051% 5 3.08 223% 2 0.93 459% 3
Twitter 28.42 1.56% 1 2842 0.02% 2 x -1.70% 5 x 0.12% 4 083 3.12% 3
Avg. 5152 4.18% 2 12.41 517% 1.67 x 156% 4.67 114 151% 3.00 132 3.82% 3.33
Table 8: Regression performance (bold values are the best). —9— Vanilla BO Mixed-Kernel BO —>— SMAC ~ —¥— TPE —A— TURBO GA
Model RF GB SVR NuSVR KNN RR 105 625
Metric |[RMSE R? |RMSE R’ |RMSE R? |RMSE R? |RMSE R® |[RMSE R? -
SYSBENCH| 26.5 93.0%| 27.2 92.6%| 97.4 5.6%| 97.4 5.6%| 54.6 70.2%| 64.1 59.1% g g5t 585 - ===
JOB | 11.8 97.4%| 11.1 97.7%| 41.7 67.9%| 41.7 67.9%| 27.5 86.0%| 523 49.5% g = s
8 estf} 2 Usas 4 S
S o < Q0
2 58 ieeyerel
on whether the transfer framework can speed up the tuning pro- 22500 © Zsos f #
. X F=x=
cess compared with non-transfer. We denote the best performance < = F
i1 . . I . A 65 - 465 |
within 200 iterations for the base optimizer without transfer as a V
f(x;) and the best performance with transfer as f(x},,,,). The 55 . . . i 425 : : :
base 3 ran 0 50 100 150 200 0 50 100 150 200
performance enhancement (PE) is defined as Iteration Iteration
(a) JOB. (b) SYSBENCH.

_ f(x;ran) _f(x;;ase)‘

PE = 4
S e “

and the speedup (7) is calculated as:
steps to find x; . without transfer)

" steps to find config.better than x with transfer’

base
The absolute performance focuses on the performance of the com-
bination of base learner and transfer framework (e.g., the best per-
formance Mapping (SMAC) achieved within 200 iterations).

Main Procedure. We conduct experiments on three target work-
loads — SYSBENCH, TPC-C, and Twitter. As for the knobs we tune,
we use SHAP to select top-20 impacting knobs across OLTP work-
loads and hardware instances and more details can be found in our
technical report [97]. To gather historical tuning data, we collect
observations from five source workloads — SEATS, Voter, TATP,
Smallbank, and SIBench. Since fine-tune (DDPG) relays on a pre-
trained model, we pre-train DDPG’s network 300 iterations on the
five source workloads in turn. We use DDPG’s training observations
as the historical data for workload mapping and RGPE frameworks.
Such a setting follows the evaluation of CDBTune for data fair-
ness. With the pre-trained models and source observations, we
compare the five baselines and obtain absolute performances. To
calculate performance enhancement and speedup, we also run base
optimizers on the target workloads without knowledge transfer.

7.1 Performance Comparison

Table 7 shows the results. If a baseline fails to find configurations
better than x; . we put “x” in the speedup column. We observe
that fine-tune and workload mapping hinder the optimization (i.e.,
“negative transfer”) in some cases where the speedup is smaller
than one or the improvement is negative. Workload mapping al-
ways maps a similar workload and combines its observations in
the surrogate model together with the target observations, which
may be problematic since the source workloads may not be entirely
identical to the target one. RGPE solves this problem by assigning
adaptive weights to source surrogates and utilizing them discrim-
inately. As for fine-tune, the performance is not stable since the
neural network may over-fit the source workloads, and fine-tuning

1818

Figure 10: Tuning Performance over surrogate benchmark.

VBO OHBO MBO SMAC TPE TuRBO GA

Gini Lasso fANOVA Ablation SHAP
Figure 11: Performance ranking of importance measure-
ments and optimizers evaluated by the tuning benchmark.
(Notch denotes medium and plus sign denote mean.)

the over-fitted network may be less efficient than training from
scratch. Overall, the RGPE framework has the best performance.
RGPE (mixed-kernel BO) has shown impressive speedup accelerat-
ing, which may come from the inferior performance of mixed-kernel
BO compared with SMAC. In terms of absolute performance, RGPE
(SMAC) achieves the best overall performance.

8 EFFICIENT DATABASE TUNING
BENCHMARK VIA SURROGATES

As discussed previously, to ease the burden of evaluating tuning
optimizers, we propose to benchmark the database tuning via surro-
gate models that approximate expensive evaluation through cheap
and stable model predictions. A user can easily test optimizers
by interacting with the surrogate models (i.e., input the configu-
ration suggested by the optimizer and output the corresponding
database performance). We present the construction of the tuning
benchmarks and the evaluation results based on the benchmarks.
To construct the tuning benchmarks, we first collect extensive
training samples and then select a regression model with high accu-
racy as the surrogate. To collect the training data, we run existing
database optimizers to densely sample high-performance regions of
the configuration space and sample poorly-performing regions [22]
via LHS. As for the regression model, we consider a broad range
of commonly used models as candidates, including Random Forest

(RF), Gradient Boosting (GB), Support Vector Regression (SVR),
NuSVR, k-nearest-neighbours (KNN), Ridge Regression (RR). We
evaluate their performance via 10-fold cross-validation, and Table 8
presents the resulted RMSE and R?. We have that the two tree-based
models, RF and GB, perform the best. Since RFs are widely used
with simplicity, we adopt RF as the surrogate for the benchmark.

We first focus on the small configuration space of JOB and
medium space of SYSBENCH. Figure 10 depicts the best perfor-
mance found by different optimizers using the tuning benchmark
based on RFs. We report means and quartiles across ten runs of each
optimizer. We observe that our tuning benchmark yields evaluation
results closer to the result in Figure 7 - SMAC and mixed-kernel BO
have the best overall performance. In addition, the experiments on
our tuning benchmarks are much faster. For example, as previously
mentioned, a single function evaluation on SYSBENCH workload
requires at least 3 minutes, while a surrogate evaluation needs 0.08
seconds on average. When considering the algorithm overhead of
optimizers, the previous 200-iteration experiment takes at least
10 hours, while the same experiment on the tuning benchmark
takes about 2~4 minutes. The tuning benchmark brings 150~311
X speedups. We leave the benchmarking RL-based optimizers as
future work, since it requires constructing a surrogate to learn the
state transaction (i.e., internal metrics of DBMS).

In addition, using surrogates could enlarge the number of eval-
uation cases of tuning algorithms To achieve this goal, we collect
samples over the large (197-dimensional) configuration space and
fit a surrogate. In the previous evaluation, we conduct experiments
over three configuration spaces since evaluating the enumeration
of all dimensions is expensive. And when evaluating the optimizers,
we fix the importance measurement to be SHAP. With the surrogate
benchmark, we could conduct extensive experiments over all the
dimensions of configuration spaces (from top-1 to top-197) and
all the importance measurements. Then, we conduct 11820 experi-
ments (197 knob sets x 5 importance measurements X 6 optimizers
% 2 workloads) to benchmark the knob selection and configuration
optimization modules. Since the knob selection aims to prune the
configuration space, we report its performance on 20 knob sets (top-
1 to top-20). And we report the performance of optimizers on the
197 knob sets. As shown in Figure 11, SHAP remains the best impor-
tance measurement, and ablation study has significant performance
variance. SMAC performs the best, followed by mixed-kernel BO.
The evaluation results further validate our conclusions.

9 DISCUSSION

9.1 Answers to the Motivating Questions
We summarize our answers to the motivating questions.

A1: We recommend the tunability-based method — SHAP as an
importance measurement since it indicates the necessity of tuning a
knob when the DBMS has relatively reasonable default knob values.
We can determine the number of knobs to tune by exhaustive and
expensive enumeration. How to determine the number theoretically
with fewer evluations is still an open problem. In practice, with a
limited tuning budget, we could resort to incremental tuning.

A2: When comparing different optimizers, we need to consider the
size and composition of configuration space. SMAC and DDPG are

1819

recommended for high-dimensional configuration spaces, although
it is better to first conduct knob selection to prune the configuration
space. SMAC is the winner that can handle the high dimensionality
and heterogeneity of configuration space.

A3: For RL-based optimizers, we can fine-tune its pre-trained model
to adapt to the target workload. However, we find that it might
suffer from the negative transfer issue empirically. For BO-based
optimizers, RGPE exhibits excellent speedup and improvement
since it avoids negative transfer via adaptive weight assignment.

9.2 Research Opportunities

An End-to-End Optimization for Designing Database Tuning
Systems. The end-to-end optimization can be viewed as optimizing
over a joint search space, including the selection of importance mea-
surements, knobs, optimizers, and transfer frameworks. Because
of the joint nature, the search space of the end-to-end optimization
is complex and huge. In our evaluation, we decompose the joint
space reasonably to narrow the search space. Meanwhile, a class
of methods in the HPO field treats the selection of algorithms as
a new hyper-parameter to optimize. They optimize over the joint
search space with probabilistic models [26, 29, 43, 51, 54], which
could be another research direction.

Tuning Budget Allocation. How to allocate a limited tuning bud-
get between different modules (e.g., knob selection and knobs opti-
mization) is a problem that needs exploring [28, 88]. For example,
an accurate ranking of knobs can facilitate later optimization but
comes with the cost of collecting extensive training samples. There
is a trade-off between the budgets for sample collection and the
latter optimization. In addition, as discussed, a larger configuration
space gives us more tuning opportunities but with higher tuning
costs. There still remains space when determining the number of
tuning knobs wisely, given a limited tuning budget.

10 CONCLUSION

Given emerging designs and algorithms for configuration tuning
systems of DBMS, we are curious about the best solution in different
scenarios. In this paper, we decompose existing systems into three
modules and comprehensively analyze and evaluate the correspond-
ing intra-algorithms to construct optimal design “paths” in various
scenarios. Meanwhile, we identify design trade-offs to suggest in-
sightful principles and promising research directions to optimize
the tuning systems. In addition, we propose an efficient database
tuning benchmark that reduces the evaluation overhead to a mini-
mum, facilitating the evaluation and analysis for new algorithms. It
is noted that we do not restrict our evaluation within the database
community and extensively evaluate promising approaches from
the HPO field. Our evaluation demonstrates that such an out-of-
the-box manner can further enhance the performance of database
configuration tuning systems.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation
of China (NSFC)(No. 61832001), Alibaba Group through Alibaba
Innovative Research Program and National Key Research, and the
Beijing Academy of Artificial Intelligence. Bin Cui is the corre-
sponding author.

REFERENCES

(1]
(2]

(3]

[9

=

[10]

[11]

[12

[13]

[14]
[15]

[16]

=
=

(18

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27]

[28

[29]

2022. fANOVA. https://www.automl.org/ixautoml/fanova/.
2022. How large should be mysql innodb buffer pool size?
stackexchange.com/a/91354.

Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arunprasad P. Marathe,
Vivek R. Narasayya, and Manoj Syamala. 2004. Database Tuning Advisor for
Microsoft SQL Server 2005. In VLDB. Morgan Kaufmann, 1110-1121.

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD Conference. ACM, 1009-1024.

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Billian, and Andrew Pavlo. 2021. An Inquiry into Machine Learning-
based Automatic Configuration Tuning Services on Real-World Database Man-
agement Systems. Proc. VLDB Endow. 14, 7 (2021), 1241-1253.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin
Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020. BoTorch: A Framework
for Efficient Monte-Carlo Bayesian Optimization. In NeurIPS.

Juan Cruz Barsce, Jorge Palombarini, and Ernesto C. Martinez. 2017. Towards
autonomous reinforcement learning: Automatic setting of hyper-parameters
using Bayesian optimization. In CLEL IEEE, 1-9.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. 2019. Max-value
Entropy Search for Multi-Objective Bayesian Optimization. In NeurIPS. 7823—
7833.

R. E. Bellman. 1957. A Markov decision process. Journal of Mathematical Fluid
Mechanics 6 (1957).

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In NIPS. 2546-2554.

James Bergstra and David D. Cox. 2013. Hyperparameter Optimization and
Boosting for Classifying Facial Expressions: How good can a "Null" Model be?
CoRR abs/1306.3476 (2013).

James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures. In ICML (1) (JMLR Workshop and Conference Proceedings),
Vol. 28. JMLR.org, 115-123.

Andre Biedenkapp, Marius Lindauer, Katharina Eggensperger, Frank Hutter,
Chris Fawcett, and Holger H. Hoos. 2017. Efficient Parameter Importance Analy-
sis via Ablation with Surrogates. In AAAL AAAI Press, 773-779.

Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5-32.

Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic
Tuning of IT Configurations Under Varying Workload Conditions. Proc. VLDB
Endow. 14, 8 (2021), 1401-1413.

Surajit Chaudhuri and Vivek R. Narasayya. 2007. Self-Tuning Database Systems:
A Decade of Progress. In VLDB. ACM, 3-14.

Surajit Chaudhuri and Gerhard Weikum. 2006. Foundations of Automated Data-
base Tuning. In VLDB. ACM, 1265.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proc. VLDB Endow. 7, 4 (2013), 277-288.

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Data-
base Configuration Parameters with iTuned. Proc. VLDB Endow. 2, 1 (2009),
1246-1257.

Bradley Efron, Trevor Hastie, lain Johnstone, and Robert Tibshirani. 2004. Least
angle regression. The Annals of statistics 32, 2 (2004), 407-499.

Katharina Eggensperger. 2013. Towards an Empirical Foundation for Assessing
Bayesian Optimization of Hyperparameters.

Katharina Eggensperger, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
2015. Efficient Benchmarking of Hyperparameter Optimizers via Surrogates. In
AAAI AAAI Press, 1114-1120.

David Eriksson, Michael Pearce, Jacob R. Gardner, Ryan Turner, and Matthias
Poloczek. 2019. Scalable Global Optimization via Local Bayesian Optimization.
In NeurIPS. 5497-5508.

Chris Fawcett and Holger H. Hoos. 2016. Analysing differences between algo-
rithm configurations through ablation. J. Heuristics 22, 4 (2016), 431-458.

Ayat Fekry, Lucian Carata, Thomas F.].-M. Pasquier, Andrew Rice, and Andy
Hopper. 2020. To Tune or Not to Tune?: In Search of Optimal Configurations for
Data Analytics. In KDD. ACM, 2494-2504.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine
Learning. In NIPS. 2962-2970.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. 2018. Scalable meta-
learning for bayesian optimization using ranking-weighted gaussian process
ensembles. In AutoML Workshop at ICML, Vol. 7.

Yaping Fu, Hui Xiao, Loo Hay Lee, and Min Huang. 2021. Stochastic optimization
using grey wolf optimization with optimal computing budget allocation. Appl.

Soft Comput. 103 (2021), 107154,
Chen Gao, Quanming Yao, Depeng Jin, and Yong Li. 2021. Efficient Data-specific

Model Search for Collaborative Filtering. In KDD. ACM, 415-425.

https://dba.

1820

[30

[31]

(32]

[39

[40

[41]
[42]

[43

[45

[46

[47

[48]

[50

[51]

(52]

(53]

[54

[55

[56

Jia-Ke Ge, Yanfeng Chai, and Yunpeng Chai. 2021. WATuning: A Workload-
Aware Tuning System with Attention-Based Deep Reinforcement Learning. J.
Comput. Sci. Technol. 36, 4 (2021), 741-761.

Marius Geitle and Roland Olsson. 2019. A New Baseline for Automated Hyper-
Parameter Optimization. In LOD (Lecture Notes in Computer Science), Vol. 11943.
Springer, 521-530.

David Gonzalez-Cuautle, Uriel Yair Corral-Salinas, Gabriel Sanchez-Perez, Héctor
Pérez-Meana, Karina Toscano-Medina, and Aldo Hernandez-Suarez. 2019. An
Efficient Botnet Detection Methodology using Hyper-parameter Optimization
Trough Grid-Search Techniques. In IWBF. IEEE, 1-6.

Richard F. Gunst. 1999. Applied Regression Analysis. Technometrics 41, 3 (1999),
265-266.

M. H. Heine. 1973. Distance between sets as an objective measure of retrieval
effectiveness. Inf. Storage Retr. 9, 3 (1973), 181-198.

Tobias Hinz, Nicolas Navarro-Guerrero, Sven Magg, and Stefan Wermter. 2018.
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
Networks. Int. . Comput. Intell. Appl. 17, 2 (2018), 1850008:1-1850008:15.

Zijie Huang, Zhiqing Shao, Guisheng Fan, Huiqun Yu, Xingguang Yang, and
Kang Yang. 2022. Community Smell Occurrence Prediction on Multi-Granularity
by Developer-Oriented Features and Process Metrics. 7. Comput. Sci. Technol. 37,
1(2022), 182-206.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In LION (Lecture Notes
in Computer Science), Vol. 6683. Springer, 507-523.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2014. An Efficient
Approach for Assessing Hyperparameter Importance. In ICML (JMLR Workshop
and Conference Proceedings), Vol. 32. JMLR.org, 754-762.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automatic
Machine Learning: Methods, Systems, Challenges. Springer.

Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, and Tomas
Lozano-Pérez. 2020. Monte Carlo Tree Search in Continuous Spaces Using
Voronoi Optimistic Optimization with Regret Bounds. In AAAL AAAI Press,
9916-9924.

Aaron Klein. 2017. RoBO : A Flexible and Robust Bayesian Optimization Frame-
work in Python.

Jan Kossmann and Rainer Schlosser. 2020. Self-driving database systems: a
conceptual approach. Distributed Parallel Databases 38, 4 (2020), 795-817.

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. J. Mach. Learn. Res. 18 (2017), 25:1-25:5.

Olga Krakovska, Gregory Christie, Andrew Sixsmith, Martin Ester, and Sylvain
Moreno. 2019. Performance comparison of linear and non-linear feature selection
methods for the analysis of large survey datasets. Plos one 14, 3 (2019), e0213584.
Andreas Krause and Cheng Soon Ong. 2011. Contextual Gaussian Process Bandit
Optimization. In NIPS. 2447-2455.

Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop
an AutoTuner for Memory-based Analytics. In SIGMOD Conference. ACM, 1667~
1683.

Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. A Survey on Advancing the DBMS
Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration.
Data Sci. Eng. 6, 1 (2021), 86-101.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215.

Stefan Lessmann, Robert Stahlbock, and Sven F Crone. 2005. Optimizing hyper-
parameters of support vector machines by genetic algorithms.. In IC-AL 74-82.
Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow.
12, 12 (2019), 2118-2130.

Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. 2020.
Efficient Automatic CASH via Rising Bandits. In AAAL AAAI Press, 4763-4771.
Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. MFES-
HB: Efficient Hyperband with Multi-Fidelity Quality Measurements. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 10 (May 2021), 8491-8500.
Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao
Liu, Jiawei Jiang, Jinyang Gao, Wentao Wu, Zhi Yang, Ce Zhang, and Bin Cui.
2021. OpenBox: A Generalized Black-box Optimization Service. In KDD. ACM,
3209-3219.

Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML: Speeding
up End-to-End AutoML via Scalable Search Space Decomposition. Proc. VLDB
Endow. 14 (2021), 2167-2176.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In ICLR (Poster).

Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In NIPS. 4765-4774.

https://www.automl.org/ixautoml/fanova/
https://dba.stackexchange.com/a/91354
https://dba.stackexchange.com/a/91354

[57]

[58]

[59]

[60]

[61]

[62

[63

(64

[65

[66]

[67]

[68

[71]

[72]

[73]

[74]

[75

(76

[77]

[78

Gang Luo. 2016. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Netw. Model. Anal. Health Informatics
Bioinform. 5,1 (2016), 18.

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems. In SIGMOD Conference. ACM, 631-645.

Vasilis Maglogiannis, Dries Naudts, Adnan Shahid, and Ingrid Moerman. 2018. A
Q-Learning Scheme for Fair Coexistence Between LTE and Wi-Fi in Unlicensed
Spectrum. [EEE Access 6 (2018), 27278-27293.

Mohit Malu, Gautam Dasarathy, and Andreas Spanias. 2021. Bayesian Optimiza-
tion in High-Dimensional Spaces: A Brief Survey. In IISA. IEEE, 1-8.

Ruben Martinez-Cantin. 2014. BayesOpt: a Bayesian optimization library for
nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 15,
1(2014), 3735-3739.

Camille Maurice, Francisco Madrigal, and Frédéric Lerasle. 2017. Hyper-
Optimization tools comparison for parameter tuning applications. In AVSS. IEEE
Computer Society, 1-6.

Michael D. McKay. 1992. Latin Hypercube Sampling as a Tool in Uncertainty
Analysis of Computer Models. In WSC. ACM Press, 557-564.

Bjoern H. Menze, B. Michael Kelm, Ralf Masuch, Uwe Himmelreich, Peter Bachert,
Wolfgang Petrich, and Fred A. Hamprecht. 2009. A comparison of random forest
and its Gini importance with standard chemometric methods for the feature
selection and classification of spectral data. BMC Bioinform. 10 (2009).

Stefano Nembrini, Inke R. Konig, and Marvin N. Wright. 2018. The revival of
the Gini importance? Bioinform. 34, 21 (2018), 3711-3718.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS. 8024-8035.

Andy Pavlo. 2021. Make Your Database System Dream of Electric Sheep: Towards
Self-Driving Operation. Proc. VLDB Endow. 14, 12 (2021), 3211-3221.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825-2830.
Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. 2019. Tunability:
Importance of Hyperparameters of Machine Learning Algorithms. J. Mach.
Learn. Res. 20 (2019), 53:1-53:32.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on Machine Learning. PMLR,
2902-2911.

Rubina Sarki, Khandakar Ahmed, Hua Wang, Yanchun Zhang, Jiangang Ma, and
Kate N. Wang. 2021. Image Preprocessing in Classification and Identification of
Diabetic Eye Diseases. Data Sci. Eng. 6, 4 (2021), 455-471.

Matthias W. Seeger. 2004. Gaussian Processes For Machine Learning. Int. j.
Neural Syst. 14, 2 (2004), 69-106.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de
Freitas. 2016. Taking the Human Out of the Loop: A Review of Bayesian Opti-
mization. Proc. IEEE 104, 1 (2016), 148-175.

Dennis E. Shasha and Philippe Bonnet. 2002. Database Tuning: Principles,
Experiments, and Troubleshooting Techniques. In VLDB. Morgan Kaufmann.
Dennis E. Shasha and Steve Rozen. 1992. Database Tuning. In VLDB. Morgan
Kaufmann, 313.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. In NIPS. 2960-2968.

Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao, and
Maheswaran Surendra. 2006. Adaptive Self-tuning Memory in DB2. In VLDB.
ACM, 1081-1092.

Erik Strumbelj and Igor Kononenko. 2014. Explaining prediction models and
individual predictions with feature contributions. Knowl. Inf. Syst. 41, 3 (2014),
647-665.

1821

[79

(80]

[81

(82

(84

(85]

(86]

(87]

%
&,

(89

[90]

[91]

[92

[93

[94

[95

[96

[97

[98

[99

David G. Sullivan, Margo 1. Seltzer, and Avi Pfeffer. 2004. Using probabilistic
reasoning to automate software tuning. In SIGMETRICS. ACM, 404-405.
Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson,
Robert P. Sheridan, and Bradley P. Feuston. 2003. Random Forest: A Classi-
fication and Regression Tool for Compound Classification and QSAR Modeling.
J. Chem. Inf. Comput. Sci. 43, 6 (2003), 1947-1958.

Jian Tan, Niv Nayman, Mengchang Wang, and Rong Jin. 2021. CobBO: Coordinate
Backoff Bayesian Optimization with Two-Stage Kernels. CoRR abs/2101.05147
(2021).

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. iBTune: Individualized Buffer
Tuning for Large-scale Cloud Databases. Proc. VLDB Endow. 12, 10 (2019), 1221—
1234.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: combined selection and hyperparameter optimization of classifica-
tion algorithms. In KDD. ACM, 847-855.

Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267-288.
Jan N. van Rijn and Frank Hutter. 2018. Hyperparameter Importance Across
Datasets. In KDD. ACM, 2367-2376.

Xingchen Wan, Vu Nguyen, Huong Ha, Bin Xin Ru, Cong Lu, and Michael A.
Osborne. 2021. Think Global and Act Local: Bayesian Optimisation over High-
Dimensional Categorical and Mixed Search Spaces. In ICML (Proceedings of
Machine Learning Research), Vol. 139. PMLR, 10663-10674.

Hao Wang, Yitan Lou, and Thomas Béck. 2019. Hyper-Parameter Optimization
for Improving the Performance of Grammatical Evolution. In CEC. IEEE, 2649-
2656.

Tianxiang Wang, Jie Xu, and Jian-Qiang Hu. 2021. A Study on Efficient Com-
puting Budget Allocation for a Two-Stage Problem. Asia Pac. J. Oper. Res. 38, 2
(2021), 2050044:1-2050044:20.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. 2018. Batched
Large-scale Bayesian Optimization in High-dimensional Spaces. In AISTATS
(Proceedings of Machine Learning Research), Vol. 84. PMLR, 745-754.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Freitas.
2016. Bayesian Optimization in a Billion Dimensions via Random Embeddings.
J. Artif. Intell. Res. 55 (2016), 361-387.

Ziyu Wang, Babak Shakibi, Lin Jin, and Nando de Freitas. 2014. Bayesian Multi-
Scale Optimistic Optimization. In AISTATS (JMLR Workshop and Conference
Proceedings), Vol. 33. JMLR.org, 1005-1014.

Hilde J. P. Weerts, Andreas C. Mueller, and Joaquin Vanschoren. 2020. Im-
portance of Tuning Hyperparameters of Machine Learning Algorithms. CoRR
abs/2007.07588 (2020).

Gerhard Weikum, Axel Ménkeberg, Christof Hasse, and Peter Zabback. 2002. Self-
tuning Database Technology and Information Services: from Wishful Thinking
to Viable Engineering. In VLDB. Morgan Kaufmann, 20-31.

Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295-316.
Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an
evolutionary algorithm. In Proceedings of the workshop on machine learning in
high-performance computing environments. 1-5.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In SIGMOD Conference. ACM, 415-432.

Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui.
2021. Facilitating Database Tuning with Hyper-Parameter Optimization: A
Comprehensive Experimental Evaluation. CoRR abs/2110.12654 (2021).

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD Conference. ACM, 2102-2114.
Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. To-
wards Dynamic and Safe Configuration Tuning for Cloud Databases. CoRR
abs/2203.14473 (2022).

