Guided Exploration of Data Summaries

Brit Youngmann
MIT CSAIL
brity@mit.edu

ABSTRACT

Data summarization is the process of producing interpretable and
representative subsets of an input dataset. It is usually performed
following a one-shot process with the purpose of finding the best
summary. A useful summary contains k individually uniform sets
that are collectively diverse to be representative. Uniformity ad-
dresses interpretability and diversity addresses representativity.
Finding such as summary is a difficult task when data is highly
diverse and large. We examine the applicability of Exploratory Data
Analysis (EDA) to data summarization and formalize Eda4Sum,
the problem of guided exploration of data summaries that seeks
to sequentially produce connected summaries with the goal of
maximizing their cumulative utility. Eda4Sum generalizes one-shot
summarization. We propose to solve it with one of two approaches:
(i) Top1Sum that chooses the most useful summary at each step; (ii)
RLSum that trains a policy with Deep Reinforcement Learning that
rewards an agent for finding a diverse and new collection of uni-
form sets at each step. We compare these approaches with one-shot
summarization and top-performing EDA solutions. We run exten-
sive experiments on three large datasets. Our results demonstrate
the superiority of our approaches for summarizing very large data,
and the need to provide guidance to domain experts.

PVLDB Reference Format:

Brit Youngmann, Sihem Amer-Yahia, and Aurelien Personnaz. Guided
Exploration of Data Summaries. PVLDB, 15(9): 1798-1807, 2022.
d0i:10.14778/3538598.3538603

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/apersonnaz/EDA4Sum.

1 INTRODUCTION

The goal of data summarization is to produce a smaller and informa-
tive dataset [20, 51] from an input dataset. That is usually achieved
by seeking interpretable and representative subsets of the input.
Intuitively, a useful summary contains k individually uniform sets
that are collectively diverse to be representative [51, 54]. Unifor-
mity addresses interpretability as it allows to produce a description
for each set, and diversity addresses representativity by seeking
to cover data variety. This is particularly important for large and
highly diverse datasets such as the Sloan Digital Sky Survey (SDSS),
a database commonly used in the astrophysics community [1]. SDSS
includes galaxies that belong to 169 classes defined by the Galaxy

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538603

Sihem Amer-Yahia
CNRS, Univ. Grenoble Alpes
sihem.amer-yahia@cnrs.fr

1798

Aurelien Personnaz
CNRS, Univ. Grenoble Alpes
aurelien.personnaz@cnrs.fr

45 gaIaXIes redshift = (O 0781, 0.126]

14 galames inif I ,‘ 2= — (18 61, 18.97]

Figure 1: Examples of uniform (top) and non-uniform (bot-
tom) galaxy itemsets.

Zoo classification [52]. In SDSS, each galaxy has 7 attributes describ-
ing magnitude in each color filter (the attributes u, g, r, i, and z), size
(the attribute petroRad_r), and how far a galaxy is from the Earth
(the attribute redshift). A single one-shot summary of SDSS is not
representative. Indeed, today’s astrophysicists spend considerable
time running SQL queries against the SkyServer database. Most of
their time is spent in reformulating queries, searching for galaxy
sets with similar properties or value distributions. In this paper, we
investigate the applicability of Exploratory Data Analysis (EDA) to
summarizing such large data.

A summary can be defined as a diverse set of k sets of items
(referred to as itemsets), each of which is uniform, i.e., it contains
items that are similar to each other. Itemsets are different from each
other, leading to a diverse summary. Figure 1 shows examples of
uniform and non-uniform itemsets of galaxies derived from SDSS.
One can see that uniform itemsets are easier to interpret by humans.
Users may not be easy to consume a large amount of information
in one step (i.e., shot). Thus, a one-shot summarization approach
that leverages a diversity algorithm to find the top-k most uniform
and diverse sets appears as a natural solution. For instance, SWAP,
a common diversity algorithm [54] would greedily finds k most
diverse itemsets subject to a threshold on utility (uniformity in
this case) and is shown to enjoy good approximation guarantees.
However, with a large and diverse dataset, a one-shot summary
may not suffice to cover the variety of itemsets in the database.
For instance, in the case of SDSS, even a summary of 10 itemsets
would not cover the 169 galaxy types it contains. In fact, with all
diversity algorithms (SWAP [54], MMR [12], and GMM [24]), there
is a tension between displaying k uniform itemsets and covering
data variety. This motivates the use of EDA for data summarization.

Rather than aiming to cover the entire data in a single one-shot
summary [13, 29], we seek to tackle a more general problem that
adopts a multi-shot approach to summarization where each step
produces the most uniform and diverse itemsets, and the collection
of steps forms a connected set of summaries. To achieve that, we
must address two challenges: define summary utility as a function
of uniformity and diversity, and make sure the generated summaries

https://www.acm.org/publications/policies/artifact-review-and-badging-current

at each step are both new and related to previous summaries, to
preserve the train of thought of the user [45]. This gives rise to the
Eda4Sum Problem that seeks to find a sequence of summaries whose
cumulated utility is maximized (Section 3). While some datasets are
largely uniform, others contain more diversity. Therefore, we need
to make sure our optimization function provides tunable weights
for uniformity and diversity. Generated summaries are operation-
driven - unlike previous work where summaries are data-driven
[51]. Each step is triggered by an EDA operator that takes an itemset
(from the current summary) and returns (at most) k itemsets (i.e., a
summary). The pipeline has a fixed length, and when it is equal to
1, the problem reduces to a one-shot summarization. We prove that
the Eda4Sum Problem is NP-hard by a reduction to the Heaviest
Path problem in a weighted directed graph [43]. Thus there is a
need for efficient and scalable algorithms to solve it.

We bootstrap a summarization pipeline by running the SWAP al-
gorithm. Thus, for a one-shot summary (i.e., summarization pipeline
of length 1), EDA4Sum reduces to SWAP. Other one-shot summa-
rization algorithms could be used to generate the first step. For
subsequent steps, we propose Top1Sum and RLSum, two adapta-
tions of existing algorithms. At each step, the algorithm picks one
of the itemsets returned by the previous step and chooses which
operator to execute on that itemset, resulting in a new summary.
Top1Sum is a greedy algorithm that chooses to return the high-
est utility summary at each subsequent step. Following existing
work in EDA [19, 37, 44] we investigate the applicability of Deep
Reinforcement Learning to summarization. We design RLSum, an
adaptation of Deep Reinforcement Learning to simulate an agent
that learns an end-to-end summarization policy as a sequence of
EDA operators that yield the highest reward.

We ran experiments on three large and different datasets. We
examined the utility of returned summarization pipelines and found
that in most cases (and as expected), Top1Sum returns higher utility
summaries than RLSum. However, RLSum is at least one order of
magnitude faster than Top1Sum. A specific use case also showed
that RLSum performs better than Top1Sum in finding ground-truth
itemsets. We also examine the use of different EDA operators in
building summarization pipelines. We find that the traditional drill-
down and roll-up operators are not suffice for finding useful sum-
maries, especially in SDSS that requires more expressive operators
to cover the variety of galaxy types. We also ran an experiment to
validate our reward function and found that it outperforms baseline
DRL with familiarity and curiosity [37]. Finally, an investigation
with two domain expert astronomers who are familiar with SDSS
revealed the benefit of using partial guidance for summarization.

2 RELATED WORK

We refer to our system as EDA4Sum. Table 1 summarizes the dif-
ferences between EDA4Sum and previous work. Columns in bold
highlight our novelty, namely: EDA4Sum enables generating a
multi-step summarization pipeline. Each summary in this pipeline
is connected to the previous summary. This is done by applying ex-
ploration operators which dictate the next summary to be displayed.
EDA4Sum also enables fully automate generation of summarization
pipelines. We now describe multiple lines of work that are relevant
to ours.

1799

One-shot data summarization: A large variety of approaches
have been proposed for summarizing data [29]. Prominent exam-
ples include approaches based on the Minimum Description Length
[11, 30], approaches that identify extreme aggregates [42, 51], meth-
ods that summarize all aggregates [31], and works that produce
k diverse clusters showing common properties in the data [40].
Unlike our work, all the methods mentioned above consider data
summarization as a one-shot task.

Approaches that summarize all data typically trade-off summary
size against information loss [29]. As mentioned in the Introduction,
in cases where the data size is massive, finding the most uniform
and diverse parts is helpful. Thus, unlike previous works, since
our goal is not to summarize the entire input, we do not measure
summary quality in terms of information loss. Therefore, we define
summarization as the task of finding the most uniform and diverse
subsets of the data. A natural solution to this definition is to leverage
diversity algorithms such as SWAP [54], MMR [12], GMM [24], and
QAGView [51]. However, as discussed in the Introduction, there is
a tension between displaying k sets and covering variety in data.

Result diversification: Result diversification is well-studied in
query answering in databases [39], search engines [23, 25] and
recommender systems [55]. This problem aims to return k results
that take both utility and diversity into consideration [17]. In many
cases, diversity comes at the cost of utility [39, 57]. A common
approach to measuring diversity, which we also adopted in our
work, relies on pairwise similarities [21, 39]. The main departure
from previous work is that we also account for novelty among
itemsets selected in previous steps, and the that the score of novelty
may change along the summarization pipeline (see Section 5.1).

Multi-step data exploration: Data exploration is a multi-step pro-
cess whose goal is to extract insights from data [33, 34, 56]. Guid-
ing users in performing data exploration is a well-studied task
[7,9, 22]. Numerous works proposed next-step recommendations
[8, 16, 18, 26, 34]. Novel operators for interactively exploring data
and discover interesting sets of tuples were introduced in [27, 32].

As opposed to this line of work whose goal is to extract general
insights, our goal is to summarize massive datasets by detecting
highly uniform and diverse itemsets. Also, as can be seen in Table
1, our next-step recommendations are operation-driven - unlike
previous work where recommendations are data-driven. This allows
generating pipelines that exploit semantic relationships between
data regions and preserve the train of thought of the user [45].

ML for data exploration: Recent work suggested to automate data
exploration using Reinforcement Learning [9, 37, 38, 44]. EDA4Sum
adopts a similar approach to provide guidance to users with no need
for training data. The logic of our RLSum algorithm is based on
the system presented in [37, 38] that guides users in finding items
of interest in large datasets. In this system, the process is driven
by data familiarity and curiosity. Unlike [38], RLSum does not
require an extrinsic reward, alleviating the need for labeled data or
prior knowledge. Moreover, in RLSum the iterative summarization
process is driven by uniformity, diversity, and novelty.

3 DATA MODEL

We consider a set of items D described with a set of (numerical or
categorical) ordinal attributes A. Without loss of generality, we will

Table 1: Positioning of EDA4Sum with respect to Data Exploration and Result Summarization and Explanation.

Related Work Pipeline Recommendation Guidance
One-Shot | Multi-Step | Data-Driven | Operation-Driven | Hands-Free | Connected
EDA [7-9, 44] v v v v
[37, 38] v v v v
[6, 27, 34, 46, 53] v v v
[32] v v
[15] v v v
Summarization [5, 20, 41, 50, 51] v v N
and Explanation [54] v v v
[29] v v v v
EDA for Summarization EDA4Sum v v v v v v

use SDSS to illustrate our data model. Numerical attribute values
are assumed to be binned into a fixed number of bins. Each item
deD is represented as a vector, denoted as vy, where an entry v (a)
is the value of d for an attribute acA.

Following [44], we use the notion of itemset defined as a set
of items that share the same values for a set of attributes. Those
attributes define the itemset description that has the benefit of con-
veying the content of the itemset at a glance. O denotes the set of
all itemsets created from D. We note that itemsets may overlap. To
illustrate, Figure 1 contains examples of galaxy itemsets along with
their descriptions. We represent each itemset i with a vector v; that
computes the aggregated values of items in i for each attribute in A.
The value of each vector entry is computed as the mean of the val-
ues of its corresponding attribute in the itemset. Other aggregations
could be used (e.g., median for ordinal attributes).

3.1 Data Summaries

A summary ICD is a set of (at most) k itemsets in O, where k is a
system parameter. Intuitively, a useful summary contains itemsets
consisting of similar items (uniformity), and where itemsets are
pairwise different from each other (diversity). Since our aim will
be to generate multi-step summaries, an important question is to
what extent the current step’s summary displays new itemsets
when compared to previous steps’ summaries (novelty). To that
end, we define the notions of uniformity, diversity and novelty of a
summary, to be used to define the utility of a summary.

Uniformity of a summary measures how similar items are to
each other in each of its itemset. We first define the uniformity of
an itemset. Let var, (i) denote the variance of items in an itemset i
w.r.t. an attribute a, where var is some variance measure:

uni(i) := Al

- Yaeavara(i)
The uniformity of a summary of k itemsets I is given by:

Uni(I) = mi}l(uni(i))
1SS
The diversity of a summary, denoted as Div(I), is defined as:

Div(I) := min vectorDist(v;, vj)
ii’eli<>i

where vectorDist(vj, v;7) is the distance between itemsets i and i’.
Let SEEN denote the set of all itemsets seen by the user. Initially,
SEEN=0. Whenever an itemset is displayed, we add it to the set
SEEN. Intuitively, the novelty of a summary captures the proportion
of how many new itemsets the user is currently seeing. The novelty

of a summary I is defined as: Noo(I, SEEN) := I\SI%
Our objective is to balance uniformity, diversity, and novelty.

Following common approaches for results diversification [12, 21],

1800

we propose a parameterized objective which enables users to specify
their desired balance. The utility of a summary I is denoted as
utility(I), and is defined as follows:
utility(I)=a-Uni(I)+f-Div(I)+y-Nov(I, SEEN)

where a, B,y € [0, 1] are system parameters, and ¢ + f+y = 1.

We examined the impact of these parameters on the results,
determining the ranges in which no change in performance was
observed. We found that with a slight change of the parameters
values, the cumulated utility is unaffected. Thus, to allow for a
user-friendly use of EDA4Sum, we reduced the space of all possible
combinations of values for the parameters «, , and y by allowing
each parameter to take either a low, medium, or a high value. We
consider the following four combinations of values: (i)-(iii) one of
the parameters is set to a high value with the rest assigned to low;
(iv) all parameters are set to have a medium value.

While some datasets are largely uniform, others contain more di-
versity. Therefore, we need to make sure our optimization function
provides tunable weights for uniformity, diversity and novelty.

1)

3.2 Problem Statement

A single one-shot summary of a large dataset is not representative.
We propose to examine the applicability of EDA to data summa-
rization. We first define summarization pipelines whose aim is
to generate connected summaries. At each step, the user sees a
summary I’ that is obtained by applying an exploration operator,
explore(), to an itemset chosen from a summary that was shown
in the previous step. The application of an operator to generate
the next summary helps understand links between consecutive
summaries, and preserve the stream of consciousness of users [45].
A summarization pipeline is a sequence of summaries, connected
by exploration operators. In its general form, an operator, denoted
as explore(i, k), takes an itemset i and a number k, and returns a
summary formed by (at most) k itemsets that are related to items in
i. The pipeline is bootstrapped with various diversity algorithms to
start with a summary containing the most uniform and diverse sets.
In Section 5.1, we describe the exploration operators we support.
Given a bound ¢, the system produces a summarization pipeline
of length t. We define the utility of a step to be the utility of its
resulting summary. The system needs to decides which summary to
display at each step to maximize the cumulated utility. We refer to
this question as the Eda4Sum Problem and formalize it as follows.

ProBLEM 3.1 (THE EDA4SUM PROBLEM). Given an input itemset
i€D and a bound on the number of steps t, recommend a summa-
rization pipeline (I, . ..,I;) of length t with the highest cumulated

utility, ie., Z;’:l utility(I;) is maximized, and for every j€[1,1], the
summary Ijy1 is obtained by applying an explore operator on an
itemset i from the summary I;.

We can prove that the Eda4Sum Problem is NP-hard by a reduc-
tion to the Heaviest Path problem in weighted directed graphs [43].

4 ALGORITHMS

To address the Eda4Sum Problem, we develop Top1Sum and RLSum,
two adaptations of well-known approaches. Our algorithms are
integrated into a prototype system that is also called EDA4Sum.

Architecture of EDA4Sum. In the off-line phase, we preprocess
the data and instantiate our set-based model. Equi-depth binning
is applied to each attribute and we use the LCM closed frequent
pattern mining algorithm [49] to generate (possibly overlapping)
itemsets. Different Reinforcement Learning models are trained as
explained in Section 4.2. In the online phase, we allow users to gen-
erate summarization pipelines following one of the modes: Manual
where the system displays a summary at each step, and the user
inputs the next itemset, operation and corresponding attributes to
be applied to the chosen itemset; Partial Guidance where at each
step, the system displays a summary and the the user may provide
only part of the input for the next step (e.g., specifying solely the
target itemset, or the operator to apply); Full Guidance where the
system displays a t-size summarization pipeline. Full and partial
guidance rely on executing a summarization pipeline.

Pipeline execution starts by running the SWAP algorithm [54]
that finds the k most uniform and diverse itemsets. Thus, for a
summarization pipeline of length 1, EDA4Sum behaves exactly
as the SWAP algorithm. The next steps executes one of Top1Sum
or RLSum. The algorithm picks one of the itemsets returned by
SWAP or the previous operator, and chooses which operator to
execute on that itemset, resulting in a new summary. Top1Sum is a
simple greedy-based algorithm that at each step chooses to apply an
operator which results in the summary with highest utility. RLSum
auto-generates summarization sessions using Deep Reinforcement
Learning (DRL). This solution allows us to reduce computation time
at runtime. The models are pre-trained, and the inference time to
pick the best expected action is insignificant. In our experimental
study we compare the results of Top1Sum and RLSum.

4.1 ToplSum

The Top1Sum algorithm applies local optimization to find the op-
eration that produces the highest utility summary at each step
of the summarization pipeline. Intuitively, at each step, Top1Sum
examines every possible next step, i.e., every (itemset, explore(),
attributes) combination (where the itemset is one of the itemsets
the user is currently seeing), and executes the step that yields the
summary with the highest utility. Formally, at every step, given a
summary I, Top1Sum chooses the summary I’ s.t.:
I’=argmax;cyutility(explore(i)), where explore() is the operator
applied on the itemset i€l which results with the highest utility
among all operators and input itemsets.

Top1Sum has no theoretical guarantees for the Eda4Sum Problem.
Nevertheless, as our experimental study shows, Top1Sum works

1801

well in practice, and it is able to generate high utility summariza-
tion pipelines. We note that the main drawback of Top1Sum is its
running times, which are relatively slow even if the itemset vectors
are precomputed. The utility computation of next-step summaries
could be parallelized to speed up computation.

4.2 RLSum

Following recent approaches that were proven to be useful for EDA
[10, 37, 38, 44], we present a Deep Reinforcement Learning solution
to find a high-utility summarization pipeline.

We model the Eda4Sum Problem as a Markov Decision Process
(MDP) comprising a triple (S, E, R) where:

S is a set of summarization states. Each state s; contains several
itemsets referred to as sets(s;);

E is a set of actions, where each action is a specific exploration func-
tion explore(x, a) (with x an input itemset picked from sets(s;),
and a an optional attribute) and enables a transition between con-
secutive exploration states.

R(st, er, st+1) are rewards for transitioning from state s; to s;+1 by
applying exploration action e;.

We define a summarization policy m as a mapping function from
an summarization state s; to an action e;, where 7(s;) = e;, and
look for the policy maximizing expected reward such as:

||

" = argmax, E [Z yiR(st, er, st+1)] (2)
=1

where y is a discount factor in [0, 1], || is the length of policy .

We model the reward of the action e; on the state s; as the utility
value of sets(ss4+1). The RLSum algorithm finds a policy 7* that
maximizes the expected cumulative reward.

There are many methods for solving MDPs, including value it-
eration and policy iteration. It has been proved theoretically and
empirically in [36] that policy iteration is computationally more effi-
cient and requires a smaller number of iterations to converge. Here
we adapt model-free RL [9, 28, 44, 48] with inputs (S, E, R) as a pol-
icy iteration method which fits our proposed problem remarkably
well in the absence of logs as training samples.

Deep Reinforcement Learning Algorithm. Model-free RL
allows us to address the problem of finding a policy, i.e., a pipeline,
that maximizes the discounted cumulative reward. Actor-critic
methods combine policy gradient methods with a learned value
function. Each learning episode contains action probabilities and
values that get periodically updated as the agent learns from the
environment based on the reward function. The policy (the actor)
adjusts action probabilities based on the current estimated advan-
tage of taking that action; the value function (the critic) updates this
advantage based on the rewards such as: Advantage(s;, e;, si+1) ~
R(si, e, si+1) + YV (si+1) — V(si) where V(.) is the expected reward
function. Several workers run in parallel and update the actor and
critic values. We train a worker as follows. We instantiate the envi-
ronment interface for the worker with the utility weights defined
for the training. For every operator execution step, an action is se-
lected and executed, and the reward is computed. The value network
learns a baseline state value to which the current reward estimate
is compared to obtain the “advantage”. The policy network adjusts
the log probabilities of the actions based on the advantage via the
RL algorithm. We then train the policy with the newly computed

advantage values and train the value function with the obtained
reward. This process is completed in parallel by each worker.

5 EXPERIMENTAL STUDY

This section presents experiments that evaluate the effectiveness
and efficacy of EDA4Sum. We aim to address the following research
questions. Q1: How do Top1Sum and RLSum compare to each other
and to SWAP w.r.t. the utility of found summaries? Q2: What is
the response time of our algorithms? Q3: Is guidance in generating
summarization pipelines needed?

5.1 Implementation Details

Our code is available at [3]. EDA4Sum is available at [2]. All al-
gorithms are implemented in Python 3.7. The experiments were
executed on a PC with i7-9850H 2.6GHz and 16GB Ram memory.

We measure utility using the standard deviation measure. In case
some attributes are categorical, other deviation measures, such as
entropy, could be used without affecting our solution. To measure
diversity, we use the Manhattan distance metric as the vector dis-
tance measure. Other vector distance metrics could be used with
only minor modifications. To obtain comparable values, we used
the scaling method that was presented in [47].

Evolving weights: There is a trade-off between uniformity, di-
versity, and novelty of a summary. Finding a highly uniform and
diverse summary may come at the cost of returning a novel one. In
different parts of the summarization pipeline, the user’s preferences
may change. Suppose the user has seen in previous steps many
itemsets. In this case, it is more important to return a uniform and
diverse summary rather than a novel one. To capture this, we tested
two evolving weights schemes: Increasing Novelty and Decreasing
Novelty. For these schemes, the novelty weight is a function of
the total number of itemsets, the number of seen itemsets, and the
length of the pipeline. This weighting scheme will be compared
to others, such as fixed-value weights (e.g., balanced weights). To
safe space, we do not report the results of increasing or decreasing
uniformity (resp., diversity), as decreasing novelty is almost the
same as increasing or decreasing uniformity (resp. diversity).

RLSum implementation. We use a Tensorflow-based implemen-
tation of A3C [35] as a policy learning method, a state-of-the-art
DRL framework that has been shown to outperform other critic-
based methods on a wide range of applications [35]. The appeal
of A3C comes from its parallelized and asynchronous architecture:
multiple actor-learners are dispatched to separate instantiations of
the environment; they all interact with the environment and collect
experience and asynchronously push their gradient updates to a
central target network. The agents were trained on two servers with
Intel Xeon processors, with 370GB and 126GB of RAM. Training
took 100 hours for 4000 episodes on SDSS and 3000 on SPOTIFY and
FOOD, with 50 steps per episode. Each agent used 6 workers in par-
allel; the update interval was set to 20 steps, and we concatenated
three successive states for the LSTM layers.

Operators. We support the following exploration operators:
(1) by-facet(i,a) (drill-down): returns as many subsets of i as there
are combinations of values for the attribute a; (2) by-superset(i)
(roll-up): returns the k smallest supersets of the input itemset i; (3)

1802

Table 2: Examined Datasets.

Dataset | |items| |atts| |itemsets| |ground truth
itemsets|

SDSS 2.6M 7 348,857 169

SPOTIFY| 232,725 11 2,204,806 27

FOOD 11,762 11 226, 381 22

by-distrib(i): returns k itemsets whose attribute value distribution
is similar to i; (4) by-neighbors(i,a): returns 2 itemsets that are
distinct from the input itemset i and that have the previous (smaller)
and next (larger) values for attribute a.

The by-distrib and by-neighbors operators were introduced in [37,
38] Given an itemset i, the by-neighbors operator only changes the
value of one attribute in the description of i to obtain the neighbor-
ing itemsets, and by-distrib returns itemsets having similar distri-
butions to i. Thus, if applied on a uniform itemset, the by-distrib
and by-neighbors operators would return itemsets that are (almost)
as uniform as the input itemset. Also, by definition, both the by-
facet and the by-superset operators return itemsets having different
descriptions and items than that of the input itemset. Thus, it is
more likely to find a diverse summary after applying one of these
operators than the by-distrib and by-neighbors operators. Our ex-
periments will examine those hypotheses.

5.2 Experimental Setup

To demonstrate the applicability of EDA4Sum to multiple scenarios,
we consider the following datasets. In all datasets, each column
was binned into 10 equi-depth bins. SDSS. SDSS [1]is a massive sky
survey dataset containing images and metadata of astronomical
objects. We selected 2.6M galaxies with clean photometry and spec-
tral information. Each galaxy has 7 attributes commonly used in
Astronomy to describe information such as the magnitude in each
color filter, and the size of an object. SPOTIFY Track DB. The SPO-
TIFY dataset is a publicly available Music database [14]. It contains
information about over 232K music tracks. We have extracted the
11 numerical attributes that describe the track valence, duration,
danceability, etc. Figure 2 shows a screenshot of EDA4Sum with
SPOTIFY songs. FOOD Data. The FOOD Data is a publicly avail-
able food nutrition facts dataset [4]. It contains information about
over 14K food items. We have extracted 11 numerical attributes
that describe the item’s amount of calories, fat, protein, etc.

Itemsets. To build itemsets we use LCM, an implementation of the
Apriori algorithm for frequent pattern mining [49]. Each frequent
pattern is described with attributes which are common to all items
of the pattern. Hence each pattern forms an itemset s where s.desc
is the pattern itself. Here we used LCM with a support value of 10
to generate 348, 857 itemsets whose size ranges from 10 to 261,793
galaxies (for SDSS), and with a support value of 20 to generate
2,204, 807 itemsets whose size ranges from 20 to 93,107 music
tracks (for SPOTIFY). For FOOD, we used a support value of 10 to
generate 226, 381 itemsets whose size ranges from 10 to 4, 953.

Ground-truth uniform itemsets. For each dataset, we define a
set of (non-overlapping) uniform itemsets to be discovered by a
summary. Those are referred to as "ground-truth" itemsets. For
SDSS, they correspond to 169 well-known galaxy types extracted
from the Galaxy Zoo Classification [52], covering less than 12%

05 | loudness = (-19.327, -14.405]

Norma (1987 - Remaster): r-ﬂ Sl For All We Know
" Vincenzo Bellini Roberta Flack

‘= Puccini: Suor Angelica,

“ Giacomo Puccini

\ popularity = (-0.001, 12.0]

OFfF Yo ;
Pq@ sl There Was A Cat

¢ Madama Butterfly - Act Iz
Giacomo Puccini

Sl Sugar Kane Music

Dix Filles dans un pré
SN Dorothée

Figure 2: Example of song itemsets.

of the data. For SPOTIFY, they correspond to the partition of all
music records by the attribute genre. The number of genres is 27.
For FOOD, the ground truth itemsets correspond to the partition
of all food records by the attribute food group. The number of
food groups is 22. Importantly, we note that those itemsets are
not necessarily the most uniform itemsets in each dataset. Other
ground-truths could be defined. We will see in Section 5.3.1 how
relevant the summaries we return are to our ground-truths.

Unless otherwise indicated, we set the number of steps to 50 and
the maximal size of a summary to 10.

Variants. One-shot summarization. We implemented the com-
mon SWAP algorithm [54]. The output of this algorithm is also the
starting point of Top1Sum and RLSum. Multi-step summarization.
Top1Sum The greedy algorithm described in Section 4.1. RLSum.
The RL-based algorithm described in Section 4.2. To compare RL-
Sum with existing EDA solutions, we included two additional RL-
based baselines introduced in [37]: FAMO. A familiarity-only algo-
rithm that mimics exiting EDA approaches, and 75FAM-25CUR
for 75% familiarity and 25% curiosity. This algorithm achieves the
best results for the EDA task presented in [37]. Manual. At each
step, the user specifies the chosen itemset, operator and parame-
ters, and the resulting summary is returned. This baseline serves to
demonstrate the need for guidance in generating useful summaries.

For both Top1Sum and RLSum we have experimented with dif-
ferent weighting schemes (fixed or evolving weights) for the pa-
rameters @, f and y. We indicate high, balanced and low weight of
a parameter with a suffix. For example, RLSum_BL with balanced
weights on utility, diversity and novelty, and RLSum_LN with a
low novelty weight. RLSum_IC (resp., RLSum_DC) denotes RLSum
with an increasing (resp., decreasing) novelty weight.

—e— RLSum_ALPHA_HI
> 401 —¥— RLSum_BETA_HI
£ —e— RLSum_IC
5 201 —#— RLSum_DC
—#%— RLSum_BL
o1% : - . | = RLSum_GAMMA_HI
0 500 1000 1500 2000 2500 3000 3500 4000
episodes
SDSS

Figure 3: Cumulated utility during training.

5.3 Utility and Relevance to Ground-Truth (Q1)

In what follows we set the uniformity threshold of SWAP to 2. We
examined the impact of this threshold on utility over all datasets.
We found that lower thresholds return itemsets that have poor
uniformity while higher thresholds return too few itemsets.

Results Summary. We summarize our main finding as follows:
e As expected, the results clearly show that the Top1Sum variants
produce the highest utility values.
o In particular, Top1Sum_HU achieves the highest cumulated utility
in all datasets. This implies that to optimize utility, high weights
for uniformity are required.
e However, in terms of quality, we see that different variants, partic-
ularly RLSum variants, were performing better. This indicates that
for different real-life scenarios, where the uniformity and diversity
of the ground-truth itemsets varies, balancing uniformity, diversity,
and novelty is required.
e This motivates the need for a tunable objective function, where
users can set the balance among uniformity, diversity, and novelty.
e The results of FAMO and 75FAM-25CUR were inferior in terms
of both utility and quality, showing that existing EDA solutions are
ill-suited to our problem.

Evolution of utility during training. Figure 3 reports the training
of our policies for different RLSum variants for SDSS. As can be
seen, the agents are able to optimize and improve their utilities.
Similar trends were observed on the other datasets as well.

5.3.1 Pipeline execution. . We recorded data on a pipeline execu-
tion in the Full Guidance mode for each baseline algorithm.

Utility during pipeline execution. Figure 4 shows the evolution
of utility of the top-3 performing RLSum and Top1Sum variants with
pipeline length. Other variants in which their results were inferior
were omitted from presentation. As expected, the results clearly
show that Top1Sum variants produce the highest utility values. The
best performing variant in all datasets is Top1Sum_HU. In Food, the
smallest dataset, RLSum_HU was also managed to generate high
utility pipelines, but note that this was not the case for the larger
datasets. Not surprisingly, the results of the EDA solutions (FAMO
and 75FAM-25CUR) are inferior, as these baselines are optimized
for a different task. We observe for all datasets that the difference
between variants increases as the pipeline length increases.

We dive into this comparison and plot the values of utility di-
mensions: uniformity, diversity and novelty (Figure 5) of the two
best Top1Sum and RLSum variants. These scores could take neg-
ative values due to our scaling procedure (see Section 5.1). The
results on FOOD showed similar trends. The first observation is
that the weights assigned to these dimensions impact the perfor-
mance of individual variants. This is quite apparent on Top1Sum
variants where the value for each dimension reflects its weight
(e.g., Top1Sum_HU yields the highest cumulated uniformity). We
observe that the RLSum variants with a high novelty weight (e.g.,
RLSum_DC) achieve high diversity. Indeed, while novelty appears
to be difficult to learn, trained agents compensate with other di-
mensions. This is appealing as it demonstrates the capability of

1803

120 1
50 4 —8— ToplSum_ALPHA_HI
. 80 - 100 - . —#— RLSum_ALPHA_HI
£ Z Z a0 —4— RLSum_DC
£ 60 E 801 £ 30l —=— ToplSum_IC
k-] b k] —#— RLSum_IC
o % 60 8 o0 -
% 40 5 5 —o— RLSum_75FAM_25CUR
E E 40 4 E 104 —¥— ToplSum_BETA_HI
3 201 3 204 3 o
0 o -10 1
o 10 20 30 40 50 o 10 20 30 40 50 1] 10 20 30 40 50
pipeline length pipeline length pipeline length
SDSS SPOTIFY FOOD
Figure 4: Cumulated utility as a function of pipeline length.
§ 100 § ~N u.nifon.nity
T = 100 B diversity
-: 50 .: Z3 novelty
@ Q
£ o -% £ o N—
El]
£ 50 E
3 3

100 -

T T T T
ToplSum_ALPHA_HI ToplSum_BETA_HI RLSum_BETA_HI RLSum_DC

SDSS

ToplSum_ALPHA_HI ToplSum_BETA_HI

RLSum_BETA_HI RLSum_DC

SPOTIFY

Figure 5: Cumulated uniformity, diversity and novelty during pipeline execution.

RLSum variants to adapt to the dataset. This will be studied fur-
ther when we will examine the relevance of found summaries to a
ground-truth.

Discovering ground-truth itemsets. We now illustrate a use
case that studies the relevance of obtained summaries, i.e., the
number of discovered ground-truth itemsets. This clearly depends
on the definition of ground-truth itemsets (e.g., in SPOTIFY these
itemsets are not so uniform), and how similar they are to each other,
which affects diversity. Figure 6 reports the cumulated relevance of
itemsets found at each step during pipeline execution. Here again, to
ease the presentation, we plot only the results of the top-3 variants
of Top1Sum and RLSum that achieve the best results.

The first observation is that the variants that achieve the highest
results in terms of utility (e.g., Top1Sum_HU) are not the ones with
the highest relevance. The explanation is that ground truth itemsets
are not necessarily the most uniform itemsets in the data. Further-
more, their diversity and uniformity levels vary across datasets.
This warrants the need for a tunable objective where the user can
set the weights of the utility dimensions according to her needs.

Our second observation is that despite Top1Sum outperforming
RLSum when measuring utility, in many cases, RLSum outperforms
Top1Sum when measuring relevance to a ground-truth. We can
see that RLSum_DC performed well on all datasets. The intuition
is that, to reach high relevance summaries, we need to start with
a high novelty weight and decrease it as the pipeline is executed.
The observed relevance results and the utility dimensions obtained
by RLSum_DC suggest that high relevance summaries depend on
either a mix of diversity and novelty, or on a very high level of
diversity. While uniformity eases interpretability, reaching repre-
sentativity of large datasets requires to favor diversity and novelty,
two dimensions that EDA is designed to optimize. This experiment
confirms the usefulness of EDA for summarizing large datasets.

Impact of EDA operators. We examined the impact of using
EDA4Sum with 20P (by-facet and by-superset) vs. using all four
operators. We report that in all cases, the results of the 20P versions
of both Top1Sum and RLSum were inferior to those achieved with

1804

all operators. This verifies the need in supporting expressive explo-
ration operators that go beyond traditional drill-down and roll-up.
Figure 7 reports the proportion of usage of each operator by each
variant. Observe that RLSum_DC that attains high relevance on all
datasets, mostly uses by-facet and by-superset that favor diversity
and encourage finding new itemsets. Whereas Top1Sum_HU that
attains high utility, mostly uses by-neighbors that favor uniformity.
This is confirmed by Figure 5, where we can see that RLSum_DC
achieves high diversity and Top1Sum_HU achieves high unifor-
mity.

5.4 Scalability Evaluation (Q2)

The running time of a single step is measured between the time
an operation is picked and the time a summary is displayed. All
pipelines are executed in Full Guidance, and we report the average
of 5 executions. Table 3 reports results on SPOTIFY. Other datasets
demonstrated similar trends. The running times of the EDA variants
are the same as RLSum, and thus omitted. We compare between
only two variants Top1Sum_HU and RLSum_DC (as the weights
do not affect running times). As expected, the results clearly show
that RLSum outperforms Top1Sum by one order of magnitude and
that the difference between the two increases with data size, # at-
tributes, and # bins. Since Top1Sum checks every itemset against
each possible next operator to determine the highest utility results,
its execution time depends on the number of itemsets returned
by each operator. Increasing the number of bins increases result-
ing itemsets (e.g., more facets), leading to higher execution times.
Interestingly, the performance of RLSum improves with a higher
number of bins, as the number of mined itemsets reduces. These
results confirm that RLSum is the method of choice for performing
interactive summarization. Obviously, Top1Sum returns the high-
est utility summaries and may still be preferred given that RLSum
comes at the cost of a long training time.

5.5 Summarization Guidance (Q3)

To examine the benefit of guidance during summarization, we ran
a user study and compared among all summarization modes.

T
40

120 4 12.0 1
100 -
11.51
> 80 >
= £
5 6o § 11.01
T T
401 10.5
201
10.0
T T T T T T T T T T
V] 10 20 30 40 50 1] 10 20 30
pipeline length pipeline length
SDSS SPOTIFY

91 —4— RLSum_DC
—e— RLSum_GAMMA_HI

8 —e— RLSum_75FAM_25CUR
o —¥— ToplSum_IC
= —— ToplSum_DC
571 —+— RLSum_BETA _HI
v —e— ToplSum_BETA HI

6

5

50 0 10 20 30 40 50
pipeline length
FOOD

Figure 6: Cumulated relevance to a ground-truth as a function of pipeline length.

a0

Uses
Y]

RLSum_BETA_HI RLSum_DC ToplSum_ALPHA_HI ToplSum_BETA_HI

SDSS

RL!

I by_facet

=3 by_superset
EEN by_neighbors
B by_distribution

Sum_BETA_HI

RLSum_DC ToplSum_ALPHA_HI ToplSum_BETA_HI

SPOTIFY

Figure 7: Operator usage in pipeline execution.

Table 3: Average pipeline execution times (in seconds).

Variant Data size # of attributes # of bins

23K | 115K| 233K| 3 7 11 5 10 20
Top1Sum| 4.3 17.8 | 21.1 | 0.6 | 4.1 21.1| 19.7 | 21.1| 32.8
RLSum 0.4 0.7 1.1 0.4 0.5 1.1 1.4 1.1 0.8

Table 4: User study.

Mode litemsets| | utility | uni. diversity | novelty
Manual 67 7.34 16.97 -0.5 3.26
Partial Guidance 142 2.35 —15.45| 39.9 —24.77
Full Guidance 101 10.6 —59.51 | 68.07 -71.58

18430 items]J unif i r = (10.559000000000001, 16.928]

g=(10.327, 17.753]

9 =(10.327, 17.753]

Figure 8: A relevant summary found with partial-guidance.

We asked two astronomers from the Max Planck Institute of As-
trophysics and who are highly familiar with SDSS, to use EDA4Sum.
The request was to find as many well-known galaxies as possible
from the 169 galaxy types in Galaxy Zoo. The pipeline length was
fixed to 50. The first astronomer was asked to use EDA4Sum with
the Manual mode, and the second used the Partial Guidance mode
(with RLSum_DC). We recorded their pipelines and compared the
results with a pipeline generated by Full Guidance. Table 4 report
for each pipeline, the number of ground-truth itemsets discovered,
as well as their cumulated utility and its three dimensions.

We observe that EDA4Sum with partial guidance outperforms
the other two modes. Additionally, our astronomers clearly favored
the sequence of connected itemsets over a set of itemsets.

1805

Our experts found the use of a system that encapsulates SQL
and provides a visual interface very convenient. Hence, their pref-
erences go to the manual mode as it lets them keep control over the
summarization process. However, as shown in Table 4, partially-
guided pipelines yield the highest relevance by far. Hence, an expert
with partial guidance manages to find almost all of the ground-truth
itemsets in only fifty steps. Figure 8 illustrates one of the best sum-
maries found with partial guidance. A deeper dive into utility shows
that in the manual mode, experts find highly uniform itemsets with
some reasonable novelty as they judiciously choose operators that
do not rediscover seen itemsets. However, they are not able to find
very diverse itemsets. As a result, relevance is the lowest. Interest-
ingly, full-guided pipelines (with no expert intervention) yield the
highest diversity, while partial-guidance allows them to connect
summaries and control the level of novelty and uniformity while
improving on the diversity of the manual mode. This suggests that
some automation with expert intervention is useful.

6 CONCLUSION

This work examined the applicability of EDA to data summarization.
Intuitively, a useful summary contains k individually uniform sets
that are collectively diverse to be representative. This bears similarity
to the well-known diversity problem where the goal is to find a
set of relevant and diverse items. This observation allows us to
formulate a multi-step summarization problem that seeks to build
a pipeline that returns the most useful summaries. We propose
two algorithms that adapt existing solutions. We run extensive
experiments that validate the use of DRL for data summarization.
Future work would examine if tuning the hyper parameters of the
DRL algorithm may improve results.

ACKNOWLEDGMENTS

This work is funded by the European Union’s Horizon 2020 re-
search and innovation program (project name: INODE) under grant
agreement No 863410.

REFERENCES

[9

=

[10]

[11

[13]

[14

[15]

[20]

[21]

oo
sk

[23

[24

[25

[26]

[27]

[28

2021. Sloan Digital Sky Server. https://www.sdss.org/.

2022. EDA4SUM. http://www.inode-project.eu:18181/dora-summaries/

2022. Git Repository. https://github.com/apersonnaz/EDA4Sum.

2022. My Food Data. https://tools.myfooddata.com/nutrition-facts-database-
spreadsheet.php.

Deepak Agarwal, Dhiman Barman, Dimitrios Gunopulos, Neal E Young, Flip
Korn, and Divesh Srivastava. 2007. Efficient and effective explanation of change in
hierarchical summaries. In Proc. of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining.

Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks VS Laksh-
manan, and Ruben H Zamar. 2017. Exploring rated datasets with rating maps. In
WWW. 1411-1419.

Sihem Amer-Yahia, Tova Milo, and Brit Youngmann. 2021. Exploring Ratings
in Subjective Databases. In Proceedings of the 2021 International Conference on
Management of Data. 62-75.

Sihem Amer-Yahia, Tova Milo, and Brit Youngmann. 2021. SubDEx: Exploring
Ratings in Subjective Databases. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, 2653-2656.

Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically generating data
exploration sessions using deep reinforcement learning. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1527-1537.
Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically Generating Data
Exploration Sessions Using Deep Reinforcement Learning. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (SIGMOD
'20). 1527-1537.

Shaofeng Bu, Laks VS Lakshmanan, and Raymond T Ng. 2005. Mdl summarization
with holes. In Proceedings of the 31st international conference on Very large data
bases. 433-444.

Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335-336.

Varun Chandola and Vipin Kumar. 2007. Summarization-compressing data into
an informative representation. Knowledge and Information Systems 12, 3 (2007),
355-378.

Kaggle Datasets. 2021. Kaggle: Spotify Tracks DB. https://www.kaggle.com/
zaheenhamidani/ultimate- spotify- tracks-db

Victor Dibia and Cagatay Demiralp. 2019. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33-46.

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: an
active learning-based approach for interactive data exploration. IEEE TKDE 28,
11 (2016).

Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big Data (2017).

Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh. 2014.
Querie: Collaborative database exploration. IEEE TKDE (TKDE) 26, 7 (2014),
1778-1790.

Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically Generating Data
Exploration Sessions Using Deep Reinforcement Learning. In International Con-
ference on Management of Data (SIGMOD).

Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivastava.
2014. Interpretable and informative explanations of outcomes. Proceedings of the
VLDB Endowment 8, 1 (2014), 61-72.

Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. 2012. Top-k
bounded diversification. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 421-432.

Jerome H Friedman and John W Tukey. 1974. A projection pursuit algorithm for
exploratory data analysis. IEEE Trans. on Computers 100, 9 (1974), 881-890.
Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result
diversification. In Proceedings of the 18th international conference on World wide
web. 381-390.

Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. Theoretical computer science 38 (1985), 293-306.

Ido Guy, Tova Milo, Slava Novgorodov, and Brit Youngmann. 2021. Improving
Constrained Search Results By Data Melioration. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 1667-1678.

Enhui Huang, Liping Peng, Luciano Di Palma, Ahmed Abdelkafi, Anna Liu, and
Yanlei Diao. 2018. Optimization for active learning-based interactive database
exploration. pVLDB Endow. (2018).

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2017. Inter-
active data exploration with smart drill-down. IEEE TKDE (2017).

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237-285.

1806

[29]

[30]

(33]
(34]

(35]

(36]

(37]

(39]

[40]

[46]

Alexandra Kim, Laks VS Lakshmanan, and Divesh Srivastava. 2020. Summarizing
Hierarchical Multidimensional Data. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 877-888.

Laks VS Lakshmanan, Raymond T Ng, Christine Xing Wang, Xiaodong Zhou, and
Theodore J Johnson. 2002. The generalized MDL approach for summarization. In
VLDB’02: Proceedings of the 28th International Conference on Very Large Databases.
Elsevier, 766-777.

Laks VS Lakshmanan, Jian Pei, and Jiawei Han. 2002. Quotient cube: How to
summarize the semantics of a data cube. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 778-789.

Doris Jung-Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya
Parameswaran. 2019. Avoiding drill-down fallacies with VisPilot: assisted explo-
ration of data subsets. In Proc. of the 24th International Conference on Intelligent
User Interfaces.

Patrick Marcel, Nicolas Labroche, and Panos Vassiliadis. 2019. Towards a benefit-
based optimizer for Interactive Data Analysis. In EDBT/ICDT.

Tova Milo and Amit Somech. 2018. Next-step suggestions for modern interactive
data analysis platforms. In KDD. 576-585.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. 1928-1937.

Elena Pashenkova, Irina Rish, and Rina Dechter. 1996. Value iteration and policy
iteration algorithms for Markov decision problem. In AAAI’96: Workshop on
Structural Issues in Planning and Temporal Reasoning. Citeseer.

Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti—Equille, Maximilian Fabri-
cius, and Srividya Subramanian. 2021. Balancing Familiarity and Curiosity in
Data Exploration with Deep Reinforcement Learning. In aiDM ’21: Fourth Work-
shop in Exploiting Al Techniques for Data Management, Virtual Event, China, 25
FJune, 2021. 16-23.

Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti—Equille, Maximilian Fabri-
cius, and Srividya Subramanian. 2021. DORA THE EXPLORER: Exploring Very
Large Data With Interactive Deep Reinforcement Learning. In CIKM °21: The
30th ACM International Conference on Information and Knowledge Management,
Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini,
Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM,
4769-4773.

Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying top-k results. arXiv
preprint arXiv:1208.0076 (2012).

Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong Yu.
2010. Constructing and exploring composite items. In Proc. of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, Ahmed K. Elmagarmid and Divyakant Agrawal
(Eds.). ACM, 843-854.

Sunita Sarawagi. 1999. Explaining Differences in Multidimensional Aggregates.
In VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK. Morgan Kaufmann, 42-53.
Gayatri Sathe and Sunita Sarawagi. 2001. Intelligent rollups in multidimensional
OLAP data. In VLDB, Vol. 1. 531-540.

Alexander Schrijver. 2003. Combinatorial optimization: polyhedra and efficiency.
Vol. 24. Springer Science & Business Media.

Mariia Seleznova, Behrooz Omidvar-Tehrani, Sthem Amer-Yahia, and Eric Simon.
2020. Guided exploration of user groups. Proceedings of the VLDB Endowment
(PVLDB) 13, 9 (2020), 1469-1482

Dafna Shahaf and Carlos Guestrin. 2011. Connecting the Dots between News
Articles. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, Toby Walsh
(Ed.). ICAI/AAAL 2734-2739.

Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless data exploration with zenvisage: an expres-
sive and interactive visual analytics system. arXiv preprint arXiv:1604.03583
(2016).

Amit Somech, Tova Milo, and Chai Ozeri. 2019. Predicting “What is Interesting”
by Mining Interactive-Data-Analysis Session Logs. In EDBT. 456-467.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning. MIT press.
Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. 2004. LCM ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In IEEE ICDM Workshop
on Frequent Itemset Mining Implementations (FIMI), Vol. 126.

Michael Vollmer, Lukasz Golab, Klemens B6hm, and Divesh Srivastava. 2019.
Informative Summarization of Numeric Data. In Proc. of the 31st International
Conference on Scientific and Statistical Database Management.

Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, and Jun Yang. 2018. Interactive sum-
marization and exploration of top aggregate query answers. In Proceedings of
the VLDB Endowment. International Conference on Very Large Data Bases, Vol. 11.
NIH Public Access, 2196.

[52]

[53]

[54]

Kyle W. Willett, Chris J. Lintott, Steven P. Bamford, Karen L. Masters, Brooke D.
Simmons, Kevin R. V. Casteels, Edward M. Edmondson, Lucy F. Fortson, Sugata
Kaviraj, William C. Keel, and et al. 2013. Galaxy Zoo 2: detailed morphological
classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Monthly
Notices of the Royal Astronomical Society 435, 4 (Sep 2013), 2835-2860. https:
//doi.org/10.1093/mnras/stt1458

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE Trans. on Visualization and Computer
Graphics (2015).

Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to
make a world: diversification in recommender systems. In Proceedings of the 12th

1807

[55]

[56]

[57]

international conference on extending database technology: Advances in database
technology. 368-378.

Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to
make a world: diversification in recommender systems. In Proceedings of the 12th
international conference on extending database technology: Advances in database
technology. 368-378.

Mengyu Zhou, Wang Tao, Ji Pengxin, Han Shi, and Zhang Dongmei. 2020. Ta-
ble2Analysis: Modeling and Recommendation of Common Analysis Patterns for
Multi-Dimensional Data. In AAAL Vol. 34. 320-328.

Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. 22-32.

