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ABSTRACT

How can we explore the unknown properties of high-dimensional
sensitive relational data while preserving privacy?We study how to
construct an explorable privacy-preserving materialized view under
differential privacy. No existing state-of-the-art methods simultane-
ously satisfy the following essential properties in data exploration:
workload independence, analytical reliability (i.e., providing error
bound for each search query), applicability to high-dimensional
data, and space efficiency. To solve the above issues, we propose
HDPView, which creates a differentially private materialized view
by well-designed recursive bisected partitioning on an original data
cube, i.e., count tensor. Our method searches for block partitioning
to minimize the error for the counting query, in addition to ran-
domizing the convergence, by choosing the effective cutting points
in a differentially private way, resulting in a less noisy and compact
view. Furthermore, we ensure formal privacy guarantee and analyt-
ical reliability by providing the error bound for arbitrary counting
queries on the materialized views. HDPView has the following
desirable properties: (a)Workload independence, (b) Analytical re-
liability, (c) Noise resistance on high-dimensional data, (d) Space
efficiency. To demonstrate the above properties and the suitability
for data exploration, we conduct extensive experiments with eight
types of range counting queries on eight real datasets. HDPView
outperforms the state-of-the-art methods in these evaluations.
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1 INTRODUCTION

In the early stage of data science workflows, exploring a database to
understand its properties in terms of multiple attributes is essential
to designing the subsequent tasks. To understand the properties,
data analysts need to issue a wide variety of range counting queries.
If the database is highly sensitive (e.g., personal healthcare records),
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Figure 1: Data exploration through a privacy-preserving ma-
terialized view (p-view for short) of a multidimensional rela-

tional data. The p-view works as an independent query sys-

tem. Analysts can explore sensitive and multidimensional

data by issuing any range counting queries over the p-view

before downstream data science workflows.

data analysts may have little freedom to explore the data due to
privacy issues [38, 40].

How can we explore the properties of high-dimensional sensitive
data while preserving privacy? This paper focuses on guaranteeing
differential privacy (DP) [15, 16] via random noise injections. As
Figure 1 shows, we especially study how to construct a privacy-
preserving materialized view (p-view for short) of relational data,
which enables data analysts to explore arbitrary range counting
queries in a differential private way. Note that once a p-view is
created, the privacy budget is not consumed anymore for publishing
counting queries, different from interactive differentially private
query systems [18, 22, 23, 37, 41], which consume the budget every
time queries are issued. In this work, we describe the desirable
properties of the p-view, especially in data exploration for high-
dimensional data, and fill the gaps of the existing methods.

Several methods for constructing a p-view have been studied in
the existing literature. The most primitive method is to add Laplace
noise [15] to each cell of the count tensor (or vector) represent-
ing the original histogram and publish the perturbed data as a
p-view. While this noisy view can answer arbitrary range count-
ing queries with a DP guarantee, it accumulates a large amount of
noise. Data-aware partitioning methods [27, 29, 34, 42, 44, 46, 47]
are potential solutions, but they focus only on low-dimensional
data due to the high complexity of discovering the optimal parti-
tioning when the data have multiple attributes. Additionally, these
methods require exponentially large spaces as the dimensionality
of the data increases due to the count tensor representation, which
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Table 1: Only the proposed method achieves all requirements in private data exploration for high-dimensional data. Each

competitor represents a baseline [15], data partitioning [29, 42, 46], workload optimization [27, 30, 31], and generative model

[17, 35, 45], respectively.

Identity1 [15] Privtree [46] HDMM [31] PrivBayes [45] HDPView (ours)

Workload independence ✓ ✓ ✓ ✓
Analytical reliability ✓ ✓ ✓ ✓
Noise resistance on high-dimensional only low-dimensional ✓ ✓ ✓
Space efficiency ✓ ✓ ✓

can easily make them impractical. Workload-aware optimization
methods [27, 29–31] are promising techniques for releasing query
answers for high-dimensional data; however, they cannot provide
query-independent p-views needed in data exploration.

In addition, one of the most popular approaches these days is
differentially private learning of generative models [13, 17, 19, 20,
25, 35, 39, 45, 48]. Through the training of deep generative models
[17, 19, 20, 25, 39] or graphical models [45, 48], counting queries
and/or marginal queries can be answered directly from the model
or indirectly with synthesized data via sampling. These methods
are very space efficient because the synthetic dataset or graphical
model can be used to answer arbitrary counting queries. However,
these families rely on complex optimization methods such as DP-
SGD [7], and it is very difficult to quantitatively estimate the error
of counting queries using synthetic data, which eventually leads to
a lack of reliability in practical use. Unlike datasets often used in the
literature, the data collected in the practical field may be completely
unmodelable. Table 1 summarizes a comparison between the most
related works and our method, HDPView, i.e., High-Dimensional
Private materialized View. Each method in the table is described
in more detail in Section 2.

Our target use case is privacy-preserving data exploration on
high-dimensional data, for which the p-view should have the fol-
lowing four properties:

• Workload independence: Data analysts desire to issue
arbitrary queries for exploring data. These queries should
not be predefined.

• Analytical reliability: For reliability in practical data ex-
ploration, it is necessary to be able to estimate the scale of
the error for arbitrary counting queries.

• Noise resistance on high-dimensional data: For high-
dimensional data, range counting queries accumulate signif-
icant noise injected for DP. This noise accumulation makes
the query answers useless. To avoid this issue, we need a
robust mechanism for dimensionality increases.

• Space efficiency: It is necessary to generate spatially effi-
cient views even for count tensors with a large number of
total domains on various datasets.

Our proposal. To satisfy all the above requirements, we pro-
pose a simple yet effective recursive bisection method on a high-
dimensional count tensor, HDPView. Our proposed method has the
same principle as [29, 42, 46] of first partitioning a database into

1Identity adds noise to the entries of the count vector by the Laplace mechanism [15]
and cannot directly perturb high-dimensional datasets due to the domains being too
large; we measure estimated error using the method described in [31].

small blocks and then averaging over each block with noise. Un-
like the existing methods, HDPView can efficiently perform error-
minimizing partitioning even on multidimensional count tensors
instead of conventional 1D count vectors. HDPView recursively
partitions multidimensional blocks at a cutting point chosen in a
differentially private manner while aiming to minimize the sum of
aggregation error (AE) and perturbation error (PE). Compared to
Privtree [46], our proposed method provides a more data-aware
flexible cutting strategy and proper convergence of block parti-
tioning, which results in smaller errors in private counting queries
and much better spatial efficiency of the generated p-views. Our
method provides a powerful and practical solution for constructing
a p-view under the DP constraint. More importantly, the p-view
generated by HDPView can work as a query processing system
and expose the estimated error bound at runtime for any counting
query without further privacy consumption. This error information
ensures reliable analysis for data explorers.
Contributions. Our contributions are threefold. First, we design
a p-view and formalize the segmentation for a multidimensional
count tensor to find an effective p-view as error minimizing opti-
mization problem. P-view can be widely used for data exploration
process on multidimensional data and is a differentially private
approximation of a multidimensional histogram that can release
counting queries with analytical reliability. Second, we propose HD-
PView described above to find a desirable solution to the optimiza-
tion problem. Our algorithm is more effective than conventional
algorithms due to finding flexible partitions and more efficient due
to making appropriate convergence decisions. Third, we conduct
extensive experiments, whose source code and dataset are open,
and show that HDPView has the following merits. (1) Effectiveness:
HDPView demonstrates smaller errors for various range counting
queries and outperforms the existing methods [15, 29, 31, 45, 46]
on multi-dimensional real-world datasets. (2) Space efficiency: HD-
PView generates amuchmore compact representation of the p-view
than the state-of-the-art (i.e., Privtree [46]) in our experiment.
Preview of result.We present a summary previewing of the ex-
perimental results. Table 2 shows the average relative root mean
squared error against (RMSE) of HDPView in eight types of range
counting queries on eight real-world datasets and the average rela-
tive size of the p-view generated by the algorithms. With Identity,
we obtain a p-view by making each cell of the original count tensor
a converged block. HDPView yields the smallest error score on
average. This is a desirable property for data explorations. Further-
more, compared to that of Privtree [46], the p-view generated by
HDPView is more space efficient.
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Table 2: HDPView provides low-error counting queries in average on various workloads and datasets, and high space-efficiency

of privacy-preserving materialized view (p-view) when 𝜖 = 1.0. (N/A is due to HDMM and PrivBayes do not create p-view.)

Identity1 [15] Privtree [46] HDMM [31] PrivBayes [45] HDPView (ours)

Average relative RMSE 1.94 × 107 7.05 35.34 3.79 1.00
Average relative size of p-view 4.59 × 1017 5578.27 N/A N/A 1.00

2 RELATEDWORKS

In the last decade, several works have proposed differentially private
methods for exploring sensitive data. Here, we describe the state-
of-the-arts related to our work.
Data-aware partitioning. Data-aware partitioning is a conven-
tional method that aims to directly randomize and expose the entire
histogram for all domains (e.g., count vector, count tensor); thereby,
it can immediately compose a p-view that answers all counting
queries. A naïve approach to constructing a differentially private
view is adding Laplace noise [15] to all values of a count vector;
this is called the Identity mechanism. This naïve approach results
in prohibitive noise on query answers through the accumulation of
noise over the grouped bins used by queries. DAWA [29] and AHP
[47] take data-aware partitioning approaches to reduce the amount
of noise. The partitioning-based approaches first split a raw count
vector into bins and then craft differentially private aggregates by
averaging each bin and injecting a single unit of noise in each bin.
However, these approaches work only for very low (e.g., one or two)
-dimensional data due to the high complexity of discovering the op-
timal solution when the data have multiple attributes. DPCube [42]
is a two-step multidimensional data-aware partitioning method,
but the first step, obtaining an accurate approximate histogram, is
difficult on high-dimensional data with small counts in each cell.

Privtree [46] and [14] perform multidimensional data-aware
partitioning on count tensors, mainly targeting the spatial decom-
position task for spatial data. Unlike our method, this method uses
a fixed quadtree as the block partitioning strategy, which leads to
an increase in unnecessary block partitioning as the dimensional-
ity increases. As a result, it downgrades the spatial efficiency and
incurs larger perturbation noise. In addition, this method aims to
partition the blocks such that the count value is below a certain
threshold, while our proposed method aims to minimize the AE of
the blocks and reduce count query noise.
Optimization of given workloads. Another well-established ap-
proach is the optimization for a given workload. Li et al. [30] in-
troduced a matrix mechanism (MM) that crafts queries and out-
puts optimized for a given workload. The high-dimensional MM
(HDMM) [31] is a workload-aware data processing method extend-
ing the MM to be robust against noise for high-dimensional data.
PrivateSQL [27] selects the view to optimize from pregiven work-
loads. In the data exploration process, it is not practical to assume
a predefined workload, and these methods are characterized by a
loss of accuracy when optimized for a workload of wide variety of
queries.
Private data synthesis. Private data synthesis, which builds a
privacy-preserving generative model of sensitive data and gen-
erates synthetic records from the model, is also useful for data
exploration. Note that synthesized dataset can work as a p-view

by itself. PrivBayes [45] can heuristically learn a Bayesian network
of data distribution in a differentially private manner. DPPro [43],
Priview [35] and PrivSyn [48] represent distribution by approxi-
mation with several smaller marginal tables. While these methods
provide a partial utility guarantee based on randomized mecha-
nisms such as Laplace mechanisms or random projections, they
face difficulties in providing an error bound for arbitrary counting
queries on the synthesized data. Differentially private deep genera-
tive models have also attracted attention [9, 20, 25, 39], but most
of the works focus on the reconstruction of image datasets. Fan
et al. [17] studied how to build a good generative model based on
generative adversarial nets (GAN) for tabular datasets. Their exper-
imental results showed that the utility of differentially private GAN
was lower than that of PrivBayes for tabular data. [36] provides a
solution for high-dimensional data in a local DP setting.

As mentioned in Section 1, the accuracy of these methods has
improved greatly in recent years, but it is difficult to guarantee
their utility for analysis using counting queries, and there are large
gaps in practice. DPPro [43] utilizes a random projection [24] that
preserve L2-distance to the original data in an analyzable form to
give a utility guarantee, but this is different from the guarantee for
each counting query. CSM [49] gives a utility analysis for queries,
however, their analysis ignores the effect of information loss due
to compression, which may not be accurate. Also, as shown in
their experiments, they apply intense preprocessing to the domain
size and do not show the effectiveness for high-dimensional data.
Our proposed method provides an end-to-end error analysis for
arbitrary counting queries by directly constructing p-views from
histograms without any intermediate generative model.
Querying and programming framework. PrivateSQL [27] is
a differentially private relational database system for multirela-
tional tables, where for each table, it applies an existing noise-
reducing method such as DAWA. Unlike our method, PrivateSQL
needs a given workload to design private views to release. Flex
[23], Google’s work [41] and APEx [18] are SQL processing frame-
works under DP. They issue queries to the raw data, which can
consume an infinite amount of the privacy budgets. Hence, we
believe that these DP-query processing engines are not suitable
for data exploration tasks where many instances of trial and error
may be possible. Our method generates p-view, which can be used
as a differentially private query system that allows any number of
range counting queries to be issued.

3 PRELIMINARIES

This section introduces essential knowledge for understanding our
proposal. We first describe notations this paper uses. Then, we
briefly explain DP.
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3.1 Notation

Let𝑋 be the input database with 𝑛 records consisting of an attribute
set 𝐴 that has 𝑑 attributes 𝐴 = {𝑎1, . . . , 𝑎𝑑 }. The domain 𝑑𝑜𝑚(𝑎) of
an attribute 𝑎 has a finite ordered set of discrete values, and the size
of the domain is denoted as |𝑑𝑜𝑚(𝑎) |. The overall domain size of
𝐴 is |𝑑𝑜𝑚(𝐴) | = ∏

𝑖∈[𝑑 ] |𝑑𝑜𝑚(𝑎𝑖 ) |, where [𝑑] = {1, . . . , 𝑑}. In the
case where attribute 𝑎 is continuous, we transform the domain into
a discrete domain by binning, and in the case where attribute 𝑎 is
categorical, we transform it into an ordered domain. Then, 𝑑𝑜𝑚(𝑎)
can be represented as a range 𝑟 [𝑠𝑎, 𝑒𝑎] where for all 𝑝𝑎 ∈ 𝑑𝑜𝑚(𝑎),
𝑠𝑎 ≤ 𝑝𝑎 ≤ 𝑒𝑎 . For ranges 𝑟1, 𝑟2, |𝑟1 ∩ 𝑟2 | means the number of value
𝑝𝑎 satisfies 𝑠𝑎 ≤ 𝑝𝑎 ≤ 𝑒𝑎 .

We consider transforming the database 𝑋 into the 𝑑-mode count
tensor X, where given 𝑑 ranges 𝑟1, . . . , 𝑟𝑑 , X[𝑟1, . . . , 𝑟𝑑 ] represents
the number of records where (𝑎1 (∈ 𝑟1), . . . , 𝑎𝑑 (∈ 𝑟𝑑 )) ∈ 𝑋 . We
utilize 𝑥 (∈ X) as a count value in X; this corresponds to a cell of
the count tensor. We denote a subtensor of X as block B ⊆ X. B
is also a 𝑑-mode count tensor, but its domain in each dimension is
smaller than or equal to that of the original count tensorX; i.e., each
attribute 𝑎𝑖 (𝑖 ∈ [𝑑]), 𝑟 [𝑠𝑎𝑖 , 𝑒𝑎𝑖 ] of B and 𝑟 [𝑠 ′𝑎𝑖 , 𝑒

′
𝑎𝑖
] of X satisfy

𝑠 ′𝑎𝑖 ≤ 𝑠𝑎𝑖 and 𝑒𝑎𝑖 ≤ 𝑒 ′𝑎𝑖 . We denote the domain size of B as |B|.
Last, we denote 𝑞 as a counting query andW as a workload.W is

a set of |W| counting queries, whereW = {𝑞1, ..., 𝑞 |W |}, and 𝑞(X)
returns the counting query results for count tensor X.

3.2 Differential Privacy

DP [15] is a rigorous mathematical privacy definition that quantita-
tively evaluates the degree of privacy protection when we publish
outputs. DP is used in broad domains and applications [11, 12, 33].
The importance of DP is supported by the fact that the US census
announced ’2020 Census results will be protected using “differential
privacy”, the new gold standard in data privacy protection’ [8].

Definition 1 (𝜖-differential privacy). A randomized mecha-
nismM : D → Z satisfies 𝜖-DP if, for any two inputs 𝐷, 𝐷 ′ ∈ D
such that 𝐷 ′ differs from 𝐷 in at most one record and any subset of
outputs 𝑍 ⊆ Z, it holds that

Pr[M(𝐷) ∈ 𝑍 ] ≤ exp(𝜖) Pr[M(𝐷 ′) ∈ 𝑍 ] .

We define databases 𝐷 and 𝐷 ′ as neighboring databases.
Practically, we employ a randomized mechanismM that ensures

DP for a function 𝑓 . The mechanismM perturbs the output of 𝑓
to cover 𝑓 ’s sensitivity, which is the maximum degree of change
over any pair of datasets 𝐷 and 𝐷 ′.

Definition 2 (Sensitivity). The sensitivity of a function 𝑓 for
any two neighboring inputs 𝐷,𝐷 ′ ∈ D is:

Δ𝑓 = sup
𝐷,𝐷′∈D

∥ 𝑓 (𝐷) − 𝑓 (𝐷 ′)∥.

where | | · | | is a norm function defined in 𝑓 ’s output domain.

When 𝑓 is a histogram, Δ𝑓 equals 1 [21]. Based on the sensitivity of
𝑓 , we design the degree of noise to ensure DP. The Laplace mech-
anism and exponential mechanism are well-known as standard
approaches. The Laplace mechanism can be used for randomizing
numerical data. Releasing a differentially private histogram is a
typical use case of this mechanism.

Definition 3 (Laplace Mechanism). For function 𝑓 : D → R𝑛 ,
the Laplace mechanism adds noise 𝑓 (𝐷) as:

𝑓 (𝐷) + Lap(Δ𝑓 /𝜖)𝑛 . (1)

where Lap(𝜆)𝑛 denotes a vector of 𝑛 independent samples from a
Laplace distribution 𝐿𝑎𝑝 (𝜆) with mean 0 and scale 𝜆.

The exponential mechanism is the random selection algorithm.
The selection probability is weighted based on a score in a quality
metric for each item.

Definition 4 (Exponential Mechanism). Let 𝑞 be the quality
metric for choosing an item 𝑦 ∈ 𝑌 in the database 𝐷 . The exponential
mechanism randomly samples 𝑦 from 𝑌 with weighted sampling
probability defined as follows:

Pr[𝑦] ∼ exp( 𝜖𝑞(𝐷,𝑦)
2Δ𝑞

) . (2)

Quantifying the privacy of differentially private mechanisms is
essential for releasing multiple outputs. Sequential composition
and parallel composition are standard privacy accounting methods.

Theorem 1 (Seqential Composition [15]). LetM1, . . . ,M𝑘

be mechanisms satisfying 𝜖1-, . . . , 𝜖𝑘 -DP. Then, a mechanism sequen-
tially applyingM1, . . . ,M𝑘 satisfies (

∑
𝑖∈[𝑘 ] 𝜖𝑖 )-DP.

Theorem 2 (Parallel Composition [32]). LetM1, . . . ,M𝑘 be
mechanisms satisfying 𝜖1-, . . . , 𝜖𝑘 -DP. Then, a mechanism applying
M1, . . . ,M𝑘 to the disjoint datasets 𝐷1, . . . , 𝐷𝑘 in parallel satisfies
(max𝑖∈[𝑘 ] 𝜖𝑖 )-DP.

4 PROBLEM FORMULATION

4.1 Segmentation as Optimization

This section describes the foundation of multidimensional data-
aware segmentation that seeks a solution for the differentially pri-
vate view X̃ from the input count tensor X. Every count 𝑥 ∈ X̃
is sanitized to satisfy DP. We formulate multidimensional block
segmentation as an optimization problem.
Foundation. Given a count tensor X, we consider partitioning X
into 𝑚 blocks 𝜋 = {B1, ...,B𝑚}. The blocks satisfy B𝑖 ∩ B𝑗 = ∅
where 𝑖, 𝑗 ∈ [𝑚], 𝑗 ≠ 𝑖 and B1 ∪ · · · ∪ B𝑚 = X. We denote the sum
over B𝑖 as 𝑆𝑖 =

∑
𝑥 ′∈B𝑖 𝑥

′ and its perturbed output as 𝑆𝑖 = 𝑆𝑖 + 𝑧𝑖 .
We can sample 𝑧𝑖 with the Laplace mechanism 𝐿𝑎𝑝 (1/𝜖) and craft
the 𝜖-differentially private sum in B𝑖 .

For any count 𝑥 in the block B𝑖 , we have two types of errors:
Perturbation Error (PE) and Aggregation Error (AE). Assuming that
we replace any count 𝑥 ∈ B𝑖 with 𝑥𝑖 = (𝑆𝑖 + 𝑧𝑖 )/|B𝑖 |, the absolute
error between 𝑥 and 𝑥𝑖 can be computed as

|𝑥 − 𝑥𝑖 | =
����(𝑥 − 𝑆𝑖

|B𝑖 |

)
− 𝑧𝑖

|B𝑖 |

���� ≤ ����𝑥 − 𝑆𝑖

|B𝑖 |

���� + ���� 𝑧𝑖

|B𝑖 |

���� . (3)

Therefore, the total error over block B𝑖 , namely, the segmentation
error (SE), can be given by:

SE(B𝑖 ) =
∑︁
𝑥 ∈B𝑖

|𝑥 − 𝑥𝑖 | ≤ AE(B𝑖 ) + PE(B𝑖 ) (4)
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Figure 2: HDPView efficiently discovers blocks (i.e., groups of count cells) with smaller AEs (black arrow) and averages over

each block with injected noise (red arrow). The p-view stores the randomized counts in a blockwise way.

where

AE(B𝑖 ) B
∑︁
𝑥 ∈B𝑖

����𝑥 − 𝑆𝑖

|B𝑖 |

���� , (5)

PE(B𝑖 ) B |𝑧𝑖 | . (6)

(5) and (6) represent the AE and the PE, respectively.
Problem. The partitioning makes the PE of each block 1

|B𝑖 | times
smaller than those of the original counts with Laplace noise. Fur-
thermore, we consider the expectation of the SE

E


∑︁

𝑖∈[𝑚]
SE(B𝑖 )

 ≤ E


∑︁
𝑖∈[𝑚]

AE(B𝑖 )
 + E


∑︁

𝑖∈[𝑚]
PE(B𝑖 )


=

∑︁
𝑖∈[𝑚]

AE(B𝑖 ) +
∑︁

𝑖∈[𝑚]
E [PE(B𝑖 ) ]

=
∑︁

𝑖∈[𝑚]
AE(B𝑖 ) +𝑚 ·

1
𝜖
.

(7)

Thus, to discover the optimal partition 𝜋 , we need to minimize Eq.
(7). The optimization problem is denoted as follows:

minimize
𝜋

∑︁
B𝑖 ∈𝜋

(
AE(B𝑖 ) +

1
𝜖

)
subject to B𝑖 ∩ B𝑗≠𝑖 = ∅, B𝑖 ,B𝑗 ∈ 𝜋⋃

B𝑖 ∈𝜋
B𝑖 = X

(8)

Challenges. It is not easy to discover the optimal partition 𝜋 . This
problem is an instance of the set partitioning problem [10], which is
known to beNP-complete, where the objective function is computed
by brute-force searching for every combination of candidate blocks.
It is hard to solve since the search space is basically a very large
scale due to large |𝑑𝑜𝑚(𝐴) |. Therefore, this paper seeks an efficient
heuristic solution with a good balance between utility (i.e., smaller
errors) and privacy.

4.2 P-view Definition

Our proposed p-view has a simple structure. The p-view consists
of a set of blocks, each of which has a range for each attribute and
an appropriately randomized count value, as shown in Figure 1.
Formally, we define the p-view as follows.

p-view X̃ = {B1, ...,B𝑚},

for 𝑖 ∈ [𝑚],B𝑖 = ({𝑟 [𝑠 (𝑖)𝑎1 , 𝑒
(𝑖)
𝑎1 ], ..., 𝑟 [𝑠

(𝑖)
𝑎𝑑

, 𝑒
(𝑖)
𝑎𝑑
]}, 𝑆𝑖 )

(9)

Thus, each block B𝑖 has this 𝑑-dimensional domain and the sani-
tized sum of count values 𝑆𝑖 .

In the range counting query processing, a counting query𝑞 needs
to have the range condition 𝑐𝑞 = {𝑟 [𝑠 (𝑞)𝑎1 , 𝑒

(𝑞)
𝑎1 ], ..., 𝑟 [𝑠

(𝑞)
𝑎𝑑

, 𝑒
(𝑞)
𝑎𝑑
]}. Let

the ranges of B𝑖 be {𝑟 [𝑠 (𝑖)𝑎1 , 𝑒
(𝑖)
𝑎1 ], ..., 𝑟 [𝑠

(𝑖)
𝑎𝑑

, 𝑒
(𝑖)
𝑎𝑑
]}, and we calculate

the intersection of 𝑐𝑞 and the block and add the count value ac-
cording to the size of the intersection. Hence, the result can be
calculated as follows.

𝑞 ( X̃) =
∑︁

𝑖=1,...,𝑚

( ∏
𝑙=1,...,𝑑

(���𝑟 [𝑠 (𝑞)𝑎𝑙
, 𝑒
(𝑞)
𝑎𝑙
] ∩ 𝑟 [𝑠 (𝑖 )𝑎𝑙

, 𝑒
(𝑖 )
𝑎𝑙
]
���) ∗ 𝑆𝑖

|B𝑖 |

)
(10)

The number of intersection calculations is proportional to the num-
ber of blocks, and the complexity of the query processing is O(𝑚𝑑).

5 PROPOSED ALGORITHM

This section introduces our proposed solution. Our solution con-
structs a p-view of the input relational data while preserving utility
and privacy with analytical reliability to estimate errors in the
arbitrary counting queries against the p-view (Eq.(10)).

5.1 Overview

Our challenge is to devise a simple yet effective algorithm that
enables us to efficiently search a block partitioning with small total
errors and DP guarantees. As a realization of the algorithm, we
propose HDPView.

Figure 2 illustrates an overview of our proposed algorithm. First,
HDPView creates the initial blockB (0) that covers the whole count
tensor X. Second, we recursively bisect a block B (initially B =

B (0) ) into two disjoint blocks B𝐿 and B𝑅 . Before bisecting B, we
check whether the AE overB is sufficiently small. If the result of the
check is positive, we stop the recursive bisection for B. Otherwise,
we continue to split B. We pick a splitting point 𝑝 ∈ 𝑑𝑜𝑚(𝑎) (𝑎 ∈ 𝐴)
for splitting B into B𝐿 and B𝑅 which have smaller AEs. Although
splitting does not always result in smaller total AEs, proper cut point
obviously makes AEs much smaller. Third, HDPView recursively
executes these steps separately for B𝐿 and B𝑅 . After convergence
is met for all blocks, HDPView generates a randomized aggregate
by 𝑆𝑖 + 𝑧𝑖 where 𝑧𝑖 ∼ 𝐿𝑎𝑝 (1/𝜖) for each block B𝑖 . Finally, for all
𝑥 ∈ B𝑖 , we obtain the randomized count 𝑥 = (𝑆𝑖 + 𝑧𝑖 )/|B𝑖 |.

The abovementioned algorithm can discover blocks that heuristi-
cally reduce the AEs, and is efficient due to its simplicity. However,
the question is how can we make the above algorithm differentially
private?. To solve this question, we introduce two mechanisms, ran-
dom converge (Section 5.2) and random cut (Section 5.3). Random
converge determines the convergence of the recursive bisection,
and random cut determines the effective single cutting point. These
provide reasonable partitioning strategy to reduce the total errors
with small privacy budget consumption.
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The overall algorithm of HDPView are described in Algorithm
1. Let 𝜖𝑏 = 𝜖𝑟 + 𝜖𝑝 be the total privacy budget for HDPView, where
𝜖𝑟 is the budget for the recursive bisection and 𝜖𝑝 is the budget for
the perturbation. HDPView utilizes 𝛾𝜖𝑟 for random converge and
(1 − 𝛾)𝜖𝑟 for random cut (0 ≤ 𝛾 ≤ 1). 𝛼 is a hyperparameter that
determines the size of 𝜆 and 𝛿 , where 𝜆 corresponds to the Laplace
noise scale of random converge (Lines 8, 16) and 𝛿 is a bias term for
AE (Lines 9, 15). These are, sketchily, tricks for performing random
converge with depth-independent scales, which are explained in
Section 5.2 and a detailed proof of DP is given in Section 5.4. The
algorithm runs recursively (Lines 10, 28, 29), alternating between
random converge (Lines 14-18) and random cut (Lines 19-26). The
random converge stops when the AE becomes small enough, con-
suming a total budget of 𝛾𝜖𝑟 independent of the number of depth.
The random cut consumes a budget of (1 − 𝛾)𝜖𝑟 /𝜅 for each cutting
point selection until the depth exceeds 𝜅. 𝜅 is set as 𝜅 = 𝛽 log2 𝑛,
where 𝛽 > 0 is hyperparameter and 𝑛 is the total domain size of
the data. As we see later in Theorem 4, AE is not increased by split-
ting, so if the depth is greater than 𝜅, we split randomly without
any privacy consumption until convergence. After the recursive
bisection converges, HDPView perturbs the count by adding the
Laplace noise while consuming 𝜖𝑝 .

5.2 Random Converge

AE decreases by properly splitting the blocks, however unnecessary
block splitting leads to an increase in PE as mentioned above. To
stop the recursive bisection at the appropriate depth, we need to
obtain the exact AE of the block, which is a data-dependent output,
therefore we need to provide a DP guarantee. One approach is to
publish differential private AE so that making the decision for the
stop is also DP by the post-processing property. In other words, the
stop is determined by AE(B) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 where 𝜃 is a threshold
indicating AE is small enough. However, this method consumes
privacy budget every time the AE is published, and the budget
cannot be allocated unless the depth of the partition is decided
in advance. Therefore, we utilize the observation for the privacy
loss of Laplace mechanism-based threshold query [46] and design
the biased AE (BAE) of the block B instead of AE(B): BAE(B) =
max(𝜃+2−𝛿, AE(B)−𝑘𝛿), where𝑘 is the current depth of bisection,
𝛿 (> 0) is a bias parameter, i.e., we determine the convergence by
BAE(B) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 . Intuitively, the BAE is designed to tightly
bound the privacy loss of the any number of Laplace mechanism-
based threshold queries with constant noise scale 𝜆. When the value
is sufficiently larger than the threshold, this privacy loss decreases
exponentially [46]. Then, it can be easily bounded by an infinite
series regardless of the number of queries. Conversely, when the
value is small compared to the threshold, each threshold query
consumes a constant budget. To limit the number of such budget
consumptions, a bias 𝛿 is used to force a decrease in the value for
each threshold query (i.e., each depth) because BAE has a minimum
and if the value is guaranteed to be less than the minimum for
adjacent databases, the privacy loss is zero. The design of our BAE
allows for two constant budget consumptions at most, with the
remainder being bounded by an infinite series. We give a detailed
proof in Section 5.4. As a whole, since BAE is basically close to AE,
AEs are expected to become sufficiently small overall.

Algorithm 1 HDPView

Input: initial block B (0) , privacy budget 𝜖𝑏 , recursive bisection
budget ratio 𝜖𝑟 /𝜖𝑏 , hyperparameters 𝛼 , 𝛽 , 𝛾

Output: p-view X̃
1: procedure HDPView(B (0) , 𝜖𝑏 , 𝜖𝑟 /𝜖𝑏 , 𝛼, 𝛽,𝛾 )
2: 𝜖𝑟 ← 𝜖𝑏 · (𝜖𝑟 /𝜖𝑏 ); 𝜖𝑝 ← 𝜖𝑏 · (1 − 𝜖𝑟 /𝜖𝑏 )
3: 𝑛̃ ← TotalDomainSizeOf(X)
4: 𝜅 ← 𝛽 log2 𝑛̃ // maximum depth of random cut
5: 𝜋 ← {}; 𝑘 ← 1 // converged blocks; current depth
6: 𝜃 ← 1/𝜖𝑝 // threshold
7: 𝜖𝑐𝑢𝑡 ← (1 − 𝛾)𝜖𝑟 /𝜅 // privacy budget for random cut
8: 𝜆 ←

(
2𝛼−1
𝛼−1 + 1

)
·
(

2
𝛾𝜖𝑟

)
// noise scale for random converge

9: 𝛿 ← 𝜆 log𝛼 // bias parameter
10: RecursiveBisection(B (0) , 𝜋, 𝜖𝑐𝑢𝑡 , 𝑘, 𝜅, 𝜃, 𝜆, 𝛿)
11: X̃ ← Perturbation(𝜋, 𝜖𝑝 )
12: return X̃
13: procedure RecursiveBisection(B, 𝜋 , 𝜖𝑐𝑢𝑡 , 𝑘 , 𝜅, 𝜃 , 𝜆, 𝛿)
14: /* Random Converge */
15: BAE(B) ← max(𝜃 + 2 − 𝛿, AE(B) − 𝑘𝛿)
16: if BAE(B) + Lap(𝜆) ≤ 𝜃 then

17: 𝜋 ← 𝜋
⋃B

18: return

19: /* Random Cut */
20: if 𝑘 ≤ 𝜅 then

21: for all 𝑖 ∈ [𝑑], 𝑗 ∈ [|𝑑𝑜𝑚(𝑎𝑖 ) |] do
22: 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 [𝑖, 𝑗] ← 𝑄 (𝐵, 𝑎𝑖 𝑗 )
23: (𝑖∗, 𝑗∗) ←WeightedSampling(𝜖𝑐𝑢𝑡 , 𝑞𝑢𝑎𝑙𝑖𝑡𝑦)
24: else

25: (𝑖∗, 𝑗∗) ← RandomSampling( [𝑑], [|𝑑𝑜𝑚(𝑎𝑖 ) |])
26: (B𝐿,B𝑅) ← Split(𝑖∗, 𝑗∗)
27: /* Repeat Recursively */
28: RecursiveBisection(B𝐿, 𝜋, 𝜖𝑐𝑢𝑡 , 𝑘 + 1, 𝜅, 𝜃, 𝜆, 𝛿)
29: RecursiveBisection(B𝑅, 𝜋, 𝜖𝑐𝑢𝑡 , 𝑘 + 1, 𝜅, 𝜃, 𝜆, 𝛿)
30: return

Then, we consider about 𝜃 where if 𝜃 is too large, block partition-
ing will not sufficiently proceed, causing large AEs, and if it is too
small, more blocks will be generated, leading to increase in total
PEs. To prevent unwanted splitting, it is appropriate to stop when
the increase in PE is greater than the decrease in AE. We design the
threshold 𝜃 as 1/𝜖𝑝 which is the standard deviation of the Laplace
noise to be perturbed. Considering the each bisection increases
the total PE by 1/𝜖𝑝 , when the AE becomes less than the PE, the
division will increase the error at least. Hence, it is reasonable to
stop under this condition.

5.3 Random Cut

Here, the primary question is how to pick a reasonable cutting point
from all attribute values in a block B under DP. Our intuition is that
a good cutting point results in smaller AEs in the two split blocks.
We design random cut by combining an exponential mechanism
with scoring based on the total AE after splitting.
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Let B (𝑝)
𝐿

and B (𝑝)
𝑅

be the blocks split from B by the cutting
point 𝑝 , and the quality function 𝑄 of 𝑝 in B is defined as follows:

𝑄 (B, 𝑝) = −(AE(B (𝑝)
𝐿
) + AE(B (𝑝)

𝑅
)). (11)

Then, we compute the score for all attribute values 𝑝 ∈ 𝑑𝑜𝑚(𝑎),
𝑎 ∈ 𝐴 , and satisfies |B (𝑝)

𝐿
| ≥ 1 and |B (𝑝)

𝑅
| ≥ 1. Note that the

number of candidates for 𝑝 is proportional to the sum of the do-
mains for each attribute

∑
𝑖∈[𝑑 ] |𝑑𝑜𝑚(𝑎𝑖 ) |, not to the total domains∏

𝑖∈[𝑑 ] |𝑑𝑜𝑚(𝑎𝑖 ) |. We employ weighted sampling via an exponen-
tial mechanism to choose one cutting point 𝑝∗. The sampling prob-
ability of 𝑝 is proportional to

Pr[𝑝∗ = 𝑝 ] ∼ exp
(
𝜖𝑄 (𝐵, 𝑝)

2Δ𝑄

)
(12)

where Δ𝑄 is the L1-sensitivity of the quality metric 𝑄 . We denote
the L1-sensitivity of AE as Δ𝐴𝐸 , and we can easily find Δ𝑄 = 2Δ𝐴𝐸
because 𝑄 is the sum of two AEs. Thus, each time a cut point 𝑝 is
published according to such weighted sampling, a privacy budget of
𝜖 is consumed. We set 𝜖 as the budget allocated to random cut (i.e.,
(1 − 𝛾)𝜖𝑟 ) divided by 𝜅. If the cutting depth exceeds 𝜅, we switch
to random sampling (Line 25 in Algorithm 1). Hence, cutting will
not stop regardless of the depth or budget.

Compared to Privtree [46], for a 𝑑-dimensional block, at each
cut, HDPView generates just 2 blocks with this random cut while
Privtree generates 2𝑑 blocks with fixed cutting points. Privtree’s
heuristics prioritizes finer partitioning, which sufficiently works in
low-dimensional data because AEs become very small and the total
PEs is not so large. In high-dimensional data, however, it causes
unnecessary block splitting resulting in too much PEs. HDPView
carefully splits blocks one by one, thus suppressing unnecessary
block partitioning and reducing the number of blocks i.e., smaller
PEs. It also enables flexibly shaped multidimensional block par-
titioning. Moreover, while whole design of HDPView including
convergence decision logic and cutting strategy are based on an er-
ror optimization problem as described in Section 4, Privtree has no
such background. This allows HDPView to provide effective block
partitioning rather than simply fewer blocks, which we empirically
confirm in Section 6.2.

5.4 Privacy Accounting

For privacy consumption accounting, since HDPView recursively
splits a block into two disjoint blocks, we only have to trace a
path toward convergence. In other words, because HDPView ma-
nipulates all the blocks separately, we can track the total privacy
consumption by the parallel composition for each converged block.
The information published by the recursive bisection is the result
of segmentation; however, note that since there is a constraint on
the cutting method for the block, it must be divided into two parts;
in the worst case, the published blocks may expose all the cutting
points. For a given converged block B, we denote the series of
cutting points by 𝑆B = [𝑝1, ....𝑝𝑘 ], and B𝑝𝑖 as the block after being
divided into two parts at cutting point 𝑝𝑖 . To show the DP guaran-
tee, let 𝐷 and 𝐷 ′ be the neighboring databases, and let Pr[𝑆B |𝐷]
be the probability that 𝑆B is generated from 𝐷 . We need to show
that for any 𝐷 , 𝐷 ′, and 𝑆B that���� Pr[𝑆B |𝐷 ]

Pr[𝑆B |𝐷′]

���� ≤ 𝑒𝜖 (13)

to show that the recursive bisection satisfies 𝜖-DP.
The block with the largest

��� Pr[𝑆B |𝐷 ]
Pr[𝑆B |𝐷′ ]

��� of the converged disjoint
blocks is B∗, which has the longest 𝑆B∗ and contains different
data between 𝐷 and 𝐷 ′. Random converge and random cut are
represented as follows.����� Pr[𝑆B∗ |𝐷]

Pr[𝑆B∗ |𝐷 ′]

����� = Pr[BAE(B𝑝0 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]
Pr[BAE(B′𝑝0 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]

·
Pr[𝑝∗ = 𝑝1 |𝐷]

Pr[𝑝∗ = 𝑝1 |𝐷 ′]
·

Pr[BAE(B𝑝1 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]
Pr[BAE(B′𝑝1 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]

· · · · ·
Pr[𝑝∗ = 𝑝𝑘 |𝐷]

Pr[𝑝∗ = 𝑝𝑘 |𝐷 ′]
·

Pr[BAE(B𝑝𝑘 ) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 ]
Pr[BAE(B′𝑝𝑘 ) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 ] (14)

where B𝑝0 is the initial count tensor and for all 𝑖 , B′𝑝𝑖 indicates a
neighboring block for B𝑝𝑖 . Taking the logarithm,

ln
( Pr[𝑆B∗ |𝐷 ]

Pr[𝑆B∗ |𝐷′ ]

)
=

𝑘∑︁
𝑖=1

ln
( Pr[𝑝∗ = 𝑝𝑖 |𝐷 ]

Pr[𝑝∗ = 𝑝𝑖 |𝐷′ ]

)
︸                          ︷︷                          ︸
(∗1) : for random cut

+
𝑘∑︁
𝑖=0

ln

(
Pr[BAE(B𝑝𝑖 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]
Pr[BAE(B′𝑝𝑖 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]

)
+ ln

(
Pr[BAE(B𝑝𝑘 ) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 |𝐷 ]
Pr[BAE(B′𝑝𝑘 ) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 |𝐷′ ]

)
︸                                                                                                         ︷︷                                                                                                         ︸

(∗2) : for random converge

.

(15)

and let the first item of the right-hand of Eq.(15) be (∗1), and the
other items be (∗2).
(∗1) corresponds to the privacy of the random cut, with each

probability following Eq.(12). Given 𝜖 = 𝜖𝑐𝑢𝑡 , for any 𝑘 , the follow-
ing holds from sequential composition.����� 𝑘∑︁

𝑖=1
ln

(
Pr[𝑝∗ = 𝑝𝑖 |𝐷]

Pr[𝑝∗ = 𝑝𝑖 |𝐷 ′]

)����� ≤ 𝜅𝜖𝑐𝑢𝑡 = (1 − 𝛾)𝜖𝑟 . (16)

The following are privacy guarantees for the other part, (∗2),
based on the observations presented in [46]. First, we consider the
sensitivity of AE Δ𝐴𝐸 .

Theorem 3. The L1-sensitivity of the AE is 2(1 − 1/|B|).

Proof. Let B′ be the block that differs by only one count from
B. The AE(B′) can be computed as follows:

AE(B′) =
∑︁

𝑖≠𝑗∈[|B|]

����𝑥𝑖 − 𝑆 + 1
|B |

���� + ����𝑥 𝑗 + 1 − 𝑆 + 1
|B |

���� .
Finally, the L1-sensitivity of AE can be derived as:

Δ𝐴𝐸 = ( |B| − 1) 1
|B| + 1 − 1

|B| = 2(1 − 1/𝑛)

□

Thus, we also obtain |BAE(B) − BAE(B′) | ≤ 2, and

(∗2) ≤
𝑘−1∑︁
𝑖=0

ln

(
Pr[BAE(B𝑝𝑖 ) + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]

Pr[BAE(B𝑝𝑖 ) − 2 + 𝐿𝑎𝑝 (𝜆) > 𝜃 ]

)
+ ln

(
Pr[BAE(B𝑝𝑘 ) + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 ]

Pr[BAE(B𝑝𝑘 ) + 2 + 𝐿𝑎𝑝 (𝜆) ≤ 𝜃 ]

)
. (17)
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Furthermore, from the proof in the Appendix in [46], when we have
𝑓 (𝑥) = ln

(
Pr[𝑥+𝐿𝑎𝑝 (𝜆)>𝜃 ]

Pr[𝑥−2+𝐿𝑎𝑝 (𝜆)>𝜃 ]

)
, then{

𝑓 (𝑥) ≤ 2
𝜆
, (𝜃 − 𝑥 + 2 > 0)

𝑓 (𝑥) ≤ 2
𝜆

exp
(
𝜃−𝑥+2

𝜆

)
, (𝜃 − 𝑥 + 2 ≤ 0)

(18)

Next, we show the monotonic decreasing property of AE for
block partitioning.

Theorem 4. For any 𝑖 = 0, ..., 𝑘 − 1, AE(B𝑝𝑖 ) ≥ AE(B𝑝𝑖+1 ).

Proof. We show that when B+ is an arbitrary block B with
an arbitrary element 𝑥 (> 0) added to it, the AEs always sat-
isfy AE(B) ≤ 𝐴𝐸 (B+). Let the elements in B be 𝑥1, ..., 𝑥𝑘 , and
let B+ be the block with 𝑥𝑘+1 added. The mean values in each
block are 𝑥 = 1

𝑘
(𝑥1 + · · · + 𝑥𝑘 ) and 𝑥+ = 1

𝑘+1 (𝑥1 + · · · + 𝑥𝑘+1) and
AE(B) = ∑𝑘

𝑖=1 |𝑥𝑖 − 𝑥 | and AE(B+) =
∑𝑘+1
𝑖=1 |𝑥𝑖 − 𝑥+ |. Considering

how much the AE can be reduced with the addition of 𝑥𝑘+1 to
B, |𝑥𝑖 − 𝑥 | − |𝑥𝑖 − 𝑥+ | ≤ |𝑥 − 𝑥+ | holds for each 𝑖 (= 1, ..., 𝑘), so
AE(B) − AE(B+) is at most 𝑘 · |𝑥 − 𝑥+ |. On the other hand, with
the addition of 𝑥𝑘+1, AE increases by at least |𝑥𝑘+1 − 𝑥+ | because
this is a new item. Since 𝑥𝑘+1 = (𝑘 + 1)𝑥+ − (𝑥1 + · · · + 𝑥𝑘 ) =
(𝑘 + 1)𝑥+ − 𝑘𝑥 , then |𝑥𝑘+1 − 𝑥+ | = |𝑘 · (𝑥 − 𝑥+) | = 𝑘 · |𝑥 − 𝑥+ |.
Hence, AE(B+) − AE(B) ≥ 𝑘 · |𝑥 − 𝑥+ | − 𝑘 · |𝑥 − 𝑥+ | = 0 always
holds. Therefore, since B𝑝𝑖 always has more elements than B𝑝𝑖+1 ,
AE(B𝑝𝑖 ) ≥ AE(B𝑝𝑖+1 ). □

Considering BAE(B), there exists a natural number𝑚 (1 ≤ 𝑚 ≤
𝑘) where if 𝑖 < 𝑚, BAE(B𝑝𝑖 )) ≥ BAE(B𝑝𝑖+1 ) +𝛿 ≥ 𝜃 +2−𝛿 , if 𝑖 =𝑚,
𝜃 + 2 ≥ BAE(B𝑝𝑖 ) ≥ 𝜃 + 2 − 𝛿 , and if𝑚 < 𝑖 , BAE(B𝑝𝑖 ) = 𝜃 + 2 − 𝛿 .
Therefore, using Eqs.(17, 18),

(∗2) ≤ 2
𝜆
+
𝑚−1∑︁
𝑖=1

2
𝜆

exp
(
𝜃 − BAE(B𝑝𝑖 ) + 2

𝜆

)
+ 2
𝜆

≤ 4
𝜆
+ 2
𝜆
· 1

1 − exp
(
−𝛿

𝜆

)
=

2
𝜆
·

3 exp
(
𝛿
𝜆

)
− 2

exp
(
𝛿
𝜆

)
− 1

.

(19)

Thus, to make (∗2) satisfy 𝛾𝜖𝑟 -DP, 2
𝜆
·

3 exp
(
𝛿
𝜆

)
−2

exp
(
𝛿
𝜆

)
−1
≤ 𝛾𝜖𝑟 should hold.

Since the 𝜆 and 𝛿 that satisfy these conditions are not uniquely
determined, these values are determined by giving exp(𝛿/𝜆) as a
hyperparameter 𝛼 . Then, we can always calculate 𝜆 = ( 3𝛼−2

𝛼−1 ) · (
2

𝛾𝜖𝑟
)

and 𝛿 = 𝜆 log𝛼 , in turn, which satisfies (∗2) ≤ 𝛾𝜖𝑟 . 𝛼 is valid
for 𝛼 > 1. If 𝛼 is extremely close to 1, 𝜆 diverges and random
convergence is too inaccurate. As 𝛼 increases, 𝜆 decreases, but 𝛿
increases. Thus 𝜆 and 𝛿 are trade-offs, and independently of the
dataset, there exists a point at which both values are reasonably
small. Around 𝛼 = 1.4 ∼ 1.8 works well empirically. We show a
specific analytical result in Appendix of the full version [26].

Finally, together with (∗1), the recursive bisection by random
converge and random cut satisfies 𝜖𝑟 -DP. In addition, the perturba-
tion consumes 𝜖𝑝 for each block to add Laplace noise, so together
with this, HDPView satisfies 𝜖𝑝 + 𝜖𝑟 = 𝜖𝑏 -DP.

5.5 Error Analysis

When a p-view created by HDPView publishes a counting query
answer, we can dynamically estimate an upper bound distribution
of the error included in the noisy answer. The upper bound of the
error can be computed from the number of blocks used to answer
the query and the distribution of the perturbation. Note that this
can be computed without consuming any extra privacy budget
because, as shown in 5.4, in addition to the count values, block
partitioning results are released in a DP manner.

As a count query on the p-view is processed as Eq. (10), the
answer consists of the sum of the query results for each block,
and from Eq. (4), each block contains two types of errors: AE
and PE. Let the error of a counting query 𝑞 be 𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) :=
| |𝑞(X) − 𝑞(X′) | |1 where X and X′ are the original and noisy data,
respectively, and we define the error by the L1-norm. First, since
the AE depends on the concrete count values of each block involved
in each query condition, we characterise the block distribution by
defining an 𝜉-uniformly scattered block.

Definition 5 (𝜉-uniformly scattered). AblockB is 𝜉-uniformly
scattered if for any subblock B′ ⊂ B,

𝐴𝐸 (B′)/ |B′ | ≤ 𝜉 · 𝐴𝐸 (B)/ |B |. (20)

While 𝜉 depends on the actual data, it is expected to decrease with
each step by random cut.

Then, we have the following theorem for the error.

Theorem 5. If for all 𝑖 , block B𝑖 is 𝜉𝑖 -uniformly scattered, any
𝜇 satisfying 0 < 𝜇 < 1, and any 𝑡 satisfying |𝑡 | < 𝜖𝑝 and |𝑡 | < 1

𝜆
,

the error of a counting query satisfies 𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) ≥ Θ𝑚𝑖𝑛 (𝜇)
and 𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) ≤ Θ𝑚𝑎𝑥 (𝜇) with probability of at least 1 − 𝜇,
respectively, with

Θ𝑚𝑖𝑛 (𝜇) =
1
𝑡

(
log 𝜇 +

∑︁
𝑖=1,...,𝑚

log (1 − (𝑤𝑖

𝜖𝑝
)2𝑡2)

)
Θ𝑚𝑎𝑥 (𝜇) =

∑︁
𝑖=1,...,𝑚

𝜉𝑖𝑤𝑖 (𝑘𝑖𝛿 + 𝜃 )

− 1
𝑡

(
log 𝜇 +

∑︁
𝑖=1,...,𝑚

log (1 − (𝑤𝑖

𝜖𝑝
)2𝑡2) + log (1 − (𝜉𝑖𝑤𝑖𝜆)2𝑡2)

)
(21)

where𝑤𝑖 =
|B𝑖∩𝑐𝑞 |
|B𝑖 | , 𝑘𝑖 is depth of B𝑖 that can be public information.

Proof. The errors included in 𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) are PEs and AEs.
Both of them follow independent probability distributions for each
block, and we first show the PE. For each B𝑖 , perturbation noise
is uniformly divided inside B𝑖 . Hence, the total PE in the query 𝑞
is represented by

∑
𝑖=1,...,𝑚𝑤𝑖 ∗ 𝑃𝐸 (B𝑖 ) where 𝑤𝑖 =

|B𝑖∩𝑐𝑞 |
|B𝑖 | and

𝑃𝐸 (B𝑖 ) is Laplace random variable following 𝐿𝑎𝑝 ( 1
𝜖𝑝
).

Then, we consider the AE. From random converge, given a B𝑖 ,
then 𝐵𝐴𝐸 (B𝑖 )+𝐿𝑎𝑝 (𝜆) ≤ 𝜃 holds. Considering BAE(B) = max(𝜃 +
2 − 𝛿, AE(B) − 𝑘𝛿), when 𝜃 + 2 − 𝛿 ≤ AE(B𝑖 ) − 𝑘𝑖𝛿 ,

AE(B𝑖 ) ≤ 𝐿𝑎𝑝 (𝜆) + 𝑘𝑖𝛿 + 𝜃 . (22)

And when 𝜃 + 2 − 𝛿 > AE(B𝑖 ) − 𝑘𝑖𝛿 ,
AE(B𝑖 ) − 𝑘𝑖𝛿 < 𝜃 + 2 − 𝛿 ≤ 𝐿𝑎𝑝 (𝜆) + 𝜃 (23)
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Thus, the upper bound of AE(B𝑖 ) is distributed under 𝐿𝑎𝑝 (𝜆) +
𝑘𝑖𝛿 + 𝜃 . In other words, AE cannot be observed directly, but the
upper bound distribution is bounded by the Laplace distribution.
Also note that the AE satisfies AE(B𝑖 ) ≥ 0.

Therefore, for the error lower bound, we only need to consider
the𝑚 PEs,

∑
𝑖=1,...,𝑚𝑤𝑖 ∗ 𝑃𝐸 (B𝑖 ). 𝑃𝐸 (B𝑖 ) is independent random

variable, respectively. We apply Chernoff bound to the sum, for any
𝑎 and 𝑡 ,

Pr
[
𝐸𝑟𝑟𝑜𝑟 (𝑞, X, X′) ≤ 𝑎

]
≤ 𝑒 (𝑡𝑎)

∏
𝑖=1,...,𝑚

𝐸 [𝑒 (−𝑡𝑤𝑖𝑃𝐸 (B𝑖 ) ) ], (24)

where |𝑡 | < 𝜖𝑝 is required for existence of the moment generating
function. By using 𝑃𝐸 (B𝑖 ) follows 𝐿𝑎𝑝 ( 1

𝜖𝑝
), we can derive

Pr

[
𝐸𝑟𝑟𝑜𝑟 (𝑞, X, X′) ≤ 1

𝑡

(
log 𝜇 +

∑︁
𝑖=1,...,𝑚

log (1 − (𝑤𝑖

𝜖𝑝
)2𝑡2)

)]
≤ 𝜇.

(25)
On the other hand, for the error upper bound, we need to consider

AEs as well. Hence, we apply Chernoff bound to the sum of 2𝑚
independent random variables following each Laplace distribution.
Considering the upper bound distribution of𝐴𝐸 (B𝑖 ) has𝑤𝑖 (𝑘𝑖𝛿+𝜃 )
for the mean and 𝜆 for the variance, let𝐴𝐸 (B𝑖 ) be a Laplace random
variable whose mean and variance are 0 and 𝜆, respectively, then
we have

Pr
[
𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) −

∑︁
𝑖=1,...,𝑚

𝜉𝑖𝑤𝑖 (𝑘𝑖𝛿 + 𝜃 ) ≥ 𝑎

]
≤ 𝑒 (−𝑡𝑎)

∏
𝑖=1,...,𝑚

𝐸 [𝑒 (𝑡𝑤𝑖𝑃𝐸 (B𝑖 )) ]𝐸 [𝑒 (𝑡𝑤𝑖𝜉𝑖𝐴𝐸 (B𝑖 )) ],
(26)

where since block B𝑖 is 𝜉𝑖 -uniformly scattered, AE included in the
query 𝑞 and blockB𝑖 is at most 𝜉𝑖𝑤𝑖𝐴𝐸 (B𝑖 ). Lastly, for any 𝑡 , where
|𝑡 | < 𝜖𝑝 and |𝑡 | < 1

𝜆
, from the inequality, we can derive as follows:

Pr

[
𝐸𝑟𝑟𝑜𝑟 (𝑞,X,X′) ≥

∑︁
𝑖=1,...,𝑚

𝜉𝑖𝑤𝑖 (𝑘𝑖𝛿 + 𝜃 )

− 1
𝑡

(
log 𝜇 +

∑︁
𝑖=1,...,𝑚

log (1 − (𝑤𝑖

𝜖𝑝
)2𝑡2) + log (1 − (𝜉𝑖𝑤𝑖𝜆)2𝑡2)

)]
≤ 𝜇.

This completes the proof. □

Importantly, this can be dynamically computed for any counting
queries, helping the analyst to perform a reliable exploration.

Similarly, since the HDMM [31] optimizes budget allocations for
counting queries by the MM, we can statically calculate the error
distributions for each query. However, this is workload-dependent.
In data exploration, we consider predefined workload is strong
assumption to be avoided.

6 EVALUATION

In this section, we report the results of the experimental evalua-
tion of HDPView. To evaluate our proposed method, we design
experiments to answer the following questions:

• How effectively can the constructed p-views be used in
data exploration via various range counting queries?

• How space-efficiently can the constructed p-views repre-
sent high-dimensional count tensors?

Table 3: Datasets.

Dataset #Record #Column
(categorical) #Domain Variance

Adult [1] 48842 15 (9) 9 × 1019 0.0360
Small-adult 48842 4 (2) 3 × 105 0.0237
Numerical-adult 48842 7 (1) 2 × 1011 0.0200
Traffic [5] 48204 8 (2) 1 × 1014 0.0484
Bitcoin [6] 500000 9 (1) 4 × 1012 0.0379
Electricity [2] 45312 8 (1) 1 × 1014 0.0407
Phoneme [4] 5404 6 (1) 2 × 106 0.0304
Jm1 [3] 10885 22 (1) 2 × 1021 0.0027

We shows the effectiveness of HDPView via range counting queries
in section 6.2, and section 6.3 reports the space efficiency.

6.1 Experimental Setup

We describe the experimental setups. In the following experiments,
we run 10 trials with HDPView and the competitors and report their
averages to remove bias. Throughout the experiments, the hyperpa-
rameters of HDPView are fixed as (𝜖𝑟 /𝜖𝑏 , 𝛼, 𝛽,𝛾) = (0.9, 1.6, 1.2, 0.9),
and we basically use 𝜖 = 1.0 as a privacy budget. We provide obser-
vations and insights into all the hyperparameters of HDPView in
Appendix of the full version [26].
Datasets. We use several multidimensional datasets commonly
used in the literature, as shown in Table 3. Adult [1] includes 6
numerical and 9 categorical attributes. We prepare Small-adult
by extracting 4 attributes (age, workclass, race, and capital-gain)
from Adult. Additionally, we form Numerical-adult by extract-
ing only numerical attributes and a label. Traffic [5] is a traf-
fic volume dataset. Bitcoin [6] is a Bitcoin transaction graph
dataset. Electricity [2] is a dataset on changes in electricity
prices. Phoneme [4] is a dataset for distinguishing between nasal
and oral sounds. Jm1 [3] is a dataset of static source code analysis
data for detecting defects with 22 attributes. HDPView and most
competitors require the binning of all numerical attribute values for
each dataset. Basically, we set the number of bins to 100 or 10 when
the attribute is a real number. We consider that the number of bins
should be determined by the level of granularity that analysts want
to explore, regardless of the distribution of the data. For categorical
columns, we simply apply ordinal encoding. In Table 3, #Domain
shows the total domain sizes after binning. Variance is the mean
of the variance for each dimension of the binned and normalized
dataset and gives an indication of how scattered the data is.
Implementations of competitors. We compare our proposed
method HDPView with Identity [15], Privtree [46], HDMM [31],
PrivBayes [45], and DAWA partitioning mechanism [29]. For these
methods, we perform the following pre- and postprocessing steps.
For Identity, we estimate errors following [31], employing implicit
matrix representations and workload-based estimation, because
it is infeasible to add noises on a high-dimensional count tensor
because of the huge space. For Privtree, as described in [46], we
set the threshold to 0 and allocate half of the privacy budget to
tree construction and half to perturbation. Using the same method
as HDPView, the blocks obtained by Privtree are used as the p-
view. For the HDMM, we utilize p-Identity strategies as a template.
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DAWA’s partitioning mechanism can be applied to multidimen-
sional data by flattening data into a 1D vector. However, when the
domain size becomes large, the optimization algorithm based on
the v-optimal histogram for the count vector cannot be applied due
to the computational complexity. Therefore, we apply DAWA to
Small-adult and Phoneme because their domain sizes are relatively
small. We perform only DAWA partitioning without workload op-
timization to compare the partitioning capability without a given
workload to evaluate workload-independent p-view generation. For
fairness, PrivBayes is trained on raw data8. PrivBayes, in counting
queries, samples the exact number of original data points; therefore,
it may consume extra privacy budget.
Workloads. We prepare different types of workloads. 𝑘-way All
Marginal is all marginal counting queries using all combinations of
𝑘 attributes. 𝑘-way All Range is the range version of the marginal
queries. Prefix-𝑘D consists of prefix queries using all combinations
of 𝑘 attributes. Random-𝑘D Range Query is range counting queries
for arbitrary 𝑘 attributes and we randomly generate 3000 queries
for a single workload.
Reproducibility. The experimental code is publicly available on
the https://github.com/FumiyukiKato/HDPView.

6.2 Effectiveness

We evaluate how effective p-views constructed by HDPView are
in data exploration by issuing various range counting queries.
Evaluation metrics. We evaluate HDPView and other mecha-
nisms by measuring the RMSE for all counting queries. Formally,
given the count tensorX, randomized viewX′ and workloadW, the
RMSE is defined as: RMSE =

√︃
1
|W |

∑
𝑞∈W (𝑞(X) − 𝑞(X′))2. This

metric is useful for showing the utility of the p-view. It corresponds
to the objective function optimized by MM families [30, 31], where
given a workload matrix𝑾 and a query strategy 𝑨, which is the
optimized query set to answer the workload, the expected error of
the workloads is 2

𝜖2 | |𝑨| |21 | |𝑾𝑨+ | |2
𝐹
= RMSE2. Thus, we can com-

pare the measured errors with this optimized estimated errors. We
also report the relative RMSE against HDPView for comparison.
High quality on average. Figure 3 shows the relative RMSEs for all
datasets and workloads and algorithms with privacy budget 𝜖=1.0.
The relative RMSE (log-scale) is plotted on the vertical axis and the
dataset on the horizontal axis where high-dimensional datasets (Jm1
and Adult) are on the left, medium-dimensional datasets (Traffic,
Electricity, Bitcoin and Numerical-adult) are in the middle,
and low-dimensional datasets (Small-adult and Phoneme) are on
the right. The errors with Identity for high-dimensional data are
too large and are omitted for appearance. Overall, HDPView works
well. In Section 1, Table 2 shows the relative RMSE averaged over
all workloads and all datasets in Figure 3, and HDPView achieves
the lowest error on average. In data exploration, we want to run a
variety of queries, so the average accuracy is important. We believe
HDPView has such a desirable property. A detailed comparisons
with the competitors are explained in the following paragraphs.
Comparison with Identity, HDMM and DAWA. Identity, which
is the most basic Baseline, and HDMM, which performs workload
optimization, cause more errors for high-dimensional datasets than

8PrivBayes shows worse performances with binned data in our prestudy.

HDPView. For Identity, the reason is that the accumulation of noise
increases as the number of domains increases. HDPView avoids
the noise accumulation by grouping domains into large blocks.
The results of HDMM show that the increasing dimension of the
dataset and the dimension of the query can increase the error. This
is because the matrix representing the counting queries to which
the matrix mechanism is applied becomes complicated, making it
hard to find efficient budget allocations. This is why the accuracy
of the 3- or 4-dimensional queries for Jm1 and Adult is poor with
HDMM. In particular, the HDMM’s sensitivity to dimensionality
increases can also be seen in Figure 7. DAWA’s partitioning leads
more errors than the HDPView and Privtree. When applied to
multi-dimensional data, DAWA finds the optimal partitioning on a
domain mapped in one-dimension, while HDPView and Privtree
finds more effective multi-dimensional data partitioning.
Comparison with Privtree. As a whole, HDPView outperforms
Privtree’s accuracy mainly for mid- to high-dimensional datasets.
In particular, we can see Privtree’s performance drops drastically
in high-dimensionality (i.e., Jm1). Privtree achieves higher accu-
racy than HDPView for Phoneme. This is likely because Privtree’s
strategy, which prioritize finer splitting, are sufficient for the small
domain size rather than HDPView’s heuristic algorithm. Even if
the blocks is too fine, the accumulation of PEs is not so large in
low-dimensionality, and AEs become smaller, which results in an ac-
curate p-view. The reasonwhyHDPView is better for Small-adult
despite the low-dimensionality may be that the sizes of the cardinal-
ity of attributes are uneven (Small-adult: {74, 9, 5, 100}, Phoneme:
{10, 10, 10, 10, 10, 10, 2}), which may make Privtree’s fixed cutting
strategy ineffective. To see the very low-dimensional case, Fig-
ure 4 shows the block partitioning for the 2D data with a popular
Gowalla [28] check-in dataset. The table below shows the num-
ber of blocks and the RMSE for the 3000 Random 2D range query.
HDPView yields fewer blocks and Privtree generates a less noisy
p-view for the abovementioned reason. The figure also confirms
that HDPView performs a flexible shape of block partitioning.

On the other hand, for high-dimensional dataset, this property
can be avenged. In Privtree, a single cutting always generates 2𝑑
new blocks, which are too fine, resulting in very large PEs even
though the AEs are smaller. Figure 5 shows the distribution of AEs
for blocks on Adult for HDPView and Privtree. HDPView has
slightly larger AE blocks, but Privtree has a large number of blocks
and cause larger PEs. An extreme case is Jm1 in which Privtree
causes large errors. This is probably because Jm1 actually requires
fewer blocks since the distribution is highly concentrated (c.f., Table
3). Figure 8 shows that the number of blocks of generated p-view by
HDPView and Privtree. For Jm1, HDPView generates very small
number of blocks while Privtree does not. We can confirm that
HDPView avoids unnecessary splitting via random cut and sup-
presses the increase in PEs which causes in Privtree. This would be
noticeable for datasets with concentrated distributions, where the
required number of blocks is essentially small.

Figure 6 shows the results of reducing the number of cut at-
tributes in Privtree and adjusting the number of blocks in p-view
on Numerical-adult and Jm1. If the number of cut attributes is
smaller than the dimension𝑑 , we choose target attributes in a round-
robin way (Appendix of [46]). In the case of Numerical-adult, the
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Figure 3: Relative RMSEs against HDPView on all the datasets and workloads: HDPView shows small errors for a wide variety

of high-dimensional range counting queries.

#Blocks 15669
RMSE 657.37

#Blocks 19475
RMSE 315.79

Figure 4: Examples of HDPView (left) and Privtree (right) on

2D dataset (Gowalla): HDPView has fewer blocks, leading to

noisier results than Privtree for very low-dimensional data.

Also, HDPView provides flexible block partitioning.

error basically decreases as the number of cut attributes is increased,
similar to the observation in Appendix of [46]. However, for high-
dimensional data such as Jm1, the error increases rapidly as the
number of cut attributes increases to some extent. This is consistent
with the earlier observation that influence of PEs increases. Also,

Figure 5: Number of blocks (log-scale) with various AEs

for high-dimensional dataset (i.e., Adult) for HDPView and

Privtree. HDPViewhas slightly largerAE blocks, but Privtree

has a much more number of blocks i.e., much larger PEs.

in any cases, the error of HDPView is smaller, indicating that HD-
PView not only has a smaller number of blocks, but also performs
effective block partitioning compared to Privtree on these datasets.
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Figure 6: HDPView is more effective than Privtree even with

controlled number of cuttings on Numerical-adult (left) and

Jm1 (log-scale) (right).

Figure 7: Changes in the performance when adding attributes

to Adult one by one in HDPView, PrivBayes, and HDMM.

Comparison with PrivBayes. We do not consider PrivBayes a
direct competitor because it is a generative model approach that
does not provide any analytical reliability as described in Section 2.
However, PrivBayes is a state-of-the-art specialized for publishing
differentially private marginal queries; therefore, we compared the
accuracy to demonstrate the performance of HDPView. As shown
in Figure 3, HDPView is a little more accurate than PrivBayes in
many cases. However, in Adult, PrivBayes slightly outperforms
HDPView. Because PrivBayes uses Bayesian network to learn the
data distribution, it can fit well even to high-dimensional data as
long as the distribution of the data is easily modelable. In HDPView,
with larger dimensionality, the PEs grow slightly because the total
number of blocks increases. The AEs also grow since more times of
random converge result in larger errors. Thus, the total error is at
least expected to increase, and the larger dimensionality may work
to the advantage of PrivBayes. Still, HDPView is advantageous,
especially for concentrated data such as Jm1.

We consider the reason why on Numerical-adult, which has a
smaller dimensionality than Adult, PrivBayes is less accurate than
HDPView is because the effective attributes for capturing the ac-
curate marginal distributions with Bayesian network are removed.
We can see the same behavior for Small-adult. The following ex-
perimental results can support this. Figure 7 describes the changes
in the RMSE with attributes added to Adult one by one in two
workloads, where the added attributes are shown on the horizon-
tal axis. Initially, HDPView is more accurate than PrivBayes. As

Figure 8: The number of blocks generated by HDPView is

much lower than that generated by Privtree.

Table 4: HDPView’s p-view is space efficient (up to 1013×).

Dataset Identity-based HDPView

Adult 30.99 EB 3.61 MB
Bitcoin 1.27 TB 6.77 MB
Electricity 1.11 TB 2.19 MB
Phoneme 781.34 KB 273.59 KB

attributes are added, HDPView is basically robust with increasing
dimensionality, but the error increases slightly. On the other hand,
interestingly, the error in PrivBayes becomes slightly smaller.

Lastly, considering HDPView is better in Numerical-adult and
worse in Adult, one of the advantages of PrivBayes may be due to
the increase in categorical attributes. Because HDPView bisects the
ordered domain space, it may be hard to effectively divide categori-
cal attributes, which possibly worsens the accuracy in HDPView.

6.3 Space Efficiency

Our proposed p-view stores each block in a single record. This
method avoids redundancy in recording all cells that belong to the
same block. The p-view consists of blocks and values, and basically,
the space complexity follows the number of blocks. Figure 8 shows
a comparison between the numbers of blocks of HDPView and
Privtree. While the accuracy of the counting queries of HDPView
is higher than that of Privtree, the number of blocks generated by
HDPView is much lower than that of Privtree, indicating that the
strategy of HDPView avoids unnecessary splitting. In particular,
on Jm1, HDPView is 4 × 104 more efficient than Privtree. Table 4
shows the size of the randomized views, Identity-based noisy count
vector (not p-view) and p-view generated by HDPView at 𝜖=1.0.
Since HDPView constructs the p-view by a compact representation,
it results in up to 1013 times smaller space on Adult.

7 CONCLUSION

We addressed the following research question: How can we con-
struct a privacy-preserving materialized view to explore the un-
known properties of the high-dimensional sensitive data? To practi-
cally construct the p-view, we proposed a data-aware segmentation
method, HDPView. In our experiments, we confirmed the follow-
ing desirable properties, (1) Effectiveness: HDPView demonstrated
smaller errors for various range counting queries in multidimen-
sional queries. (2) Space efficiency: HDPView generates a compact
representation of the p-view. We believe that our method helps
us explore sensitive data in the early stages of data mining while
preserving data utility and privacy.
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