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ABSTRACT
Neural methods have become the de-facto choice for the vast major-
ity of data analysis tasks, and entity alignment (EA) is no exception.
Not surprisingly, more than 50 different neural EA methods have
been published since 2017. However, surprisingly, an analysis of the
differences between neural and non-neural EA methods has been
lacking. We bridge this gap by performing an in-depth comparison
among five carefully chosen representative state-of-the-art methods
from the pre-neural and neural era. We unravel, and consequently
mitigate, the inherent deficiencies in the experimental setup utilized
for evaluating neural EA methods. To ensure fairness in evaluation,
we homogenize the entity matching modules of neural and non-
neural methods. Additionally, for the first time, we draw a parallel
between EA and record linkage (RL) by empirically showcasing the
ability of RL methods to perform EA. Our results indicate that Paris,
the state-of-the-art non-neural method, statistically significantly
outperforms all the representative state-of-the-art neural methods
in terms of both efficacy and efficiency across a wide variety of
dataset types and scenarios, and is second only to BERT-INT for
a specific scenario of cross-lingual EA. Our findings shed light on
the potential problems resulting from an impulsive application of
neural methods as a panacea for all data analytics tasks. Overall,
our work results in two overarching conclusions: (1) Paris should
be used as a baseline in every follow-up work on EA, and (2) neu-
ral methods need to be positioned better to showcase their true
potential, for which we provide multiple recommendations.
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1 INTRODUCTION
The past decade—a.k.a. the neural era—has witnessed a substan-
tial amount of research on representation learning for Knowledge
Graphs (KGs) [52]. KGs store knowledge in the form of the so-called
facts or triples (e.g. (head entity, relationship, tail entity)) and have
been shown to be essential for enhancing several downstream ap-
plications (e.g. question answering [42], intelligent conversational
agents [57], and recommender systems [73]). A common charac-
teristic across most, if not all, of the KGs is that they are seldom
complete, i.e., they lack a large portion of knowledge. To this end,
the vast majority of research over the past decade has focused on
KG completion via embedding-based methods for link prediction
[30, 48]. These techniques embed the entities and relationships of
the KG as low-dimensional vectors, which are used in conjunction
with a scoring function to predict unseen links between pairs of
entities for which the obtained score is high. Another prevalent
approach to increase the completeness of a KG is termed entity

alignment (EA), a fundamental task in the broad field of data inte-
gration. Instead of predicting missing links within a KG, the EA task
consists of integrating two or more KGs into the same source of
knowledge by aligning nodes that refer to the same entity/concept.
This resembles the join operation in relational databases (DBs),
where records from two or more tables are combined based on
some common attributes. Different to the join operation, in the EA
problem the entities of two or more KGs are not represented by
unique distinct identifiers that are shared across all the KGs. That
said, given a way to handle possibly heterogeneous KG schemas, the
EA task can be seen as a record linkage (RL) problem for integrating
tables from two different relational DBs.

Motivated by the success of embedding-based methods for link
prediction, researchers adapted these methods to address the EA
problem. The motivation is sound: if the neighboring structure and
the values of the attributes of counterpart entities from different
KGs are similar, then their low-dimensional representations should
also be similar. However, the EA problem did not emerge recently,
rather it is a well-studied and fundamental task in the data manage-
ment and semantic web communities (e.g. [8, 31, 35, 59], to name
but a few) that predates the neural era. Unfortunately, most of the
embedding-based (neural) EA methods lack a comparison to the
methods from the pre-neural era, and only benchmark against other
neural methods. This endogamic behavior impedes our understand-
ing about the true progress achieved by neural EA methods with
respect to the solid and vetted contributions made by methods from
the pre-neural era and other communities.
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Given the success of representation learning in multiple fields
such as computer vision or natural language processing, one might
expect substantial progress on account of neural EA methods, how-
ever, this has to be validated empirically. As a matter of fact, a recent
work [18, 19] in the field of recommender systems has revealed
the superiority of naïve baselines over the vast majority of neural
approaches published at top research venues in the last years. In
the same vein, a critical re-evaluation of neural EA methods is war-
ranted. Given the increasing interest in the development of neural
EA methods, an exhaustive comparison to methods from a different
family will only help to provide a clearer picture of the progress
made recently in this problem, thereby serving as a timely addition
to research in the field. That said, the goal of this work is to shed
light on three main research questions, which are stated as follows:

• RQ1: Is the evaluation setup employed by neural EA methods

meaningful?

• RQ2:What is the true progress achieved by neural EA methods?

• RQ3:What lies in the future for the field of neural EA?

Scope of the present work. Before we list our contributions, it is
important to explicitly clarify the scope of this work. The primary
goal of this work is to assess and disseminate the true progress

achieved in the field on account of neural EA methods. That said,
exhaustively benchmarking recent EA methods as performed by
related works [66, 81, 82], was neither originally in the scope of this
work nor should it be perceived as such. Conversely, measuring true
progress requires a systematic, solid, assumption-free, and realistic
evaluation of the representative methods on a large collection of
datasets with diverse and realistic characteristics. To this end, we
redirect our focus on specific aspects of the EA task captured by
the aforementioned three research questions (RQ1-3). Further, we
make multiple nuanced contributions (detailed below), which, on
their own, should only be perceived as by-products of this work,
however, are crucial collectively to achieve our primary goal.

Key contributions. The main contributions of this work are:

• We extend Paris [59]—an established and vetted method from
the pre-neural era—to incorporate supervised seed alignment
information (§ 3.1). This extension is important for performing a
fair comparison of Paris, which is originally unsupervised, with
neural methods that are supervised by design.
• We answer RQ1 by identifying and rectifying unrealistic assump-
tions followed by methods from the neural era. Specifically, we
create more than 10 novel benchmark datasets that closely mimic
real-world EA scenarios, and introduce a homogenized evalua-
tion protocol for a fair comparison across all methods (§ 3).
• We answer RQ2 by performing extensive empirical evaluations
across a wide-range of dataset configurations and evaluation
metrics, and successfully establish the strength of the methods
from the pre-neural era. Additionally, for the first time, we draw
a parallel between EA and RL by empirically showcasing the
ability of RL methods to perform EA (§ 4, § 5, and § 6).
• We answer RQ3 by providing actionable recommendations to the
community for enabling a streamlined advancement of research
in neural EA. We lead by example and enhance a neural method
with a feature identified from our analysis as fundamental to the
success of non-neural methods (§ 7).

2 ENTITY ALIGNMENT: A PRIMER

Preliminaries. Following recent work [66], we refer to (head,
relation, tail) and (head, attribute, literal) as relation and attribute

triples, respectively. Instances of both types of triples are (Madrid,
is_capital_of, Spain) and (Madrid, has_latitude, "40.4"), respec-
tively. The arguments head and tail represent entities, relation is
a relationship that holds between two entities, and attribute is a
type of relationship that holds between an entity and a literal. As
opposed to entities, which are language-agnostic representation of
concepts, literals are used to identify values for strings, numbers
or dates. Therefore, literals are written in a certain language or
following a certain format, both defined by the schema of the KG.
We note that the referred terminology is not shared by past works
[35, 59], where, for instance, triples and attributes are termed state-
ments and properties, respectively. Therefore, a KG is characterized
with a number of triples E × R × (E ∪ L), where E, R, and L
indicate the set of entities, relationships, and literals, respectively.
While attribute triples are a fundamental part of every KG, some
recent entity alignment methods are built upon the assumption
that the KG is solely characterized with relation triples. We coin
the term shallow KG to refer to this type of KG. We sometimes use
the shortcut r (a,b) to indicate that a relationship r holds between
an entity a and a second argument b (either an entity or a literal).

The entity alignment problem is typically defined between two
KGs,KG1 andKG2, where the task consists of finding equivalences
between the set of entities E1 and E2 of the two KGs. Sometimes
there exists a set of known alignments that can be used as super-
vision. This set S is known as seed alignment. We always assume
that there exists a ground truth G = {(e, e ′) ∈ E1 × E2 |e = e ′} that
includes all possible equivalences between pairs of entities.

Related research problems. The success of the Semantic Web
[24] was key to the proliferation of ontologies/schemas and knowl-
edge graphs1. This motivated the interest in methods that helped
to integrate independently designed ontologies and KGs, and led
to the following three broad directions:

(a) Schema Alignment [6, 27, 29, 72] aims to identify equivalent
classes between pairs of ontologies. Although it shares some
similarities with the EA problem, one fundamental difference
between both tasks relies on the number of elements to be
matched. This becomes the main obstacle for transferring suc-
cessful ontology alignment methods to the EA problem.

(b) Ontology Alignment [38, 59, 70] refers to holistic solutions that
address the more general problem of both instance (i.e. entities
and relationships) and schema alignment.

(c) Entity Matching (a.k.a. record linkage or entity resolution) [16,
33, 39, 46] is the counterpart problem to EA for relational DBs.
It refers to the problem of determining whether data entries
from two DBs refer to the same real-world entity. For the sake
of clarity, we will use the term RL to refer to these methods in
the remainder of the paper. We study the connection between
RL and EA in detail in § 5.

1While the distinction between these two terms is sometimes blurry, one may think of
a schema as a formal description of knowledge—a set of classes (e.g. the class of all
movies, actors, etc.) within a domain and the relations that hold between them—which
enables the generation of instantiations of knowledge—a knowledge graph.

1713



It is important to highlight the Ontology Alignment Evaluation
Initiative (OAEI) [2] that runs yearly campaigns—soliciting pro-
posals across a variety of tracks followed by a publication of the
findings [22, 40, 54]—to track the progress on schema and ontology
alignment. Similar efforts should be explored by the EA community,
primarily to ensure a homogeneous evaluation setup.

2.1 Pre-neural Era
Entity alignment for KGs has been an active research topic in the
data mining and semantic web communities since 2000. These ap-
proaches have been typically benchmarked on real KGs such as
DBpedia [5] or Freebase [9]. Popular EA methods for large-scale
KGs included efficient solutions to the quadratic scaling cost of com-
paring all possible pairs of entities [8, 35]. Other popular solutions
were based on rules [4], clustering techniques [88], or consisted of
principled frameworks to scale any generic EA algorithm [56].

Similar to ontology alignment, there is an additional problem that
solves EA as a by-product of a more general task, called instance
alignment, where the goal is to align both entities and relationships
between two ontologies. Some of the proposed instance alignment
methods leveraged terminological structure [49], exploited a set of
heuristics [69] or were based on relational clustering techniques [7].
Paris [59], one of the most popular ontology alignment methods,
is a probabilistic method that neither requires any seed alignment
(i.e. it is unsupervised) nor needs any parameter tuning. We intro-
duce some technical concepts of Paris that are pivotal to some
subsequent sections of this work.

Functionality is a key concept to understand Paris. A relationship
is said to be (quasi) functional if, for a given entity, the expected
number of entities or literals that complete the triple is (close to)
one. Examples of (quasi) functional relationships are born_in or
height. Formally, it is defined as follows:

f un(r ) =
#x : ∃y : r (x ,y)
#x ,y : r (x ,y)

. (1)

While we omit many technical details for the sake of simplicity, we
note that the bulk of Paris boils down to estimating the probabilities
of an entity e inKG1 being equivalent to another entity e ′ inKG2.

Pr (e ≡ e ′) = 1 −
∏
r (e,y)
r (e ′,y′)

(1 − f un(r−1)Pr (y ≡ y′)). (2)

For the probability of e ≡ e ′ to be large, the entities e and e ′ only
need one (quasi) functional relationship that connects them to two
entities (or literals) y and y′, respectively, with a high equivalence
probability. Therefore, Paris operates recursively: the equivalence
probability of e ≡ e ′ depends recursively on other equivalence
probabilities. Initial equivalences are computed between literals
based on a certain string distance.

2.2 Neural Era
After an intense period of research—with a peak around 2010—the
topic became less active and did not experience any breakthrough
for a period of time. However, a new wave of interest was initiated
in 2017. As opposed to the previous wave, where we witnessed the
development of a large variety of techniques, this era was domi-
nated by neural approaches. A second key difference is that most

approaches of this new era focus solely on the EA problem. A large
number of these neural approaches are adaptations of successful
embedding-based methods for link prediction. To our knowledge,
the work by Chen et al. [15] pioneered this family of solutions.
Their approach, referred to as MTransE, is inspired by transla-
tional models for link prediction such as TransE [11] and rTransE
[26]. Surprisingly, the authors did not benchmarkMTransE against
any of the previous approaches that may work under the exact same
setup, but their baselines consist of methods from the multilingual
word embedding literature such as CCA [23], LM [45] and OT [76].
MTransE compared favorably with these baselines, and became
the state-of-the art for successive neural approaches.

Motivated by the recent surge of neural EA methods at top-tier
AI conferences (e.g. [12, 14, 15, 53, 63, 64, 68, 74, 75, 77, 80, 84]),
some very recent works [66, 81, 82] have provided a benchmarking
study of these methods. Such works [66, 82] also depicted that most
of the neural approaches can be described as instances of a modular
framework. The main modules of the framework are:
• The embedding module encodes the components (i.e. entities and
relations) of the KG into a low-dimensional space. While for
shallow KGs the encoding function typically consists of a simple
lookup table, for normal KGs the encoding function learns low-
dimensional representations for entities by exploiting their literal
values and those of their neighbors.
• The interaction module leverages a supervised signal (i.e. the seed
alignment) to guide the optimization of an objective function.
The module ensures that all components of the two KGs are
projected into the same latent space. The interaction module also
computes alignment scores between pairs of entities based on an
appropriate scoring/similarity/distance function.
• The alignment scores are used as input to the matching module,
which addresses the combinatorial optimization problem known
as the assignment problem [34]. While more sophisticated—and
also more costly—solutions to this problem are possible, it very
often follows a greedy strategy to output equivalences between
entities. In addition, boostrapping is a practice followed by some
works: The alignments outputted in an iteration are used as
supervision by the interaction module in subsequent iterations.

The aforementioned modules are common to all the neural tech-
niques, regardless of whether they are designed for normal or shal-
low KGs. With the exception of the matching module, which is
also present in methods from the pre-neural era, the other two
modules are only relevant to neural approaches. Thus, fundamen-
tal differences across neural methods emanate primarily from the
embedding and interaction modules (cf. [66, 82] for details).

2.3 Recent Benchmarking Studies
The proliferation of neural EAmethods led tomultiple recent bench-
marking studies—published in the later half of 2020—that systemat-
ically evaluate and compare their performance.
• To our knowledge, the work by Sun et al. [66] provided the first
in-depth analysis and comparison of neural EAmethods. Sun et al.
also developed and releasedOpenEA, an open-source library [61]
comprising an implementation of 13 recent EAmethods.OpenEA
is duly maintained and integrates the source code of additional
EA methods to facilitate their evaluation. It also incorporates a
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Table 1: A summarized comparison of the contributions of
recent benchmarking studies on entity alignment.

Contribution
Type Description

Present
work

(Section)

Zhao
et al.
[82]

Sun
et al.
[66]

Evaluation

Realistic datasets: degree distribution ✓ (3.2) ✓ ✓
Realistic datasets: no 1-to-1 assumption ✓ (3.2) ✓∗

Realistic datasets: obfuscated entity URIs ✓ (3.2)
Benchmark datasets for ablation analyses ✓ (3.2)
Homogenized matching module ✓ (3.3)
Realistic evaluation metrics ✓ (3.3) ✓∗

Empirical In-depth comparison: Paris vs. neural methods ✓ (4)
Comparison to record linkage methods ✓ (5) ✓◦

Methodological⋆
Extending Paris to leverage seed alignment ✓ (3.1)
Extending neural methods with ideas

✓ (7.2)from non-neural methods
∗ The discussion and analysis was carried out on only a single dataset
◦ The comparison included name-based record linkage heuristics
⋆ Existing benchmarking studies did not propose any methodological extensions

set of dedicated small-scale benchmark datasets (cf. § 3.2). These
datasets are sub-sampled versions of well-known KGs designed
to better reflect the properties of original KGs. We use the term
OpenEA to refer to these datasets in the remainder of the work.
• Next, similar to [66], Zhao et al. [82] conducted a systematic and
comprehensive comparison of neural methods.
• The deployment of neural EA methods in industrial setups was
discussed by Zhang et al. in [81]. Seed alignments in the industrial
setup are scarce and less biased when compared to the ideal
academic setup. Not surprisingly, Zhang et al. report that the
performance of neural methods declines drastically when the
evaluation context is moved from the ideal to the industrial setup.

All these works are partially complementary with respect to the set
of evaluated neural methods and the benchmark datasets, however
collectively, they provide a clear picture of the best-performing
neural approaches published until, at least, mid-2020. Interestingly,
all these works conclude with a very superficial comparison to Paris.

Novelty of the present work. We share a similar goal with the
aforementioned benchmarking studies (especially [66, 82]), namely,
we want to gain a better understanding of the EA problem and
better position the progress made in the neural era.

To achieve this goal, previous studies perform an exhaustive com-
parison across neural methods, but only a tangential and superficial
analysis with respect to Paris. On the contrary, Paris is treated as a
first-class citizen (along with other representative methods) in the
analysis performed in this work. More specifically, the findings of
previous studies simply serve as the starting point of the analysis
conducted in this work, i.e., facilitating the selection of representa-
tive EA methods. That said, this paper goes beyond conventional
benchmarking, and performs a wide-variety of in-depth analyses
to unravel the technical and practical underpinnings of the EA
problem. The key novel research directions, which unfortunately
were not explored in the previous studies, are stated as follows:
• Achieving an evaluation setup that closely mimics real-world
settings. This not only involves the creation of a wide-variety of
realistic datasets but also the adoption of suitable evaluation met-
rics, and the homogenization of design choices (e.g. the matching
module) that facilitate a fair comparison across methods.
• Ablations to analyze how specific characteristics of KGs (e.g.
#attributes, KG sparsity, or amount of supervision) may affect
methods from both the pre-neural and neural era.

Table 2: (Top) Representativemethods benchmarked in this
work, and (bottom) their key characteristics.

Era KGs w/ attribute triples KGs w/o attribute triples

Pre-neural Paris+ (this work) Paris+ (this work)
Neural RDGCN [74], BERT-INT [67] BootEA [64], TransEdge [65]

Method Key characteristics

Paris [59] Probabilistic approach relying on the functionality of the relationships.
Paris+ (this work) Extension of Paris to leverage the seed alignment.
RDGCN [74] Embedding module based on GCN [32].

BERT-INT [67] Embedding module based on BERT [20].
Entities are characterized with descriptions.

BootEA [64] Link prediction objective function.
Bootstrapping procedure to iteratively extend the seed alignment.

TransEdge [65] It extends BootEA to also optimize an entity alignment objective.

• Providing several recommendations to improve and/or better
position future work on neural entity alignment. Importantly, we
already empirically show the benefit obtained by incorporating
one of the recommendations to extend neural EA methods.
Table 1 concludes this discussion by providing an actionable sum-

mary as well as a qualitative comparison of specific contributions
made by this work and the previous benchmarking studies.

3 EXPERIMENTAL SETUP
Based on our careful review of the EA literature, we observed that
methods belonging to the pre-neural and neural era differ not only
at the technical level but also in their evaluation. In this section, we
(i) provide a detailed description of multiple salient discrepancies in
their evaluation setups, and (ii) discuss our contributions towards
obtaining a realistic and homogenized evaluation setup, thereby
mitigating the said discrepancies.

3.1 On the Choice of Representative Methods
We start by enumerating and justifying the selection of methods
benchmarked in this work. Table 2 lists the chosen techniques,
which are meant to enable a meaningful comparison in setups
where (i) the KGs possess attribute triples, and (ii) the KGs lack
attribute triples (shallow KGs).

Why Paris? To the best of our knowledge, there does not exist
any work from the pre-neural era that significantly beats Paris
on the datasets where Paris was benchmarked—YAGO, DBpedia
and IMDb. However, if we only focus on the EA task—a subset
of the outcome of Paris—there do exist works that report similar
performancewhile beingmore efficient. One such example is SIGMa
[35], which comes at the cost of requiring a (small) set of manually
aligned relationships and attributes. Additional strengths of Paris
are that it is publicly available [21] and is extremely easy to use.

What is Paris+? It is our variant of Paris that works even in
the absence of attribute triples, as long as there exists a seed set.
Paris exploits the information in the attribute triples to initially
compute probabilities of pairs of literals being the same, which
serve as the basis for estimating equivalence probabilities between
entities. Thus, Paris is destined to fail in the absence of attribute
triples. However, Paris+ processes the seed information to gen-
erate attribute triples such that for every pair of entities (e, e’)
that are part of the the seed alignment, it creates the attribute
triples (e, EA:label, string(e)) and (e’, EA:label, string(e)), where
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EA:label is a synthetic relationship that connects an entity to a
quoted literal—following the RDF format [1]–obtained through the
function string. Thus, the relationship EA:label is designed to be
highly functional (Eq. 1) and, consequently, the entity pair (e, e’)
will be deemed equivalent (Eq. 2) with a very high likelihood.

With this added ability to leverage seed alignments (if any),
Paris+ becomes the only representative method from the pre-neural

era in the remainder of the paper. A comparison between Paris and
Paris+ can be found in the appendix of our technical report [36].

WhyRDGCN, BERT-INT, BootEA and TransEdge?We care-
fully reviewed the benchmarking studies (cf. § 2.3) and other papers
published until March 2021. We rely upon experiments reported in
these works on sub-sampled versions of KGs derived from DBpe-
dia, Yago and Wikidata. From the benchmarking studies [66, 82]
published in the later half of 2020, we concluded that RDGCN
was always very competitive—often the best performing neural
technique—for KGs that possess attribute triples. Also from these
works we concluded that for shallow KGs the best performing
techniques are BootEA and TransEdge. We continued tracking
subsequent papers published at top-tier conferences, and decided
to include BERT-INT in our selection of representative neural meth-
ods. The reason is twofold: (i) to our knowledge, to date BERT-INT
outperforms all existing neural methods on a collection of datasets
[67] derived from DBpedia, (ii) it facilitates assessing the strength
of the highly successful language model—BERT—on the EA task.

We follow the best practices in [66] to enhance the performance
(e.g. using the cross-domain similarity local scaling (CSLS) [17] as
a similarity metric in the interaction module) of these methods.

Why not other methods? To the best of our knowledge, there
does not exist any method in the literature from either the pre-
neural or neural era that is significantly better than the chosen
techniques in datasets generated from the KGs considered in this
work. Next, we provide specific reasons behind the omission of
some recently published neural EA methods.

• While CEA [79] was shown to outperform other more elaborate
methods [82], we excluded CEA from this study for two reasons:
(i) it is outperformed by BERT-INT [67], and (ii) we hypothesized
that the observed gains in performance over related works is
due to a complex and expensive matching module. As we will
discuss later in this section, for a fair comparison, we deliberately
homogenize the matching module of the selected methods.
• MuGNN [12]: Graph neural networks (GNNs) are the main build-
ing block of many neural EA approaches. Despite the relevance
of MuGNN for pioneering the GNN-based methods in the EA
literature, its performance is far from the methods included in
our selection of representative methods [82].
• CG-MuAlign [85]: This GNN-based approach was shown to
scale to moderately-sized KGs (up to 2.6M entities) and outper-
form a number of other GNN-based variants and other methods.
However, the authors reported performance on a set of KGs
(e.g. IMDb, Amazon, etc.) that differs from the KGs prevalent in
standardized benchmark datasets used in our study.
• HyperKA [62]: Based on the recent success of hyperbolic rep-
resentations [47], HyperKA embeds shallow KGs in a hyper-
bolic space. We ran preliminary experiments with HyperKA and

observed that it never outperformed comparable methods (i.e.
BootEA and TransEdge).
• Other works such as RNM [86], DUAL-AMN [44], and JEANS
[13] were excluded because they are outperformed by BERT-INT.

3.2 Datasets

Scale. One driving factor in the design of EA methods proposed
in the pre-neural era was their application to real-world KGs such
as Freebase [10] or Yago [60]. This fundamental characteristic is
very often overlooked in the design of methods from the neural era,
which, in their current state, lack the ability to scale to real-world
KGs, and are therefore benchmarked in heavily sub-sampled (≈ 50x
smaller) datasets constructed from the original full KGs.

On the one hand, scaling up state of the art neural EA methods
to large real-world KGs seems to be a possibility. This is primarily a
consequence of the recent advancements in scaling up the training
of KG embeddings for performing link prediction—a task that pos-
sesses some similarities with the EA task—in large real-world KGs
via frameworks such as GraphVite [87], PyTorch-BigGraph [37],
and DGL-KE [83]. On the other hand, on account of limited to no
evidence of successfully scaling neural EA methods to large KGs,
assumptions that straight-forward adaptations of the aforemen-
tioned frameworks would suffice are far-fetched. In our humble and
honest opinion, non-trivial advancements of the aforementioned
frameworks and a substantial amount of engineering efforts (e.g.
asynchronous distributed training) and hardware resources (e.g.
a large number of GPUs) would be required to enable the neural
approaches to run on the original full KGs.

1-to-1 assumption. An important characteristic of most of the
datasets employed for benchmarking entity alignment methods
from the neural era is what we refer to as the 1-to-1 assumption:
each entity in a KG has a counterpart in the second KG. The 1-to-1
assumption, also referred to as the closed-domain scenario and
discussed independently in a very recent benchmarking study [82],
is never observed in real-world KGs. This is especially true when
the alignment is performed between pairs of KGs that are fed from
different information sources (e.g. the movie-related IMDb and the
general KG Wikidata [71]). Another important characteristic is
discussed in [66]: the KG properties—e.g. entity degree distribution
or KG clustering coefficient—of the sub-sampled datasets generated
for benchmarking neural methods are quite different to those of
the original KGs. To address this issue, Sun et al. [66] proposed
an iterative degree-based sampling (IDS) algorithm to obtain sub-
sampled KGs—the OpenEA datasets—that closely approximate the
degree distribution of the original KGs while achieving a desired
amount of aligned entities. However, we note that the OpenEA
datasets are still generated under the unrealistic 1-to-1 assumption.

Leakage. By convention, identifiers for ontology terms should be
semantics-free or meaningless [3]. Contrary to this general wisdom
and convention, we observed that the unique resource identifiers
(URIs) of entities for some of the KGs are semantically meaningful.
For example, consider the URIs—https://dbpedia.org/page/Barack_
Obama, https://yago-knowledge.org/resource/Barack_Obama, and
https://www.wikidata.org/wiki/Q76—of the entity Barack Obama
in theDBpedia, Yago, andWikidata KGs, respectively. Specifically,
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Table 3: Datasets benchmarked in this work.WhileOpenEA
datasets were introduced in [61], the remaining datasets
have been introduced in this work. All datasets closely ap-
proximate the degree distribution of the original KGs.
Type Scope Main Characteristics

OpenEA Primary 1-to-1 assumption.
RealEA Primary no 1-to-1 assumption.
XRealEA Primary no 1-to-1 assumption, cross-lingual.
SupRealEA Ablation no 1-to-1 assumption, varying amount of supervision.
AttRealEA Ablation no 1-to-1 assumption, varying amount of attributes.
SpaRealEA Ablation no 1-to-1 assumption, sparser KG.
RealEA_NoObfs Ablation no 1-to-1 assumption, non-obfuscated URIs.
XRealEA_Pure Ablation no 1-to-1 assumption, purely cross-lingual.

DBpedia and Yago use a canonicalized—thereby unique—variant of
the entity name—thereby meaningful—as a part of the URI, whereas
Wikidata uses meaningless identifiers. Meaningful URIs carry in-
formation, thereby leading to a problem that we refer to as leakage.
In fact, a careful analysis of the technical description and the code
of RDGCN—a representative neural method for KGs possessing
attribute triples—revealed that it leverages this information as if
it was a proper literal, which, in hour humble opinion, is an un-
fair trick. To ensure fairness and consistency across methods, we
fix the leakage problem by obfuscating entity URIs in all the KGs.
Obfuscated URIs are semantics-free or meaningless, thereby pre-
venting any method from unfairly or unintentionally leveraging
information that was not meant to be used, as well as conforming
to the general wisdom and conventions in the literature.

Towards realistic datasets. An ideal comparison should include
KGs as they are. However, as previously argued, neural methods,
in their current state, lack the ability to scale to original full KGs
containing millions of entities and triples. For this reason and fol-
lowing convention in the literature [66, 82], we proceed to perform
the comparison in datasets at a smaller scale. We generate a wide
variety of entity alignment datasets constructed from real-world
KGs such as Wikidata, DBpedia, and Yago. For a more realistic
entity alignment scenario, unless stated otherwise, we impose the
following three constraints on the generated datasets:

(1) Similar to [66], the sub-sampled KGs must approximate the
degree distribution of the original KGs.

(2) The sub-sampled KG pairs should not follow the unrealistic
1-to-1 assumption.

(3) Entity URIs should be semantics-free and are therefore obfus-
cated.

Given that the IDS algorithm proposed by Sun et al. [66] only
addresses the first requirement, we propose a simple modification
to IDS to also address the second requirement. At a high-level, IDS
proceeds in two stages. Firstly, it takes as input two KGs and a ref-
erence alignment and filters out all the entities that do not have a
counterpart entity in the other KG according to the reference align-
ment. In a second stage, IDS iteratively removes pairs of aligned
entities in order to adjust possible discrepancies in the degree distri-
bution between the sampled and original KGs. We refer the reader
to [66] for a more detailed technical description. For all practical
purposes, our modification—denoted as IDS*—circumvents the first
stage of IDS to not enforce the 1-to-1 assumption. The pseudocode
for IDS* is presented in the appendix of our technical report [36].

(a) (b)

Figure 1: Comparing the degree distribution of RealEA
with SpaRealEA in the sub-sampled KGs generated with
IDS* for the (a) DBpedia and (b) Yago datasets, respectively.
All the remaining dataset types have the same distribution
as that of RealEA, and are therefore omitted in the plot.

We use IDS* to generate a wide variety of dataset types that
fulfill the three aforementioned constraints, viz. (1) they closely
approximate the degree distributions of the original KGs, (2) do not
follow the unrealistic 1-to-1 assumption, and (3) possess obfuscated
entity URIs. That said, our primary benchmarking datasets corre-
spond to three broad types: (i) OpenEA, which was generated in
[61, 66]; (ii) RealEA, and (iii) XRealEA, which we generate in this
work using the IDS* algorithm. Specifically, RealEA and XRealEA
can be seen as the realistic and assumption-free counterparts to
the mono-lingual and cross-lingual OpenEA datasets, respectively.
Moreover, our analysis goes much further and also explores other
characteristics that might affect the comparison between neural
and non-neural EA methods. These characteristics are investigated
with variants of RealEA and XRealEA, which serve the purpose
of ablation studies. Primarily, the variants are designed to study the
robustness of the methods to, among others, the amount of supervi-
sion (SupRealEA) or attributes (AttRealEA). Table 3 provides a
summary of all the dataset types benchmarked in this work.

Fig. 1 illustrates that the datasets generated by IDS* closely
approximate the degree distribution of the original KGs. While
RealEA better mimics the original KGs in the high-degree (i.e., > 8)
range, SpaRealEA does a better reconstruction in the low-range,
thereby becoming relatively more sparse—hence its name. The da-
taset statistics are provided in Table 4. The following shorthand
codes are used: DBpedia (DB), Yago (YG),Wikidata (WD), English
(EN), French (FR), Japanese (JA)—DBpedia is the underlying KG of
the last three datasets. For all datasets except SupRealEA, the seed
alignment set consists of 20% of overall matchable entities, which
was also found to conform to the real world [66].

3.3 Evaluation
Historically, EA strategies [35, 59] have been evaluated using infor-
mation classification-based evaluation metrics such as precision,
recall, and F1-score [28]. They are computed by comparing the set
of alignments output by a system to the ground truth. The sys-
tem aims to retrieve as many correct alignments as possible while
keeping the number of incorrect alignments as low as possible.

On the other hand, neural EA approaches adopted ranking-based
evaluation metrics such as mean reciprocal rank or precision at k
[43]. While it is not clear why these metrics were chosen, one may
intuit that this was motivated by the recent literature on neural
approaches for link prediction, which have largely influenced many
neural EA methods. Link prediction methods are evaluated based
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Table 4: Dataset statistics. Every dataset type contains pairs of KGs to be aligned. The dataset types SupRealEA and At-
tRealEAmodify RealEA, while XRealEA_Puremodifies XRealEA for performing ablation studies. Therefore, their statis-
tics only vary for #Attributes or #Att. Triples, and are presented in the appendix in our technical report [36].

Dataset Type

OpenEA RealEA XRealEA SpaRealEA

Dataset DB-YG-15K DB-WD-15K DB-YG-100K DB-WD-100K DB-YG-15K DB-WD-15K DB-YG-100K DB-WD-100K EN-FR-15K EN-DE-15K EN-JA-15K DB-YG-15K

#Entities 15,000 - 15,000 15,000 - 15,000 100,000 - 100,000 100,000 - 100,000 19,865 - 21,050 20,038 - 19,581 126,145 - 136,211 129,847 - 137,721 20,473 - 19,922 19,680 - 19,740 21,537 - 19,751 20,399 - 21,019
#Relations 165 - 28 248 - 169 287 - 32 413 - 261 290 - 32 306 - 214 386 - 32 456 - 329 303 - 254 287 - 155 341 - 219 291 - 32
#Attributes 257 - 35 342 - 649 379 - 38 493 - 874 247 - 34 307 - 490 366 - 38 478 - 785 303 - 451 366 - 217 335 - 186 241 - 34
#Rel. Triples 30,291 - 26,638 38,265 - 42,746 294,188 - 400,518 293,990 - 251,708 60,329 - 82,109 50,007 - 65,017 479,510 - 653,261 399,061 - 489,698 57,224 - 54,366 46,432 - 35,808 87,662 - 65,769 36,282 - 46,241
#Att. Triples 71,716 - 132,114 68,258 - 138,246 523,062 - 749,787 451,011 - 687,860 129,330 - 392,845 85,331 - 112,786 677,721 - 1,427,545 566,073 - 668,925 109,141 - 85,283 111,557-108,760 99,812 - 68,389 123,822 - 326,896
#Matchable Ent. 15,000 15,000 100,000 100,000 15,000 15,000 100,000 100,000 15,000 15,000 15,000 15,000

on their ability to complete queries. A query (head , relation, ?) is an
entity-relation pair where a second entity is missing to form a valid
triple. This unrealistic evaluation requires a partial knowledge of
the ground truth, and has been very recently shown not to translate
to good performance on the actual KG completion task [58].

A similar concern might be raised when ranking-based metrics
are used for EA. The counterpart query in this problem is (head ,
sameAs , ?), which assumes partial knowledge of the ground truth:
the set ofmatchable entities. In practice, this knowledge is reflected
in the 1-to-1 assumption—every entity in one KG has a counterpart
in the other—that serves as the basis for the datasets used by the
neural EA community. It is up for discussion whether the choice of
metrics influenced the dataset construction process, or vice versa.

Towards a realistic evaluation. As previously argued, in a real-
istic setting, we will not possess the apriori knowledge of which
entities in a KG are matchable (i.e. have a counterpart entity in
the other KG). For this reason, we proceed with a homogeneous
evaluation where each EA method is validated and evaluated based
on standard classification-based metrics, i.e., precision, recall, and
F1-score [28]. LetM be the set of entity pairs outputted by a system,
the aforementioned metrics are formalized as follows. Note that F1
conveys a balance between precision and recall, and is usually used
as an indicator of the overall system performance [28, 43].

Prec. =
|M ∩ G|

|M|
Recall =

|M ∩ G|

|G|
F1 = 2

Prec . ∗ Recall

Prec . + Recall

The setM is outputted by the matching module. For a fair com-
parison across methods, whose main contributions are independent
to the matching module, we deliberately homogenize this mod-
ule for all benchmarked methods. The input to this module is a
weighted bipartite graph where every node in one graph is con-
nected to every node in the other graph, and the output is a pruned
version of the same graph, where every node may keep at most one
single edge. This pruning procedure is known as the assignment
problem, for which there exists a number of solutions that unfortu-
nately scale quadratically or cubically with the number of nodes
[25]. Given the scale of the KGs, we explore simpler greedy solu-
tions. We empirically find that the matching strategy implemented
in Paris works the best: two entities (e, e’) are matched if e ′ ←
argmaxx ∈KG2

f (e ≡ x) and e ← argmaxx ∈KG1
f (e ′ ≡ x), where

f indicates either a probability or a similarity metric. The pseu-
docode is presented in the appendix of our technical report [36].

4 RESULTS: ENTITY ALIGNMENT
In this section, we assess the efficacy and efficiency of five repre-
sentative methods—Paris+ from the pre-neural era, and BootEA,

TransEdge, RDGCN and BERT-INT from the neural-era—for per-
forming entity alignment. While BootEA and TransEdge use only
the signals manifested in the relationships between entities (shal-
low KG), Paris+, RDGCN, and BERT-INT leverage the information
manifested in both attributes and relation triples. We report the
average and standard deviation of the results obtained via 5-fold
cross-validation. For additional details about the experiment setup
or results, please see the appendix of our technical report [36].

4.1 OpenEA Datasets
Table 5a presents the first set of results, which are based on the
OpenEA datasets provided by Sun et al. [66]. Before discussing the
results, it is important to highlight the following noteworthy traits
of the experiment: (1) these datasets are generated under the unreal-
istic 1-to-1 assumption (§ 3.2), (2) neural methods leverage the said
1-to-1 assumption and use the entity matching module prescribed
by the OpenEA library [61], thereby being at an advantageous posi-
tion when compared to Paris+, (3) Paris+ operates oblivious to the
1-to-1 assumption and uses the general bidirectional entity match-
ing algorithm (cf. appendix in [36]), (4) neural methods use CSLS
[17, 66] as it consistently improves their efficacy, and (5) owing to
multiple flaws (details in the appendix of our technical report [36])
in the implementation of Paris exposed by the OpenEA library
[61], the reported results for Paris+ in Table 5a are substantially
different (and better) from those reported in [66].

It is evident from Table 5a that Paris+ significantly outperforms
all the neural methods on each evaluation metric across all datasets,
with improvements ranging from 3%–7% and 40%–50% (absolute
difference) on the DB-YG and DB-WD datasets, respectively. Addi-
tionally, the stability of all the methods to varying testing portions
of the datasets is established by the consistently low standard devi-
ations observed for each method across dataset types and metrics.

Note that the observed performance for all the methods is gener-
ally lower on the DB-WD datasets than the DB-YG datasets. This is
explained in [66] as a consequence of the existence of symbolic het-
erogeneity of attributes in Wikidata: Attributes are encoded using
numeric identifiers. While the attribute heterogeneity adversely
affects attribute embedding based neural methods (RDGCN), the
consistently strong performance of Paris+ in this scenario is note-
worthy. Overall, this result establishes the strength of non-neural
(Paris+) EA methods and raises concerns around the omission of
such a comparison from the literature on neural EA.

4.2 RealEA Datasets
The next set of results are based on the RealEA datasets, which are
generated using the IDS* algorithm (cf. appendix in [36]) proposed
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Table 5: Entity alignment quality measured using precision, recall, and F1-score on the (a) OpenEA, (b) RealEA, (c) XRealEA,
and (d) AttRealEA datasets. For each method, we perform a 5-fold cross-validation and report the mean and standard devia-
tion. The best performance (higher numbers indicate better performance) is shown in bold.

(a) OpenEA Datasets

DB-YG-15K (OpenEA) DB-WD-15K (OpenEA) DB-YG-100K (OpenEA) DB-WD-100K (OpenEA)

Category Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Neural BootEA 0.926 ± 0.002 0.675 ± 0.004 0.781 ± 0.002 0.806 ± 0.003 0.547 ± 0.005 0.651 ± 0.003 0.898 ± 0.002 0.625 ± 0.001 0.737 ± 0.001 0.763 ± 0.003 0.452 ± 0.004 0.568 ± 0.003
Neural RDGCN 0.984 ± 0.001 0.855 ± 0.003 0.915 ± 0.002 0.799 ± 0.004 0.384 ± 0.005 0.519 ± 0.005 0.972 ± 0.008 0.815 ± 0.060 0.886 ± 0.038 0.713 ± 0.005 0.261 ± 0.005 0.382 ± 0.001
Neural BERT-INT 0.875 ± 0.001 0.969 ± 0.002 0.920 ± 0.001 0.834 ± 0.009 0.197 ± 0.008 0.319 ± 0.011 0.874 ± 0.000 0.965 ± 0.001 0.918 ± 0.000 0.819 ± 0.003 0.128 ± 0.004 0.221 ± 0.006
Neural TransEdge 0.367 ± 0.085 0.212 ± 0.056 0.268 ± 0.068 0.743 ± 0.014 0.453 ± 0.018 0.562 ± 0.018 0.730 ± 0.017 0.481 ± 0.011 0.579 ± 0.006 0.687 ± 0.051 0.436 ± 0.027 0.533 ± 0.035

Non-neural Paris+ 0.998 ± 0.000 † 0.961 ± 0.001 0.979 ± 0.001 0.970 ± 0.001† 0.743 ± 0.005† 0.842 ± 0.003† 0.998 ± 0.000† 0.957 ± 0.001 0.977 ± 0.000† 0.963 ± 0.001† 0.709 ± 0.002† 0.817 ± 0.001†

(b) RealEA Datasets

DB-YG-15K (RealEA) DB-WD-15K (RealEA) DB-YG-100K (RealEA) DB-WD-100K (RealEA)

Category Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Neural BootEA 0.459 ± 0.008 0.313 ± 0.009 0.372 ± 0.007 0.609 ± 0.007 0.280 ± 0.009 0.383 ± 0.008 0.671 ± 0.005 0.487 ± 0.004 0.565 ± 0.003 0.548 ± 0.008 0.272 ± 0.007 0.363 ± 0.006
Neural RDGCN 0.822 ± 0.003 0.709 ± 0.004 0.761 ± 0.003 0.583 ± 0.012 0.242 ± 0.009 0.342 ± 0.011 0.846 ± 0.001 0.708 ± 0.002 0.771 ± 0.001 0.538 ± 0.003 0.203 ± 0.001 0.295 ± 0.001
Neural BERT-INT 0.817 ± 0.001 0.827 ± 0.004 0.822 ± 0.002 0.604 ± 0.030 0.075 ± 0.006 0.134 ± 0.010 0.841 ± 0.001 0.865 ± 0.006 0.853 ± 0.003 0.698 ± 0.009 0.120 ± 0.002 0.206 ± 0.003
Neural TransEdge 0.335 ± 0.025 0.203 ± 0.017 0.253 ± 0.020 0.589 ± 0.126 0.183 ± 0.034 0.279 ± 0.054 0.566 ± 0.011 0.438 ± 0.018 0.494 ± 0.016 0.339 ± 0.041 0.147 ± 0.012 0.205 ± 0.018

Non-neural Paris+ 0.906 ± 0.000 † 0.931 ± 0.001† 0.918 ± 0.001 0.928 ± 0.002† 0.551 ± 0.004† 0.691 ± 0.003† 0.923 ± 0.000† 0.939 ± 0.000† 0.931 ± 0.000† 0.927 ± 0.001† 0.615 ± 0.001† 0.740 ± 0.001†

(c) XRealEA Datasets

EN-FR-15K (XRealEA) EN-DE-15K (XRealEA) EN-JA-15K (XRealEA) EN-JA-15K (XRealEA_Pure)

Category Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Neural BootEA 0.528 ± 0.013 0.312 ± 0.007 0.392 ± 0.005 0.556 ± 0.011 0.222 ± 0.018 0.317 ± 0.017 0.448 ± 0.002 0.294 ± 0.006 0.355 ± 0.005 0.445 ± 0.009 0.291 ± 0.027 0.351 ± 0.022
Neural RDGCN 0.755 ± 0.004 0.532 ± 0.004 0.624 ± 0.004 0.736 ± 0.003 0.484 ± 0.002 0.584 ± 0.002 0.461 ± 0.002 0.161 ± 0.001 0.238 ± 0.001 0.212 ± 0.009 0.037 ± 0.002 0.063 ± 0.004
Neural BERT-INT (desc) 0.836 ± 0.003 0.970 ± 0.002 † 0.898 ± 0.002 † 0.842 ± 0.004 0.977 ± 0.003 † 0.905 ± 0.003 † 0.835 ± 0.003 0.960 ± 0.006 † 0.893 ± 0.003 † 0.835 ± 0.004 † 0.958 ± 0.004 † 0.892 ± 0.002 †

Neural BERT-INT (no desc) 0.806 ± 0.002 0.636 ± 0.003 0.711 ± 0.002 0.800 ± 0.002 0.558 ± 0.007 0.658 ± 0.005 0.765 ± 0.022 0.225 ± 0.020 0.347 ± 0.025 0.125 ± 0.250 0.000 ± 0.001 0.000 ± 0.001
Neural TransEdge 0.479 ± 0.013 0.219 ± 0.030 0.299 ± 0.028 0.478 ± 0.023 0.197 ± 0.013 0.278 ± 0.010 0.384 ± 0.024 0.174 ± 0.016 0.239 ± 0.019 0.386 ± 0.026 0.176 ± 0.023 0.242 ± 0.027

Non-neural Paris+ 0.902 ± 0.001 † 0.800 ± 0.002 0.848 ± 0.001 0.910 ± 0.001 † 0.795 ± 0.003 0.849 ± 0.002 0.827 ± 0.002 0.624 ± 0.005 0.712 ± 0.004 0.704 ± 0.007 0.309 ± 0.006 0.430 ± 0.007

(d) AttRealEA Datasets

DB-YG-15K (AttRealEA_All) DB-WD-15K (AttRealEA_All) DB-YG-15K (AttRealEA_None) DB-WD-15K (AttRealEA_None)

Category Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Neural BootEA 0.471 ± 0.006 0.314 ± 0.005 0.377 ± 0.003 0.603 ± 0.003 0.273 ± 0.013 0.376 ± 0.012 0.455 ± 0.011 0.311 ± 0.006 0.370 ± 0.007 0.607 ± 0.015 0.274 ± 0.010 0.378 ± 0.009
Neural RDGCN 0.824 ± 0.003 0.713 ± 0.003 0.764 ± 0.003 0.871 ± 0.002 0.757 ± 0.004 0.810 ± 0.003 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Neural BERT-INT 0.818 ± 0.004 0.827 ± 0.003 0.822 ± 0.002 0.837 ± 0.003 0.837 ± 0.008 0.837 ± 0.005 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Neural TransEdge 0.510 ± 0.021 0.199 ± 0.021 0.286 ± 0.025 0.583 ± 0.121 0.176 ± 0.046 0.271 ± 0.067 0.373 ± 0.009 0.236 ± 0.012 0.289 ± 0.011 0.631 ± 0.056 0.192 ± 0.020 0.294 ± 0.030

Non-neural Paris+ 0.893 ± 0.001 † 0.924 ± 0.001† 0.908 ± 0.000 0.970 ± 0.000† 0.909 ± 0.002† 0.939 ± 0.001† 0.736 ± 0.004 0.352 ± 0.002† 0.476 ± 0.002† 0.858 ± 0.010 0.322 ± 0.003† 0.468 ± 0.002†

† Indicates statistical significance (p < 0.01) between the best and the second-best method using the Student’s paired t-test.

in this work. This experiment is different from the one discussed in
§ 4.1 in the following ways: (1) the generated datasets do not follow
the unrealistic 1-to-1 assumption, (2) consequently, all themethods—
both neural and non-neural—use the general bidirectional entity
matching algorithm (cf. appendix in [36]), and (3) the CSLS trick
does not consistently improve the efficacy of the neural methods,
and thus, the reported results correspond to the setting (with or
without CSLS) that achieves the best F1-score.

Table 5b shows that Paris+ significantly outperforms all the
neural methods on each evaluation metric and across all datasets.
More specifically, Paris+ obtains improvements ranging 2%–5%
and 60%–80% on the DB-YG and DB-WD datasets, respectively.

This result further substantiates the strength of non-neural meth-
ods over their neural counterparts, as Paris+ outperforms all the
methods not only on the OpenEA datasets, which are generated
based on the unrealistic 1-to-1 assumption, but also on the RealEA
datasets that alleviate the aforementioned unrealistic assumption.

4.3 XRealEA Datasets
We also perform an experiment using the XRealEA datasets to as-
sess the efficacy of the considered methods for cross-lingual entity
alignment. We follow the exact same setup as described in § 4.2. It
was claimed by Sun et al. [66] that non-English KGs were required
to be translated to English to mitigate the language barrier for Paris.

However, our experiments revealed its futility, as Paris+ was able
to successfully operate on the XRealEA datasets without requir-
ing such a preprocessing step. That said, we use the original KGs
without performing any translations of the non-English literals.

Table 5c shows that yet again Paris+ significantly outperforms
all (but one) neural methods (TransEdge, BootEA, and RDGCN) on
each evaluation metric across all datasets, with improvements rang-
ing from 15%–45%. Specifically, Paris+ is second only to BERT-INT.
However, it should be noted that only BERT-INT (with descriptions)
is better than Paris+, whereas BERT-INT (without descriptions) is
still outperformed by Paris+. Note that DBpedia article descrip-
tions constitute additional information, which is only leveraged by
BERT-INT, thereby making this comparison slightly unfair.

Importantly, this result eradicates themisconception about Paris—
i.e., Paris lacks the ability to perform EA in multi-lingual KGs
without data preprocessing—plaguing the existing EA literature.

4.4 Analysis: RealEA Datasets
To better understand the efficacy of all the considered methods
in different evaluation scenarios, we analyze the effect of three
important dataset characteristics, viz., the number of attributes, the
number of relations, and the amount of supervision. The analyses
presented in this section are performed on the 15K datasets. More-
over, we exclude the OpenEA datasets from this analysis because:

1719



(1) RealEA datasets closely mimic (§ 3.2) the real-world entity align-
ment scenarios, and are therefore, more relevant, and (2) similar
outcomes were observed in the analysis conducted on the OpenEA
datasets, and hence, their results are omitted for the sake of brevity.

AttRealEA: Robustness to the number of attributes.While
RealEA datasets use the exact same attributes as prescribed by
Sun et al. [66], the original full-sized KGs possess many more at-
tributes. Here, we construct two additional variants of the RealEA
datasets: (1) AttRealEA_All: possessing all the attributes present
in the original KG, and (2) AttRealEA_None: depicting an ab-
sence of attributes (a.k.a. shallow KG). Next, we analyze the impact
of the number of attributes on the entity alignment performance
of the considered methods. The results are presented in Table 5d.
Since TransEdge and BootEA do not rely on attribute information,
their performance remains stable across variants. On the contrary,
RDGCN, BERT-INT, and Paris+ leverage both relation and attribute
triples for entity alignment, thus, their performance improves con-
siderably with the addition of attributes (AttRealEA_All) whereas
deteriorates substantially with their removal (AttRealEA_None).
Moreover, the performance of RDGCN and BERT-INT deteriorates
more substantially (F1-score of 0) than Paris+ for the AttRealEA_-
None variants, thereby showcasing the robustness of Paris+ to
variations in the number of attributes.

Importantly, this analysis rectifies the incorrect claim in [66]
about the inability of Paris to obtain any entity alignments using
relation triples alone: Our simple variant Paris+ works even in the
absence of attribute triples (AttRealEA_None). In fact, even for
AttRealEA_None datasets Paris+ obtains a statistically significant
improvement of around 25% over TransEdge and BootEA.

SpaRealEA: Robustness to the sparsity in the graph. Here,
we analyze the impact of the number of relations on the entity align-
ment performance of the considered methods using the SpaRealEA
dataset, which, as indicated in Table 4, possesses half the number
of relation triples when compared to the RealEA dataset. The re-
sults are presented in the appendix of our technical report [36]. For
RDGCN, BERT-INT, and Paris+, the obtained results are similar
to that observed on RealEA datasets, thereby showcasing their
robustness to the variation in the number of relations in the KG.
On the contrary, the performance of TransEdge and BootEA de-
teriorates significantly when compared to RealEA (Table 5b) as it
relies only on relation triples.

SupRealEA: Robustness to the amount of supervision. Lastly,
we vary the amount of supervision from the set {1%, 5%, 10%, 20%,
30%}, and analyze its impact on the performance of the considered
methods using the SupRealEA dataset. The results are presented
in the appendix of our technical report [36]. We find that RDGCN,
BERT-INT, and Paris+ are robust to the amount of supervision
obtaining consistently strong performance even with a negligible
number of seed alignments. On the contrary, the amount of super-
vision strongly affects TransEdge and BootEA, and it performs
very poorly when the number of seed alignments are small.

Summarizing the outcomes from the aforementioned analyses,
it is evident that Paris+ is robust to variations in different dataset
characteristics, and consistently and significantly outperforms all
the neural methods across dataset types and variants.

5 RESULTS: RECORD LINKAGE
As briefly discussed in § 2, RL and EA are counterpart problems.
While the former addresses the task of finding identical records
between relational DBs, the latter aims to finds identical entities
between KGs. We note that tables in relational DBs play a role sim-
ilar to the relationships in KGs, and thus, it is possible to represent
KGs as a set of records distributed across a number of different ta-
bles. However, we also note that relational DBs are not specifically
designed for this use case. Instead, graph DBs may store KGs in a
more natural manner. Interestingly, it is still possible to represent
the information encoded in KGs as tables in a relational DB by
serializing entities as DB-style records, which captures the 1-hop
neighborhood of the entity. This procedure enables standard RL
methods to operate on tables that are meant to approximate KGs.

Specifically, we group KG attributes into aspects, namely—(1)
names, (2) other attributes, and (3) relationships.We also capture the
1-hop neighborhood of each entity by extending the aspects with 1-
hop names and other attributes. Having obtained the serialized DB-
style record representation of KG entities, we leverage two state-of-
the-art RL methods, namely—(1) DeepMatcher [46], and (2) Ditto
[39] for performing EA. To obtain manageable and high-quality
datasets for training RL methods, we perform meta-blocking (cf.
the appendix in [36] for additional details about blocking) using the
TF-IDF weighting scheme [50, 51]. Both DeepMatcher and Ditto
are trained for 10 epochs using the recommended hyperparameters
described in the respective papers [39, 46].

From an empirical standpoint, we extensively evaluate Deep-
Matcher and Ditto on RealEA and XRealEA (cf. the appendix
in [36] for XRealEA results) datasets. It is evident from Table 6 that
both DeepMatcher and Ditto portray competitive performance
on the EA task. While Paris+ remains the best performing method,
Ditto significantly outperforms both BERT-INT and BootEA, the
best performing neural EA methods with and without attributes,
respectively, on majority of the datasets. These results unravel the
strength of RL methods to effectively address EA.

6 RESULTS: EFFICIENCY AND SCALABILITY
Moving beyond efficacy, we also evaluate the efficiency (measured
using running time) and scalability (measured using memory foot-
print) of all the benchmarked methods across all dataset types. The
results are presented in the appendix of our technical report [36].

The key finding is that Paris+ is orders of magnitude faster than
all the neural methods. While Paris+ is around 100 and 1000 times
faster for training and inference, respectively, on the 15K datasets,
its performance improves further—1000 times faster training and
10000 times faster inference—on the 100K datasets. Moreover, even
the memory footprint of Paris+ is 5–10 times smaller than the
neural methods. Neural RL methods are second only to Paris+,
and portray 3–4 times faster training, albeit a moderately slower
inference performance, and 2–3 times smaller memory footprint
when compared to all the neural EAmethods. These results indicate
that Paris+, DeepMatcher, and Ditto possess the ability to scale
gracefully to large datasets, while neural EA methods do not.

The scalability aspect is further substantiated by performing
experiments on the 500K datasets, and the original full-sized KGs:
DBpedia (5.9M entities and 18.7M relations), Yago (4.3M entities
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Table 6: A comparison of the best entity alignment (EA)methods (BootEA,BERT-INT, and Paris+) with state-of-the-art record
linkage (RL) methods (DeepMatcher, and Ditto) using precision, recall, and F1-score on the RealEA datasets.

DB-YG-15K DB-WD-15K DB-YG-100K DB-WD-100K

Category Method Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

RL DMatch 0.85 ± 0.02 0.79 ± 0.01 0.82 ± 0.01 0.23 ± 0.01 0.16 ± 0.01 0.19 ± 0.01 0.88 ± 0.01 0.69 ± 0.01 0.77 ± 0.01 0.05 ± 0.02 0.34 ± 0.00 0.09 ± 0.01
RL Ditto 0.87 ± 0.01 0.82 ± 0.01 0.84 ± 0.00 0.34 ± 0.02 0.21 ± 0.00 0.26 ± 0.00 0.92 ± 0.01 0.68 ± 0.00 0.78 ± 0.01 0.76 ± 0.01 0.25 ± 0.01 0.38 ± 0.01

EA BootEA 0.46 ± 0.01 0.31 ± 0.01 0.37 ± 0.01 0.61 ± 0.01 0.28 ± 0.01 0.38 ± 0.01 0.67 ± 0.01 0.49 ± 0.00 0.57 ± 0.00 0.55 ± 0.01 0.27 ± 0.01 0.36 ± 0.01
EA BERT-INT 0.82 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.60 ± 0.03 0.08 ± 0.00 0.13 ± 0.01 0.84 ± 0.00 0.87 ± 0.01 0.85 ± 0.00 0.70 ± 0.01 0.12 ± 0.00 0.21 ± 0.00

EA Paris+ 0.91 ± 0.00† 0.93 ± 0.00† 0.92 ± 0.00 0.93 ± 0.00† 0.55 ± 0.00† 0.69 ± 0.00† 0.92 ± 0.00 0.94 ± 0.00† 0.93 ± 0.00† 0.93 ± 0.00† 0.62 ± 0.00† 0.74 ± 0.00†

† Indicates statistical significance (p < 0.01) between Paris+ and the second-best method using the Student’s paired t-test.

and 12.4M relations), and Wikidata (19.6M entities and 64.5M re-
lations). For the 500K datasets, all the methods apart from Paris+
and Ditto crashed owing to going out of memory. Note that Deep-
Matcher did not go out of GPU memory, but required more than
256 GB RAM. Paris+ obtained an F1-score of 0.630 requiring 610
seconds for training and 0.94 seconds for inference on DB-WD-
500K, and an F1-score of 0.90 requiring 1320 seconds for training
and 1.3 seconds for inference on DB-YG-500K. Ditto obtained an
F1-score of 0.31 requiring 12 hours for training and 5 hours for infer-
ence on DB-WD-500K, and an F1-score of 0.71 requiring 19 hours
for training and 8 hours for inference on DB-YG-500K. Moving
further, Paris+ was the only technique to successfully obtain entity
alignments on the full-sized DB-YG (training: 6 hours, inference: 7
seconds, F1-score: 0.773) and DB-WD (training: 12 hours, inference:
10 seconds, F1-score: 0.722) KG pairs.

7 DISCUSSION AND CONCLUDING INSIGHTS
The conclusions emanating from the in-depth analysis provided
in this work are clear. With only one exception, Paris+ achieves
the best performance across a wide-variety of datasets and eval-
uation metrics. Specifically, Paris+ is second only to BERT-INT
for a particular scenario of cross-lingual EA. Moreover, Paris+ is
several orders of magnitude faster than the best-performing neu-
ral methods, making it a “true” solution to the eventual task, viz.,
performing EA in large-scale KGs with millions of entities and rela-
tions. Finally, Paris+ does not require any parameter fine tuning,
thereby being an extremely easy-to-use off-the-shelf tool with only
a single requirement, that the ontology/KG be provided in a certain
standard format. For all the aforementioned reasons, we recommend

that future work should always include Paris+ as a baseline.
Moving beyond EA methods, we also highlight the strong and

competitive performance obtained via RL methods for addressing
EA. Similar to Paris+, Ditto should also be included as a baseline
for future work on neural entity alignment.

That said, we do not want our findings to be perceived as discour-
aging judgments directed towards neural EA methods. Conversely,
we think that neural methods have much more to offer and need
to be positioned better (in terms of use cases or dataset types) to
portray their true potential. Moreover, the goal of this work is not
to serve as an impediment to the vibrant field of neural EA, rather
facilitate its streamlined and meaningful advancement. To this end,
the remainder of this section includes a comprehensive discussion
providing substantive answers to the following three questions:
• Is the amount of supervision in our standard evaluation setup
sufficient for data-intensive neural methods? (§ 7.1)
• Why does Paris+ outperform all the neural methods? (§ 7.2)
• What lies in the future for the field of neural EA? (§ 7.3)

7.1 Amount of Supervision
The goal of this section is to assess whether the main conclusion—
the superiority of Paris+ over all the considered methods—drawn
from the previously conducted experiments is a by-product of an
experimental design choice that may be negatively biased towards
neural approaches. The amount of training data for (almost) all the
experiments corresponds to 20% of all existing alignments. This is
justified because: i) it is the standard setup choice used by most
(if not all) of the EA methods from the neural literature; and ii)
it conforms to some of the real-word datasets [66]. Nevertheless,
neural approaches, which are known to be data demanding, might
be negatively affected by this setup. To this end, we vary the amount
of supervision from the set {1%, 25%, 50%, 75%, 89%}, and analyze
its impact on the performance of the considered methods using
the 100K versions of the RealEA datasets. Note that this analysis
is complementary to that performed on SupRealEA, where we
considered the lower end of the supervision spectrum as the focus
was to assess the robustness to the amount of supervision.

Fig. 2 presents the results. Note that RDGCN and BERT-INT
crashed for 75% and 89% supervision, respectively, and thus, their re-
sults are omitted. On the one hand, the performance of TransEdge
and BootEA, which do not leverage attribute triples, improves sub-
stantially up to 75% of training data. On the other hand, for almost
all other methods that leverage attribute information, the increase is
considerable until 25%, whereas much less pronounced in the range
[25%, 75%]. We note that neural methods are (partially) built upon
heavy language models that are pre-trained on very large corpora.
We argue that this characteristic, which reduces to a large extent
their dependency on a supervised signal, may explain the early
plateau observed for these methods. This argument is bolstered in
the comparison to TransEdge and BootEA, where all the model
weights are solely learned from the supervised seed alignments.
Moving ahead, and with almost no exception, the improvement
from 75% to 89% training data is little or none for all the methods. In-
terestingly, both BERT-INT and Paris+ suffer a consistent decrease
in performance on DB-YG-100K with increasing amount of supervi-
sion, however, further investigation on this aspect is left for future
work. Lastly, it is important to note that Paris+ significantly out-
performs all methods across the full supervision spectrum, thereby,
reinforcing its strength over all competing methods.

To conclude, we argue that the ensemble of the aforementioned
observations indicate that the amount of supervision used in our
standard setup is not the fundamental factor behind the differences
in performance across methods, thereby conforming the generaliz-
ability of the conclusions drawn from the results obtained in § 4
and § 5 using the standard evaluation setup with 20% supervision.
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Figure 2: EA quality measured using F1-score with varying
amount of supervision on 100K RealEA datasets.

7.2 Demystifying Paris+
To unveil the characteristics that serve as the key differentiating
factors between Paris+ and its closest competitors from the neural
era, we perform an in-depth analysis of their outputs in the follow-
ing two exemplary settings: (1) KGs possessing attributes triples,
and (2) KGs lacking attribute triples.

KGs possessing attributes triples. For this analysis, we use DB-
WD-15K (AttRealEA_All) and analyze the differences in the per-
formance of methods that are designed for KGs with attributes, i.e.,
Paris+ and RDGCN. Note that BERT-INT was excluded for two
reasons: (i) it was harder to provision a GPU with 32GB memory
only for the purpose of this analysis, (ii) the difference between
the performance of RDGCN and BERT-INT is not large enough to
effect the conclusions drawn from this analysis. Results on other
datasets show similar trends, and are therefore omitted. Since all the
attribute triples are retained in theAttRealEA_All dataset variant,
it facilitates assessing the impact of attributes on the performance
of the considered EA methods to the fullest extent. Moreover, we
focus only on those counterpart entities (denoted as Easy) that can
be correctly aligned by simply performing an exact string matching
on the literals corresponding to at least one attribute of the coun-
terpart entities. The reason is twofold: such counterpart entities (i)
constitute the easiest scenario for EA, thereby making any down-
stream analysis more interpretable, and (ii) constitute almost 80%
of the entire test set, thereby possessing the ability to explain the
bulk of the performance obtained by any EA method.

Fig. 3a shows that 9,978 entities—out of the 12K matchable en-
tities in the test set—can be aligned using simple string matching,
which is represented as the ‘ceiling’ performance obtainable by
any EA method. It is important to note that Paris+ aligns almost
all (9,898) the entities from this set, achieving an F1-score of 0.99.
However, RDGCN only aligns 7,884 with an F1-score of 0.85. A
noteworthy finding from this analysis is that ≈ 80% of the overall
difference in the performance of Paris+ and RDGCN can be ex-
plained by the performance difference in the set of Easy alignments.
This finding is somewhat counter-intuitive, as neural methods use
embeddings, a more sophisticated and stronger paradigm for sim-
ilarity computation between literals that can even handle cross-
lingual scenarios gracefully, whereas Paris+ simply relies on exact
(not even fuzzy) string matching. A careful analysis of the neural
methods and their code revealed that while they possess a powerful
similarity computation module they just focus on a single attribute,
which possesses the least amount of missing values. This is im-
portant as only very recently, GNNs [78] started handling missing

(a) (b)

Figure 3: Comparing the (a) number of correct alignments
of Paris+ with RDGCN on Easy portion of DB-WD-15K
(AttRealEA_All), and (b) variation in F1-score of Paris+
and BootEAwith relationships of varying functionality for
EN-JA-15K (XRealEA_Pure). For both plots, the absolute
number of entity alignments are indicated above the bars.

values on homogeneous graphs, however, to our knowledge, there
does not exist any such work for heterogeneous graphs such as
KGs. Conversely, Paris+ exploits all the attributes associated with
entities, which serves as the key reason for its superior mileage.

Thus, it is safe to say that Paris+ leverages the rich information
manifested in the attributes in the best possible manner, however,
neural methods lack on this front. To mitigate this gap, neural meth-
ods should focus on identifying ways to leverage all the attributes
instead of just one. More on this in Sec. 7.3.

KGs lacking attribute triples. For this analysis, we use EN-JA-
15K (XRealEA_Pure) and analyze the differences in the perfor-
mance of Paris+ and the best performing method for shallow KG,
i.e., BootEA. We use XRealEA_Pure since it serves as the most
challenging (Sec. 4.3) dataset variant for methods that leverage
attribute information. In fact, since Paris+ relies on exact string
matching it cannot leverage attribute information in this setting,
thereby forcing it to rely solely on the signal manifested in the
relationship triples and leading to a fair comparison with BootEA,
which leverages only relationship triples by design. Based on the
results presented in Sec. 4, it is evident that Paris+ statistically
significantly outperforms all neural methods in KGs lacking at-
tribute triples. This is a noteworthy finding as those neural methods
(BootEA and TransEdge) were designed specifically for shallow
KG. Our analysis of the technical description of Paris+ and BootEA
(or for that matter TransEdge) revealed a key difference between
their design principles concerning extracting information mani-
fested in the relationship triples. As explained in Sec. 2.1, Paris+
exploits the concept of functionality (Eq. 1) to determine the im-
portance of a relationship—the higher the functionality the more
important the relationship—while determining alignment between
counterpart entities (Eq. 2). While highly relevant, to the best of
our knowledge, such a signal is not exploited by any neural method.
That said, we begin this analysis with the hypothesis that func-
tionality serves as a key differentiating factor in the performance
of Paris+ and competing neural methods. Fig. 3b strongly corrob-
orates this hypothesis. The difference in F1-score of Paris+ and
BootEA for relationships with higher functionality (≥ 0.6) is note-
worthy, while for lower functionality (< 0.3) their performance is
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almost similar. This result substantiates the importance of function-
ality of relationships, partially explains the difference between the
performance of Paris+ and BootEA. However, there are additional
technical reasons that may justify the superiority of Paris+. For
instance, Paris+ also finds relationship equivalences between KGs,
which may have a positive influence on the entity alignment task.
• Empowering neural methods with functionality. While

not being the main scope, we want to provide the reader with some
first evidence that the performance of neural methods may increase
by exploiting the functionality of relationships. To achieve this, we
modify the loss function of BootEA in a simple and straightforward
manner. The objective function of BootEA consists of a hinge loss
that penalizes relation triples if their scores (as per a certain scoring
function) are lower than a certain threshold (i.e. the margin of
the hinge loss). Thus, it is this loss that guides the learning of
entity embeddings. Our modification aims to focus the learning of
entity embeddings towards relation triples whose relationships are
highly functional. We modify the objective of BootEA so that the
margin of the hinge loss is scaled with the relationship functionality.
Additional technical details can be found in our technical report [36].
This simple modification of BootEA provides an improvement of 3
points in F1 score with respect to the original method on EN-JA-15K
(XRealEA_Pure). We hypothesize that neural methods designed
to better integrate functionality may translate into larger gains.

7.3 Recommendations for the Future
As stated previously, we have yet to witness the best of neural
entity alignment methods. While we are convinced of the abilities
of the community to identify the scenarios that will facilitate neural
methods to showcase their true potential, we suggest the following
interesting directions that might be worth exploring.

• Identification of ways to improve blocking techniques for gen-
erating datasets with both high precision and recall to serve as
input for the RL methods. We experienced that blocking is crucial
to the performance of RL methods, and thus, any improvements
in this step may facilitate RL methods to obtain competitive or
even superior performance than Paris+. Note that even EA meth-
ods, both neural and non-neural, can easily leverage blocking,
which we recommend as an interesting avenue for exploration.
• Identification of ways to incorporate the key findings from the
analysis presented in § 7.2, viz., (i) leveraging all attributes instead
of just one, and (ii) incorporating the concept of functionality
while modeling relationships.We believe that the aforementioned
recommendations would involve non-trivial adaptations to the
design of neural methods, possibly leading to novel design prin-
ciples and advancements at a fundamental level.
• Identification of use cases or datasets wherein potentially match-
able entities exhibit very low lexical similarity in their attribute
values. This property will primarily hurt methods, such as Paris+,
that depend to a certain extent on string similarity. Cross-lingual
datasets emerge as likely candidates, and the aforementioned lim-
itations are evident from our empirical analysis (cf. § 4.3), where
BERT-INT (with descriptions) outperforms Paris+. That said,
further investigation is recommended along these lines. Mov-
ing ahead, datasets derived from domain-specific KGs—usually

marred with domain-specific jargons—such as those arising in
legal, medical, or enterprise domains are also likely candidates.
• Identification of datasets wherein the majority of attributes are
observed for most of the entities. As opposed to Paris+, which
nicely handles sparsity in the attributes, neural methods, such as
RDGCN, need to have a valid literal value for each selected at-
tribute. Otherwise it resorts to imputation techniques to complete
the missing attributes with substituted values.
• Devise methods that are amenable to the RealEA datasets, i.e.,
datasets that do not follow the unrealistic 1-to-1 assumption.
While we introduce one simple solution—bidirectional entity
matching (Alg. 1)—to enable neural methods to properly work
in RealEA datasets, more sophisticated solutions to enrich the
entity matching module of neural methods are warranted.
• Devising neural EA methods that scale gracefully to large real-
world datasets.
• Lastly, the vast majority of non-neural methods were conceived
for realistic settings that lack seed alignment information, and
thus, they possess the ability to work in an unsupervised manner.
On the contrary, neural methods lack this ability. Exploration
of unsupervised neural EA methods is a nascent and important
topic—the first method, EVA [41], was published in December
2020—that requires considerable attention from the community.
Before we conclude, it is important to clarify that we only con-

sider methods that were published before March 2021. Neural
entity alignment is, however, a highly active field of research,
and the state of the art gets pushed almost on a quarterly basis.
To this end, it is our aim to keep the associated GitHub reposi-
tory (https://github.com/epfl-dlab/entity-matchers) updated with
the inclusion of results from recent methods, as and when they
get published. Talking about activity, we noticed that very recently
(June 2021 to be specific) the first ever attempt to marry the design
principles from the pre-neural and neural era was explored to pro-
pose a method called Prase [55]. On the one hand, it is unfortunate
to not be able to include Prase in our study due to its recency. On
the other hand, it is fortuitous to observe that the introduction
of a method like Prase provides an early seal of approval to the
recommendations provided by us in Sec. 7.3, underlining the fact
that they are already being acted upon by a few researchers from
the neural community.

We hope the insights obtained from this study will provide the
directionality and clarity required for a more streamlined advance-
ment in research on neural entity alignment.
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