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ABSTRACT

Hop-constrained s-t simple path (HC-s-t path) enumeration is a
fundamental problem in graph analysis and has received consider-
able attention recently. Straightforward distributed solutions are
inefficient and suffer from poor scalabiltiy when addressing this
problem in billion-scale graphs due to the disability of pruning
fruitless exploration or huge memory consumption. Motivated by
this, in this paper, we aim to devise an efficient and scalable dis-
tributed algorithm to enumerate the HC-s-t paths in billion-scale
graphs. We first propose a new hybrid search paradigm tailored for
HC-s-t path enumeration. Based on the new search paradigm, we
devise a distributed enumeration algorithm following the divide-
and-conquer strategy. The algorithm can not only prune fruitless
exploration, but also well bound the memory consumption with
high parallelism. We also devise an effective workload balance
mechanism that is automatically triggered by the idle machines
to handle skewed workloads. Moreover, we explore the bidirec-
tional search strategy to further improve enumeration efficiency.
The experiment results demonstrate the efficiency of our proposed
algorithm.
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1 INTRODUCTION

Graphs have been widely used to represent the relationships of
entities in many areas [10, 34, 35, 39, 42, 44, 51-53, 55-57]. Recently,
hop-constrained s-t simple path enumeration has received consider-
able attention [18, 43, 45, 47]. Given an unweighted directed graph
G, a source vertex s, a target vertex t, and a hop constraint k, hop-
constrained s-t simple path (HC-s-t path for short) enumeration
computes all the simple paths (i.e., paths without repeated vertices)
from s to ¢ such that the number of hops in each path is not larger
than k.

Applications. HC-s-t path enumeration can be used in many ap-
plications, for example:
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® Fraud detection in E-commerce transaction networks. A cycle in a E-
commerce transaction network is a strong indication of a fraudulent
activity [58]. A recent paper by Alibaba group demonstrates that
when a new transaction is submitted from account ¢ to account s
in its E-commerce network, HC-s-t path enumeration is used to
report all newly formed cycles to detect fraudulent activities [45].
e Pathway queries in biological networks. Pathway queries are a
fundamental tool in biological networks analytics [26, 32]. [32]
shows that HC-s-t path enumeration is one of the most important
pathway queries that can identify the chains of interactions.

e Path ranking in knowledge graphs. Path ranking algorithms enu-
merate the paths from one entity to another in a knowledge graph
and use these paths as features to train a model for missing fact
prediction [16, 31, 36]. HC-s-t path enumeration can be used in this
case as shown in [16].

Motivation. In real-world applications, the scale of graphs is large
and grows exponentially. For example, the sub-domain of a web
graph from EU countries contains 1.07 billion vertices and 91.79
billion edges [12]. Obviously, processing such big graphs requires
huge memory and computation resources that are expensive to
obtain from a single machine, which makes centralized algorithms
designed for a single machine [18, 43, 45, 47] not scalable for real-
world applications. In contrast, distributed computing clusters pro-
vide sufficient resources in a relatively easy and cheap way, and
efficient and scalable distributed solutions for many other graph
problems have been proposed [19, 23, 25, 41, 59]. Therefore, we
study the distributed HC-s-t path enumeration problem.

In the literature, there exists no specialized distributed solution
for HC-s-t path enumeration. Nevertheless, as BFS-oriented explo-
ration is relatively easy to parallelize and implement in a distributed
setting, we can obtain a straightforward distributed solution for
HC-s-t path enumeration based on the BFS-oriented exploration
as follows: we start the search from the source vertex s following
the BFS-oriented paradigm and conduct the enumeration in k syn-
chronous rounds. In each round, the paths are extended by a vertex
locally and the extended paths are sent to the machine where the
new vertex resides. In detail, for a path p = (s,...,0), let v’ be one
of v’s out-neighbors. If v’ is not contained in p, then it extends p by
o’ to p’ locally, if v’ is the target vertex t, p’ is output; otherwise,
p’ is sent to the machine where v’ resides. It can be easily verified
that all the HC-s-t paths are enumerated in k rounds.

Although this approach can fully utilize the computational re-
source due to its high parallelism, it is inefficient and suffers from
poor scalability when enumerating HC-s-t paths in billion-scale
graphs. This is because: (1) as proven in the design of centralized
algorithms [18, 43, 47], pruning unnecessary exploration has crucial
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effects on the enumeration performance, but this approach does not
consider the possible pruning opportunities to reduce unnecessary
computation; (2) during the enumeration, massive intermediate
paths are generated and maintained due to the exponentially grow-
ing search space in this approach, which leads to huge memory
consumption and expensive communication costs.

On the other hand, since an HC-s-t path query can be consid-
ered as a special kind of subgraph matching query (path pattern
with length not larger than k, refer to Section 3.2), the distributed
algorithms designed for subgraph matching can also be adapted
to address the HC-s-t path problem [2, 14, 27, 29, 46, 54]. However,
the results from our experiments show that the performance of this
approach is also poor in billion-scale graphs due to the lack of the
ability to prune unnecessary computation.

Motivated by this, we aim to develop an efficient and scalable dis-
tributed algorithm tailored for HC-s-t path enumeration in billion-
scale graphs. The algorithm should not only have the ability to
prune unnecessary computation during the enumeration, but also
fully utilize the computation resource with bounded memory con-
sumption.

Challenges. It is challenging to develop an algorithm which can
achieve the aforementioned goals at the same time. Regarding the
pruning ability, the existing pruning techniques are proposed in
centralized algorithms and these techniques heavily depend on
the DFS-oriented paradigm. However, it is believed that DFS is
inherently sequential and difficult to parallelize [22], which implies
that if the pruning techniques are integrated into our distributed
algorithm, it is quite possible that the computational resource of
the distributed systems cannot be fully exploited. Additionally, in
order to achieve high parallelism in our distributed algorithm, it
seems inevitable to divide the enumeration into multiple rounds
and maintain the intermediate paths, which means the memory
consumption is hard to be well-bounded.

Our idea. Our general idea to overcome these challenges is sim-
ple: instead of directly using the BFS-oriented paradigm or DFS-
oriented paradigm, we propose a new hybrid search paradigm
which imitates the DFS procedure from an overall perspective while
adopting an extending method similar to BFS at each step. Based
on this new hybrid search paradigm, we are able to not only prune
unnecessary computation without sacrificing parallelism, but also
control the size of the generated immediate paths. However, to
make our idea practically applicable, the following issues still need
to be addressed: (1) how to correctly integrate the pruning tech-
niques into a hybrid search paradigm? (2) how to develop the new
search algorithm in a distributed setting? (3) how to handle the
skewed workload which commonly occurs in distributed systems?

Contributions. In this paper, we address these issues and make
the following contributions:

(A) The first work to study the distributed HC-s-t path enumeration
problem. In this paper, we aim to address the problem of HC-s-t path
enumeration in a distributed setting. To the best of our knowledge,
this is the first work to study the distributed algorithm for HC-s-
t path enumeration at billion scale.

(B) Efficient and scalable distributed algorithms for HC-s-t path
enumeration. We propose a new hybrid search paradigm for the
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problem of HC-s-t path enumeration. Based on it, we devise a new
distributed algorithm following the divide-and-conquer strategy.
Besides fully exploiting the computational resource with bounded
memory consumption, our new algorithm can also prune a huge
amount of unnecessary computation during the enumeration, which
significantly reduces the search space and improves enumeration
efficiency. In addition, we design an effective work stealing mech-
anism to handle unbalanced workloads. Moreover, we develop a
bidirectional search method based on our algorithm in distributed
setting, which further accelerates the HC-s-t path enumeration.

(C) Extensive performance studies on real-world and synthetic datasets.
We conduct extensive performance studies using large real-world
graphs and synthetic graphs. The experiment results demonstrate
that our proposed algorithms are efficient and scalable to enumerate
HC-s-t paths in billion-scale graphs.

Outline. Section 2 provides the problem definition. Section 3 intro-
duces related work. Section 4 shows the framework of our approach.
Section 5 presents the details of the implementation. Section 6 eval-
uates the proposed algorithms and Section 7 concludes the paper.
Full proofs and experimental results can be found in our technical
report [20].

2 PRELIMINARIES

Let G = (V,E) denote a unweighted directed graph, where V(G)
is the set of vertices and E(G) is a set of directed edges. For a
vertex v € V(G), we use N (v) to denote the neighbors of v and
nbr~ (v)/nbr* (v) to denote the in-neighbors/out-neighbors of v.
The in-degree/out-degree of v, denoted by deg™ (v)/deg™ (v), is the
number of in-neighbors/out-neighbors of v in G, ie., deg*(v) =
[nbr~ (v)|/deg* (v) = |nbr* (v)|. Given a graph G, the reverse graph
of G, denoted by G" = (V, E"), is the graph generated by reversing
the direction of all edges in G. A path from vertex u to vertex v,
denoted by p(u,v), is a sequence of vertices {u = vg, v1, ..., 05 =0}
such that (vj—1,v;) € E(G) for every 1 < i < h. A simple path is a
loop-free path where there are no repetitions of vertices and edges.
By |p|, we denote the length (i.e., the number of hops in this paper)
of path p. Given two vertices u and v, the shortest distance from u
to v, denoted by dist(u,v), is the length of the shortest path from
u to v. Given a pre-defined hop constraint k, we say a path p is a
hop-constrained path if |p| < k. For presentation simplicity, we
refer to the hop-constrained s-t simple path as the HC-s-t path.

Problem statement. Given an unweighted directed graph G, a
source vertex s, a target vertex t and a hop constraint k, HC-s-
t path enumeration computes the HC-s-t paths from s to t in G.

Graph storage. Given a data graph G, we use the widely used hash
partitioning by default [1, 40] and assume the data graph is parti-
tioned by vertices and stored in the cluster, that is, for each vertex
v € V, we store it with its adjacency list (v; N'(v)) in one of the
partitions. We call a vertex that resides in the local partition a local
vertex, or a remote vertex otherwise. Although we use the hash par-
titioning in this paper, our approach is orthogonal to partitioning,
i.e., it flexibly supports all graph partitioning methods, including
other edge-cut partitioning methods [3, 24], vertex-cut partitioning
methods [8, 17], and hybrid partitioning methods [11, 33, 60]. Of



course, intelligent partitioning schemes could bring further perfor-
mance benefits. We leave the design of a better graph partitioning
strategy for HC-s-t path enumeration for future work.

Data Graph G

Machine 1 Machine 2

Figure 1: Example Data Graph

Example 2.1: Consider graph G shown in Figure 1, which is par-
titioned into two machines. In each partition, the local vertices
and remote vertices are represented by white and grey respectively.
Each local vertex has its adjacency list stored in the same machine.
Given an HC-s-t path enumeration query with s = v, t = ug
and k = 4, two HC-s-t paths can be found, namely {v, v2,vs} and
{v0, v3,v12, v}, which are shown by dashed arrows in G.

3 RELATED WORK

In this section, we extend the description of the related work on
HC-s-t path enumeration in Section 1. We roughly divide the re-
lated works into two categories: centralized related solutions and
distributed related solutions.

3.1 Centralized Related Solutions

DFS-oriented exploration based approaches. HC-s-t path enu-
meration is a fundamental problem in graph analysis and several
centralized DFS-oriented exploration based algorithms for this prob-
lem have been proposed [18, 43, 47]. Generally, starting from the
source vertex s, these algorithms explore the vertices following a
DFS-oriented paradigm with depth of at most k. During the explo-
ration, an HC-s-t path is found if the target vertex ¢ is encountered.
To prune the fruitless exploration, different strategies are used in
these algorithms.

Regarding T-DFS [47], for each out-going neighbor v of a visited
vertex during the exploration, it computes the shortest path distance
from v to ¢ without containing any vertex on its current path, which
can be achieved by one BFS starting from t on the reversed graph.
By aggressively checking whether each search branch is promising,
T-DFS guarantees that there is at least one HC-s-t path for each
search branch explored. T-DFS2 [18] follows the same aggressive
verification strategy as T-DFS, while it can reduce the shortest
path distance computation by skipping some vertices associated
with only one output in the following search. However, T-DFS and
T-DFS2 show poor performance in practice due to the expensive
verification cost [43]. To address the inefficiency of T-DFS and
T-DFS2, [43] proposes the state-of-the-art algorithm JOIN for HC-
s-t path enumeration in this category. JOIN dynamically maintains
a lower bound of hops to the target vertex ¢ for the vertices visited
during the DFS-oriented exploration. When a new vertex v of a
path is explored, if the sum of hops from s to v (already explored)
and the lower bound of hops from v to t (to be explored) is larger
than k, then out-neighbors of v will not be explored and the fruitless
searches following v are pruned. As analyzed in [43], this pruning
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technique significantly reduces the search space and plays the key
role in improving enumeration efficiency.

Figure 2: Key Idea ofJOIN(

Example 3.1: Consider graph G shown in Figure 1 and an HC-s-
t path enumeration query with s = vy, t = vg and k = 4. When
T-DFS and T-DFS2 start their search with stack S = {0}, instead of
directly extending vy, they will first compute the shortest distance
from v; to ¢, then check if the minimum number of hops required
to reach t from vy is within the budget. As dist(v1,v3) +|S| =5 > k,
the exploration following v; is unpromising and is thus avoided by
T-DFS and T-DFS2.

For JOIN, Figure 2 shows its key idea. Assume that the current
search stack in JOIN is S = {vg, v1} . The vertices in S are marked in
black in Figure 2 (a). The lower bound of the number of hops from a
vertex to ¢ is referred as its bar. After finishing the DFS exploration
following vy (dashed arrows in Figure 2 (a)), the explored vertices
are marked in green in Figure 2 (b) and no valid path is found. Then
JOIN sets v1.bar = k + 1 - |S| = 3, which means vy requires at least
3 hops to reach t. Similarly, v7.bar is set to 2. The value of bar for
each vertex is shown next to it in Figure 2 (b). When v is unstacked
and vy is pushed into S, it will not explore v1 and v7 again, because
it will check whether the minimum numbers of hops required to
reach t from v and vy are within the budget. In this example, |S|
+1+or.bar =6 >4 and |S| + 1 + v7.bar = 5 > 4, which means both
v1 and vy require more hops to reach t than the available budget.
Hence 01 and v7 are pruned and the fruitless exploration is avoided.

Although these algorithms perform well in the centralized set-
ting, it is hard to extend them to a distributed context. This is
because the whole logic of the pruning techniques is based on the
DFS-oriented paradigm. However, it is believed that DFS is inher-
ently sequential and challenging to parallelize [22]. Hence, directly
extending these centralized solutions to a distributed context seems
unpromising.

BFS-oriented exploration based approaches. Apart from the
DFS-oriented exploration based approaches, the HC-s-t paths can
be enumerated following a BFS-oriented exploration as discussed in
Section 1. In the literature, extensive works have been conducted on
the multi-threading of BFS aiming to improve the performance of
BFS by parallelization, such as [5, 21, 50]. By using a simple heuris-
tic to dynamically pick the top-down or bottom-up BFS strategies
at runtime, [5] can reduce the number of edges examined, which
in turn accelerates the BFS exploration as a whole. [21] introduces
a new implementation method of the parallel BFS algorithm on
multi-core CPUs, which improves the performance by utilizing
memory bandwidth more efficiently. [50] studies the problem of
Multi-Source BFS, which increases the overall performance by shar-
ing common computation across concurrent BFSs and reducing



the number of random memory accesses. Obviously, these tech-
niques can also be extended to a distributed setting for HC-s-t paths
enumeration as discussed in Section 1.

As discussed in Section 1, although the above BFS-oriented explo-
ration based distributed approaches can address the problem, all of
them have the following drawbacks: (1) the possible pruning oppor-
tunities to reduce unnecessary computation specific to HC-s-t path
enumeration are not considered, which limits their enumeration
performance. (2) the massive intermediate paths generated during
the enumeration easily lead to out-of-memory problem when the
hop constraint k is large (refer to Exp-2 in Section 6). Besides, in
each round, these intermediate paths have to be shuffled through
the network, which leads to expensive network communication cost.
The above drawbacks together make these approaches inefficient
to enumerate HC-s-t paths in billion-scale graphs.

Index-based approach. In the literature, a centralized index-based
approach for HC-s-t path enumeration is also mentioned in [45],
which proposes an index named HP-Index to continuously maintain
the pairwise paths among hot points (i.e., vertices with high degree)
in a graph. With the HP-Index, HC-s-t paths can be enumerated
by utilizing a bidirectional search which does not explore the hot
points encountered. The HC-s-t paths among the hot points are
then computed based on the HP-Index. Following the idea of HPI, a
distributed counterpart can be obtained easily as follows: for the HP-
Index, we distribute the paths across the machines where the hot
points reside. With the distributed HP-Index, we enumerate the HC-
s-t paths in the following steps: (1) run a BFS-oriented exploration
from s on G with search depth of at most k. During the search, the
paths that encounter the hot points are not further extended but
cached in their current machines. (2) run a BFS-oriented exploration
from ¢ on G” similar to (1). (3) Find the HC-s-t paths among the
hot points encountered in (1) and (2). (4) Concatenate the paths
from (1), (2) and (3) to identify the remaining HC-s-t paths. In the
experiment, we also evaluate the performance of this approach
(called DisHPI). However, this approach performs poorly in our
experiments and is not a good solution for distributed HC-s-t path
enumeration.

3.2 Distributed Related Solutions

In the literature, there exists no specialized distributed solution for
HC-s-t path enumeration. However, as the results of HC-s-t path
enumeration are a series of directed edges from s to t with length
not larger than k, HC-s-t path can be treated as a special kind of
subgraph matching query (path pattern with length not larger than
k) and the problem of HC-s-t path enumeration can be addressed
by utilizing the existing subgraph matching systems.

Many distributed systems for subgraph matching have been pro-
posed [2, 13, 14, 28, 49]. Of these, BiGJoin [2] and Fractal [14] are
two representative ones. BiGJoin follows the worst-case optimal
join algorithm [38], which extends the (intermediate) results one
vertex at a time by intersecting the neighbors of all its connected ver-
tices. As shown in [29], BiGJoin can process path pattern efficiently.
Fractal is a distributed system for general graph pattern mining
that includes subgraph matching. It enumerates subgraphs by com-
bining a DFS strategy with a from-scratch processing paradigm to
improve memory efficiency, and employs a dynamic load-balancing
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based on a work stealing mechanism that allows the system to
handle different workload characteristics. Although these systems
can be adapted to address the HC-s-t path enumeration problem
as they support path pattern query, these systems focus on general
subgraph matching and the optimizations specific to HC-s-t path
enumeration are hard to be integrated into these systems. There-
fore, these systems cannot enumerate HC-s-t paths in billion-scale
graphs efficiently. As evaluated in our experiments, our proposed
algorithm can achieve a speedup of up to two orders of magnitude
compared to these approaches.

4 OUR FRAMEWORK OVERVIEW
4.1 A Hybrid Search-Oriented Framework

Based on the analysis in Section 3, we have to make a fresh start
and design a new distributed algorithm tailored for HC-s-t path
enumeration. The design goals of our new approach are: (1) Pruning
power. Our approach should support effective pruning techniques
similar to the centralized solution to reduce unnecessary computa-
tion, and improve enumeration efficiency consequently. (2) Paral-
lelism. Our approach should fully utilize the computation resources
of the distributed system. (3) Memory consumption. Our approach
should be well controlled in terms of the memory consumption
of each machine in the system. (4) Load balance. As a distributed
solution, our approach should be able to handle situations with
skewed workloads.

In this section, we present a hybrid search-oriented framework
to achieve the goals on pruning power, parallelism, and memory
consumption. We discuss the load balance in the next section.

A hybrid search paradigm. As discussed in the previous section,
to obtain a similar pruning power to the centralized solution, DFS-
oriented exploration has to be retained. This is because the pruning
power of the centralized solution comes from the explored paths
with k-hops or ending with t. Meanwhile, the good parallelism
of BFS-oriented exploration is also consistent with one of our de-
sign goals. Revisiting these design goals, it can be observed that
DFS-oriented and BFS-oriented explorations can be treated as two
extreme cases regarding our design goals. This inspires us to de-
vise a hybrid search paradigm aiming to combine the advantages of
DFS-oriented exploration and BFS-oriented exploration. Intuitively,
the hybrid search paradigm imitates the search procedure of DFS
while in each step, instead of just one neighbor being extended, we
extend at most A out-neighbors similar to BFS, where A is chosen
by the users. To make the idea practical, we define:

Definition 4.1: (Intermediate Path Tree) The intermediate path
tree ¥ is a tree where each node n represents a vertex in input graph
G and stores a tuple (vid, state, pt, parent, children) that captures
the data vertex v (vid), its state (state, a node has one of the five
states: OPEN, CLOSED, POTENTIAL, POSTPONE, NULL), prun-
ing thresholds for a set of data vertices (pt), a pointer to its parent in
¥ (parent), and the number of its children in ¥ (children). The five
states are used to provide precise control over the flow of the search
and ensure that the updates on the nodes’ pruning thresholds are
correctly propagated. Intuitively, nodes with state OPEN can be
extended in the current round, nodes with state CLOSED are no
longer extended, nodes with state POTENTIAL can be potentially
extended in the next round and nodes with state POSTPONE are



delayed from being extended in the current round to being extended
in the future.

For ease of presentation, we refer to each v € V(G) in G as a
vertex and refer to each n € V(¥) in ¥ as a node. Furthermore, we
call a path in ¥ as a tree path while a path in G as a graph path,
and a graph path represented by a tree path means the graph path
consisting of the vertices represented by the nodes in the tree path.
Given a node n, we use level(n) to represent the level of n in ¥,
and the level of the root node is 0. Based on input graph G and
intermediate path tree ¥, we further define three operators:

Algorithm 1: Operator PrunExt

1 parallel foreach n € OPEN nodes in ¥ do

2 if level(n) = k - 1 then

3 ‘ n.pt.(n.vid) « 2; n.state «— CLOSED; continue;
4 foreach v’ € nbr*(n.vid) and v’ ¢ root-to-n path do
5 if o’ = t then

6 n.addChild(Node(t, CLOSED, {¢ : 1}, n, 0));

7 Output graph path;

8 else

9 n’’ « nearest node on root-to-n path where
v’ € n’ pt;

if n”.pto’ + level (n) + 1 < k then
| n.addChild(Node(v’, POTENTIAL, 0, n, 0));
if no new nodes added then
n.state < CLOSED;
n.pt.(n.vid) « k —
else n.state «— NULL;
if A nodes added in total then break;

10
11
12
13

level(n) + 1;

14

15

Definition 4.2: (Operator PrunExt) Operator PrunExt explores
the out-going neighbors of the vertices represented by the nodes
with state OPEN and adds new nodes in ¥. As shown in Algorithm 1,
for each node n with state OPEN, if level(n) = k—1, n’s state is set as
CLOSED with n.pt.(n.vid) set as 2 (lines 1-3). Otherwise, PrunExt
explores v’ € nbr*(n.vid) that is not contained in the graph path
represented by the root-to-n tree path in ¥ (line 4). If o’ is the target
vertex t, a new node n’ with tuple (¢, CLOSED, {¢ : 1}, n, 0) is added
as a child of n and the root-to-n’ path is output (lines 5-7). Otherwise,
if n”".pt.o” + level(n) + 1 < k, where n”’ is the nearest node to n on
the root-to-n tree path that contains a pruning threshold regarding
o’ (if there is no such pruning threshold, n”’.pt.v’ = 0), a new node
n’ with tuple (v’, POTENTIAL, 0, n, 0) is added as a child of n (lines
9-11). If no new node has been added as a child of n, n’s state is set
as CLOSED and n.pt.(n.vid) is set as k — level(n) + 1; Otherwise,
n’s state is set as NULL (lines 12-14). PrunExt adds at most A new
nodes each time (line 15).

Definition 4.3: (Operator BackProp) Operator BackProp mainly
focuses on updating the pt field of nodes in ¥. As shown in Al-
gorithm 2, for each leaf node n with state CLOSED, let n’ be its
parent in ¥ (lines 1-2). BackProp (1) updates the pt field of n and n’
as follows: for n, if n.pt.(n.vid) + level(n) < k, for each v € n.pt, if
n.pt.o > n.pt.(n.vid) + dist(v, n.vid), then BackProp sets n.pt.v as
n.pt.(n.vid) + dist(o, n.vid) (lines 3-6); for n’, it sets n’.pt.(n’.vid)
to min{n’.pt.(n’.vid), n.pt.(n.vid) + 1} (line 7). (2) merges n.pt into
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Algorithm 2: Operator BackProp

1 parallel foreach n € CLOSED nodes in ¥ do

2 n’ « n.parent;

3 if n.pt.(n.vid) + level(n) < k then

4 foreach v € n.pt do

5 if n.pt.o > n.pt.(n.vid) + dist(v, n.vid) then
6 ‘ n.pt.o « n.pt.(n.vid) + dist(v, n.vid);

" pt.(n’.vid) « min{n’.pt.(n’.vid), pty + 1};

8 for v € n.pt do

9 if v € n’.pt then n’.pt.o « max{n’.pt.o, n.pt.o};

~
S

else n’.pt.o « n.pt.;
Remove(n); if n’.children = 0 then n’.state = CLOSED;

10

11

n’.pt as follows: for each vertex v € {n.pt(\n’.pt}, n’.pt.v is set
as max{n’.pt.o, n.pt.v} (line 9); for each vertex v € {n.pt\n’.pt},
a new entry (v, n.pt.v) is added in n’.pt (line 10). (3) removes n
from n’ (line 11). If n’ becomes a leaf node due to the removal of
n, BackProp continues to perform the same steps on n’ by setting
n’ state as CLOSED (line 11).

Algorithm 3: Operator FlowCtrl

1 lmax < maximum level of ¥;

2 parallel foreach n € leaf nodes at level /4 of ¥ do

3 ‘ n.state < OPEN;

4 parallel foreach n € leaf nodes at level /;;4x-1 of ¥ do
5 | n.state — POSTPONE;

Definition 4.4: (Operator FlowCtrl) Operator FlowCtrl controls
the direction and scope of the exploration by adjusting the state of
the nodes in ¥. As shown in Algorithm 3, let [, be the maximum
level of ¥ (line 1). FlowCtrl sets the state of all the leaf nodes at level
Imax as OPEN (lines 2-3), and if leaf nodes exist at level Inax — 1,
sets the state of these leaf nodes as POSTPONE (lines 4-5).

By iteratively performing the three operators on the immediate
path tree, we can achieve our desired hybrid search on G.
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Figure 3: Running Example of Hybrid Search

Example 4.1: Consider G shown in Figure 1 and assume the HC-s-
t path enumeration query is with s = vy, t = vg and k = 4. Figure 3



demonstrates the execution of the three operators during the search,
in which every node in ¥ is shown with its alias, its vid, its state
and its pt. A is set as 3 for ¥. For clearness of presentation, we
assume that the graph is on a single machine.

Given the initial ¥ as shown in Figure 3 (a), PrunExt conducts the
exploration on nodes with state OPEN, namely, C, M and N, which
is shown in Figure 3 (b). Firstly, three out-neighbors of C.vid = vy
are found, namely vy, v7 and vg. For v1, as A is the nearest node
on the root-to-C path that contains the pruning threshold of vj,
and A.pt.o; +level(C) + 1 = 6 > k = 4, it is apparent that further
exploration on v; will be fruitless. Hence v; is pruned, which is
indicated by the dashed node J. v7 can be pruned similarly, as
demonstrated in the red dashed ellipse. For vg, as vg is the target
vertex, a node L with L.state = CLOSED and L.pt.vg = 1 is added
and the found HC-s-t path {v, v2,vg} is output. Due to the added
node L, C.state is set as NULL. Similarly, the two out-neighbors
of M.vid = v3 are further added as child nodes (O, P) to let the
number of extended children reach A.

After this, BackProp continues the search, which is shown in
Figure 3 (c). Since the state of L is CLOSED, BackProp first removes
L from ¥. After L is removed, C.pt.(C.vid) is set as L.pt.(L.vid)+1 =
2 and L.pt is merged into C.pt, which is illustrated with the dashed
node C. Because C subsequently becomes a leaf node, BackProp
applies on C again. After C is removed, A.pt.(A.vid) is updated to
min{A.pt.(A.vid), C.pt.(C.vid) + 1} = 3 and C.pt is merged into
A.pt. Figure 3 (d) shows the following procedure of FlowCtrl. It
changes the states of O and P from POTENTIAL to OPEN. The
state of N is also changed to POSTPONE.

A hybrid search-oriented framework. With the hybrid search
paradigm, the following problem is to design the enumeration
algorithm in the distributed system based on the hybrid search
paradigm. To address this problem, we adopt a divide-and-conquer
strategy, which is based on the following lemma:

Lemma 4.1: Given an HC-s-t path query with hop constraint k on
G, P(s,t) = UUEnbr*(s) Pr_1(0,1).

According to Lemma 4.1, the HC-s-t paths from s to ¢ with k hop
constraint can be obtained by computing the HC-s-t paths from v
to t with k — 1 hop, where v € nbr*(s). Therefore, we can divide
the enumeration from s to ¢ with k hop constraint into a series of
enumerations from o to ¢t with k — 1 hop constraint and compute
the HC-s-t paths from v to t following the hybrid search paradigm
on each machine respectively.

Algorithm 4: HybridEnum (s, ¢, k, A, G)

1 distribute the out-neighbors of s evenly to each machine;
foreach machine do

3 create a node n with tuple (s, NULL, 0, n, 1), where A is
the number of v € nbr*(s) assigned to the machine ;
4 foreach v € nbr*(s) assigned to the machine do

5 create a node n” with tuple (o, POTENTIAL, 0, n, 0)

as a child of n;
¢ foreach machine do

7 while 3n € ¥ do
8 ‘ PrunExt(); BackProp(); FlowCtrl();

N}
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Algorithm. Following the above idea, our hybrid search-oriented
algorithm, HybridEnum, is shown in Algorithm 4. Algorithm 4 first
distributes the workload from the out-neighbors of s evenly on
all the available machines (line 1). After splitting the workload,
each machine starts its own exploration asynchronously. For each
machine, it first creates the immediate path tree ¥ such that root
node n represents vertex s with tuple (s, NULL, 0, n, 1), where A is
the number of v € nbr*(s) assigned to the machine and creates a
node n’ for each v € nbr*(s) assigned to the machine with tuple
(v, POTENTIAL, 0, n, 0) as the child of n (lines 3-5). After this, each
machine iteratively executes the three operators on its own ¥ and
the procedure terminates when no node is left (lines 7-8).
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Figure 4: Steps of HybridEnum

Example 4.2: Reconsider G shown in Figure 1, and still assume
the HC-s-t path enumeration query is with s = v, t = vg and k = 4.
We set A = 3. The workload is distributed equally based on the
out-going neighbors of s. Assume that machine 1 and machine 2
are allocated with {(vg,v1), (vo,v2)} and {(vo, v3), (v0,v4)}, respec-
tively. Figure 4 only shows the detailed execution of HybridEnum
on machine 1 as the execution on machine 2 is similar.

For clearness of presentation, in Figure 4, for each node, we only
show its alias and vid. The state field is ignored as it can be derived
directly. We also show the nodes with the value changed in their
pt field between iterations together in the left. The dashed nodes
are those that are removed in the corresponding iteration.

The whole search on machine 1 can be finished in 5 iterations. In
iteration 0, the initial ¥ is constructed based on the allocated edges
{(v9,v1), (vo,v2) }. In iteration 1, after extending nbr* (B.vid) from
B, C is left unextended because the number of extended nodes has
already reached A. In iteration 2, as nbr* (D.vid) and nbr*(E.vid)
are both empty, D, E cannot be extended and F is extended with
G, H and I. Additionally, as D and E can no longer be extended,
they are removed and {vs,v6 : k — level(D) + 1 =3;01 : 3+ 1 =4}
is inserted into B.pt by BackProp. In iteration 3, as G, H and I have
all reached the hop constraint of 4, they cannot be extended any
more. Thus they are removed and F.pt is updated to {v11, 012,013 :
2;v7 : 3}. It is noticed that F becomes a new leaf node and hence
BackProp is applied continuously on F. Therefore, B.pt.(B.vid) is
set as min{B.pt.(B.vid), F.pt.(F.vid) + 1} = 4 and F.pt is merged
into B.pt. As B subsequently becomes a leaf node, BackProp is
applied on B again, which removes B. As a result, A.pt.(A.vid) is
set as B.pt.(B.vid) + 1 = 5 and B.pt is merged into A.pt. In iteration



4, PrunExt is applied on C first. Three out-going neighbors of C.vid
are found in G, namely v1, v7 and vg (i.e. t). For v; and vy, it is
found in the pruning check that A.pt.v; + level(C) +1 = 6 >
k and A.pt.v7 + level(C) + 1 5 > k, which indicates that the
searches following v; and v are fruitless. Hence v; and v7 are
pruned, shown in the red dashed ellipse. For vg, as vg is the target
vertex, the corresponding HC-s-t path {vg, v2,v3} is output. The
search finishes when ¥ has no nodes.

Theorem 4.1: The memory usage of HybridEnum on G in each
machine is bounded by O(k|V(G)| + k?A + kA).

Theorem 4.2: The communication cost and computation cost of
HybridEnum on G in all machines are bounded by O(k|E(G)|¢) and
O(k|V(G)|pA) respectively, where ¢ is the output path number.

Tuning A. Based on the above analysis, the value of A can affect
the algorithm’s overall performance. Intuitively, a big A is preferred
from the perspective of parallelism, but it would lead to the out
of memory issue if the value of A is too big. Therefore, we can
estimate a proper A based on the available memory. Specifically,
let M be the size of the available memory for each machine. The
memory consumption of each machine consists of three parts: (1)
the Intermediate Path Tree ¥, whose size can be represented as akA;
(2) the memory used for the partitioned input graph, whose size
can be represented as |G/; (3) the constant memory overhead such
as the cache, whose size can be represented as y. where «,  and y
are coeflicients related to the system configuration. To avoid the
problem of out of memory, we have M > akA + |G| +y. Therefore,

we have A < %. For an HC-s-t path enumeration query on
a given graph running on a specific distributed cluster, the values of
M, |G|, k, @, f and y can be known in advance or easily estimated.
Thus, we can obtain a proper value of A following the above formula.

4.2 Load balance

In the real world, there exist some skewed graphs that make the split
workload for the machines imbalanced. We address the straggler
problem by devising a dynamic work stealing based mechanism.
Its main idea is that the idle workers automatically "steal" the un-
finished workload from the busy workers to accelerate the whole
process. To apply dynamic work stealing, the main challenge is to
migrate the workload without affecting the correctness of pt for
each node n € ¥ on both machines. According to the procedure
of BackProp, the key point to maintain the correctness of each
n.pt is to guarantee that the out-neighbors of n.vid have been fully
explored when operator BackProp is applied on n. Based on this, a
straightforward solution is to let the machine that is in charge of
performing BackProp wait until the stealing machines finish their
workloads and the results are received. However, this approach has
the potential to cause more waiting and communication overhead,
thus the straggler problem is still not addressed.

For ease of presentation, we denote the leaf nodes whose state #
POSTPONE as non-POSTPONE nodes. To devise a blocking-free
work stealing mechanism, we first prove the following lemma:

Lemma 4.2: Given ¥ on a machine M, for a node n in'¥ such that
(1) n is not an ancestor of non-POSTPONE nodes, (2) level(n) <
level(n’), where n’ represents any other node in ¥ that is not an
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Figure 5: Dynamic Work Stealing

ancestor of non-POSTPONE nodes, if the enumeration workload fol-
lowing root-to-n on machine M is migrated to another idle machine
M’, all HC-s-t paths can be correctly enumerated on M and M.

Following Lemma 4.2, when a machine M’ finishes its work and
becomes idle, it can automatically "steal" the workload from a busy
machine M to accelerate the whole enumeration. Moreover, after
the nodes are removed from ¥ on M due to the workload migration,
there will be new nodes in the new ¥ satisfying the condition
shown in Lemma 4.2, which means more workload can be further
migrated. Inspired by this, we propose a dynamic work stealing
mechanism as follows: (1) when a machine M’ becomes idle, it sends
a work steal request to a busy machine M. (2) When M receives the
request, it (a) performs a BFS exploration on ¥ from the root until
touching a node n which is not an ancestor of non-POSTPONE
nodes. (b) retrieves the set of all the nodes at level(n) which are
not ancestors of non-POSTPONE nodes, denoted by 7. (c) removes
[@1 number of nodes in 7~ along with their descendants from
V. (d) sends the tree consisting of the tree paths of removed nodes
to machine M’. (3) M’ receives the tree from M and continues the
enumeration.

Example 4.3: Figure 5 demonstrates an example of dynamic work
stealing. When machine M’ finishes its work and becomes idle, it
automatically selects a random busy machine M to send a work
steal request. Every node is shown with its alias and its vid, while
the dashed nodes are those being "stolen" from M to M’. Specifically,
when M receives the work steal request from M’, it performs a BFS
on ¥ from root until touching C which is not an ancestor of non-
POSTPONE nodes. It further finds that on level(C) of ¥, both D
and E are not ancestors of non-POSTPONE nodes. Therefore, 7 is
collected as {C, D, E}. To migrate [@] number of nodes in 7 to
M’, C and D with its descendants H and I are removed and sent to
M’ with corresponding tree paths. Then, M’ receives the tree from
M and continues the enumeration.

Lemma 4.3: For a straggler machine M, the cost of computing the
stolen nodes in ¥ after receiving a work steal request is O(kA).

4.3 Further Optimization

As demonstrated in [43], by adopting a bidirectional search strategy,
the centralized algorithm further improves enumeration perfor-
mance. Hence, we further optimize the HybridEnum by adopting
the same strategy in a distributed setting. The idea of the bidirec-
tional search strategy in [43] is based on the path middle vertex.

Definition 4.5: (Path Middle Vertex) Givenapath p = (vy, ...
the middle vertex of p is the [£]-th vertex of p.

,Un),



With the path middle vertex, the enumeration-concatenation
strategy contains four steps: (1) compute the set M of path middle
vertices of all the HC-s-t paths. (2) add a virtual vertex ¢’ and an
edge (v,t’) for each v € M and compute HC-s-t’" paths P; from s
to t’ with [%] + 1 hop constraint. (3) add a virtual vertex s’ and an
edge (s’,v) for each v € M and compute HC-s’-t paths P, from s’
to t with L%J + 1 hop constraint. (4) concatenate the paths from P;
and P, based on v € M and the concatenated path is HC-s-t path
if and only if it is a simple path and o is its middle vertex.

Algorithm 5: HybridEnum™* (s, ¢, k, A, G)
1 M« 0
2 start two distributed BFS-oriented search from s/t on G/G";

s foreach roundi =1to[%1)do
4 Si < i-hop reachable vertices from s on G;

5 T; « i-hop reachable vertices from ¢ on G";
6 | MeMUGSNT);

78 —|V|+1;t — |V|+2;

s foreachov € M do

9 add a virtual out-neighbor with id ¢’ to v;

10 add a virtual in-neighbor with id s’ to v;

11 P; « HybridEnum(s, ¢/, [%] +1,A,G);//omit t/

12 P « HybridEnum(s’, ¢, L%J +1,A,G); //omit s’

13 distribute the paths in P;/P, with the same tail/head vertex
to the same machine;

14 foreach Machine do

15 parallel foreach (p;, p;) € P; X P, do

16 if pj.tail() == py.head() then

17 if len(p;) == len(p;) orlen(p;) == len(p, + 1)
then

18 concatenate p; and p, into p;

19 if p has no repeated vertex then

20 ‘ output p;

Algorithm. Following the above idea, our optimized algorithm,
HybridEnum®*, is shown in Algorithm 5. HybridEnum™* first com-
putes the set of path middle vertices M with two BFS-oriented
searches (lines 1-6). After this, HybridEnum™ adds the virtual ver-
tices s’ and t” in G (lines 8-10) and computes P; and P, by HybridEnum
(lines 11-12). Lastly, HybridEnum™ concatenates the paths in P; and
Py to compute the HC-s-t paths (lines 13-20). The algorithm’s cor-
rectness is straightforward following [43].

Theorem 4.3: HybridEnum® further reduces the overall computa-
tion cost of HybridEnum on G to O(k|V (G)|A(¢;+¢r) +P), where ¢;
and @y are the output path numbers in Py and Py respectively. The addi-
tional communication cost in HybridEnum® is O(¢; + ¢, +k|V(G)|).

5 IMPLEMENTATION
5.1 Architecture

Our framework adopts a shared-nothing architecture in a cluster
shown in Figure 6. Each machine has the following components:

Intermediate path tree. Each machine maintains an instance of
intermediate path tree, which is defined in Definition 4.1.
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k-layer leaf index. In each iteration, both PrunExt and BackProp
apply on the leaf nodes which are on the same level of the inter-
mediate path tree. Therefore, a k-layer index is maintained to store
the leaf nodes on k levels using k vectors, and both PrunExt and
BackProp can directly apply on the nodes in a leaf index level I,
where [ is changed by FlowCtrl at the end of each iteration.

RPC handler. RPC handler is used to communicate between ma-
chines, which is supported with a RPC server and a RPC client. The
server is responsible for answering incoming requests from other
machines, while the requests are sent through the client. There are
two RPC functions, namely FetchNbr() and WorkSteal().

Cache. Each machine individually maintains a cache that stores
the already fetched neighbors of remote vertices, which aims to
reduce the communication cost during enumeration. The cache is
shared among all workers in the same machine and is designed to
be lock-free. When a machine starts to fetch remote vertices, only
the vertices that are not in the cache are fetched remotely and the
returned results are inserted into cache as (v, N (v)) pairs. If the
cache is full during the insertion of a returned pair, a random pair
that is not used in the current round will be replaced.

Shuffler. The shuffler shuffles data across the machines, which
is used in HybridEnum™ to concatenate paths between different
machines in line 13 of Algorithm 5.

5.2 Operator Implementation

This section presents the implementation details of the operators.
The inputs of the operators include: ¥ that represents the inter-
mediate path tree, I that represents the k-layer leaf index, C that
represents the cache, [ that represents the level of the intermediate
path tree .

PrunExt. As shown in Algorithm 6, while the number of extended
nodes is smaller than A and there is node left in the current level of
I, we keep extending the nodes by their vids’ out-going neighbors
(line 1). In lines 2-4, the neighbors of remote vertices are fetched and
stored into the cache. For each node n in Ij, if the length of root-to-n
path has reached k, n’s state is set as CLOSED with n.pt.(n.vid) set
as 2 (lines 5-6). For a node n, if the length of I}, reaches A and
the current extended neighbor is not the last element of nbr*(n)
(line 23), n.children is added with an offset to record the number of
out-neighbors that are not yet iterated (lines 24-25). After skipping
the extended neighbors of n.vid based on the offset (line 8-11), if ¢
is found to be a direct out-neighbor of n.vid, n.pt.(n.vid) is set as 2
and the graph path represented by the nodes is output (lines 12-13).



Algorithm 6: PrunExt (¥,1,C, [, B)

Algorithm 7: BackProp (¥,1,C,1)

1 while I;,.length() # A and I is not empty do
2 Sy « remote vids in [; [0..B];

3 foreach (u, N'(u)) € FetchNbr (Sy) do

4 ‘ C.insert(u, N (u));

5 parallel foreach n € [;[0..B] do

6 if [ = k - 1 then n.pt.(n.vid) « 2; continue;
7 foreach v’ € nbr*(n.vid) do

8 if n.children > deg* (n.vid) then

9 ‘ n.children -= 1; continue;

else if n.children = deg*(n.vid) then
‘ n.children « 0;

if o’ = t then
‘ n.pt.(n.vid) « 2; Output found path;

10
11
12
13
else if v’ ¢ root-to-n graph path then
pty — 0;n” —n;
while n”” # NULL do

if o’ € n”.pt then

‘ pty «— n”’.pt.o’; break;

14
15
16
17
18
19 else n’’ « n”.parent;
if pty +1+1 < k then
n’ « Node(v’, POTENTIAL, 0, n, 0);
n.children += 1; I;;;.push(n’);
if |I;1| = A and v’ # nbr"(n.vid).last() then
offset « 2 * deg® (n.vid) - countyest;

20
21
22
23
24

n.children += offset; break;
if 0 < n.children < deg*(n.vid) then
n.state := NULL; I.remove(n);
if I;;.length() = A then break;
else if n.children = 0 then
n.state = CLOSED; n.pt.(n.vid) « k —1+1;

25

26
27

28

29

30

Otherwise, after finding the pruning threshold of v’ (lines 14-19),
a pruning check is performed (line 20). If passed, a new node n’
with tuple (v”, POTENTIAL, 0, n, 0) is added as a child (lines 21-22).
If no new nodes have been added as n’s children, n.state is set as
CLOSED and n.pt.(n.vid) is set as k — [ + 1 (lines 29-30). Otherwise,
n’s state is set as NULL and n is removed from I; (lines 26-27).
PrunExt stops if A children are extended (line 28).

BackProp. As shown in Algorithm 7, for each node n € CLOSED
nodes that need to be updated in Sg, let n’ be its parent and pt, be
n.pt.(n.vid), n’.pt.(n’.vid) is firstly set as min{n’.pt.(n’.vid), pt, +
1} (lines 1-6). If a valid path is found from n, S, stores any vertex v
where n.pt.v is possibly larger than dist(v, t|S(n’)) (line 7). Lines
8-18 iteratively update the pruning thresholds of the vertices in n.pt,
in order to guarantee that n.pt.o < dist(v,¢|S(n’)) for all v € n.pt.
After updating the pruning thresholds of vertices in n.pt, n.pt is
merged into n’.pt (lines 19-21). Then, n is removed and n’ is added
to Sy if n” subsequently becomes a leaf node (lines 22-23). Lastly,
we assign Sy to Sp to repeat the update on new leaves (line 24).

FlowCtrl. FlowCtrl changes the value of I to represent the new
index level that future operators will apply. The implementation of
FlowCtrl is straightforward, which has been shown in Algorithm 3.
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1 S « nodes referred in I; with state CLOSED;
2 while Sp is not empty do

3 SN« 0;

4 parallel foreach n € Sg do

5 n’ « n.parent; pty « n.pt.(n.vid); d « 0; Sy, « 0;
6 n’.pt.(n’.vid) « min{n’.pt.(n’.vid), pt, + 1};

7 if pt, + 1 < k then S, < nbr™ (n.vid);

8 while S, is not empty do

9 d+=1;Sp,Sp « 0;

foreach v’ € S, do
if o’ € n.pt and n.pt.o’ > pt, + d then
npto’ « pty+d; Sp — Sp U {v'};
if o’ is remote then S¢.push(v’);
Sy« 0;
foreach (v’, N(v”)) € FetchNbr (S¢) do
‘ C.insert(v’, N (v'));
foreach v’ € S, do
‘ foreach v’/ € nbr™(v’) do S, « S, U {v”'};
for v € n.pt do
if v € n’.pt then n’.pt.v « max{n’.pt.o, n.pt.o};

10
11
12
13
14
15
16
17
18
19
20

21 else n’.pt.o « n.pt.o;
Remove (n); n’.children -= 1;
if n’.children = 0 then Sy « Sy U {n’};

SB — SN;

22

23

24

6 EVALUATION

In this section, we evaluate the efficiency of the proposed algorithms.
All the experiments except Exp-5 are performed on a local cluster of
10 machines, each with one 4-core Intel Xeon CPU E3-1220, 64GB
memory, 1T disk, connected via a 10Gbps network, running Red
Hat Linux 7.3, 64 bit. Each machine runs 4 workers. For Exp-5, we
use a machine with one 20-core Intel Xeon CPU E5-2698 and 768
GB main memory running Red Hat Linux 7.3, 64 bit.

Table 1: Statistic of the datasets

Dataset Name \Y E| dmax davg
web-Google GO 875K 5M 6,332 5.0
LiveJournal L) 4M 68M 20,333 17.9

Twitter-WWW ™ 42M 1.46B | 2,997,487 | 70.5
Friendster FS 65M | 1.81B 5,214 27.5
Twitter-MPI ™ 52M 1.96B | 3,691,240 | 74.7
UK-2007 UK 134M | 5.51B | 6,366,528 | 41.2
Synthetic SY 372M | 10B 613,461 53

Datasets. We evaluate our algorithms on six real-world graphs and
one synthetic graph. The size of the graphs is shown in Table 1. GO,
LJ, TW and FS are downloaded from SNAP (http://snap.stanford.
edu/data/index.html), TM is downloaded from KONECT (http://
konect.cc/networks/) and UK is downloaded from LAW (http://
law.di.unimi.it/datasets.php). SY is a synthetic power law graph
generated by Graph500 generator [9]. Note that SY occupies roughly
80GB of space, and is larger than our machine’s configured memory.
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Due to the limited space, we show only part of the results, and the
complete results can be found in our technical report [20].

Algorithms. We compare the following algorithms:

o DisBFS: The distributed BFS-oriented exploration algorithm for
HC-s-t path enumeration.

DOBFS/RQBFS/MSBFS: The distributed extensions of the
Direction-Optimized/Read&Queue-Optimized/Multi-Source BFS
algorithms [5], [21], [50] for HC-s-t path enumeration.

DisHPI: The distributed extension of the HP-Index algorithm
[45] for HC-s-t path enumeration.

BiGJoin: The distributed HC-s-t path enumeration algorithm
based on the subgraph matching system BiGJoin [2].

Fractal: The distributed HC-s-t path enumeration algorithm based
on the graph pattern mining system Fractal [14].

HybridEnum: Our hybrid search-oriented enumeration algorithm
(Algorithm 4 in Section 4.1).

HybridEnum*: Our bidirectional search optimized enumeration
algorithm (Algorithm 5 in Section 4.3).

T-DFS/T-DFS2/JOIN: The centralized HC-s-t path enumeration
algorithms proposed in [47], [18], [43].

All the algorithms except Fractal are implemented in Rust 1.43.
We implement DisBFS as discussed in Section 1. For DOBFS, RQBFS
and MSBFS, we extend the techniques in [5], [21], and [50], respec-
tively, to address the problem of HC-s-t path enumeration in a
distributed setting through the Timely Dataflow engine [37]. For
DisHPI, we communicated with the authors and implemented the
distributed version with our best efforts. For BiGJoin and Fractal,
we directly adopt their original implementations (from [29] and
[15]) which are built on Timely Dataflow and Spark, respectively.
For the HC-s-t path enumeration problem, their processing proce-
dures consist of a number of intermediate path extensions. At each
extension point, we add an extra conditional statement to ensure
that the paths ending with t are output without extension. For T-
DFS, T-DFS2 and JOIN, we implement them in Rust 1.43 following
their original implementations. As big-data engines [37, 48] typi-
cally do not support pulling communication in HybridEnum and
distributed key-value store [30] lacks the functionality of pushing
communication in HybridEnum*, we implement HybridEnum and
HybridEnum™* based on RPC [6].

In the experiments, we enable the workload balance mechanism
for HybridEnum and HybridEnum* and set the cache size to 30% of
the graph size by default. The time cost is measured as the amount
of wall-clock time elapsed during the program’s execution. If an
algorithm cannot finish in 10,000 seconds or runs out of memory,
we denote the processing time as INF. Moreover, if an algorithm
runs out of memory, we also mark the case with a X on the top of
the figure. In the experiments, we set the default hop constraint
k as 6, and the queries are generated by randomly selecting pairs
(s, t) such that s can reach t in k hops in the dataset.

Exp-1: Efficiency on different datasets. In this experiment, we
evaluate the efficiency of the algorithms on different datasets. We
randomly generate 100 query pairs for each dataset and report the
average processing time for each query in Figure 7.

As shown in Figure 7, HybridEnum and HybridEnum™ always
outperform the other distributed algorithms. For example, on graph
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Figure 8: Processing time when varying hop constraint k

LJ, HybridEnum is 16.1X (resp. 26.5%, 16.9%, 12.1%, 30.5X, 18.1x and
35.1%) faster than DisBFS (resp. DOBFS, RQBFS, MSBFS, DisHPI,
BiGJoin and Fractal). Comparatively, HybridEnum* demonstrates
a better performance, which is 19.7x (resp. 32.5%, 20.9%, 14.9%,
37.1X%, 22.4% and 60.3X) faster than DisBFS (resp. DOBFS, RQBFS,
MSBFS, DisHPI, BiGJoin and Fractal). This is because the pruning
technique used in our proposed algorithms can significantly re-
duce the search space and avoid the fruitless exploration. Moreover,
due to the designed hybrid search paradigm and bounded mem-
ory consumption, when k becomes large, BFS-oriented algorithms
(i.e. DisBFS, DOBFS, RQBFS, MSBFS and DisHPI) suffer from the
out-of-memory issue while HybridEnum and HybridEnum* do not
have this problem. For example, all BFS-oriented algorithms run
out of memory on TW, TM, UK and SY, while HybridEnum and
HybridEnum* never encounter memory crisis and can finish the
enumeration efficiently on all graphs. This verifies the effectiveness
of the hybrid search paradigm in controlling memory consumption.
For BiGJoin and Fractal, they both perform worse than our algo-
rithms due to the lack of ability to prune fruitless exploration. Al-
though Fractal never encounters memory crisis because of its DFS-
oriented design, it typically shows worse performance than BiGJoin
due to its recomputing-from-scratch strategy. For HybridEnum and
HybridEnum*, HybridEnum™ always outperforms HybridEnum on
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Figure 9: Processing time and memory when varying A

all datasets, because by using the bidirectional search, some com-
puted paths can be shared during enumeration, which is consistent
with the analysis in [43].

Exp-2: Efficiency regarding hop constraint k. In this experi-
ment, we evaluate the efficiency when varying hop constraint k
from 3 to 7. For each k, we randomly generate 20 queries. The
average processing time for each query is shown in Figure 8.

In Figure 8, as the hop constraint k increases, the processing time
of all algorithms also increases. This is because as k increases, the
number of HC-s-t paths also increases. Moreover, HybridEnum and
HybridEnum™* always outperform the other distributed algorithms,
and the performance gap increases as the hop constraint k increases.
This is because when the search space grows larger due to the
increase of k, the fruitless exploration in the baseline algorithms
increases accordingly, which is effectively avoided by the pruning
techniques in HybridEnum and HybridEnum™*. Furthermore, as the
hop constraint k increases, the memory crisis issue in BFS-oriented
algorithms becomes serious while HybridEnum and HybridEnum*
do not have this issue. The two distributed subgraph matching
solutions BiGJoin and Fractal perform worse than our algorithms
in all cases because of their lack of pruning. Based on the results,
it is clear that HybridEnum and HybridEnum™ are more scalable
than the compared algorithms. HybridEnum™ is more efficient than
HybridEnum in all cases, the reason is similar to that in Exp-1.
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Exp-3: Efficiency and memory consumption regarding A. In
this experiment, we evaluate the impact of A on our algorithm. We
record the processing time and maximum memory consumption of
the machine during the execution of HybridEnum by varying the
value of A on FS and TW. The results are shown in Figure 9.
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Figure 9 shows that: (1) for the processing time, as A increases,
the processing time decreases. This is because as A increases, the
parallelism of HybridEnum becomes higher, and consequently the
computing resources are more fully utilized. (2) for the memory
consumption, as A increases, the memory consumption increases as
well. This is because the size of intermediate path tree stored in each
machine becomes large as A increases, which is consistent with our
theoretical analysis on the memory consumption. Moreover, based
on our proposed method for tuning A, A = 10* and A = 10*> are
chosen for FS and TW, respectively, which achieves relatively high
parallelism while the memory consumption is still bounded.

Exp-4: Effectiveness of load balance. In this experiment, we
evaluate the effectiveness of the load balance mechanism. We report
the processing time for a query on each machine when the load
balance mechanism is enabled or not on each dataset. The results
are shown in Figure 10. We also evaluate the overhead of our work-
stealing technique by measuring the time spent on work-stealing
related code in each machine, shown by the grey filling.

As shown in Figure 10, without load balance mechanism, the
straggler problem exists to some degree. For example, on TM, with-
out the load balance mechanism, the running time of the fastest
machine is 7189s while that of the slowest machine is 7904s. The
results also find that the average time taken for work-stealing over-
head occupies only 1.4% of the total processing time with load
balance enabled. The experiment results demonstrate the effective-
ness of our load balance mechanism.

Exp-5: Single machine comparison. In this experiment, we eval-
uate the performance of the parallel and distributed algorithms on
a single machine, compared to the existing state-of-the-art single-
threaded solutions to HC-s-t path enumeration. We evaluate the
performance of the parallel algorithms by increasing the number
of cores used, while the single-threaded algorithms are always exe-
cuted with one core. DOBFS-C, RQBFS-C and MSBFS-C represent
the centralized parallel extensions for HC-s-t path enumeration of
the algorithms proposed in [5], [21], and [50], respectively.

As shown in Figure 11, HybridEnum and HybridEnum™* always
outperform the compared algorithms except JOIN. For the single-
threaded algorithm JOIN, HybridEnum and HybridEnum™ require
3 and 4 cores to outperform it in the worst-case, respectively. In
contrast, the three multi-threaded BFS algorithms are typically
slower than JOIN, even when running with 16 cores. This is be-
cause they were originally designed for BFS traversal and lack the
power of pruning. In particular, DOBFS-C shows the worst per-
formance. This is because its optimized search direction cannot
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practically reduce the number of edges explored due to the nature of
path enumeration. RQBFS-C and MSBFS-C demonstrate improved
performance over DOBFS-C, as they adopt effective strategies to
reduce random memory access and utilize memory bandwidth more
efficiently. Additionally, T-DFS and T-DFS2 always perform worse
than JOIN due to their expensive verification cost.

Table 2: Statistic of the synthetic datasets

Erdés-Rényi (ER) ERO1 | ER02 | ER03 | ER04 | ERO5
V] 30M | 60M | 120M | 240M | 480M

IE| 99M | 201M | 400M | 801M | 1.6B

Power Law (PL) PLO1 | PL02 | PL03 | PL04 | PLO5
V] 3M | 7M | 12M | 24M | 49M

IE| 100M | 200M | 401M | 800M | 1.6B

Social Network (SN) | SNO1 | SN02 | SN03 | SN04 | SN05
V] 15M | 31M | 60M | 118M | 241IM

E| 101M | 200M | 399M | 800M | 1.6B

Exp-6: Efficiency regarding graph size. In this experiment, we
evaluate the efficiency of the algorithms as the graph grows in
size. We generate synthetic graphs following three commonly-used
synthetic graph models: Erdés—Rényi graphs by the Erdés-Rényi
graph generator [4], power law graphs by the Graph500 generator
[9] and social network graphs by the LDBC Datagen [7]. The size
of the graphs is shown in Table 2. We randomly generate 20 queries
for each graph, with hop constraint k ranging from 4 to 7. Due
to the limited space, we only present the average processing time
with k = 6 for each query in Figure 12. The complete results are
presented in our technical report.

As shown in Figure 12, when the graph size increases, the pro-
cessing time of all the algorithms increases as well. This is because
as the graph size increases, the number of HC-s-t paths and the
size of the search space also increase. Moreover, it can be seen that
HybridEnum and HybridEnum™* outperform the other distributed
algorithms in almost all cases, and the performance gap increases
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as the graph size increases. This is because when the search space
grows larger as the size of graph increases, the fruitless computa-
tion in the baseline algorithms also increases, which is effectively
avoided in HybridEnum and HybridEnum®*.

Exp-7: Efficiency regarding number of paths. In this experi-
ment, we evaluate how the algorithms perform when the number
of results for each query varies. We generate 120 queries with k = 5
on TW, where the number of results varies from 0 to 10°. The
average processing time for each query is shown in Figure 13.

As can be seen in Figure 13, when the number of query results in-
creases, the processing time of HybridEnum and HybridEnum® in-
creases accordingly. This is because when the number of valid paths
is smaller, there is more fruitless computation to be avoided during
the enumeration and hence, HybridEnum and HybridEnum™ per-
form better. In contrast, the remaining algorithms are less sensitive
to the number of path results.

[ DisBFS 2 DOBFS E= ROBFS X3 MSBFS 74 DisHPI
BiGloin EZZ Fractal [ HybridEnum  EXXX HybridEnum’

Time (seconds)
s

Figure 14: Processing time to the first solution

Exp-8: Time to the first solution. In this experiment, we report
the time that the algorithms take to output their first solution. We
randomly generate 20 query pairs for each dataset and report the
average processing time for each query in Figure 14.

Figure 14 shows that the performance of our algorithms are al-
ways better than the others regarding outputting the first solution.
Moreover, it can be seen that HybridEnum typically performs bet-
ter than HybridEnum™ in terms of the time to the first solution.
This is due to the overhead of computing path middle vertices in
HybridEnum™*, which involves two distributed BFS-oriented explo-
ration from s/t on G/G".

7 CONCLUSION

In this paper, we study the problem of distributed HC-s-t path
enumeration. We first propose a novel hybrid search paradigm.
Based on it, we devise a new distributed HC-s-t path enumeration
algorithm, HybridEnum, following the divide-and-conquer strategy.
In addition, we design an effective work stealing mechanism to
handle unbalanced workload. The experiment results demonstrate
the efficiency and scalability of our proposed algorithms.
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