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ABSTRACT

We observe that the time bottleneck during the recovery phase

of an IMDB (In-Memory DataBase system) shifts from log replay-

ing to index rebuilding after the state-of-art techniques for instant

recovery have been applied. In this paper, we investigate index

checkpoints to eliminate this bottleneck. However, improper de-

signs may lead to inconsistent index checkpoints or incur severe

performance degradation. For the correctness challenge, we com-

bine two techniques, i.e., deferred deletion of index entries, and

on-demand clean-up of dangling index entries after recovery, to

achieve data correctness. For the efficiency challenge, we propose

three wait-free index checkpoint algorithms, i.e., ChainIndex, Mir-

rorIndex, IACoW , for supporting efficient normal processing and

fast recovery. We implement our proposed solutions in HiEngine,

an IMDB being developed as part of Huawei’s next-generation

cloud-native database product. We evaluate the impact of index

checkpoint persistence on recovery and transaction performance

using two workloads (i.e., TPC-C and Microbench). We analyze

the pros and cons of each algorithm. Our experimental results

show that HiEngine can be recovered instantly (i.e., in ∼10 s) with

only slight (i.e., 5% - 11%) performance degradation . Therefore, we

strongly recommend integrating index checkpointing into IMDBs

if recovery time is a crucial product metric.
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1 INTRODUCTION

In-memory databases (IMDBs) show the promise of achieving high

performance by reducing the I/O bottleneck in traditional disk-

resident databases [47]. Hot topics in recent IMDB research studies

include scalable index structures [2, 15, 17, 28, 33, 42], concurrency

control [12, 22, 30, 40], and lightweight logging [8, 27, 45, 49]. How-

ever, the topic of 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 has received less attention, while

it is an important pain point for industrial database systems. For

example, the recovery time of SiloR, a well-optimized IMDB, is

approximately 211s for a 70 GB TPC-C database [49]. This recovery
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time can hardly satisfy production requirements, especially for the

increasingly popular cloud databases.

The recovery procedure of an IMDB [27, 49] typically consists of

three steps: (i) loading data checkpoints, (ii) replaying logs, and (iii)

rebuilding indexes. Note that Step (i) can be very fast by employing

mmap for data checkpoints. Step (iii) does not exist in ARIES [29]

(recovery mechanism for traditional disk-resident databases), while

it is necessary within IMDB to recover indexes because indexes are

not included in the data checkpoints or logs [27, 44, 49].

There are three categories of techniques to reduce the recovery

time of IMDBs in the database literature. First, parallel log replaying

techniques have been studied in depth [27, 44–46, 49]. Second, fast

and frequently checkpointing [3, 5, 19, 20, 36, 49] can reduce the

size of the logs that need to be replayed. Third, indexed logs [26, 37–

39] support restoring tuples on demand. All these techniques target

Step (ii), i.e., log replaying, which is the main bottleneck of the re-

covery procedure. As shown in Figure 1, state-of-the-art techniques

(parallel log replaying, frequent checkpoints, and indexed-log) can

significantly cut down the log replaying time.

Motivation: The New Bottleneck. Existing IMDBs often re-

cover indexes through rebuilding, e.g., VoltDB [27], SiloR [49], PAC-

MAN [44] (implemented in Peloton [31]). Figure 1 reveals that the

bottleneck of the recovery procedure shifts to index rebuilding af-

ter applying the optimization techniques for log replaying. Yet the

resulting recovery time is still far from the production requirement,

e.g., ∼10s. Index rebuilding becomes the new bottleneck!
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Figure 1: Rebuild index is time-consuming.

In this paper, we investigate index checkpoints to eliminate this

bottleneck. Using index checkpoints, an IMDB only needs to re-

insert the index entries created after the latest index checkpoint

during the recovery procedure, thereby significantly reducing the

amount of work in Step (iii). However, improper designs may lead to

inconsistent index checkpoints or incur severe performance degra-

dation. Therefore, the challenge is how to take index checkpoints

in IMDBs correctly and with low overhead.
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Correctness. As the index structure does not contain trans-

action information, it is almost impossible to obtain transaction

consistent snapshots for an index. Thus, an index checkpoint is

not transaction consistent. How to guarantee data correctness after

recovery? We combine two techniques, i.e., deferred deletion of

index entries, and on-demand clean-up of dangling index entries

after recovery, to achieve the correctness guarantee.

Efficiency. We would like to reduce the impact of index check-

points on normal processing and achieve fast recovery time. This

can be further broken into four design goals: wait-free processing,

efficient index operations, fast and frequent checkpoints, and load-

friendly checkpoint formats. We propose three index checkpoint

algorithms to meet these goals as much as possible. (i) ChainIndex

freezes a tree index to create a read-only snapshot for checkpoint-

ing. It maintains a list of frozen trees and uses a head tree to serve

new modifications. (ii) MirrorIndex uses the same method to obtain

index snapshots as ChainIndex, it keeps an up-to-date Mirror tree

to support index reads without read amplification. (iii) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝐴𝑟𝑟𝑎𝑦 𝑏𝑎𝑠𝑒𝑑 𝐶𝑜𝑊 (IACoW ) employs copy on write to obtain the

snapshot for checkpointing. It designs an indirection array to avoid

unnecessary cascading node copies caused by path copying.

We implement our proposed solutions in HiEngine, an IMDB

being developed as part of Huawei’s next-generation cloud-native

database product. HiEngine implements state-of-the-art features,

including Adaptive Radix Tree [15, 16], Hekaton-style MVCC [12],

LLAMA-alike indirection array [17, 18], Deferred Action Frame-

work [48], the log is the database [41], indirection-array based

recovery [26, 39], dataless checkpoint. We compare and evaluate

the three algorithms on index checkpoints using two workloads

(i.e., TPC-C and Microbench) and analyze the advantages and dis-

advantages of each algorithm. Our experimental results show that

HiEngine can be recovered instantly (i.e., in ∼10 s) with only slight

(i.e., 5% - 11%) performance degradation .

The contributions of this paper are as follows:

(1) We observe that the time bottleneck of recovering an IMDB

shifts from log replaying to index rebuilding. To the best of

our knowledge, this paper is the first work to comprehen-

sively study index checkpoint technology for IMDBs.

(2) We investigate the correctness and efficiency challenges of

index checkpoints. We combine two techniques to address

the correctness issue and propose three index checkpoint

algorithms, i.e., ChainIndex, MirrorIndex, IACoW , for sup-

porting efficient normal processing and fast recovery.

(3) We evaluate and compare all algorithms within a production

IMDB (i.e., HiEngine) and analyze their advantages and dis-

advantages. Based on the experimental results, we strongly

recommend that index checkpointing, especially IACoW ,

be integrated into IMDBs if the recovery time is a crucial

product metric.

The structure of this paper is as follows: section 2 describes

HiEngine and the challenges of index checkpoints. section 3 in-

vestitages the data correctness problem. section 4 presents the

three checkpoint algorithms. section 5 reports the experimental

evaluation for index checkpoints. section 6 summarizes the related

work. Finally, section 8 concludes the paper.

2 BACKGROUND

In this paper, we aim to support the checkpointing of tree-based

indexes in IMDBs. Without loss of generality, we discuss our solu-

tion in a concrete IMDB, HiEngine, which is being developed as

part of Huawei’s next-generation cloud-native database product. In

this section, we briefly describe HiEngine with an emphasis on its

recovery performance, then discuss the challenges for supporting

wait-free index checkpointing.

2.1 HiEngine Overview

HiEngine [25] uses a variant of MVCC [12, 43] for concurrency

control. It supports common isolation levels, including Read Com-

mitted, Snapshot Isolation, and Serializable. To achieve durability,

HiEngine performs distributed logging [45, 49], and employs group

commits [4] to minimize the impact of logging I/Os. The implemen-

tation follows the idea of “the log is the database” [41]. Basically,

in the commit processing of a transaction, HiEngine serializes the

𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡 of the transaction as a batch of log records, and appends

the records to the REDO log. Each log record contains the transac-

tion’s commit timestamp, the log type (e.g., insert/update/delete),

the tuple ID, and a serialized representation of the entire tuple ver-

sion. There is no standalone storage for the tuples in the secondary

storage.

HiEngine employs Adaptive Radix Tree (ART) [15] as the main

index structure. It implements Optimistic Lock Coupling [14, 16]

for concurrent index accesses. As in most IMDBs, the index does

not directly support the concept of versions. It is impossible to

retrieve a snapshot of the index at a given timestamp. As will be

discussed later, this incurs significant challenges for our design.
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Figure 2: HiEngine architecture.

2.2 Techniques to Reduce Recovery Time

HiEngine exploits the following two techniques to achieve the

recovery performance shown previously in Figure 1.

Indirection-array based recovery. HiEngine stores tuple IDs

in the indexes, and creates an indirection array to map tuple IDs

to the addresses of the tuples [11], as shown in Figure 2. Similar to

LLAMA [18], HiEngine uses 1 bit in the 64-bit address1 to identify

whether the address is an in-memory address or an on-storage

offset. In this way, the indirection array can organize memory and

storage in a unified address space. During recovery processing,

HiEngine re-builds the indirection array with on-storage log offsets

of the latest committed tuple versions. It does not read the tuple

versions during recovery. Instead, a tuple version will be loaded

into memory on demand when it is used by a transaction. This

1Linux uses only 48 bits of the address. The upper bits are usually 0.
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technique significantly reduces the amount of data to load during

recovery [26, 39].

Dataless checkpoint. For each checkpoint, HiEngine obtains a

consistent snapshot of data by exploiting snapshot isolation. Then

it dumps the snapshot data to secondary storage. To reduce the time

to load a checkpoint during recovery, HiEngine performs dataless

checkpoint. That is, it does not dump the actual tuple data. Instead,

it stores only the log offsets of the tuple versions in the snapshot,

thereby significantly decreasing the checkpoint size. In this way,

HiEngine is able to load a checkpoint quickly during recovery.

2.3 New Bottleneck and Motivation

However, since index modifications are not recorded in the log, in-

dexes must be re-built during recovery. Unfortunately, as shown in

Figure 1, this incurs significant overhead. Index rebuilding becomes

the new bottleneck in the recovery phase. Similar scheme appears

in existing systems, such as VoltDB [27], SiloR [49], PACMAN [44]

(implemented in Peloton [31]), WBL [1], Zen [23], etc. For the space

reason, please see our extended version on arxiv for more infor-

mation on the differences between IMDB and DRDB in terms of

recovery.

Motivation. First and foremost, we treat the rebuilding-base

method as the evaluation baseline, and our goal in this work is to

propose an effective solution to decrease the time for index recovery.

Actually, this problem has not been studied in depth in the IMDB

literature. If checkpoints of indexes exist during recovery, then

the system can re-construct lost index entries based on the latest

successful checkpoint, which is substantially faster than starting

from scratch.

2.4 Challenges for Wait-Free Checkpoint

It would be nice to obtain transactionally consistent index check-

points. However, since it is not possible to directly obtain a con-

sistent snapshot of the indexes, a naïve approach is to block and

wait. That is, when an index checkpoint request is triggered, the

system blocks all the incoming transactions, and waits for all the

active transactions to complete. Then, it obtains the consistent

checkpoint by simply copying the latest tuple data and index en-

tries synchronously. However, because synchronous data copying

can block the system for a long time [3], this blocking approach in-

evitably leads to poor user experience, especially when the database

size is large.

Our goal is to perform wait-free index checkpoints to preserve

the normal transaction processing performance as much as possi-

ble. That is, we would like to take checkpoints in a non-blocking

manner. Although non-blocking checkpoint algorithms for single-

version databases have been studied [3, 19, 20, 34], the non-blocking

algorithm for index checkpointing in IMDB has not been discussed

before, which is one main contribution of this paper.

Two facts result from the wait-free design goal. First, the index

checkpoint is not transaction consistent since we cannot obtain

a transaction consistent snapshot of the indexes. Second, index

checkpoints do not match tuple data checkpoints, since the latter is

transaction consistent. Hence, we face two significant challenges for

index checkpointing: 1) correctness challenge: how to guarantee

data correctness after recovery? 2) performance challenge: how

to design an efficient index checkpoint algorithm that minimizes

the impact on transaction performance? section 3 and section 4

addresses the two challenges, respectively.

3 CORRECTNESS OF INDEX CHECKPOINTS

Timestamps used in the system. To better understand the cor-

rectness problem and our proposed solution, we first specify the

timestamps used in the system:

• 𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑠 , 𝑏𝑒𝑔𝑖𝑛𝑇𝑠 and 𝑒𝑛𝑑𝑇𝑠: HiEngine uses a global times-

tamp counter, 𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑠 , for generating transaction times-

tamps. A transaction acquires𝑏𝑒𝑔𝑖𝑛𝑇𝑠 = 𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑠 atomically

when it begins. Before it starts the validation phase [12], the

transaction acquires a unique 𝑒𝑛𝑑𝑇𝑠 by atomically fetching

and incrementing 𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑠 .
• 𝑚𝑖𝑛𝐵𝑒𝑔𝑖𝑛𝑇𝑠 and 𝑔𝑐𝑇𝑠: 𝑚𝑖𝑛𝐵𝑒𝑔𝑖𝑛𝑇𝑠 is the minimum of all

active transactions’ 𝑏𝑒𝑔𝑖𝑛𝑇𝑠 . Any tuple version whose end

timestamp <𝑚𝑖𝑛𝐵𝑒𝑔𝑖𝑛𝑇𝑠 is not visible and can be garbage

collected. Thus, 𝑔𝑐𝑇𝑠 is periodically updated with the for-

mula: 𝑔𝑐𝑇𝑠 =𝑚𝑖𝑛𝐵𝑒𝑔𝑖𝑛𝑇𝑠 − 1.

• 𝑚𝑖𝑛𝐸𝑛𝑑𝑇𝑠 and 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠 :𝑚𝑖𝑛𝐸𝑛𝑑𝑇𝑠 is theminimum of all ac-

tive transactions’ 𝑒𝑛𝑑𝑇𝑠 . Hence, any transaction with 𝑒𝑛𝑑𝑇𝑠
< 𝑚𝑖𝑛𝐸𝑛𝑑𝑇𝑠 must have completed. If it commits success-

fully, then the transaction must have persisted all its modi-

fications. 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠 is periodically updated by the formula:

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠 =𝑚𝑖𝑛𝐸𝑛𝑑𝑇𝑠 − 1.

• 𝑐𝑘𝑝𝑡𝑇𝑠 : Once the checkpoint request is triggered, the current
𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠 is assigned as 𝑐𝑘𝑝𝑡𝑇𝑠 .

Ideal case. Ideally, both the tuple snapshot (𝑇𝑆) and the index

snapshot (𝐼𝑆) obtained by the system are transaction consistent,

and they are consistent with each other. As shown in Figure 3,

suppose the checkpoint request is triggered at 𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑆 = 200.

HiEngine executes the checkpoint operation by setting 𝑐𝑘𝑝𝑡𝑇𝑆 =
𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠 = 180. It obtains a transaction consistent𝑇𝑆 by exploiting
MVCC. Ideally, it would be nice to have a “powerful” index snapshot

algorithm that can attain the 𝐼𝑆 that matches the 𝑇𝑆 . If this is the
case, then during recovery, the transaction data before 𝑐𝑘𝑝𝑡𝑇𝑆
can be loaded from the tuple data checkpoint, and the indexes

at 𝑐𝑘𝑝𝑡𝑇𝑆 can be loaded from the index checkpoint. After that,

committed transactions with 𝑒𝑛𝑑𝑇𝑠 > 𝑐𝑘𝑝𝑡𝑇𝑆 can be recovered

by log replaying. Clearly, this “powerful” snapshot algorithm can

guarantee the correctness of the recovered data.

Unfortunately, such a “powerful” index snapshot algorithm is

infeasible. As the indexes do not contain version information, it is

not possible to obtain such a transaction consistent 𝐼𝑆 . We must

cope with the less ideal situation.
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Figure 3: Ideal transaction consistent 𝐼𝑆 (left) and the realis-

tic index snapshot 𝐼𝑆 ′ (right).
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Problems in a realistic IS solution. As shown in Figure 3, the

actual 𝐼𝑆 ′ taken may not be transaction consistent. However, it is

straight-forward to ensure operational consistency [35, 49] such

that 𝐼𝑆 ′ must not contain inconsistent tree nodes in the middle

of any index modifications. Hence, we consider the three types

of tuple write operations. 1) update: The system does not need to

modify any indexes for tuple updates. It is sufficient to update the

pointer in the indirection array to point to the new tuple version

(assuming new-to-old version linked lists). Hence, we do not need

to worry about tuple updates for index checkpoints. 2) insertion:

If there is a tuple insertion in between 𝑇𝑆 and 𝐼𝑆 ′ (𝑝ℎ𝑎𝑠𝑒2), then
the index checkpoint (𝐼𝑆 ′) will contain a dangling index entry that

does not have the corresponding tuple in 𝑇𝑆 . 3) deletion: If a tuple
is deleted in 𝑝ℎ𝑎𝑠𝑒2, the deletion may be reflected in the indexes. If

the deletion is performed by an uncommitted transaction, then the

tuple should exist after recovery. However, since the index entries

for the tuple are missing in the index checkpoint, the tuple data

can be lost because of the inconsistency.

We must correctly handle case 2) and 3). We design the following

two techniques for the correctness of index checkpoints.

Deferred deletion of index entries. As shown in Figure 3, if

a transaction deletes an entry during 𝑝ℎ𝑎𝑠𝑒2, the entry will not

exist in 𝐼𝑆 ′ but it exists in 𝑇𝑆 . To remove the inconsistency be-

cause of deletion, HiEngine prevents the delete operations dur-

ing 𝑝ℎ𝑎𝑠𝑒2. This is supported by the deferred action framework

(DAF [48]). In DAF, a tuple version is deleted only when its end

timestamp ≤ 𝑔𝑐𝑇𝑠 . We perform the removal of index entries for

tuple delete operations only when the tuple versions are garbage

collected. HiEngine ensures that 𝑔𝑐𝑇𝑆 is smaller than 𝑐𝑘𝑝𝑡𝑇𝑠 when
the checkpoint task starts by updating the formula of 𝑔𝑐𝑇𝑆 to

𝑔𝑐𝑇𝑠 =𝑚𝑖𝑛{𝑚𝑖𝑛𝐵𝑒𝑔𝑖𝑛𝑇𝑠 − 1, 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑇𝑠} In this way, we can avoid

missing entries in the index checkpoints.

On-demand clean-up of dangling index entries after restart.

The above technique guarantees that 𝐼𝑆 ′ contains all the index en-
tries in 𝐼𝑆 , but 𝐼𝑆 ′ may have more index entries than 𝐼𝑆 because

of two reasons. (i) There are new tuple insertions during 𝑝ℎ𝑎𝑠𝑒2.
If such an insertion is performed by an uncommitted transaction

(which aborts2 in 𝑝ℎ𝑎𝑠𝑒3 or is still active at the crash point), 𝐼𝑆 ′

contains a “dirty index entry” for the insertion. (ii) Due to the de-

ferred execution of the delete action, the deletion in 𝑝ℎ𝑎𝑠𝑒1 is not
executed. For such an index entry that is deferred to be deleted, 𝐼𝑆 ′

contains an “un-deleted entry”. Both dirty and un-deleted entries

are dangling once the system restart because they exist in the index

trees but not in the tuple heap. Hence, we must carefully clean-up

the dangling entries.

One way to do the cleaning is to scan all index entries and check

their validity. However, this would be very expensive during recov-

ery. Instead, we perform the clean-up with an on-demand check

and delete strategy. For an index lookup, we check for two abnor-

mal cases. First, the index lookup returns a tuple ID with an empty

slot in the indirection array. Second, the key in the tuple version is

different from the (prefix) key in the ART tree. In both cases, the

index entry is identified as a dangling entry and is removed.

2The abort transaction invokes a “compensate” transaction to delete the associated
tuples and index entries.

Combining the two techniques, i.e., deferred deletion and on-

demand clean-up, we can correctly handle both index deletions and

index insertions in 𝑝ℎ𝑎𝑠𝑒2. This guarantees the correctness of index
checkpoints.

4 EFFICIENCY OF INDEX CHECKPOINTS

Design goals. There are two main goals: low impact on normal

processing and fast recovery time. These two goals can be further

broken down into the following four design goals for a good index

checkpoint algorithm:

(1) Wait-free processing. As discussed in subsection 2.4, the

index checkpoint cannot block the normal transaction pro-

cessing, and cannot introduce prominent stalls.

(2) Efficient index operations. The performance of the index

operations should not be severely impacted because of the

data structures designed for the index checkpoints. Moreover,

during the checkpoint phase, the system performs batch

processing for generating the checkpoint. This should not

decrease the index performance too much.

(3) Fast and frequent checkpoints. The interval time between

checkpoints determines the upper bound of the recovery

time [36, 49]. Therefore, to reduce recovery time, the system

should take checkpoints fast and frequently.

(4) Load-friendly checkpoint file format. The checkpoint

file should be loaded rapidly to support instant recovery.

Therefore, we decide to store checkpoint files in 𝑚𝑚𝑎𝑝-
friendly layouts.

In the following, we propose three index checkpoint algorithms:

ChainIndex, MirrorIndex, and IACoW . For each algorithm, we de-

scribe its data structure and operations, then show how it ensures

durability upon crash recovery, and finally discuss the pros and

cons of the algorithm.

4.1 ChainIndex

4.1.1 Data Structure. As shown in Figure 4, ChainIndex maintains

a list of index trees to support the checkpoint of an index. The

ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 supports incoming index modifications. When a check-

point operation is triggered, the tree will be “frozen”, and regarded

as an incremental snapshot of the index. This 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 will be
dumped to storage asynchronously. At the same time, a new empty

tree will be initialized as the newℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 , which is responsible for
accepting new mutate operations. After multiple checkpoints, there

will be a number of 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s on storage. The ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 and the
𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s are organized into a 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 . Apart from ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 ,
the other trees are all read-only (a.k.a, frozen). Notably, 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 is
maintained atomically. Then, a background thread can merge the

𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s asynchronously to compute𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑒𝑒 .

4.1.2 Operations. We consider four main index operations: 𝐼𝑛𝑠𝑒𝑟𝑡 ,
𝐷𝑒𝑙𝑒𝑡𝑒 , 𝐿𝑜𝑜𝑘𝑢𝑝 , and 𝐿𝑜𝑜𝑘𝑢𝑝𝑅𝑎𝑛𝑔𝑒 . The pseudo-code of the four

operations as well as the checkpoint operation is shown in Listing 1.

𝐼𝑛𝑠𝑒𝑟𝑡 . Insertion is performed on the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . Note that the
index structure supports unique index keys. 3 Then the insert op-

eration ensures that the newly inserted key does not exist in the

3Multiple values with the same key are handled by creating a value list as the index
value.

1674



�
�

�
�

����� �����

�	


����

�������

��������������������

���������


���������

Figure 4: ChainIndex.

𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 (cf. Listing 1 Line 4-6). If an insert operation is ongoing

when a checkpoint operation is triggered, a new ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 will be
generated immediately (cf. Listing 1 Line 31). The ongoing insert

operations are still served by the old ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . The algorithm waits

for these ongoing operations to complete, and serializes and freezes

the old ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 (cf. Listing 1 Line 32,33). Insert operations that

start after the trigger time of the checkpoint will be inserted into

the newborn ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 .
𝐷𝑒𝑙𝑒𝑡𝑒 . The tree node related to the delete entry is marked as

obsolete. Later, the memory release operation is asynchronously

executed by theDeferred Action Framework (cf. section 3). The delete

operation is straight-forward if the entry is found in the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 .
However, if it is found in a 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 , we mark the entry to be

deleted and leave the actual removal of the entry in the merge phase

(cf. subsubsection 4.1.5).

𝐿𝑜𝑜𝑘𝑢𝑝 . The lookup first searches the current ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . If the
entry is found in ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 , it returns directly. If not, the algorithm
will look for the entry tree-by-tree until the entry is found. Note

that this search process can lead to significant read amplification.

𝐿𝑜𝑜𝑘𝑢𝑝𝑅𝑎𝑛𝑔𝑒 . Unlike 𝐿𝑜𝑜𝑘𝑢𝑝 , 𝐿𝑜𝑜𝑘𝑢𝑝𝑅𝑎𝑛𝑔𝑒 can have multiple

results. It also needs to find results tree-by-tree. The difference is

that we need to merge all the trees’ results and sort the results

in ascending or descending order. A𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡-like algorithm is

suitable since each tree’s results are sorted already.

4.1.3 Running Example. Figure 5 shows an example to illustrate

how ChainIndex works. 1 Initially, there are three 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s
and oneℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 (i.e., 𝑡𝑟𝑒𝑒4). Three operations target at theℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 .
𝐼1 inserts an entry into 𝑡𝑟𝑒𝑒4. 𝐷1 marks the corresponding node as

obsolete, which will be released byDAF. Note that if the delete entry

is not in 𝑡𝑟𝑒𝑒4, it should be cleaned during the merge phase. 𝐿1 looks
up a unique entry from the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 (i.e., {𝑡𝑟𝑒𝑒4,𝑡𝑟𝑒𝑒

′
3,𝑡𝑟𝑒𝑒

′
2,𝑡𝑟𝑒𝑒

′
1}).

2 The checkpoint processing is triggered at time 𝑇4. The index
immediately and atomically creates a new ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 (i.e., 𝑡𝑟𝑒𝑒5) to
serve new index modifications. 3 Suppose three operations are

ongoing at time 𝑇4. 𝐼2 still inserts into 𝑡𝑟𝑒𝑒4 though it is not the

ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 any more. 𝐷2 marks the corresponding node as obsolete.

However, since 𝑡𝑟𝑒𝑒4 becomes a 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 , the deleted nodes (if

committed) will be cleaned up during the merge phase. 𝐿2 still finds
result in the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 {𝑡𝑟𝑒𝑒4,𝑡𝑟𝑒𝑒

′
3,𝑡𝑟𝑒𝑒

′
2,𝑡𝑟𝑒𝑒

′
1}. 4 After the ongoing

modification operations (𝐼2 and𝐷2) complete (at𝑇 ′
4 ), the checkpoint

thread asynchronously serializes and dumps the read-only 𝑡𝑟𝑒𝑒4
into storage. 5 Then, any index modifications (e.g., 𝐼3 and 𝐷3) that

come after the checkpoint time are served by the new ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . 𝐿3
will look for the entry in 𝑡𝑟𝑒𝑒5 first. If the entry is found, it returns

directly, otherwise it will check the frozen 𝑡𝑟𝑒𝑒 ′4, ..., 𝑡𝑟𝑒𝑒
′
1.

1 bool ChainIndex::Insert(KEY key, uint64_t TID) {
2 headTree = getHead(); // atomically.
3 // whether the pair <key,TID> exists?
4 for tree = headTree to getTail() {
5 if(tree.exist(key)) return false;
6 }
7 return headTree.Insert(key, TID); // insert <key,TID> into the headTree.
8 }
9 bool ChainIndex::Delete(KEY key, uint64_t TID) { // invoked by DAF.
10 headTree = getHead();
11 headTree.Delete(key,TID); // Note: the key may not exist in headTree.
12 }
13 TID ChainIndex::Lookup(KEY key) {
14 headTree = getHead; TID = 0;
15 for tree = headTree to getTail() { // find the entry tree-by-tree
16 if(TID = tree.Lookup(key))
17 return TID;
18 }
19 return 0; // TID = 0 means not found.
20 }
21 ResultSet ChainIndex::LookupRange(KEY begin, KEY end, uint64_t count) {
22 headTree = getHead();
23 ResultSet = empty;
24 for tree = headTree to getTail()
25 ResultSet.insert(tree.LookupRange(begin,end,count));
26 MergeSort(ResultSet);
27 return ResultSet.SubSet(0,count-1);
28 }
29 void ChainIndex::Checkpoint() {
30 headTree = getHead();
31 insertTreeList(new Tree()); // atomically insert a newborned headTree.
32 Wait(); // until all the active modifying operations finished.
33 headTree.serialize(); // headTree is readonly.
34 }

Listing 1: Algorithm of ChainIndex.
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Figure 5: Running example for ChainIndex.

4.1.4 Serialize and Recover Index Trees. As index structures are

pointer based, we adopt pointer swizzling [13] to persist the pointers.

Unswizzling. Before serializing and saving a tree node into

storage, we should first convert the child pointers into file offsets

(a.k.a, unswizzling). To make things easier, we traverse the tree in

post-order and persist the tree node-by-node. Post-order guarantees

that children’s file offsets can be calculated before the parent node

is persisted. The root node of the tree will be stored at the tail of

the checkpoint file.

Swizzling. During the recovery phase, we firstmmap the check-

point file, then the pointer address of a node can be calculated

with the following formula:𝑚𝑒𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟 =𝑚𝑚𝑎𝑝𝐴𝑑𝑑𝑟𝑒𝑠𝑠+𝑜 𝑓 𝑓 𝑠𝑒𝑡 ,
where𝑚𝑚𝑎𝑝𝐴𝑑𝑑𝑟𝑒𝑠𝑠 represents the address of the checkpoint file’s
mmap address, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the address of the node in the checkpoint

file, and𝑚𝑒𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟 is the memory address of the node.

4.1.5 Tree Merging and Garbage Collection. After multiple check-

points, the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 will become longer and longer. This introduces

two problems. First, the read amplification becomes more and more
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severe. Second, the longer the list, the more the garbage and wasted

space, since the garbage in 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s have not been cleaned.

Therefore, an additional thread needs to be introduced to pe-

riodically merge the 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒𝑠 and piggyback the deletion of

garbage entries. For example, a 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 consists of five trees: 𝑡𝑟𝑒𝑒 5,
𝑡𝑟𝑒𝑒 4′,𝑡𝑟𝑒𝑒 3′, 𝑡𝑟𝑒𝑒 2′, 𝑡𝑟𝑒𝑒 1′. Then, a merge of { 𝑡𝑟𝑒𝑒 1′, 𝑡𝑟𝑒𝑒 2′

} generates a𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑒𝑒 , and at the same time, releases relevant

garbage (a.k.a, dangling) entries.

4.1.6 Summary. Pros: ChainIndex achieves design goal (1), (3),

and (4). It supports wait-free processing, incremental checkpoints,

and load-friendly file format. The checkpoints are incremental as a

𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 records the modifications in a period of time.

Cons: ChainIndex incurs several problems. (i) One explicit issue

is the read amplification introduced by 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 . Note that this exists
not only in the lookup operation, but also in the insert operation,

as it needs to check whether the entry exists in the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 before
inserting an entry. (ii) Garbage nodes in the 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒𝑠 can only

be cleaned during the merge phase. (iii) The post-order traversal

for generating serialized checkpoints is very time-consuming.

4.2 MirrorIndex

We would like to reduce the read amplification of ChainIndex. In-

spired by Wait Free Ping-Pong [3] algorithm for data checkpoints,

we propose a MirrorIndex algorithm.

4.2.1 Data Structure. To solve the read amplification problem,Mir-

rorIndex enhances ChainIndex with an extra Mirror tree for index

reads, as shown in Figure 6. The Mirror tree is a “full” tree, con-

taining all the index entries. Therefore, read operations can obtain

results through the Mirror tree directly. MirrorIndex does not need

to traverse 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 any more, avoiding the read amplification due

to 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 . On the other hand, each index entry has to be inserted

into both the Mirror tree and the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 .
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Figure 6: MirrorIndex.

4.2.2 Operations. We discuss the operations during normal pro-

cessing. Special operations during recovery will be presented in

subsubsection 4.2.4.

𝐼𝑛𝑠𝑒𝑟𝑡 . Compared with ChainIndex, MirrorIndex needs a dual

insert operation. For an entry to insert, MirrorIndex first inserts

the entry into the Mirror tree. Then it inserts the entry into the

ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 if and only if the insertion to theMirror tree is successful

(cf. Listing 2 Line 3-5). Note that MirrorIndex does not need to

check whether the entry exists in the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 before inserting it

into ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 .
𝐷𝑒𝑙𝑒𝑡𝑒 . To delete an entry,MirrorIndex has to delete it from both

theMirror tree and the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . Note that the entry may not exist

in the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 . In such cases, the entry is stored in a 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒
of the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 , and will be deleted in the merge phase.

𝐿𝑜𝑜𝑘𝑢𝑝 & 𝐿𝑜𝑜𝑘𝑢𝑝𝑅𝑎𝑛𝑔𝑒 . Both point and range queries can get

results directly from the Mirror tree (Line 19,25). Compared with

ChainIndex, MirrorIndex eliminates the read amplification.

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 .MirrorIndex follows the same procedure as ChainIn-

dex to serialize and save a 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 to persistent storage (cf. sub-
subsection 4.1.4).

1 bool MirrorIndex::Insert(KEY key, uint64_t TID) { // Dula insert.
2 headTree = getHead(); // atomically.
3 if (mirror.recovered) { // normal case.
4 if (mirror.Insert(key,TID)) {
5 headTree.Insert(key,TID); return true;}
6 } else { // occurs during step 3 in recovery phase.
7 if(headTree.Insert(key,TID)) {
8 mirror.Insert(key,TID); return true;}
9 }
10 return false;
11 }
12 bool MirrorIndex::Delete(KEY key, uint64_t TID) { // Dual delete.
13 headTree = getHead();
14 mirror.Delete(key,TID);
15 headTree.Delete(key,TID); // The key may not exist in headTree.
16 }
17 TID MirrorIndex::Lookup(KEY key) {
18 if(mirror.recovered) {
19 return mirror.Lookup(key);
20 } else // occurs during step 3 in recovery phase.
21 return treeList.Lookup(key);
22 }
23 ResultSet MirrorIndex::LookupRange(KEY begin, KEY end, uint64_t count) {
24 if(mirror.recovered) {
25 return mirror.LookupRange(begin,end,count);
26 } else // occurs during step 3 in recovery phase.
27 return treeList.LookupRange(begin,end,count);
28 }
29 void MirrorIndex::Checkpoint() {
30 headTree = getHead();
31 insertTree(new Tree()); // atomically insert to head of the list.
32 Wait(); // until all the active modifying operations finished.
33 headTree.serialize(); // headTree is readonly.
34 }
35 void MirrorIndex::Recovery() {
36 mirror.recovered = false;
37 treeList.mmap(); // step 1.
38 headTree = new Tree();
39 headTree.Recovery(); // step 2, the system is available after step 2.
40 Thread.run(mirror.Recovery()); // step 3.
41 }

Listing 2: Algorithm ofMirrorIndex.

4.2.3 Running Example. We reuse Figure 5 to show the running

example of MirrorIndex. 1 Initially, there are three operations. 𝐼1
inserts entries into both the Mirror tree and 𝑡𝑟𝑒𝑒4. 𝐷1 marks the

corresponding nodes as obsolete, and DAF will release those nodes.

Note that both the entry in the Mirror tree and 𝑡𝑟𝑒𝑒4 should be

deleted. Unlike ChainIndex, 𝐿1 looks up a unique entry directly

in the Mirror tree. 2 The checkpoint processing is triggered at

𝑇4. The index immediately generates a new tree (a.k.a, 𝑡𝑟𝑒𝑒5) to
accept new modifications. 3 There are three ongoing operations

at 𝑇4. 𝐼2 still inserts into both the Mirror tree and 𝑡𝑟𝑒𝑒4. (𝑡𝑟𝑒𝑒4 is
not the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 any more). 𝐷2 marks the corresponding nodes as

obsolete. If the transaction commits, those nodes in 𝑡𝑟𝑒𝑒4 will be
cleaned up in the merge phase. 𝐿2 still finds results in the Mirror

tree directly. 4 After the active modification operations (i.e., 𝐼2 and
𝐷2) complete at 𝑇 ′

4 , the checkpoint thread serializes the read-only

𝑡𝑟𝑒𝑒4 into storage. 5 𝐼3 inserts an entry into the Mirror tree and

𝑡𝑟𝑒𝑒5, and 𝐷3 deletes the entry from both the Mirror tree and 𝑡𝑟𝑒𝑒5.
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If the entry does not exist in 𝑡𝑟𝑒𝑒5, then the entry should be deleted

during the merge phase. 𝐿3 finds the entry in the Mirror tree.

4.2.4 Recovery. The recovery procedure consists of three steps:

(1) Step 1: mmap frozen trees. The system first mmaps the index

checkpoint files (i.e., persistent trees) and organizes the trees

into a 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 .
(2) Step 2: recover headTree. The system rebuilds the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒

(cf. ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒 includes all the entries generated in 𝑝ℎ𝑎𝑠𝑒3).
(3) Step 3: rebuild Mirror tree in the background. The system is

available after Step 2. It can serve new requests using the

𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 . In the meantime, the system rebuilds the Mirror

tree in the background.

Importantly, step 3 can support new requests since the ℎ𝑒𝑎𝑑𝑇𝑟𝑒𝑒
has been recovered. Note that before theMirror tree is recovered, the

operations are different from the normal case. For 𝐼𝑛𝑠𝑒𝑟𝑡 operations,
we should first insert the entry into the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 , then insert it into

the Mirror (cf. Listing 2 lines 6-9). For 𝐿𝑜𝑜𝑘𝑢𝑝 and 𝐿𝑜𝑜𝑘𝑢𝑝𝑅𝑎𝑛𝑔𝑒
operations, we should traverse the 𝑡𝑟𝑒𝑒𝐿𝑖𝑠𝑡 tree-by-tree (cf. Listing 2
lines 21,27), as in ChainIndex.

4.2.5 Summary. Pros:MirrorIndex inheritsmost strengths ofChain-

Index. In addition, it eliminates read amplification by searching the

Mirror tree.

Cons: One potential issue is the write amplification introduced

by “dual insert/delete”. Moreover, MirrorIndex still employs the

expensive post-order traversal for serializing 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s.

4.3 IACoW

The above designs (i.e., ChainIndex and MirrorIndex) create a list of

𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒s for supporting incremental checkpoints. An alterna-

tive approach is to exploit the idea of𝐶𝑜𝑝𝑦 𝑜𝑛𝑊𝑟𝑖𝑡𝑒 . The typical im-

plementation of𝐶𝑜𝑝𝑦 𝑜𝑛𝑊𝑟𝑖𝑡𝑒 for tree structures is 𝑃𝑎𝑡ℎ 𝐶𝑜𝑝𝑦𝑖𝑛𝑔.
As shown in Figure 7, when a tree node𝐷 is modified, 𝑃𝑎𝑡ℎ𝐶𝑜𝑝𝑦𝑖𝑛𝑔
first makes a “backup” copy of the node, then modifies the node in

the tree. The resulting node is 𝐷 ′. However, it entails that the child

pointer in 𝐷’s parent node 𝐵 must reflect the change. This leads to

cascading 𝐶𝑜𝑝𝑦 𝑜𝑛𝑊𝑟𝑖𝑡𝑒 of node 𝐵 and then node 𝐴. In short, the

scheme copies the root-to-leaf path for modifying node 𝐷 .
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Figure 7: Path copying for a tree structure.

To eliminate the unnecessary copy of ancestor nodes, we exploit

an indirection array to store the mapping from node ids to node

addresses. We propose the 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐴𝑟𝑟𝑎𝑦 𝑏𝑎𝑠𝑒𝑑 𝐶𝑜𝑝𝑦 𝑜𝑛 𝑊𝑟𝑖𝑡𝑒
(IACoW ) algorithm, which only needs to copy modified tree nodes

during the checkpoint phase.

4.3.1 Data Structure. (1) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑎𝑦. As shown in Figure 8,

we assign a node id (a.k.a, logical pointer) to each tree node. The id

of the root node is fixed and set to 0. The indirection array 𝑁𝐼𝐷 [...]
stores the mapping from node ids to node pointers. Then, a child

pointer in a tree node is not a memory address any more. Instead,

it stores the node id of the child node. Given the child 𝑛𝑜𝑑𝑒𝑖𝑑 , the
child node can be retrieved with 𝑁𝐼𝐷 [𝑛𝑜𝑑𝑒𝑖𝑑].

(2) 𝐸𝑝𝑜𝑐ℎ. An epoch is the time interval between two subse-

quent index checkpoints. First, we maintain a global epoch counter,

𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ, for each tree. At the start of every index checkpoint,

we set the 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ to be the current 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ, and monoton-

ically increment 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ (cf. Listing 3 Line 11). The system

guarantees that there is only one ongoing checkpoint operation

on an index. Hence, 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ ≡ 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ − 1. Second, ev-

ery tree node maintains an 𝐸𝑝𝑜𝑐ℎ field. 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ identifies the

epoch when the node is last modified (cf. Listing 3 Line 4). Third, a

thread sets its 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ to be the current 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ before

performing any index operations (cf. Listing 3 Line 7).

(3) 𝑀𝑢𝑙𝑡𝑖 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒 𝑛𝑜𝑑𝑒 . As shown in Figure 8, we avoid

𝑃𝑎𝑡ℎ 𝐶𝑜𝑝𝑦𝑖𝑛𝑔 for performing𝐶𝑜𝑝𝑦 𝑜𝑛𝑊𝑟𝑖𝑡𝑒 for node 𝐷 . We create

a new version 𝐷 ′ and let 𝐷 ′ point to 𝐷 . Then we atomically change

𝑁𝐼𝐷 [3] to point to 𝐷 ′. In this way, the parent node 𝐵 can use the

unchanged node id to locate the child node. The ancestors do not

need to be copied. To reduce the space overhead, we ensure that

there is at most one version per epoch for a given node. That is,

multiple modifications within the same epoch will be performed on

the same version of the node. Moreover, we actively garbage collect

obsolete node versions. If a node has two versions 𝑛1 and 𝑛2 such
that 𝑛1.𝐸𝑝𝑜𝑐ℎ < 𝑛2.𝐸𝑝𝑜𝑐ℎ < 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ, then 𝑛1 is obsolete.
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Figure 8: IACoW .

4.3.2 Tree Operations. The operations of IACoW are similar to the

original ART [15, 16] except that (i) it needs to use the node ids

(logical pointers) (cf. Listing 3 Line 3) and (ii) perform epoch-based

node management. We also use Optimistic Lock Coupling [14, 16]

for concurrent index accesses.

4.3.3 Epoch-based tree node management. Listing 4 shows the op-

erations for epoch-based tree node management.

𝑁𝑒𝑤𝑁𝑜𝑑𝑒 . When we allocate a new node due to an insert opera-

tion, we need to get an unused node id. Then we allocate space for

the node and insert it into the indirection array. The 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ is

set to 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ.
𝐺𝑒𝑡𝑁𝑜𝑑𝑒 . The tree operation thread always reads the latest ver-

sion of the node, which is given by the indirection array𝑁𝐼𝐷_𝑎𝑟𝑟𝑎𝑦.
𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 . Before modifying a node, we call 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 to de-

termine whether𝐶𝑜𝑝𝑦 𝑂𝑛𝑊𝑟𝑖𝑡𝑒 should be done. If 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ <
𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ, then 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ = 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ = 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ − 1.

Index checkpoint is triggered and it will wait for this thread to

complete the index operation. The modification can go to the cur-

rent node without copying because the node’s 𝐸𝑝𝑜𝑐ℎ will be set

to 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ (i.e., 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ) and the node will be correctly
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1 class N4 : public Node { // N16, N48, N256 also use logical pointer.
2 Key keys[4];
3 NID children[4]; // logical pointers.
4 uint64_t Epoch; // inline epoch.
5 };
6 bool IACoW::Insert(KEY key, uint64_t TID) { // Other operations are omitted.
7 threadEpoch = gloablEpoch;
8 return ART_OLC::Insert(key, TID, threadEpoch);
9 }
10 void IACoW::Checkpoint() {
11 ckptEpoch = globalEpoch++;
12 Wait(); // until all the active tree operations finished.
13 NodeManager::serialize(ckptEpoch); // scan version based on epoch.
14 // all the garbage entries should be released until checkpoint finished.
15 releaseSnapshotVersion(ckptEpoch);
16 }
17 void IACoW::Recovery() {
18 Load ckptEpoch;
19 recover Indirection Array;
20 mmap nodeFile;
21 globalEpoch = ckptEpoch + 1;
22 }

Listing 3: Algorithm of epoch-based IACoW .

saved in the checkpoint. Otherwise, there is no on-going check-

point operation. If 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ = 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ, then the node

has been modified in the same epoch before. Since we keep a

single version per epoch, we do not copy the node. Only when

𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ ≠ 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ does 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 return true.

𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑜𝑑𝑒 . We check 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 before updating a node. If

it returns false, the node is updated in place. If it returns true, a new

version of the node is created and updated. Note that the node’s

𝐸𝑝𝑜𝑐ℎ is set to 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ. We copy four parts of information:

node type, entry data, pointer (a.k.a, NID or TID), lock state4.

𝐷𝑒𝑙𝑒𝑡𝑒𝑁𝑜𝑑𝑒 . DeleteNode is a special kind of 𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑜𝑑𝑒 . It
marks the node as obsolete, which is later released by DAF.

𝐺𝑟𝑜𝑤𝑁𝑜𝑑𝑒 & 𝑆ℎ𝑟𝑖𝑛𝑘𝑁𝑜𝑑𝑒 . ART has four different node sizes.

𝐺𝑟𝑜𝑤𝑁𝑜𝑑𝑒 (𝑆ℎ𝑟𝑖𝑛𝑘𝑁𝑜𝑑𝑒) allocates a bigger (smaller) node and

copies the data of the old node to the new node. If 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊
returns false, it replaces the old node with the new node, and the

old node is handed over to DAF for recycling. If 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 re-

turns true, then the new node should be inserted to the head of the

version chain. Note that the version of the new node is different

from the old node.

4.3.4 Parallel Checkpoint. UnlikeChainIndex andMirrorIndex, there

is no need to serialize the tree structure by post-order traversal for

IACoW (cf. subsubsection 4.1.4). First, we can scan the indirection

array 𝑁𝐼𝐷_𝑎𝑟𝑟𝑎𝑦 in parallel, get the latest node versions that sat-

isfy the checkpoint condition (specified below) and serialize them

to storage. Second, we persist the corresponding indirection array

entries. We replace a node’s memory address with its offset on stor-

age. Then the indirection array maintains the mapping between the

logical node ids and the physical offsets. Finally, we save the current

𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ. After the checkpoint finishes, the snapshot garbage can
be deleted (cf. Listing 3 Line 15 and Listing 4 Line 25,50).

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. There are two ways to set the condition.

(i) 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ = 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ: This will create an incremental check-

point. (ii) 𝑛𝑜𝑑𝑒.𝐸𝑝𝑜𝑐ℎ ≤ 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ: This will create a full check-
point of the index.We use (i) to reduce the checkpoint cost. However,

if all checkpoints are incremental, the recovery time will be large.

4We do not strictly distinguish between lock and latch here.

1 Node *NodeManager::NewNode(uint64_t threadEpoch) {
2 Node *newNode = new Node(threadEpoch);
3 freeid = getFreeid(); // the id should be recycleable.
4 NID_Array[freeid]->atomicInsertVersion(newNode);
5 return newNode;
6 }
7 Node *NodeManager::getNode(NID id) {
8 return NID_Array[id]; // always return the latest version of the node.
9 }
10 bool NodeManager::isNeedCow(uint64_t threadEpoch, Node* node) {
11 if (threadEpoch < globalEpoch) // tree operations start before checkpoint
12 return false;
13 if (threadEpoch == node->Epoch) // the node has been copied before
14 return false;
15 return true;
16 }
17 void NodeManager::UpdateNode(uint64_t threadEpoch, NID id, Byte byte) {
18 Node *oldNode = getNode(id);
19 if (!isNeedCoW(threadEpoch, oldNode)) {
20 oldNode->Update(byte, threadEpoch);
21 } else {
22 newNode = oldNode->copy(); // copy to a new node.
23 newNode->Update(byte, threadEpoch);
24 NID_Array[id]->atomicInsertVersion(newNode);
25 snapshot_garbages->add(oldNode); // delete after checkpoint finished.
26 }
27 }
28 void NodeManager::DeleteNode(uint64_t threadEpoch, NID id) {
29 Node *oldNode = getNode(id);
30 if (!isNeedCoW(threadEpoch, oldNode)) {
31 oldNode->obsolete = true;
32 garbages->add(oldNode); // delete after the transaction commit.
33 } else {
34 newNode = oldNode->copy(); // copy to a new node.
35 newNode->obsolete = true;
36 NID_Array[id]->atomicInsertVersion(newNode);
37 garbages->add(newNode); // delete after the transaction commit.
38 }
39 }
40 // shrinkNode is silimar with growNode
41 void NodeManager::growNode(uint64_t threadEpoch, NID id, Byte byte) {
42 Node *oldNode = getNode(id);
43 Node *biggerNode = oldNode->CopyToBiggerNode();
44 biggerNode->Update(byte, threadEpoch); // update in the bigger node.
45 if (!isNeedCoW(threadEpoch, oldNode)) {
46 NID_Array[id]->atomicReplaceVersion(biggerNode);
47 garbages->add(oldNode); // delete after the transaction commit by DAF.
48 } else {
49 NID_Array[id]->atomicInsertVersion(biggerNode);
50 snapshot_garbages->add(oldNode); // delete after checkpoint finished.
51 }
52 }

Listing 4: Algorithm of Epoch-based NodeManager.

Hence, we periodically employ (ii) so that recovery can start from

the full checkpoint.

4.3.5 Running Example. We also use Figure 5 to show how IACoW

works. Suppose that the current 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ = 3. 1 𝐼1, 𝐷1, 𝐿1 all
have 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ = 3. When an operation creates a new node,

the corresponding node’s 𝐸𝑝𝑜𝑐ℎ is set to 3. 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊 is checked

before updating a node. It returns false, meaning that copy on

write must not be performed. 2 A checkpoint task is triggered

at 𝑇4. 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ = 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ = 3 then 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ is incre-

mented to 4. 3 The three ongoing operations at checkpoint time,

i.e., 𝐼2, 𝐷2, 𝐿2, get 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ = 3. Hence, their behavior is the

same as 𝐼1, 𝐷1, 𝐿1. 4 After active modifications (i.e., 𝐼2 and 𝐷2) fin-

ish at𝑇 ′
4 , the checkpoint can serialize the snapshot (𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ = 3)

into storage. 5 𝐼3, 𝐷3, 𝐿3 all get 𝑡ℎ𝑟𝑒𝑎𝑑𝐸𝑝𝑜𝑐ℎ = 4. 𝑖𝑠𝑁𝑒𝑒𝑑𝐶𝑜𝑊
returns true for 𝐼3, 𝐷3, thus copy on writes are performed.

4.3.6 Recovery. We𝑚𝑚𝑎𝑝 the latest full index checkpoint and the

incremental index checkpoints after the full checkpoint to memory

during the recovery phase. We load the indirection array from the
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Figure 9: Time-series of throughput.

full checkpoint and update it with the entries from the incremental

checkpoints. Note that the indirection array points to the nodes

in the read-only𝑚𝑚𝑎𝑝-ed files. Therefore, the modification of a

node will trigger the 𝐶𝑜𝑊 action. We set 𝑔𝑙𝑜𝑏𝑎𝑙𝐸𝑝𝑜𝑐ℎ to one plus

the largest 𝑐𝑘𝑝𝑡𝐸𝑝𝑜𝑐ℎ recorded in the checkpoints at the end of the

recovery phase (cf. Listing 3 Line 21).

4.3.7 Summary. Pros: (i) Since 𝐼𝐴𝐶𝑜𝑊 has a single tree structure,

we expect its read performance to be better than ChainIndex and

MirrorIndex. (ii) The checkpoint can be efficient because it avoids

the costly post-order tree traversal.

Cons: The design of the “logical pointer” through the indirection

array leads to read amplification (i.e., more memory references for

an index operation).

5 EVALUATION

5.1 Experimental Setup

5.1.1 Infrastructures. We deployed the system on a 112-core server

with 4 Intel(R) Xeon(R) Platinum 8280L CPUs and 1500 GB of DRAM.

Besides, each socket equipped with 744 GB NVM, plugged into

NVDIMM interleaved with DRAM, i.e., 3 TB of NVM in total. As

HiEngine needs to be frequently appended writing and random

read storage device, we write logs and checkpoint data to NVM

devices to minimize the impact of I/O. Moreover, NVM adopts the

𝐴𝑝𝑝𝑑𝑖𝑟𝑒𝑐𝑡 mode and installs an XFS file system. At the same time,

a 2 MB huge page configuration is used [32]. We only evaluate

the performance in a single NUMA socket to avoid the phenom-

enon that the performance of NVM and DRAM is significantly

degraded when accessing remote NUMA sockets. The OS is Linux

4.18 x86_64, the optimized configuration of GCC 7.3 with (-O3)

is adopted. Besides those proposed schemes, we also implement

Baseline scheme which only takes data checkpoints but does not

take index checkpoints and indexes are recovered by rebuilding.

5.1.2 Checkpoint configurations. HiEngine allows us to compare

the following configuration mode as a plug-gable component.

• Memory mode. The system disables logging and check-

point, which does not support recovery. All of them are la-

beled with “Baseline-mem", “ChainIndex-mem", “MirrorIndex-

mem", “IACoW-mem";

• Logging mode. In this mode, the logging must flush to the

NVM devices before the transaction commit. However, it

disables the checkpoint. We label it with “Baseline w/o ckpt",

“ChainIndex w/o ckpt", “MirrorIndex w/o ckpt", “IACoW w/o

ckpt";

• Checkpoint mode. Besides logging, the system also trig-

gered checkpoint operations periodically. It labeled with

“Baseline", “ChainIndex", “MirrorIndex", “IACoW ".

5.1.3 Workloads. We use two benchmarks to evaluate the perfor-

mance of each algorithm.

TPC-C. TPC-C is the de-facto industry standard to evaluate

OLTP systems. It contains nine tables that simulate an online order

processing application. The initial data size for the workload is

∼100MB per warehouse. We also implement the standard propor-

tions of all the five mix transactions, i.e., Neworder 45%, Payment

43%, Ordstat 4%, Delivery 4%, StockLevel 4%.

Microbench. To evaluate and analyze some particular scenar-

ios, we implement a variant workload based on TPC-C, named

𝑀𝑖𝑐𝑟𝑜𝑏𝑒𝑛𝑐ℎ. Only the orderline table of TPC-C is reserved in Mi-

crobench, and the default data contains 1,000,000 rows. Four types of

transactions are executed upon this table: (i) 𝐼𝑛𝑠𝑒𝑟𝑡 : insert ten tuples;
(ii) 𝑃𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦: find a random tuple for ten times; (iii) 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦:
range scan and return top-10 rows in this range; (iv) 𝐷𝑒𝑙𝑒𝑡𝑒: ran-
domly delete an existing row. Microbench does not have update

transactions for two reasons: First, the update operation does not

modify the index (cf. subsection 2.1), which can pay more attention

to the performance comparison of the index itself. Second, No up-

date means each row has only one version, and it can minimize the

impact of MVCC-based transaction processing. By adjusting the

proportion of different transactions, we can simulate the following

four scenarios:

• WriteHeavy. 80% of 𝐼𝑛𝑠𝑒𝑟𝑡 transactions, 10% of 𝑃𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦
transactions, and 10% of 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 transactions.

• ReadHeavy. 20% of 𝐼𝑛𝑠𝑒𝑟𝑡 transactions, 40% of 𝑃𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦
transactions, and 40% of 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 transactions.

• Middle. 30% of 𝐼𝑛𝑠𝑒𝑟𝑡 transactions, 30% of 𝑃𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 trans-
actions, and 40% of 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 transactions.

• TPCC-alike. 30% of 𝐼𝑛𝑠𝑒𝑟𝑡 transactions, 30% of 𝑃𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦
transactions, 30% of 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 transactions, and 10% of

𝐷𝑒𝑙𝑒𝑡𝑒 transactions.

5.2 Performance Evaluation

5.2.1 Prominent stalls. Figure 9 shows the log, checkpoint, and

recovery impact on TPC-C’s performance with 16 threads and

16 warehouses. Figure 9(a) shows that the performance of each

algorithm, both memory mode and logging mode is relatively stable.
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However, the performance of logging mode is decreased by about

20% for each algorithm, which is caused by I/O.

As shown in Figure 9(b), all algorithms take multi-round of

checkpoints. To be fair, apart from the first-round checkpoint, all

the following checkpoints are incremental. We can get the follow-

ing findings with checkpoint mode: (i) Since Baseline only taking

tuple checkpoint, the performance is degraded a little during the

checkpoint phase but is soon back to its previous level after the

checkpoint phase. (ii) ChainIndex leads to performance drop pre-

cipitously, which is caused by reading amplification. (iii) Compared

with Baseline, MirrorIndex does not introduce an additional spike,

and the relative performance of MirrorIndex is 9% lower than Base-

line. However, checkpoint tasks for MirrorIndex take a long time

for the reason of post-order traversal. (iv) The performance curves

of IACoW and Baseline have a similar pattern, but the relative per-

formance of IACoW is 9% lower than Baseline.

Figure 9(c) shows the performance of the system after recov-

ery. Note that the figure does not involve the recovery phase. The

corresponding recovery time is shown in Figure 11(a). It can be

seen that after the system is available, Baseline, ChainIndex, and

IACoW can quickly reach the performance of the system before the

crash. However, the performance ofMirrorIndex gradually increases

and reaches a stable level at approximately 50s, as the background

thread needs almost 50s to recovery Mirror trees (cf. Step 3 of sub-

subsection 4.2.4).

5.2.2 Checkpoint speed. Figure 10(a) shows the checkpoint dura-

tion time when they all use a single thread to take checkpoints. It

can be found that (i) the larger the data size, the longer the check-

point time. (ii) IACoW and Baseline are faster than ChainIndex and

MirrorIndex. (iii) Significantly, the checkpoint time of ChainIndex

and MirrorIndex reaches 30 s if warehouse=56. Thus ChainIndex

and MirrorIndex are not suitable for large dataset scenarios.
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Figure 10: Checkpoint.

5.2.3 Parallel index checkpoint. Intra or Inter? The checkpoint

procedure should be parallelized to support fast and frequent check-

points. IACoW adopts the intra tree parallelism, as the tree structure

can be divided easily with the help of the indirection array. Techni-

cally, ChainIndex and MirrorIndex can split the tree into multiple

subtrees and perform post-order traversal for each subtree to sup-

port intra tree parallelism. However, ART is not a balanced tree,

which will lead to the problem of uneven parallelism. Therefore,

for simplicity, ChainIndex and MirrorIndex adopt the inter tree

parallelism.

Figure 10(b) gives the relationship between checkpoint time and

checkpoint thread number when warehouse=56. (i) Checkpoint

time decreases as the number of threads increases; (ii) Baseline

and IACoW can bound the time of the checkpoint within 5 s; (iii)

In addition, when the number of threads is greater than 8, the

checkpoint time of ChainIndex and MirrorIndex is not improved.

Because TPC-C has 10 indexes, and each thread is responsible for

taking checkpoints for a single tree, up to 10 threads are used for

parallelization. (iv) The checkpoint duration time of IACoW is not

improved when the number of background threads is more than 4

because IACoW ’s parallel checkpoint algorithm is heavy fast. The

bandwidth of the I/O device is the main bottleneck.

5.2.4 Recovery. Unplanned crash. Figure 11 shows the compari-

son of recovery time of different algorithms in case of an unplanned

crash. We use the SIGKILL signal to simulate the scene of a crash.

Figure 11(a) gives the corresponding recovery time of Figure 9(c).

We can find that (i) Baseline still spends many time building in-

dexes; (ii) The reason why ChainIndex recovers quickly is that the

performance of the ChainIndex algorithm is slow, and the size of

logs to be replayed and the size of checkpoint file are both small;

(iii) Since the checkpoint frequency of MirrorIndex is very slow, it

takes a long time to recover; (iv) IACoW can recover quickly within

10s, which benefits from the frequent checkpoint strategy.
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Figure 11: Recovery with unplanned crash.
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Figure 12: Recovery with planned shutdown.

Planned shutdown. Figure 12(a) shows the effect of data vol-

ume on index recovery time with a planned shutdown. Before the

system shutdown, the systemmanually executes the planned check-

point once. Therefore, during the recovery phase, the system does

not need to replay the log but only load the checkpoint. As a result,

we can find that: (i) the recovery time of Baseline is much longer

than that of the other three schemes because the wholly rebuild

index is time-consuming; (ii) ChainIndex, MirrorIndex, and IACoW

can be instantly recovered by loading checkpoint data; (iii) Mir-

rorIndex is slower than IACoW since the data structure for IACoW

is much more friendly to loading; (iv) ChainIndex is faster than

MirrorIndex since the checkpoint data size is much smaller than

MirrorIndex.
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Figure 13: Throughput on Microbench.
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Figure 15: Scalable on TPC-C and memory footprint with the same throughput.
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same throughput.

5.2.5 Throughput comparison. All the algorithms have modified

the structure of ART, which inevitably causes some performance

losses. This part shows the detail about those losses.

Varyworkloads. Figure 13 shows the performance ofMicrobench

with different scenarios, y-axis shows the performance ratio rela-

tive to Baseline. The initial table size of Orderline contains 1,000,000

rows of data. We can find that: (i) Baseline performs best because

it does not need any extra operations on ART. (ii) ChainIndex has

the same performance as Baseline in memory mode because Chain-

Index does not execute checkpoint, which is similar to Baseline.

However, the performance of ChainIndex is reduced by 45% in read-

heavy for reading amplification and 79% in TPC-C alike scenario

for 𝑓 𝑟𝑜𝑧𝑒𝑛𝑇𝑟𝑒𝑒 containing many garbage entries. (iii) The perfor-

mance of MirrorIndex decreases by 22% in the case of heavy write

workload, but only by 5% in the case of trivial read workload. (iv)

The performance of IACoW is relatively stable in all workload sce-

narios. Compared with Baseline, the performance loss is 5%-11%.

The decrease is due to an additional pointer chasing through the

direction array when reading ART’s node.

Since Microbench’s transaction pattern is simple, the execution

cost for transactions is negligible. To combine transaction and log

modules for end-to-end performance testing, we also analyze the

workload of TPC-C. Figure 14(a) and Figure 14(b) show the through-

put of Neworder and Payment transaction respectively, the result

is similar to that of Figure 13(a). Compared with Figure 14(d), there

is no delivery transaction in Figure 14(c) because only the delivery

transaction contains delete operations, the performance of Chain-

Index is similar to that of Figure 13(d).

Scalable. Figure 15 compares the throughput of the three algo-

rithms with a varying number of threads when warehouse=112

under TPC-C workload. Each algorithm has good scalability in

memory mode, which shows that ART and MVCC are in sound

design. Moreover, it shows that our modification of ART does not

destroy scalability. However, in the checkpoint mode, the scalability

is relatively poor because the I/O of logging leads to an inevitable

transaction bottleneck.

5.2.6 Memory footprint. Figure 16 shows the memory footprint

of different algorithms in the same configuration (warehouse=16,

thread=16) running for 150 s. At the same time, all the algorithms

throughput limit is to the same 30,000 per second. Note that we

do not compare ChainIndex, as the performance of ChainIndex

is severely degraded in the checkpoint phase. (i) MirrorIndex has

the fastest memory growth speed because it needs an additional
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MirrorIndex tree. (ii) The memory growth speed of IACoW is 10%

more than that of Baseline because IACoW needs some additional

memory, such as the indirection array. (iii) Copy on write must

cause extra memory usage, and that memory is released after the

checkpoint ends. Therefore, the memory of IACoW will expand

rapidly during the checkpoint phase, and after the checkpoint, it

will fall back quickly.

5.3 Summary

Based on the above evaluation, we conclude the following findings:

(1) Logging does not lead to performance stall (cf. Figure 9(a)),

but checkpoint does, especially forChainIndex (cf. Figure 9(b)).

(2) Baseline’s performance is the best (cf. Figure 13 and Fig-

ure 14), but its recovery time is the longest due to index

rebuilding (cf. Figure 11 and Figure 12). Therefore, Baseline

is very suitable for the workload that is not strict with re-

covery time.

(3) Because of reading amplification (cf. Figure 13(b) and 13(c))

and garbage collection (cf. Figure 13(d)), ChainIndex has

poor performance. The performance with the write-heavy

workload is relatively better (cf. Figure 13(a)).

(4) Due to write amplification, MirrorIndex is not suitable for

the write-heavy workload (cf. Figure 13(b)).

(5) IACoW ’s performance is the most stable under different

workloads (cf. Figure 13 and Figure 14). However, IACoW

leads to a specific read amplification due to the reason of

“logical pointer”. Thus, the performance with read-heavy

workloads is not as good as Baseline (cf. Figure 13).

(6) Both the checkpoint time of ChainIndex and MirrorIndex is

very long (cf. Figure 10(a)), and it does not support frequent

checkpoints, especially, the recovery time will be very long

in the case of large data sets (cf. Figure 11(a)). On the other

hand, the checkpoint speed of IACoW is fast (cf. Figure 10(b)),

it supports frequent checkpoint (cf. Figure 9(b)) and instant

recovery (cf. Figure 11 and Figure 12).

(7) IACoW does not cause too much extra memory footprint

(Figure 16).

6 RELATEDWORK

This section reviews some designs for checkpoints and indexes.

Checkpoint for IMDBs. A large number of algorithms have

been proposed to take tuple checkpoint for single-version storage

systems, e.g., COU [5, 21, 36], fork [10], Zigzag [3], Pingpong [3],

CALC [34], etc. Moreover, Leon Lee (a.k.a, Liang Li) also compre-

hensively studied those checkpoint performance in [19, 20]. On

the other hand, for multi-version storage systems, we can get the

snapshot directly with the Snapshot Isolation semantics. However,

taking index checkpoint is quite complex since the tree structure

is much more complex than the tuple layout, and the index is

not stored in multi-versions. Therefore, as discussed in subsec-

tion 2.2, some systems always do not take index checkpoints and

are recovered through rebuilding, e.g., VoltDB [27], SiloR [49], PAC-

MAN [44], WBL [1], Zen [23], etc. Unfortunately, wholly rebuilding

index means that more time to recovery, to pursue instant recovery,

especially in cloud-native systems, we think index checkpoint is

indispensable.

Checkpoint forDRDBs.The checkpoint and recovery of DRDBs

are very different from IMDBs. DRDBs always utilize buffer man-

agers to accelerate page I/O, thus checkpoints are taken by flushing

dirty pages within the buffer pool, which does not distinguish be-

tween indexes and tuples [7]. Since both tuples and indexes are

stored as pages and the physiological log records page modifica-

tions [29], the recovery of indexes is similar to tuples. However, due

to index page splits, recovering index requires additional “compen-

sate” system transactions [6, 24]. PostgreSQL [9] and LeanStore [8]

are two good examples. In summary, the index rebuilding issue

does not arise in DRDBs. It is a new challenge in IMDBs.

Indexes for IMDBs.The tree-based indexwidely used in IMDBs

can be divided into three categories. (i) B+ tree: CSB+ trees [33], and

Bw-Trees [17, 42] store keys horizontally side-by-side in the leaf

nodes and have good range query performance. (ii) Trie: ART [14–

16] and HOT [2] is faster than B+trees on modern hardware. Both of

them are memory efficient. (iii) Hybrid tree: Masstree [28] combines

the B+tree and Trie designs in a single data structure. [42] compre-

hensively compares those trees, and ART is always the winner for

most workloads. Thus we choose ART in HiEngine.

7 APPLICABILITY TO OTHER SYSTEMS

Our designs can be applied to other indexes. Despite the fact

that we created and validated our work on HiEngine using adaptive

radix trees, our index checkpoint designs are still applicable to

other indexes, such as B+ tree. ChainIndex and MirrorIndex can be

directly used within B+ tree, however for IACoW , some adaptation

work for NodeManager (described in Listing 4) is required due to

the Structure Merge Operations (SMO) of the B+ tree.

8 CONCLUSION

As far as we know, this paper is the first work comprehensively

discussing index checkpoint technology for IMDBs. We observe

that once the state-of-art techniques have been applied, index re-

building becomes the new bottleneck of recovery processing in

IMDBs. In this paper, we show that taking index checkpoints can

significantly reduce the recovery time of index rebuilding. We com-

bine two techniques to ensure the data correctness for transaction

inconsistent index checkpoints. We design and implement three

wait-free index checkpoint algorithms within a production IMDB

and analyze their pros and cons in detail. End-to-end experiments

show that index checkpoints can significantly shorten the recovery

time, especially for the planned shutdown scenario. Specifically,

IACoW ’s performance is the most stable under various workloads.

Thus we strongly recommend that IACoW should be integrated

into IMDBs if the recovery time is a crucial product metric.
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