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ABSTRACT

Many real-world graphs, e.g., social networks, biological networks,

knowledge graphs, naturally come with edge-labels, with different

labels representing different relationships between nodes. On such

edge-labeled graphs, an important query is the label-constrained

reachability (LCR) query, where we are given a source 𝑠 , a target 𝑡 , a

label set Ψ, and the goal is to check if there exists any path 𝑃 from 𝑠

to 𝑡 such that labels of edges on 𝑃 all belong to Ψ. Existing indexing
schemes for LCR queries still focus on static graphs, despite the

fact that many edge-labeled graphs are dynamic in nature.

Motivated by the limitations of existing solutions, we present

a study on how to effectively maintain the indexing scheme on

dynamic graphs. Our proposed approach is based on the state-

of-the-art 2-hop index for LCR queries. In this paper, we present

efficient algorithms for updating the index structure in response to

dynamic edge insertions/deletions and demonstrate the correctness

of our update algorithms. Following that, we present that adopting

a query-friendly but update-unfriendly indexing scheme results

in surprisingly superb query/update efficiency and outperforms

those update-friendly ones. We analyze and demonstrate that the

query-friendly indexing scheme actually achieves the same time

complexity as those of update-friendly ones. Finally, we present

the batched update algorithms where the updates may include

multiple edge insertions/deletions. Extensive experiments show

the effectiveness of the proposed update algorithms, query-friendly

indexing scheme, and batched update algorithms.
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1 INTRODUCTION

Graph is a fundamental data structure that captures complicated

connections between entities. Many real-world graphs, e.g., social
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networks, biological networks, and knowledge graphs, are edge-

labeled, where each edge is associated with a label and different

labels indicate different relationships. For instance, on social net-

works, the relationships between two users could take in a variety

of forms, e.g., “Follow”, “Like”, and “friendOf”. On such edge-labeled

graphs, a fundamental type of graph query is the label-constrained

reachability (LCR) query. In an LCR query, it takes as input a source

node 𝑠 , a target node 𝑡 , and a label setΨ. The query then returns true
if there exists a path 𝑃 from 𝑠 to 𝑡 such that the label 𝜆 of each edge

𝑒 on path 𝑃 belongs to Ψ, and otherwise returns false. As shown

in [13, 20–22, 28], LCR queries find many applications on social

networks, biological networks, knowledge graphs, etc. For instance,

on a social network, an LCR query can be used to determine if two

vertices are related via a series of given relationships. Another ex-

ample of application is on knowledge graphs. Regular path queries

have been extensively explored on knowledge graphs [3, 4, 31] and

are supported by practical graph query languages such as SPARQL

1.1, PGQL [27], and openCypher[11]. LCR queries are one of the

most important operators in regular path queries.

In the above applications, graphs are usually dynamically chang-

ing. For example, on social networks, two nodes maymake new con-

nections or interactions. On knowledge graphs, new relationships

may be identified between two nodes during knowledge harvesting.

However, the state-of-the-art indexing scheme P2H+ [21] proposed

by Peng et al. is based on the 2-hop index, and assumes that the

input graph is static. When the graph has changed, the P2H+ index

no longer works. Computing the P2H+ index from scratch after

every update is not a sound option since the index construction

still takes quite high pre-computational costs. An alternative so-

lution is to do a graph traversal, e.g., BFS/DFS, and verify if there

exists any path that fulfills the label constraints. However, labeled

graphs in real-world applications tend to be enormous, making

it expensive to answer an LCR query with online graph traversal.

To avoid the expensive online traversal, ARRIVAL [28] offers an

index-free, sampling-based algorithm that works for large dynamic

graphs. Nevertheless, ARRIVAL could only provide an approximate

result, and provides theoretical guarantees only when the input

graph is strongly connected, while many labeled graphs usually

include hierarchies and are not strongly connected. In addition, the

query time of ARRIVAL is nearly 1000x slower than P2H+. These

limit the applications of the approximate ARRIVAL.

Main Contributions.Motivated by the limitations of existing

solutions, we investigate how to design an indexing scheme on

dynamic graphs that is both efficient and scalable, while providing

exact query results. Our solution is based on the state-of-the-art

P2H+ 2-hop index [21]. Instead of computing the index from scratch,

a set of affected nodes are effectively computed and then updates
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Table 1: Frequently used notations

Notations Definitions

Λ The set of labels in the input graph

𝑠
Ψ
⇝ 𝑣 𝑠 can reach 𝑣 via label set Ψ

𝑠
𝜆→ 𝑡 or ⟨𝑠, 𝑡, 𝜆⟩ An edge ⟨𝑠, 𝑡⟩ with label 𝜆 on the edge

𝐿𝑖𝑛 (𝑣), 𝐿𝑜𝑢𝑡 (𝑣) The in and out 2-hop index entries of 𝑣

𝐼𝑛𝑣𝐿𝑖𝑛 (𝑣), 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑣) The inverted in and out index entries of 𝑣

𝑟𝑎𝑛𝑘 (𝑣), 𝑟𝑎𝑛𝑘−1 (𝑖) The rank of node 𝑣 , the node with rank 𝑖

⟨𝑠,Ψ, ⟨𝑢, 𝑣, 𝜆⟩⟩ An entry with source id 𝑠 ,

label set Ψ and last edge ⟨𝑢, 𝑣, 𝜆⟩
A𝑓 (A𝑏 ) Forward (backward) affected node

P𝑓 (P𝑏 ) Forward (backward) skipped path

are only processed on the index structures of these affected nodes

caused by the edge insertion/deletion. Although the ideas to find

affected nodes for updates are not new, the devil is in the details.

It is unclear how to identify these affected nodes efficiently. Given

an edge insertion ⟨𝑢, 𝑣, 𝜆⟩, a naive solution is to proceed forward

and backward LC-BFS traversals (Ref. to Section 2.3) from scratch

from 𝑢 and 𝑣 to find the affected nodes. However, such a solution is

still computationally intensive. To avoid such a drawback, we show

that we can actually use existing index entries to quickly re-store

the LC-BFS without doing the BFS from scratch. The correctness

of such pruning strategies is further verified by our theoretical

analysis. After the edge insertion, there may exist redundant edges,

which negatively affected the query efficiency of our DLCR scheme.

We further present effective solutions by examining label entries

without any traversal. This significantly reduces the cost to identify

redundant labels. For deletion algorithms, given an edge deletion to

⟨𝑢, 𝑣, 𝜆⟩, similarly, we can re-store the LC-BFS with existing index

entries to remove obsoleted entries instead of conducting the LC-

BFS from scratch. After the deletion of the obsoleted entries, the

index may still return wrong answers as it missed entries that are

pruned during the index construction. To re-discover such pruned

entries, we show how to again explore the existing index entries to

identify the affected nodes and add those entries efficiently. Our the-

oretical analysis shows that such an efficient solution (via exploring

existing index entries) is correct.

Moreover, graph updates may come in batches. We further devise

batch update algorithms so that when collective updates can benefit,

our batch update algorithm improves the practical efficiency. We

show how to devise the batch update algorithms for insertion and

deletion and discuss rationales behind the improved efficiency. For

our batch insertion (resp. deletion) algorithm, it achieves up to

one (resp. two) order(s) of magnitude speedup over insertion (resp.

deletion) algorithm that processes updates one by one.

Finally, since the graph is dynamically changing, a natural idea

to maintain the index structure is to adopt an update efficient data

structure like RB-tree. However, we demonstrate that surprisingly,

both the query and update operations benefit from maintaining a

query-friendly but update-unfriendly data structure, e.g., by a sorted

dynamically sizable array. To explain, even in the updates, query

needs to be performed first, and the query efficiency becomes the

major bottleneck; therefore, the key to making the update efficient

turns out to be the query efficiency. This discovery may also shed

insights on how to design effective dynamic index structures with

the 2-hop indexing scheme for other queries as well. Theoretical

analysis demonstrates that the insertion/deletion/query algorithms

with the query-friendly design achieve the same time complexity

as those with update-friendly data structures.

To summarize, our principal contributions are as follows.

• Dynamic LCR index (DLCR). To our best knowledge, this is the

first work to investigate a fully dynamic algorithm for LCR prob-

lem in an efficient manner on large graphs. We design update

algorithms so that it will only need to update a small portion of

affected nodes, making it super-efficient.

• Batch Updates. Additionally, batch insertion and deletion tech-

niques are proposed to further enhance performance.

• Query-friendly design.We further investigate how to make up-

dates more efficient considering the choice of the underlying

data structure. We show that a query-friendly design actually

achieves significant improvement over an update-friendly one.

• Efficiency and Effectiveness. Our experiments show the effective-

ness and efficiency of our algorithms compared to baselines.

2 PRELIMINARY

This section first presents the problem definition, followed by the

discussion of the state-of-the-art indexing method. Table 1 summa-

rizes the key notations used throughout this paper.

2.1 Problem Definition

The input graph 𝐺 = (𝑉 , 𝐸,Λ) is an edge-labeled directed graph

where 𝑉 is a set of 𝑛 vertices, Λ is a finite non-empty set of labels,

and 𝐸 ⊆ 𝑉 ×𝑉 × Λ is a set of directed labeled edges. For example,

𝑒 = ⟨𝑢, 𝑣, 𝜆⟩ ∈ 𝐸 is an edge from 𝑢 to 𝑣 with label 𝜆. A path 𝑃

from 𝑠 to 𝑡 in graph 𝐺 is a sequence of edges ⟨𝑒0, 𝑒1, ..., 𝑒𝑘 ⟩ where
𝑒𝑖 = ⟨𝑢𝑖 , 𝑢𝑖+1, 𝜆𝑖 ⟩, 𝑢𝑖 ∈ 𝑉 , 𝑒𝑖 ∈ 𝐸 for every 𝑖 ∈ [0, 𝑘], 𝑢0 = 𝑠 , and

𝑢𝑘+1 = 𝑡 . We denote the length of path 𝑃 , i.e., the number 𝑘 of edges

on 𝑃 as |𝑃 |. Furthermore, we say that 𝑃 is an Ψ-𝑝𝑎𝑡ℎ if for edge 𝑒𝑖
on path 𝑃 , its label 𝜆𝑖 ∈ Ψ. In this paper, we say that a node 𝑠 can

reach another node 𝑡 through the label set Ψ, denoted by 𝑠
Ψ
{ 𝑡 , if

there is such a Ψ-path from 𝑠 to 𝑡 . Otherwise, we say 𝑠 cannot reach

𝑡 through the label set Ψ, denoted by 𝑠
Ψ

✚✚{ 𝑡 . The label constrained

reachability query is defined as follows.

Definition 1 (Label constrained reachabilityqery). Given

a source node 𝑠 , a target node 𝑡 , and a label set Ψ, a label constrained
reachability (LCR) query returns true if there exists a Ψ-path from 𝑠

to 𝑡 and returns false otherwise.

In addition, we say that a label set Ψ ⊆ Λ is a minimal label set

connecting 𝑠 to 𝑡 if (i) 𝑠
Ψ
{ 𝑡 and (ii) 𝑠

Ψ′

✚✚{ 𝑡 for any label set Ψ′ ⫋ Ψ.

2.2 2-Hop Cover Framework

The 2-hop cover technique has been extensively studied in the

literature (e.g., [1, 2, 6, 7, 29, 30, 33]). Our method follows the same

framework. In the 2-hop index for LCR queries, two sets of index

entries 𝐿𝑖𝑛 (𝑣) and 𝐿𝑜𝑢𝑡 (𝑣), denoted as the in-entry set and out-

entry set of vertex 𝑣 respectively, are maintained for each vertex

𝑣 . For the in-entry set 𝐿𝑖𝑛 (𝑣), it stores a set of tuples in form of

⟨𝑠,Ψ𝑠 , 𝑒𝑣⟩, which corresponds to a Ψ𝑠 -path 𝑃 from 𝑠 to 𝑣 and 𝑒𝑣
is the last edge connecting to 𝑣 on path 𝑃 . For the out-entry set
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𝐿𝑜𝑢𝑡 (𝑣), it stores a set of tuples in the same form. Assume that an

entry ⟨𝑡,Ψ𝑡 , 𝑒𝑣⟩ is in 𝐿𝑜𝑢𝑡 (𝑣), then it indicates a Ψ𝑡 -path from 𝑣 to

𝑡 and the starting edge of 𝑃 from 𝑣 is 𝑒𝑣 . We use a placeholder ·,
e.g., ⟨𝑡,Ψ𝑡 , ·⟩, if the corresponding information in the tuple does

not affect in the context. In addition, we use 𝑠
Ψ
⇝ 𝑡 to represent a

path corresponding to an entry.

2-hop cover. In the 2-hop indexing scheme for LCR queries, an

important property is the 2-hop cover. To explain, if 𝑠 can reach 𝑡

through label setΨ, thenwe can always find a node 𝑣 such that there
exists an entry ⟨𝑣,Ψ𝑖𝑛, ·⟩ in the in-entry set 𝐿𝑖𝑛 (𝑡) of 𝑡 and an entry

⟨𝑣,Ψ𝑜𝑢𝑡 , ·⟩ in the out-entry set 𝐿𝑜𝑢𝑡 (𝑠) of node 𝑠 such that Ψ𝑖𝑛 ⊆ Ψ
and Ψ𝑜𝑢𝑡 ⊆ Ψ. Since the out-entry ⟨𝑣,Ψ𝑜𝑢𝑡 , ·⟩, from 𝑠 indicates a

Ψ𝑜𝑢𝑡 -path from 𝑠 to 𝑣 and an in-entry ⟨𝑣,Ψ𝑖𝑛, ·⟩ indicates a Ψ𝑖𝑛-path
from 𝑣 to 𝑡 . It indicates that there exists a (Ψ𝑖𝑛 ∪ Ψ𝑜𝑢𝑡 )-path from 𝑠

to 𝑡 . Since Ψ𝑖𝑛 ⊆ Ψ,Ψ𝑜𝑢𝑡 ⊆ Ψ, we know there exists a Ψ-path from

𝑠 to 𝑡 , indicating that 𝑠 can reach 𝑡 through label set Ψ. In this case,

we also say 𝑣 Ψ-covers 𝑠 to 𝑡 .
Given such a property, to answer an LCR query with input source

node 𝑠 , target node 𝑡 , and label set Ψ, it can simply return true if a

node 𝑣 exists in both 𝐿𝑜𝑢𝑡 (𝑠) and 𝐿𝑖𝑛 (𝑡) such that 𝑣 Ψ-covers 𝑠 to 𝑡
and otherwise return false.

We say that a 2-hop cover to be a minimum 2-hop cover if delet-

ing any entry will cause the incorrect LCR query answer for some

queries, i.e., some queries will not be covered by the entries after

deletion. Note that not necessarily all 2-hop indices are minimum

since we can simply add more entries without affecting the correct-

ness of the queries. First, we will elaborate on the label-constrained

BFS, followed by the state-of-the-art 2-hop indexing scheme Pruned

2-Hop (P2H+for short) for LCR queries proposed by Peng et al. [21].

2.3 Existing solutions for LCR Queries

LC-BFS.We first explain how label constrained breadth-first search

(LC-BFS) works as the state-of-the-art P2H+ index is constructed

in an iterative manner by LC-BFS with pruning strategies. Given

a source 𝑠 , the LC-BFS works as follows. Instead of maintaining a

queue, it maintains |Λ| + 1 queues 𝑄0, 𝑄1, 𝑄1, 𝑄2, · · · , 𝑄 |Λ | to track

the paths from 𝑠 to visited nodes and their corresponding label

set, where queue 𝑄𝑖 records those visited nodes by a label set with

a size 𝑖 . Like how BFS tracks paths, we maintain the last edge of

a path to encode the path information. For each node 𝑣 , instead

of maintaining a visit mark (as can be done for typical BFS), it

maintains a set S𝑣 of pairs ⟨Ψ, 𝑒𝑣⟩ indicating that for any label set

Ψ ∈ S, 𝑠 can Ψ-reach 𝑣 through the last edge 𝑒𝑣 . Initially, 𝑆𝑣 is

set to empty for every node 𝑣 . Next, ⟨𝑠, ∅, 𝑁𝑈𝐿𝐿⟩ is added into 𝑄0

and other queues are initialized as empty. During the BFS traversal,

in each iteration, it always de-queues a path from the queue with

the smallest label set size. Assume that the path 𝑃 is de-queued

from queue 𝑄𝑖 , then it indicates that 𝑄0 to 𝑄𝑖−1 are empty. Further

assume that the de-queued path 𝑃 ends at node 𝑣 with a label

set Ψ𝑣 . Then, in this iteration, it examines if there exists any entry

⟨Ψ, ·⟩ ∈ S𝑣 such that Ψ𝑣 ⊆ Ψ. If this is the case, the path 𝑃 is pruned

and the iteration finishes. Otherwise, an entry ⟨Ψ, ·⟩ is added to 𝑆𝑣
first. Next, it examines each out-going edge 𝑒𝑤 = (𝑣,𝑤, 𝜆) of 𝑣 and
set the label set to be Ψ𝑤 = Ψ𝑣 ∪ {𝜆}. For path 𝑃 ′ going through 𝑃

and edge 𝑒𝑤 , it is then added into the queue𝑄 |Ψ𝑤 | and the iteration
finishes. The LC-BFS terminates when all queues are empty.

The above algorithms can be used to answer the LCR query with

𝑠 as the source node (with any choice of the target node and any

choice of the label set). If the target node and the label set Ψ are

also given, the algorithm terminates as soon as we find a path 𝑃

that can connect 𝑠 to 𝑡 through a label set Ψ′ ⊆ Ψ.

The time complexity of the LC-BFS can be bounded by 𝑂 (2 |Λ | ·
(𝑛 +𝑚)). To explain, for each node 𝑣 , there are 𝑂 (2 |Λ |) different
label sets that are not a subset of each other in the worst case. Thus

we explore each node and each edge at most 2
|Λ |

times.

Example 1. Consider an input graph𝐺1 as shown in Figure 1(a).

The set Λ of labels is {𝑎, 𝑏} and |Λ| = 2. Thus, we maintain 3 queues:

𝑄0, 𝑄1, and 𝑄2. Assume that we conduct an LC-BFS from node 1.

Initially, for each node 𝑣 , we maintain a set 𝑆𝑣 initialized as an empty

set, add ⟨1, ∅, ·⟩ into 𝑄0, and initialize 𝑄1 to 𝑄2 to be empty.

In the first iteration, ⟨1, ∅, ·⟩ is de-queued from 𝑄0. Since 𝑆1 is

empty, ⟨∅, ·⟩ is added to 𝑆1. Next, following the outgoing edge ⟨1, 3, 𝑎⟩
of node 1, we obtain a path 𝑃1 from 1 to 3 via label set {𝑎} and add
𝑃1 to 𝑄1. In the next iteration, path 𝑃1 is de-queued from 𝑄1 as 𝑄1 is

the non-empty queue with the smallest id. Since 𝑆3 is empty, ⟨{𝑎}, ·⟩
is added to 𝑆3. Then the edges ⟨3, 4, 𝑎⟩ and ⟨3, 4, 𝑏⟩ are visited. Two
paths 𝑃2 from node 1 to 4 via label set {𝑎} and path 𝑃3 from node 1 to

4 via label set {𝑎, 𝑏} are derived. Then, we add 𝑃2 to 𝑄1 and 𝑃3 to 𝑄2.

Next, path 𝑃2 from node 1 to 4 via label set {𝑎} is de-queued from
𝑄1. Since 𝑆4 is empty, an entry ⟨{𝑎}, ·⟩ is added to 𝑆4. Since node 4 has
no out-neighbors, the iteration finishes. After that, path 𝑃3 from node

1 to 4 via label set {𝑎, 𝑏} is de-queued from 𝑄2 since 𝑄0 and 𝑄1 are

empty. As 𝑆4 include an entry ⟨{𝑎}, ·⟩ such that {𝑎} ⊆ {𝑎, 𝑏}, path
𝑃3 is pruned and the current iteration finishes. After this iteration, all

queues are empty and the LC-BFS from node 1 terminates.

P2H+ index. The P2H+ index is a 2-hop index that is built accord-

ing to vertex ranks, whose definition is as follows.

Definition 2 (Vertex Rank). Assume that the vertex ids have

been mapped to 1 to 𝑛 where 𝑛 is the number of nodes in the graph.

Let 𝑟𝑎𝑛𝑘 be a bijection from {1, 2, · · · , 𝑛} to {1, 2, · · · , 𝑛}. Then the

vertex rank of node 𝑣 is 𝑟𝑎𝑛𝑘 (𝑣).

There are many ways to define vertex ranks. In the P2H+ index,

nodes are ranked by their degree. In particular, 𝑟𝑎𝑛𝑘 (𝑣) of a node
𝑣 is defined as the rank of the nodes sorted by decreasing order

of the degree (where ties are broken arbitrarily). Then, the node

𝑤1 with the largest degree will have 𝑟𝑎𝑛𝑘 (𝑤1) = 1, while the node

𝑤𝑛 with the smallest degree have 𝑟𝑎𝑛𝑘 (𝑤𝑛) = 𝑛. The smaller the

value 𝑟𝑎𝑛𝑘 (𝑣) of a node 𝑣 is, the higher rank node 𝑣 has. We further

define 𝑟𝑎𝑛𝑘−1 (𝑖) as the node with the 𝑖-th rank. Notice that the

P2H+ index is unique if the rank of the nodes is fixed.

Given vertex ranks, the P2H+ index is then constructed in an

iterative manner. In particular, in the 𝑖-th iteration, two LC-BFSs are

processed from𝑤𝑖 = 𝑟𝑎𝑛𝑘
−1 (𝑖), i.e., the node with the 𝑖-th rank. In

particular, a forward (resp. backward) LC-BFS is processed on the

graph following the direction (resp. reverse direction) of the edges.

We use 𝐿𝑖
𝑖𝑛
(𝑣) and 𝐿𝑖𝑜𝑢𝑡 (𝑣) to indicate the index built in the 𝑖-th

iteration. Initially, we add an index ⟨𝑤𝑖 , ∅, 𝑁𝑈𝐿𝐿⟩ to the in-entry

𝐿𝑖
𝑖𝑛
(𝑤𝑖 ) and out-entry 𝐿𝑖𝑜𝑢𝑡 (𝑤𝑖 ) of node𝑤𝑖

1
. Recall that in LC-BFS,

1
Notice that adding such an index entry is unnecessary and we include it for the ease

of exposition. The implementation does not need to add such index entries.

1647



1

2

3

4 5 6

7
a

a b

a

b

a

a

(a) 𝐺1

1

2

3

4 5 6

7
a

a b

a a

b

a

a

(b) 𝐺2

Figure 1:𝐺1 is the original graph, and𝐺2 is the updated graph

after an edge insertion.

we maintain a set S𝑣 of label set and edge pairs for each node 𝑣 .

Now, we no longer maintain set S𝑣 . Instead, we add an index to the

in-entry set 𝐿𝑖
𝑖𝑛
(𝑣) (resp. 𝑖𝐿𝑜𝑢𝑡 (𝑣)) of node 𝑣 directly. We explain

how to add an index to in-entries during the pruned forward LC-

BFS. The process to construct the out-entries with the backward

LC-BFS works in a similar manner. Given the source 𝑤𝑖 , initially

for each out-going edge ⟨𝑤𝑖 , 𝑣, 𝜆𝑣⟩ of 𝑤𝑖 , we derive a path 𝑃𝑣 via

label set {𝜆𝑣} and add each path to 𝑄1. Next, in each iteration, it

de-queues a path 𝑃 from𝑄𝑖 where 𝑖 is the smallest ID such that the

queue is non-empty. Assume that path 𝑃 is from 𝑠 to 𝑣 with a label

set Ψ. If 𝑃 cannot be Ψ-covered by 𝐿𝑖𝑜𝑢𝑡 (𝑠) and 𝐿𝑖𝑖𝑛 (𝑣), an index

⟨𝑠,Ψ, ·⟩ is added to the in-entry set 𝐿𝑖
𝑖𝑛
(𝑣). Next, for each out-going

edge ⟨𝑣,𝑢, 𝜆⟩ of 𝑣 , a path 𝑃𝑢 with label set Ψ𝑢 = Ψ𝑣 ∪ {𝜆} is derived
and added to 𝑄 |Ψ𝑢 | . Otherwise (if 𝑃 can be Ψ-covered), 𝑃 is pruned.

Definition 3 (Skipped path). A path 𝑃 from 𝑠 to 𝑣 during the

LC-BFS is a skipped path if it is covered by the current P2H+ index.

The pruned forward LC-BFS finisheswhen themaintained queues

are empty. Next, the backward LC-BFS is processed and the out-

entries 𝐿𝑖𝑜𝑢𝑡 are constructed. Finally, we assign 𝐿
𝑖+1
𝑖𝑛
(𝑣) ← 𝐿𝑖

𝑖𝑛
(𝑣)

and 𝐿𝑖+1𝑜𝑢𝑡 (𝑣) ← 𝐿𝑖𝑜𝑢𝑡 (𝑣) for each 𝑣 ∈ 𝑉 and then turn to the (𝑖+1)-th
iteration. The index construction finishes when all 𝑛 nodes finish

the forward and backward LC-BFSs.

The time complexity of the P2H+ index construction algorithm is

𝑂 (22 |Λ | ·𝑛2 · (𝑛+𝑚)) as analyzed in [21]. To explain, during pruned

LC-BFSs, it needs to examine if it will be covered by the existing

P2H+ index for each visited path. This incurs𝑂 (𝑛 · 2 |Λ |) cost in the

worst case as the in-entry and out-entry of a node includes at most

𝑂 (𝑛 · 2 |Λ |) items. Since a forward and backward pruned LC-BFSs

visit at most 𝑂 (2 |Λ | · (𝑛 +𝑚)) paths and it needs to conduct 𝑂 (𝑛)
times, the total cost can be bounded by 𝑂 (22 |Λ | · 𝑛2 · (𝑛 +𝑚)).

Example 2. Still consider the input graph as shown in Figure

1(a). Assume that 𝑟𝑎𝑛𝑘 (𝑖) = 𝑖 . To begin, we first add ⟨1, ∅, 𝑁𝑈𝐿𝐿⟩ to
𝐿1𝑜𝑢𝑡 (1) and 𝐿1𝑖𝑛 (1). Then, we conduct forward LC-BFS from node

1 since it has the highest rank. The initial setting for node 1 is the

same as that in Example 1 except that we do not maintain S𝑣 .
Initially, for the out-going edge ⟨1, 3, 𝑎⟩ of node 1, a path 𝑃1 is

derived and added to queue 𝑄1. Then, in the first iteration, path

𝑃1 is de-queued from 𝑄1 and it examines if 1 to 3 via {𝑎} can be

covered by 𝐿1𝑜𝑢𝑡 (1) and 𝐿1𝑖𝑛 (3). Since the answer is no, an entry

⟨1, {𝑎}, ·⟩ is added to 𝐿1
𝑖𝑛
(3). Then, following the outgoing edge of

node 3, two paths 𝑃2 from node 1 to node 3 via label set {𝑎} and 𝑃3
from 1 to 3 via label set {𝑎, 𝑏} are derived and added to 𝑄1 and 𝑄2,

respectively. Next, path 𝑃2 is de-queued and ⟨1, {𝑎}, ·⟩ is added to

𝐿1
𝑖𝑛
(4). Then, path 𝑃3 is de-queued and can be covered by 𝐿1𝑜𝑢𝑡 (1)

and 𝐿1𝑜𝑢𝑡 (4) and thus is pruned. The forward LC-BFS finishes.

Next, the backward LC-BFS is conducted from node 1. Firstly, a

path 𝑃4 from node 1 to 6 via label set {𝑎} on the reverse graph is

derived and added to queue 𝑄1. In the first iteration, path 𝑃4 is de-

queued. Since the reverse path of 𝑃4 cannot be covered by 𝐿1𝑜𝑢𝑡 (6)
and 𝐿1

𝑖𝑛
(1), an entry ⟨1, {𝑎}, ·⟩ is added to 𝐿1𝑜𝑢𝑡 (6). Then, path 𝑃5

from node 1 to 5 on the reverse graph is derived and added to 𝑄1.

In the next iteration, path 𝑃5 is de-queued. As the reverse path of

𝑃5 cannot be covered by 𝐿1𝑜𝑢𝑡 (1) and 𝐿1𝑖𝑛 (5), an entry ⟨1, {𝑎}, ·⟩ is
added to 𝐿1𝑜𝑢𝑡 (5). Since node 5 has no incoming edges, the backward

LC-BFS finishes. The 𝐿1
𝑖𝑛
(·) and 𝐿1𝑜𝑢𝑡 (·) are then copied as 𝐿2

𝑖𝑛
(·)

and 𝐿2𝑜𝑢𝑡 (·), respectively. The index construction finishes and the

final index is as shown in Table 2.

Remark. Due to the interest of space, for the indices we show in

Tables 2-4, we omit the entry ⟨𝑣, ∅, ·⟩ from the in-entry and out-

entry from each node 𝑣 ; we use a string 𝑎𝑏 to indicate the set {𝑎, 𝑏}.
Our proposed DLCR is based on the state-of-the-art P2H+ index.

Next, we will elaborate on our DLCR for dynamic graphs.

3 DLCR INDEX FOR DYNAMIC GRAPHS

Given an input graph 𝐺 , assume that after a set of update oper-

ations the graph becomes 𝐺 ′. Here we only consider edge inser-

tions/deletions as node insertions/deletions can be easily mapped

to a set of edge insertions/deletions. Our main idea is to provide

a light-weighted scheme to make full use of the index for 𝐺 and

efficiently update the index, so that the index after the update is the

same as that constructed by the P2H+ for 𝐺 ′ from scratch. We call

this property update invariant. Our DLCR is update invariant and

it indicates that our DLCR index is unique after each update due to

the same vertex order. Our DLCR index is defined as follows:

Definition 4 (DLCR). Given a 𝑟𝑎𝑛𝑘 (𝑣) of each vertex 𝑣 , the

DLCR index is a minimum 2-hop index constructed according to the

pruned LC-BFS following the rank of each vertex. Given an edge

update, denote the updated graph as 𝐺 ′, the updated index satisfies
the update invariant property, i.e., the index is the same as that of

re-constructing from scratch using the pruned LC-BFS following the

rank order of each vertex on 𝐺 ′.

Our DLCR index is also update-friendly as we will show shortly.

Instead of re-constructing from scratch, our DLCR carefully derives

a small set of affected nodes and then indices are only updated on

those affected nodes. We will elaborate on our insertion algorithm

in Section 3.1 and the deletion algorithm in Section 3.2.

3.1 Insertion Algorithm

In this section, we present the details of our insertion algorithm.

Before introducing the insertion algorithms, we first define an

auxiliary data structure to support efficient index updates.

Definition 5 (Inverted 2-hop index). An inverted 2-hop in-

dex is created by inverting the original 2-hop index. Given an index

entry ⟨𝑣,Ψ, ·⟩ in 𝐿𝑜𝑢𝑡 (𝑢) (resp. 𝐿𝑖𝑛 (𝑢)), an entry ⟨𝑢,Ψ, ·⟩ exists in
𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑣) (resp. 𝐼𝑛𝑣𝐿𝑖𝑛 (𝑣)).

An example of the inverted index is shown in Table 2. Next, we

elaborate on the main idea of our insertion algorithm.

Main idea.With a new edge insertion, new paths will be generated

by the existing paths and the added edge, and such paths may not
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Table 2: Index entries of Figure 1(a).

ID 𝐿𝑖𝑛 𝐿𝑜𝑢𝑡 𝐼𝑛𝑣𝐿𝑖𝑛 𝐼𝑛𝑣𝐿𝑜𝑢𝑡

1 - - ⟨3, 𝑎, ·⟩, ⟨4, 𝑎, ·⟩ ⟨5, 𝑎, ·⟩, ⟨6, 𝑎, ·⟩
2 - - ⟨3, 𝑎, ·⟩, ⟨4, 𝑎, ·⟩ -

3 ⟨1, 𝑎, ·⟩, ⟨2, 𝑎, ·⟩ - ⟨4, 𝑎, ·⟩, ⟨4, 𝑏, ·⟩ -

4

⟨1, 𝑎, ·⟩, ⟨2, 𝑎, ·⟩
⟨3, 𝑎, ·⟩, ⟨3, 𝑏, ·⟩ - - -

5 - ⟨1, 𝑎, ·⟩ ⟨6, 𝑎, ·⟩, ⟨7, 𝑎𝑏, ·⟩ -

6 ⟨5, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨7, 𝑏, ·⟩ -

7 ⟨5, 𝑎𝑏, ·⟩, ⟨6, 𝑏, ·⟩ - - -

be covered by the current 2-hop index. For example, suppose we

add an edge ⟨4, 5, 𝑎⟩ in Figure 1(b), then node 1 could reach node

5 via label set {𝑎} after this edge is added. However, this path is

not covered by existing 2-hop index. So we need to generate new

index entries to keep the 2-hop cover property, which says that if 𝑠

can reach 𝑡 through label set Ψ, then we can always find a node 𝑣

such that there exists an entry ⟨𝑣,Ψ𝑖𝑛, ·⟩ in the in-entry set 𝐿𝑖𝑛 (𝑡)
of 𝑡 and an entry ⟨𝑣,Ψ𝑜𝑢𝑡 , ·⟩ in the out-entry set 𝐿𝑜𝑢𝑡 (𝑠) of node
𝑠 such that Ψ𝑖𝑛 ⊆ Ψ and Ψ𝑜𝑢𝑡 ⊆ Ψ. For the above new path from

node 1 to node 5, we need to add an in-entry ⟨1, {𝑎}, ⟨4, 5, 𝑎⟩⟩ into
𝐿𝑖𝑛 (5), which can be generated from the existing in-entry ⟨1, {𝑎}, ·⟩
in 𝐿𝑖𝑛 (4) and the added edge ⟨4, 5, 𝑎⟩. We will elaborate on how to

find such new paths shortly. The high-level idea is to apply pruned

LC-BFSs to find and add those new entries so that the 2-hop cover

property of index entries could be satisfied on the new graph.

After adding those new entries to make the index satisfy the

2-hop cover property, some old entries might become redundant,

i.e., deleting them will not violate the 2-hop cover property. We

aim to keep the minimum property of the index, and thus such

redundant index should be deleted. Table 3 illustrates the index

entries after adding the entries to satisfy the 2-hop cover property.

The in-entry ⟨5, {𝑎}, ·⟩ in 𝐿𝑖𝑛 (6) is redundant, since it is 2-hop

covered by ⟨1, {𝑎}, ·⟩ in 𝐿𝑜𝑢𝑡 (5) and ⟨1, {𝑎}, ·⟩ in 𝐿𝑖𝑛 (6). Thus, the
entry can be deleted without violating the 2-hop cover property.

By above observations, our insertion algorithm includes two steps:

• AddEntries. This phase adds new entries and locates affected

nodes (in Definition 6) in forward and backward directions.

• DeleteRedundant. It deletes redundant entries on affected nodes.

Next, we explain the rationale behind our design of the two steps.

Rationale and algorithm details.We first consider the property

of index entries that are necessary to be added to DLCR (otherwise

it will violate the 2-hop cover property). We have the following

lemma for such entries.

Lemma 1. For all entries necessary to be added to DLCR, it covers

at least a new path that goes through the inserted edge.

All omitted proofs can be found in our full version of technical

report
2
. Based on Lemma 1, we have Theorem 1 for index entries

that are necessary to be added to maintain the 2-hop cover property.

Theorem 1. For every in-entry (resp. out-entry) that are neces-

sary to be added to DLCR to maintain the 2-hop cover property, it

corresponds to a visited path of a forward (resp. backward) pruned

LC-BFS from a source node 𝑠 in 𝐿𝑖𝑛 (𝑢) (resp. 𝐿𝑜𝑢𝑡 (𝑣)).

2
The technical report is also available at https://github.com/jerchenxin/DP2H-CUHK.

Algorithm 1: AddEntries

Input: 𝐺 ′, new edge ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡
Output: A𝑓 , A𝑏

1 A𝑓 ← ∅, A𝑏 ← ∅
2 𝐵 ← the set of source nodes appear in 𝐿𝑖𝑛 (𝑢) and 𝐿𝑜𝑢𝑡 (𝑣)
3 for each node 𝑥 ∈ 𝐵 in decreasing order of the rank do

4 Let 𝐴𝐼 be the set of entries that include 𝑥 in 𝐿𝑖𝑛 (𝑢);
5 Initialize 𝑄0, 𝑄1, · · · , 𝑄 |𝜆 | to empty set;

6 for each entry ⟨𝑥,Ψ, ·⟩ ∈ 𝐴𝐼 do

7 Add entry ⟨𝑣,Ψ ∪ {𝜆}, ·⟩ to 𝑄 |Ψ∪{𝜆} |
8 Conduct pruned LC-BFS with 𝑄0, · · · , 𝑄 |Λ | : add new

entries during the pruned LC-BFS and add forward

affected nodes into A𝑓 .

9 Repeat Lines 4-8 with backward version

10 return A𝑓 , A𝑏

Given Theorem 1, the new entries to maintain the 2-hop cover

property can be added as follows, where Algorithm 1 shows the

pseudo-code for AddEntries phase. Firstly, let 𝐵 be the set of nodes

in 𝐿𝑖𝑛 (𝑢) and 𝐿𝑜𝑢𝑡 (𝑣) (Algorithm 1 Line 2). Then, following the

rank of nodes in 𝐵, a forward (resp. backward) LC-BFS is con-

ducted with the node 𝑥 as the source if 𝑥 appears in 𝐿𝑖𝑛 (𝑢) (resp.
𝐿𝑜𝑢𝑡 (𝑣)). Algorithm 1 Lines 4-8 shows the pseudo-code for the

forward pruned LC-BFS from node 𝑥 . Instead of conducting LC-

BFS from scratch from 𝑥 , it only starts from the paths that will go

through the newly inserted edge ⟨𝑢, 𝑣, 𝜆⟩. Thus, for each index entry
⟨𝑥,Ψ, ·⟩, we add an entry ⟨𝑣,Ψ ∪ {𝜆}, ·⟩ to 𝑄 |Ψ∪{𝜆} | (Algorithm 1

Lines 4-7). Then, a pruned LC-BFS is conducted with the initialized

queues 𝑄0, · · · , 𝑄 |Λ | . During the pruned LC-BFS, in each iteration,

it de-queues a path 𝑃 from 𝑥 to a node𝑤 via label set Ψ𝑤 with the

smallest size of label set. If the path 𝑃 can be covered by the current

2-hop index, then the path is pruned. Otherwise, the path 𝑃 is not

pruned, then an in-entry ⟨𝑥,Ψ𝑤 , ·⟩ is inserted to 𝐿𝑖𝑛 (𝑤). Similarly,

a backward LC-BFS is conducted if 𝑥 appears in 𝐿𝑜𝑢𝑡 (𝑣) (Algorithm
1 Line 9). According to Theorem 1, after adding such index entries,

the 2-hop cover property is satisfied.

Nevertheless, there might exist redundant entries after creating

new entries, i.e., deleting such entries will not violate the 2-hop

cover property. The key challenge is how to locate these redundant

entries efficiently. We first define the affected nodes.

Definition 6 (Affected Nodes). A set A of affected nodes is:

A = {𝑣 | 𝐿𝑖𝑛 (𝑣) 𝑜𝑟 𝐿𝑜𝑢𝑡 (𝑣) is changed}.
If 𝐿𝑖𝑛 (𝑣) (resp. 𝐿𝑜𝑢𝑡 (𝑣)) has changed, node 𝑣 is referred to as a forward
(resp. backward) affected node in A𝑓 (resp. in A𝑏 ).

The affected nodes help to locate redundant entries as follows.

Theorem 2. For a forward (resp. backward) affected node 𝑡 ∈ A𝑓

(resp. A𝑏 ), if it includes redundant entries, they must exist in 𝐿𝑖𝑛 (𝑡)
or 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑡) (resp. 𝐿𝑜𝑢𝑡 (𝑡) or 𝐼𝑛𝑣𝐿𝑖𝑛 (𝑡)).

According to Theorem 2, we can delete the redundant labels by

only inspecting the entries and inverted entries of affected nodes.

Here we discuss the case for forward affected nodes, while the case
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Algorithm 2: FwdDelRedundant

Input: 𝑣 𝑓 , 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡
Output: Updated 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

1 for each entry ⟨𝑥,Ψ, ·⟩ ∈ 𝐿𝑖𝑛 (𝑣 𝑓 ) do
2 if QuerySkipEntry(𝑥, 𝑣 𝑓 ,Ψ,𝑇𝑟𝑢𝑒) then
3 ⊲ Parameter 𝑇𝑟𝑢𝑒 indicates query forwardly.

4 Delete this entry from 𝐿𝑖𝑛 (𝑣 𝑓 ) and 𝐼𝑛𝑣𝐿𝑖𝑛 (𝑥)

5 for each entry ⟨𝑥 ′,Ψ′, ·⟩ ∈ 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑣 𝑓 ) do
6 if QuerySkipEntry(𝑥 ′, 𝑣 𝑓 ,Ψ′, 𝐹𝑎𝑙𝑠𝑒) then
7 Delete this entry from 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑣 𝑓 ) and 𝐿𝑜𝑢𝑡 (𝑥 ′)

8 return 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

Algorithm 3: DLCR-edge-insertion

Input: Updated graph 𝐺 ′, inserted edge ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡
Output: Updated 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

1 if Query(𝑢, 𝑣, {𝜆}) then
2 return 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

3 A𝑓 ,A𝑏 ← AddEntries(⟨𝑢, 𝑣, 𝜆⟩,𝐺 ′, 𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 )
4 for each node 𝑣 𝑓 ∈ A𝑓 do

5 𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ← FwdDelRedundant(𝑣 𝑓 , 𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 )
6 for each node 𝑣𝑏 ∈ A𝑏 do

7 𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ← BwdDelRedundant(𝑣𝑏 , 𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 )
8 return 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

for backward affected nodes can be handled similarly. Algorithm 2

shows the pseudo-code. In particular, for a forward affected node

𝑣 𝑓 , it tries to delete each entry 𝑒 = ⟨𝑥,Ψ, ·⟩ in 𝐿𝑖𝑛 (𝑣 𝑓 ) and see

if the LCR query from 𝑣 𝑓 to 𝑥 via label set Ψ can be covered by

the 2-hop index without using 𝑒 (by invoking 𝑄𝑢𝑒𝑟𝑦𝑆𝑘𝑖𝑝𝐸𝑛𝑡𝑟𝑦).

We omit the pseudo-code of 𝑄𝑢𝑒𝑟𝑦𝑆𝑘𝑖𝑝𝐸𝑛𝑡𝑟𝑦 as it is straightfor-

ward. If the answer is yes, entry 𝑒 is redundant and can be safely

removed from 𝐿𝑖𝑛 (𝑥 𝑓 ) and the corresponding inverted index is

removed from 𝑖𝑛𝑣𝐿𝑖𝑛 (𝑥) (Algorithm 2 Lines 1-4). Next, it examines

each entry 𝑒 ′ = ⟨𝑥 ′,Ψ′, ·⟩ in 𝑖𝑛𝑣𝐿𝑜𝑢𝑡 (𝑣 𝑓 ) and checks if deleting the

corresponding index ⟨𝑣 𝑓 ,Ψ′, ·⟩ in 𝐿𝑜𝑢𝑡 (𝑥 ′) can still cover the LCR

query from 𝑥 ′ to 𝑣 𝑓 via label set Ψ′. If the answer is yes, the entry
⟨𝑣 𝑓 ,Ψ′, ·⟩ in 𝐿𝑜𝑢𝑡 (𝑥 ′) is redundant and is removed from 𝐿𝑜𝑢𝑡 (𝑥 ′)
and 𝑒 ′ is also removed from 𝑖𝑛𝑣𝐿𝑜𝑢𝑡 (𝑥 ′) (Algorithm 2 Lines 5-7).

Next, the backward affected nodes are also processed with the

𝐵𝑤𝑑𝐷𝑒𝑙𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 algorithm. The pseudo-code is omitted as they

are handled in a mirror manner.

Algorithm 3 presents the details of the insertion algorithm. As-

sume that the added edge is ⟨𝑢, 𝑣, 𝜆⟩. It first inspects if 𝑢 can reach

𝑣 by 𝜆. If the answer is yes, then the added new edge does not bring

any uncovered new paths. The algorithm then immediately termi-

nates (Algorithm 3 Lines 1-2). Otherwise, it indicates that there

exist uncovered new paths due to this insertion. To update the

index, it adds new entries and finds the affected nodes (Algorithm

3 Line 3 ). Finally, it deletes redundant index entries by inspecting

the index entries and inverted index entries for each affected node

Table 3: DLCR index after AddEntries phase. Entries in blue

are newly added ones compared with Table 2.

ID 𝐿𝑖𝑛 𝐿𝑜𝑢𝑡 𝐼𝑛𝑣𝐿𝑖𝑛 𝐼𝑛𝑣𝐿𝑜𝑢𝑡

1 - -

⟨3, 𝑎, ·⟩, ⟨4, 𝑎, ·⟩
⟨5, 𝑎, ·⟩, ⟨6, 𝑎, ·⟩
⟨7, 𝑎𝑏, ·⟩

⟨2, 𝑎, ·⟩, ⟨3, 𝑎, ·⟩
⟨4, 𝑎, ·⟩, ⟨5, 𝑎, ·⟩
⟨6, 𝑎, ·⟩

2 - ⟨1, 𝑎, ·⟩ ⟨3, 𝑎, ·⟩, ⟨4, 𝑎, ·⟩ -

3 ⟨1, 𝑎, ·⟩, ⟨2, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨4, 𝑎, ·⟩, ⟨4, 𝑏, ·⟩ -

4

⟨1, 𝑎, ·⟩, ⟨2, 𝑎, ·⟩
⟨3, 𝑎, ·⟩, ⟨3, 𝑏, ·⟩ ⟨1, 𝑎, ·⟩ - -

5 ⟨1, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨6, 𝑎, ·⟩, ⟨7, 𝑎𝑏, ·⟩ -

6 ⟨1, 𝑎, ·⟩, ⟨5, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨7, 𝑏, ·⟩ -

7

⟨1, 𝑎𝑏, ·⟩, ⟨5, 𝑎𝑏, ·⟩
⟨6, 𝑏, ·⟩ - - -

(Algorithm 3 Lines 4-7). An example to show how our insertion

algorithms works is given as follows.

Example 3. Assume that an edge ⟨4, 5, 𝑎⟩ is inserted to 𝐺1 in

Figure 1(a) and the updated graph is shown in Figure 1(b). The

original index is shown in Table 2. To the beginning, we create

new entries using 𝐿𝑖𝑛 (4) and 𝐿𝑜𝑢𝑡 (5) which are {⟨1,{𝑎},·⟩, ⟨2,{𝑎},·⟩,
⟨3, {𝑎},·⟩, ⟨3, {𝑏},·⟩} and {⟨1, {𝑎}, ·⟩}. We start from high-ranking

entries to low-ranking entries. In the first iteration, we begin with

node 1 and its corresponding in-entry and out-entry is {⟨1, {𝑎}, ·⟩}
and {⟨1, {𝑎}, ·⟩}. As for forward version, after applying the pruned

LC-BFS, we add ⟨1, {𝑎}, ·⟩ into 𝐿𝑖𝑛 (5) and ⟨1, {𝑎}, ·⟩ into 𝐿𝑖𝑛 (6),
⟨1,{𝑎𝑏}, · ⟩ into 𝐿𝑖𝑛 (7). As for backward version, we add ⟨1, {𝑎}, ·⟩
into 𝐿𝑜𝑢𝑡 (4), ⟨1, {𝑎}, ·⟩ into 𝐿𝑜𝑢𝑡 (3), ⟨1, {𝑎}, ·⟩ into 𝐿𝑜𝑢𝑡 (2). In the

second iteration, we begin with node 2 and it has only in-entry

{⟨2, {𝑎}, ·⟩}. Applying the pruned LC-BFS, this entry is pruned by

the existing index so this iteration stops. In the third iteration, we

begin with node 3 and it has only in-entry {⟨3, {𝑎}, ·⟩, ⟨3, {𝑏}, ·⟩}.
Applying the pruned LC-BFS, these two entries are also pruned by

existing entries. This iteration terminates and AddEntries phase

finishes. The forward affected nodes are 5, 6, and 7 while the back-

ward affected nodes are 2, 3, and 4. Table 3 shows the entries after

AddEntries phase. Then it turns to the DeleteRedundant phase.

Take backward affected node 6 as an example. We first check

entries in 𝐿𝑖𝑛 (6). The label ⟨1, {𝑎}, ·⟩ is not redundant because

𝑄𝑢𝑒𝑟𝑦𝑆𝑘𝑖𝑝𝐸𝑛𝑡𝑟𝑦 (1, 6, {𝑎}) returns 𝐹𝑎𝑙𝑠𝑒 while the entry ⟨5, {𝑎}, ·⟩
is redundant because 𝑄𝑢𝑒𝑟𝑦𝑆𝑘𝑖𝑝𝐸𝑛𝑡𝑟𝑦 (5, 6, {𝑎}) returns 𝑇𝑟𝑢𝑒 . Sec-
ondly, we check entries in 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (6). Because 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (6) is empty,

we stop. Table 4 summarizes the final DLCR index.

An advantage of our insertion algorithm is that the updated

index is unique and the same as that built from scratch on 𝐺 ′ by
the P2H+ index. Next, we show that the DLCR is update invariant

and analyze the time complexity of our insertion algorithm.

Correctness and complexity analysis.We next show that DLCR

index is update invariant. Given an edge insertion, let the index after

the addEntries phase be 𝐿′ and the index after the DeleteRedundant

phase be 𝐿∗. Let 𝐿 be the index built from scratch by P2H+. We first

have Lemma 2 for the index 𝐿′ after the AddEnries phase,

Lemma 2. For each node 𝑣 , 𝐿′
𝑖𝑛
(𝑣) (resp. 𝐿′𝑜𝑢𝑡 (𝑣)) is a superset of

𝐿𝑖𝑛 (𝑣) (resp. 𝐿𝑜𝑢𝑡 (𝑣)), i.e., 𝐿𝑖𝑛 (𝑣) ⊆ 𝐿′𝑖𝑛 (𝑣) (resp 𝐿𝑜𝑢𝑡 (𝑣) ⊆ 𝐿
′
𝑜𝑢𝑡 (𝑣)).

We have Lemma 3 about the redundancy of an entry.
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Table 4: DLCR index entries after DeleteRedundant phase.

ID 𝐿𝑖𝑛 𝐿𝑜𝑢𝑡 𝐼𝑛𝑣𝐿𝑖𝑛 𝐼𝑛𝑣𝐿𝑜𝑢𝑡

1 - -

⟨3, 𝑎, ·⟩, ⟨4, 𝑎, ·⟩
⟨5, 𝑎, ·⟩, ⟨6, 𝑎, ·⟩
⟨7, 𝑎𝑏, ·⟩

⟨2, 𝑎, ·⟩, ⟨3, 𝑎, ·⟩
⟨4, 𝑎, ·⟩, ⟨5, 𝑎, ·⟩
⟨6, 𝑎, ·⟩

2 - ⟨1, 𝑎, ·⟩ - -

3 ⟨1, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨4, 𝑏, ·⟩ -

4 ⟨1, 𝑎, ·⟩, ⟨3, 𝑏, ·⟩ ⟨1, 𝑎, ·⟩ - -

5 ⟨1, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ - -

6 ⟨1, 𝑎, ·⟩ ⟨1, 𝑎, ·⟩ ⟨7, 𝑏, ·⟩ -

7 ⟨1, 𝑎𝑏, ·⟩, ⟨6, 𝑏, ·⟩ - - -

Lemma 3. For each entry in 𝐿𝑖𝑛 (𝑣) (resp. 𝐿𝑜𝑢𝑡 (𝑣)), it is not redun-
dant in 𝐿′

𝑖𝑛
(𝑣) (resp. 𝐿′𝑜𝑢𝑡 (𝑣)).

Combining Lemmas 2 and 3, we have the following theorem.

Theorem 3. After the insertion algorithm of DLCR, the index 𝐿∗

is exactly the same as the index 𝐿 built from scratch by P2H+ index.

Theorem 3 shows that DLCR is update-invariant after edge inser-

tions. We now consider the time complexity of Algorithm 3.

In the first step, we do pruned LC-BFS from 𝐿𝑖𝑛 (𝑢) and 𝐿𝑜𝑢𝑡 (𝑣).
Let 𝐵 be the set of nodes appeared in 𝐿𝑖𝑛 (𝑢) and 𝐿𝑜𝑢𝑡 (𝑣). Then,
the time complexity for 𝐴𝑑𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠 phase is 𝑂 (22 |Λ | · |𝐵 | · 𝑛 · (𝑛 +
𝑚)). Let 𝐿𝑎𝑑𝑑 be the set of added in-entries or out-entries. Then,

there are at most |𝐿𝑎𝑑𝑑 | affected nodes. For each affected node, it

examines𝑂 (2 |Λ | ·𝑛) entries and for each entry, it takes a query and

runs with 𝑂 (2 |Λ | · 𝑛) cost. Thus, the 𝐷𝑒𝑙𝑒𝑡𝑒𝑅𝑢𝑛𝑑𝑎𝑛𝑡 phase takes
𝑂 ( |𝐿𝑎𝑑𝑑 |2 |2Λ | ·𝑛2) cost. Adding them together, the time complexity

is 𝑂

(
2
|2Λ | · 𝑛 · ( |𝐿𝑎𝑑𝑑 | · 𝑛 + |𝐵 | · (𝑛 +𝑚))

)
.

3.2 Deletion Algorithm

Main idea.With an edge deletion, some paths may disappear such

that the current index may return incorrect query answers. We call

such index entries outdated entries. For instance, assume that we

delete edge ⟨4, 5, 𝑎⟩ from 𝐺2 in Figure 1(b) and thus the graph be-

comes𝐺1 as shown in Figure 1(a). Then, in-entry ⟨1, {𝑎}, ⟨4, 5, 𝑎⟩⟩ in
𝐿𝑖𝑛 (5) is outdated since path 1

{𝑎}
⇝ 5 does not exist due to the dele-

tion of edge ⟨4, 5, 𝑎⟩. After deleting outdated entries, some skipped

paths, which are pruned by the outdated entries before the dele-

tion, need to be reactivated to create new entries. For instance,

⟨2, 3, {𝑎}, ⟨2, 3, 𝑎⟩⟩ is a skipped path and needs to be reactivated.

To explain, the existing in-entry ⟨2, ∅, ·⟩ in 𝐿𝑖𝑛 (2) could travel via

edge ⟨2, 3, 𝑎⟩, and generated new in-entry ⟨2, {𝑎}, ⟨2, 3, 𝑎⟩⟩, which
is not pruned after deletion and should be inserted into 𝐿𝑖𝑛 (3) (See
Table 4). These skipped paths need to be reactivated to add new

entries. In summary, the deletion algorithm includes three steps:

• DeleteEntries. It deletes outdated entries and finds affected nodes.

• LocateSkippedPath. It locates skipped paths to be reactivated.

• CreateNewEntries. It conducts pruned LC-BFSs to create new

entries using the valid skipped paths found in the second phase.

Rationale and Algorithm details. Next, we explain how the

three steps work one by one. In the first step, to find the outdated

entries, we have the following lemma.

Lemma 4. All outdated entries travel via the deleted edge ⟨𝑢, 𝑣, 𝜆⟩.

Algorithm 4: FwdDelEntry

Input: 𝐺 ′, ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑖𝑛
Output: A𝑓

1 A𝑓 ← ∅, A𝑙 ← ∅
2 for each entry ⟨𝑝,Ψ, 𝑒⟩ ∈ 𝐿𝑖𝑛 (𝑣) and 𝑒 = ⟨𝑢, 𝑣, 𝜆⟩ do
3 A𝑙 .𝑝𝑢𝑠ℎ(⟨𝑝,Ψ, 𝑒⟩)
4 for each entry ⟨𝑠,Ψ, ·⟩ ∈ A𝑙 do

5 delete ⟨𝑠,Ψ, ·⟩ from 𝐿𝑖𝑛 (𝑣)
6 A𝑓 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑣), 𝑄 ← {(𝑣,Ψ)}
7 while 𝑄 ≠ ∅ do
8 (𝑥,Ψ1) ← 𝑄.𝑝𝑜𝑝 ()
9 for each out-going edge ⟨𝑥, 𝑡, 𝜆1⟩ of 𝑥 do

10 if 𝑟𝑎𝑛𝑘 [𝑡] ≤ 𝑟𝑎𝑛𝑘 [𝑠] then
11 continue

12 Ψ𝑥 ← Ψ1 ∪ {𝜆1}
13 if (𝑠,Ψ𝑥 , ⟨𝑥, 𝑡, 𝜆1⟩) ∈ 𝐿𝑖𝑛 (𝑡) then
14 𝑄.𝑝𝑢𝑠ℎ((𝑡,Ψ𝑥 ))
15 Delete ⟨𝑠,Ψ𝑥 , ⟨𝑥, 𝑡, 𝜆1⟩⟩ from 𝐿𝑖𝑛 (𝑡)
16 A𝑓 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡)

17 return A𝑓 , 𝐿𝑖𝑛

Given the deleted edge ⟨𝑢, 𝑣, 𝜆⟩, Lemma 4 demonstrates that all

outdated entries travel via this deleted edge.We note that for a given

index entry that corresponds to a path 𝑃 from 𝑥 to𝑦 where 𝑥 has the

highest rank on 𝑃 , each sub-path of 𝑃 starting from 𝑥 corresponds

to an index entry as well. The case when 𝑦 has the highest rank will

have the mirror case. To make use of this property, every entry will

store a 𝑙𝑎𝑠𝑡𝐸𝑑𝑔𝑒 property, which is the last edge before inserting

the corresponding entry during the index construction process via

pruned LC-BFS. With this property, we are now able to efficiently

locate the index entries that travel via the deleted edge 𝑒 = ⟨𝑢, 𝑣, 𝜆⟩.
In particular, we first examine the index entries in 𝐿𝑖𝑛 (𝑢) and find

out the entries whose 𝑙𝑎𝑠𝑡𝐸𝑑𝑔𝑒 is 𝑒 . Then, we start from 𝐿𝑖𝑛 (𝑢) and
find more outdated entries that travel via edge 𝑒 .

Algorithm 4 shows the details of how to find the outdated en-

tries according to entries in 𝐿𝑖𝑛 (𝑣) whose 𝑙𝑎𝑠𝑡𝐸𝑑𝑔𝑒 is the deleted
edge ⟨𝑢, 𝑣, 𝜆⟩. In particular, it first finds the entries in 𝐿𝑖𝑛 (𝑣) whose
𝑙𝑎𝑠𝑡𝐸𝑑𝑔𝑒 is ⟨𝑢, 𝑣, 𝜆⟩ and adds them to set A𝑙 . (Algorithm 4 Lines

2 -3). Next, for each such entry ⟨𝑠,Ψ, ·⟩, it first deletes the entry
from 𝐿𝑖𝑛 (𝑣) (Algorithm 4 Line 5). Then, it starts a BFS from 𝑠 ex-

cept that: (i) it initializes the queue with the path 𝑃 from 𝑠 to 𝑣 via

label set Ψ (so that it does not need to do the BFS from the source

𝑠 from scratch) as shown in Algorithm 4 Line 6; (ii) During the

BFS traversal, if a path has end point 𝑡 with a rank higher than

𝑠 , i.e., 𝑟𝑎𝑛𝑘 (𝑡) < 𝑟𝑎𝑛𝑘 (𝑠), then the path can be pruned as we are

checking the paths with 𝑠 as the highest rank (Algorithm 4 Line

10-11); (iii) It only explores the out-going edges ⟨𝑥, 𝑡, 𝜆1⟩ such that

the index entry corresponding to path 𝑃 ′ = 𝑠
Ψ
⇝ 𝑥

𝜆1→ 𝑡 exists in

𝐿𝑖𝑛 (𝑡) (Algorithm 4 Lines 13-16). For such a path 𝑃 ′, it adds the
path into the queue and removes the index entry corresponding

to 𝑃 ′ in 𝐿𝑖𝑛 (𝑡). If the index entry does not exist in 𝐿𝑖𝑛 (𝑡), then the

traversal on such a path can terminate since the extended paths
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Algorithm 5: FwdSkippedPath

Input: Forward affected node 𝑡 , P𝑓 , P𝑏 , 𝐺 ′, 𝐿𝑖𝑛 , 𝐼𝑛𝑣𝐿𝑜𝑢𝑡
Output: P𝑓 , P𝑏

1 for each incoming edge ⟨𝑥, 𝑡, 𝜆⟩ of 𝑡 do
2 for each entry ⟨𝑠,Ψ, ·⟩ ∈ 𝐿𝑖𝑛 (𝑥) do
3 if 𝑄𝑢𝑒𝑟𝑦 (𝑠, 𝑡,Ψ ∪ {𝜆}) then
4 continue

5 P𝑓 .𝑖𝑛𝑠𝑒𝑟𝑡 ((𝑠, 𝑡,Ψ ∪ {𝜆}, ⟨𝑥, 𝑡, 𝜆⟩))

6 for each entry ⟨𝑦,Ψ, ·⟩ ∈ 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑡) do
7 for each incoming edge ⟨𝑠,𝑦, 𝜆⟩ of 𝑦 do

8 if 𝑄𝑢𝑒𝑟𝑦 (𝑠, 𝑡,Ψ ∪ {𝜆}) then
9 continue

10 P𝑏 .𝑖𝑛𝑠𝑒𝑟𝑡 ((𝑠, 𝑡,Ψ ∪ {𝜆}, ⟨𝑠,𝑦, 𝜆⟩))

11 return P𝑓 , P𝑏

from 𝑃 ′ will not exist in the index entries either. Similarly, we can

do a mirror phase for entries in 𝐿𝑜𝑢𝑡 (𝑢). Instead of doing BFS on

𝐺 ′, it proceeds a backward BFS following the reverse direction of

graph 𝐺 ′. For the interest of space, we omit the pseudo-code for

this phase, dubbed as 𝐵𝑤𝑑𝐷𝑒𝑙𝐸𝑛𝑡𝑟𝑦 phase.

After deleting outdated entries, we need to find skipped paths

that are pruned by the outdated entries. In such scenarios, we need

to reactive such skipped paths and create new entries for such paths

if necessary. This is the second step, i.e., 𝐿𝑜𝑐𝑎𝑡𝑒𝑆𝑘𝑖𝑝𝑝𝑒𝑑𝑃𝑎𝑡ℎ step,

of our deletion algorithm. One of the main challenges in this step

is how to find the skipped paths pruned by the outdated entries

efficiently. To achieve this, we record the affected nodes, that include

outdated entries in the first step, and use the affected nodes to find

the skipped paths pruned by the outdated entries.

Theorem 4. If a path 𝑃 is a skipped path pruned by a forward

affected node 𝑡 ∈ A𝑓 and is not covered by the index after removing

outdated entries, then either (i) there exists an in-coming edge ⟨𝑥, 𝑡, 𝜆⟩,
and an in-entry ⟨𝑠,Ψ, ·⟩ ∈ 𝐿𝑖𝑛 (𝑥) together that map to this path 𝑃 ,

i.e., 𝑠
Ψ
⇝ 𝑥

𝜆→ 𝑡 is exactly 𝑃 ; or (ii) there exists an entry ⟨𝑦,Ψ, ·⟩
in 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑡) and an incoming edge ⟨𝑠,𝑦, 𝜆⟩ such that 𝑠

𝜆→ 𝑦
Ψ
⇝ 𝑡

corresponds to path 𝑃 . The case is mirror for backward affected nodes.

Theorem 4 indicates that we can use forward (resp. backward)

affected nodes to find skipped paths. Algorithm 5 shows the pseudo-

code to find skipped paths by a given forward affected node. In

particular, for a forward affected node 𝑡 , it first examines each of

its incoming edges to see if there exist any skipped paths due to

𝑡 . In particular, let ⟨𝑥, 𝑡, 𝜆⟩ be an incoming edge of 𝑡 , then it goes

through each entry ⟨𝑠,Ψ, ·⟩ in 𝐿𝑖𝑛 (𝑥) and see if the LCR query with

𝑠 as the source, 𝑡 as the target via label set Ψ∪{𝜆} can be covered by
current index entries. If the answer is yes, then path 𝑃 = 𝑠

Ψ
⇝ 𝑥

𝜆→ 𝑡

has already been covered. Otherwise, path 𝑃 is not covered and we

add the path to the skipped path (Algorithm 5 Lines 1-5). Then, it

turns the second case where a path might be pruned by the forward

affected nodes. In particular, it examines each of the entries in

𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑡). For each entry ⟨𝑦,Ψ, ·⟩ in 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 (𝑡), it examines each

of the incoming edges of 𝑦, and see if the path 𝑠
𝜆→ 𝑦

Ψ
⇝ 𝑡 can be

Algorithm 6: GenNewEntries

Input: P𝑓 , P𝑏 , 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡 , 𝐺 ′
Output: 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

1 𝐶 ← {𝑥 |⟨𝑥, ·, ·, ·⟩ ∈ P𝑓 or ⟨·, 𝑥 ·, ·⟩ ∈ P𝑏 }
2 for each node 𝑠 ∈ 𝐶 in decreasing order of the rank do

3 Let P𝑡𝑚𝑝 be the set of paths such that ⟨𝑠, ·, ·, ·⟩ ∈ P𝑓
4 Initialize 𝑄0, 𝑄1, · · · , 𝑄 |Λ | to empty set

5 for each (𝑠, 𝑡,Ψ, ·) ∈ P𝑡𝑚𝑝 do

6 Add entry ⟨𝑡,Ψ, ·⟩ to 𝑄 |Ψ |
7 Conduct pruned LC-BFS with 𝑄0, · · · , 𝑄 |Λ |
8 Repeat Lines 3-7 with P𝑏
9 return 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

covered by existing index entries. If the answer is yes, then the path

can be discarded. Otherwise, the path is added to the skipped path

(Algorithm 5 Lines 6-10). This considers the case for the forward

affected nodes. Similarly, we can find the skipped paths due to the

backward affected nodes. Since they are mirror cases to Algorithm

5, we omit the discussion.

After finding the skipped paths, we use these skipped paths to

generate new entries in Algorithm 6. Similar to Algorithm 1, we

start from skipped paths with high ranking node to generate new

entries. In particular, for the skipped paths that were discovered,

we divide them into two sets P𝑓 and P𝑏 as shown in Algorithm

5. Set P𝑓 stores the set of paths that the starting node has the

highest rank while set P𝑏 stores the set of paths where the ending

node has the highest rank. For the case when neither of the ending

points of a path has the highest rank, then it will not be possible for

such a path to be an index entry since otherwise it will be already

covered with higher ranked nodes. After dividing such paths into

P𝑓 and P𝑏 . Then, we can conduct forward LC-BFS and backward

LC-BFS from the nodes with the highest rank one by one. Let 𝐶 be

the set of nodes with the highest rank in the skipped paths (either

the starting node or the ending node) as shown in Algorithm 6

Line 1. Then, for the nodes in decreasing order of the ranks in 𝐶 ,

it does pruned LC-BFS in iterations. In the 𝑖-th iteration, let the

node with the 𝑖-th highest rank be 𝑠 . Then, it retrieves all paths

in P𝑓 such that the starting node of the skipped paths is 𝑠 . Then,

for each such path ⟨𝑠, 𝑡,Ψ, ·⟩, it adds ⟨𝑡,Ψ, ·⟩ to queue𝑄 |Ψ | . Then, it
conducts the pruned LC-BFS with the initialized queues (Algorithm

1 Lines 3-7). Next, it retrieves all paths whose ending points are

𝑠 in 𝑃𝑏 and processes a backward LC-BFS on 𝐺 ′ and the iteration

finishes. When all nodes in 𝐵 are processed, the new entries are all

added and the algorithm terminates.

Algorithm 7 shows the pseudo-code for the deletion algorithm

of DLCR. The pseudo-code is self-explanatory. Lines 1-2 show the

𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step. Lines 3-6 show the 𝐿𝑜𝑐𝑎𝑡𝑒𝑆𝑘𝑖𝑝𝑝𝑒𝑑𝑃𝑎𝑡ℎ step.

Line 7 shows the pseudo-code of 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step. Due to

the interest of space, an example of our deletion algorithms is

omitted and could be found in our technical report.

Correctness and complexity analysis. Finally, we show that

the DLCR deletion algorithm is still update-invariant. Let 𝐿′ be the
index after the𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step and 𝐿∗ be the index after all three

1652



Algorithm 7: DLCR-edge-deletion

Input: Updated graph 𝐺 ′, deleted edge ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡
Output: 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

1 A𝑓 , 𝐿𝑖𝑛 ← FwdDelEntry(𝐺 ′, ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑖𝑛), P𝑓 ← ∅
2 A𝑏 , 𝐿𝑜𝑢𝑡 ← BwdDelEntry(𝐺 ′, ⟨𝑢, 𝑣, 𝜆⟩, 𝐿𝑜𝑢𝑡 ), P𝑏 ← ∅
3 for each node 𝑡 ∈ A𝑓 do

4 P𝑓 ,P𝑏 ← FwdSkippedPath(𝑡,P𝑓 ,P𝑏 , 𝐿𝑖𝑛, 𝐼𝑛𝑣𝐿𝑜𝑢𝑡 )
5 for each node 𝑡 ∈ A𝑏 do

6 P𝑓 ,P𝑏 ← BwdSkippedPath(𝑡,P𝑓 ,P𝑏 , 𝐿𝑜𝑢𝑡 , 𝐼𝑛𝑣𝐿𝑖𝑛)
7 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡 ← GenNewentries(P𝑓 ,P𝑏 )
8 return 𝐿𝑖𝑛 , 𝐿𝑜𝑢𝑡

steps. Let 𝐿 be the index built from scratch by P2H+ index. Firstly,

we have the following lemma for index 𝐿′ after 𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step.

Lemma 5. After the 𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step of DLCR deletion algo-

rithm, for each node 𝑣 , 𝐿′
𝑖𝑛
(𝑣) ⊆ 𝐿𝑖𝑛 (𝑣) and 𝐿′𝑜𝑢𝑡 (𝑣) ⊆ 𝐿𝑜𝑢𝑡 (𝑣).

Next, we have the following theorem for 𝐿∗, the index after our
DLCR deletion algorithm.

Theorem 5 (Update Invariant). The index 𝐿∗ after the DLCR
deletion algorithm is exactly the same as 𝐿 built from scratch by P2H+.

Theorem 5 shows that DLCR deletion is also update-invariant. Next,

we analyze the time complexity of DLCR deletion algorithm. Let

𝐵 be the set of nodes appeared in 𝐿𝑖𝑛 (𝑣) and 𝐿𝑜𝑢𝑡 (𝑢). Then, it con-
ducts pruned BFS (note here it is BFS not LC-BFS) in 𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠

step from such nodes, whose cost is 𝑂 ( |𝐵 | · ( |Λ| + log𝑛) (𝑛 +𝑚)).
Then, in the second step, for each affected node, it joins the edges

and its in-entries, whose cost can be bounded by 𝑂 (𝑛 · 2 |Λ |). Thus,
the cost for the second step is 𝑂 ( |𝐵 | · 𝑛 · 2 |Λ |). Assume that the set

𝐶 includes the set of node with the highest ranking node in each

skipped path. Then, the third step 𝐺𝑒𝑛𝑁𝑒𝑤𝐸𝑛𝑡𝑟𝑖𝑒𝑠 has a cost of

𝑂

(
2
2 |Λ | · |𝐶 | · 𝑛 · (𝑛 +𝑚)

)
, which dominates the cost for the second

step. The final cost is𝑂

((
|𝐵 | · ( |Λ| + log𝑛) + |𝐶 | · 22 |Λ | · 𝑛

)
(𝑛 +𝑚)

)
.

Remark. It is worth noting that the updated indexes do not have

to be the same. Nevertheless, update invariant is an elegant state

since it is invariant and also convenient to verify the correctness of

updated index if such a property is satisfied.

4 OPTIMIZATIONS

4.1 Query-Friendly Design

As the input graph is dynamically changing and thus the index

dynamically changes, it is natural to adopt an update-friendly index

design. Indeed, our initial choice of a data structure for the index

structure is to maintain a balanced binary search tree, e.g., RB-tree,

so that it gains a good trade-off between index queries and index

updates. However, if we carefully analyze the insertion, deletion,

and even the index construction algorithms, we can observe that

querying with the DLCR index is one of the major subroutines fre-

quently invoked. In particular, during insertion, given an inserted

edge ⟨𝑢, 𝑣, 𝜆⟩, the algorithm needs to do forward (resp. backward)

pruned LC-BFS from nodes in 𝐿𝑖𝑛 (𝑢) and 𝐿𝑜𝑢𝑡 (𝑣) in the AddEntries

phase. During the pruned LC-BFS, it needs to do a query to check

if the path can be pruned or not. In the DeleteRedundant phase,

it again needs to query frequently to check if an index entry is

redundant. In the deletion algorithm, it needs to use queries on

existing index entries to locate the skipped paths. During the index

construction, to check if a path can be pruned, we need to query

with the current index. Our choice of the query-friendly design is

mainly motivated by the fact that queries are usually more frequent

than index updates in all of the index construction, DLCR insertion

algorithm, and DLCR deletion algorithms. Thus, even if the under-

lying data structure is query-friendly while not update friendly, the

benefit brought due to the reduced cost in the query processing can

still help improve the overall performance.

To make the index more query-friendly, in the design of index

structure, we select the sorted array as the underlying data structure

for 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡 . Compared to the binary search tree design, as for

𝑄𝑢𝑒𝑟𝑦 (𝑠, 𝑡,Ψ), such a design can do query processing with a linear

scan of 𝐿𝑜𝑢𝑡 (𝑠) of the source node 𝑠 and 𝐿𝑖𝑛 (𝑡) of the target node 𝑡 .
This makes the query more cache-friendly compared to the binary

search tree design. Although this makes the update cost become

𝑂 (ℓ) where ℓ is the size of the index. Before the update, it needs to
query the index to check if the entry to be added is redundant or

not. Thus, the total cost (the query + the update) can be bounded

the query cost even if we adopt the query-friendly design. Hence,

the time complexity of the index construction, DLCR insertion

algorithm, and DLCR deletion algorithm does not change with

the query-friendly dynamic array design. Moreover, in practical

implementation, we could delay the update of an array by marking

those invalid entries and removing them all together later in the

deletion of entries. This further reduces the cost of index updates.

As we will show in the experiment, such a query-friendly design

can contribute substantially to query efficiency improvement. With

the improved query efficiency, it further helps significantly reduce

the index construction cost, insertion cost, and deletion cost. We

believe that this observation also sheds light on the design of update

algorithms on the 2-hop index for other types of queries.

Remark. We note that it is also possible to adopt hashing as a

replacement. However, it will not help reduce the search complexity.

Recall that given an input source 𝑠 , a target node 𝑡 , and a label set

Ψ, the LCR query algorithm of DLCR needs to find a middle node 𝑣

such that node 𝑣 exists in both 𝐿𝑜𝑢𝑡 (𝑠) and 𝐿𝑖𝑛 (𝑡), and 𝑣 Ψ-covers
𝑠 to 𝑡 . Even with hashing, we cannot find the node 𝑣 in advance.

That means, in the worst case, every node 𝑣 in 𝐿𝑜𝑢𝑡 (𝑠) needs to be

checked to see if (i) the label Ψ-covers 𝑠 to 𝑣 , and (ii) using hashing

to find the labels in 𝐿𝑖𝑛 (𝑠) and go through all labels pertinent to 𝑣

to check if there exists a label that Ψ-covers 𝑣 to 𝑡 . Thus, the time

complexity of hashing-based solutions is the same as our array

design. Moreover, with hashing, it incurs more space consumption

and worse cache locality than the array design since array design

only needs to scan 𝐿𝑜𝑢𝑡 (𝑠) and 𝐿𝑖𝑛 (𝑡) to answer the query.

4.2 Batch Updates

Another optimization of our DLCR is to do batch updates. With

batch updates, if collective updates can benefit, then our batch

update algorithm can help further improve the update efficiency.

We only consider cases when insertions or deletions are in the same
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Table 5: Statistics of Datasets. (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9).

Name Dataset 𝑉 𝐸 Λ Synthetic

Labels

RB robots 1.4K 2.9K 4

AG advogato 5.4K 51.3K 4

AX arXiv 34.5K 422K 8 ✓
EP epinions 132K 841K 8 ✓
SH StringHS 17K 1.24M 7

ND NotreDame 326K 1.47M 8 ✓
BG BioGrid 64K 1.58M 7

CT citeseer 384K 1.75M 8 ✓
SF StringFC 15.5K 2.04M 7

WS webStanford 282K 2.3M 8 ✓
WG webGoogle 876K 5.1M 8 ✓
YT Youtube 15K 10.7M 5

ZS zhishihudong 2.45M 18.9M 8 ✓
SP socPokec 1.6M 30.6M 8 ✓
WL wikiLinks 3M 102M 8 ✓
DBP DBPediaLink 18.3M 172M 8 ✓
WLE WikiLinksEng 12.2M 378M 8 ✓
T3W TwitterWWW 41.7M 1.47B 8 ✓
TM TwitterMPI 52.6M 1.96B 8 ✓
FS friendster 68M 2.5B 8 ✓
SPL socPokecLarge 1.6M 30.6M 7513 ✓
FB freebase 14.4M 107M 779

batch. In cases where updates are mixed with edge insertions and

deletions, they can be processed with a batch insertion followed by

a batch deletion. Next, we show our batch update algorithms.

Batch Insertion. Recall that in insertion, the first phase adds new

entries and the second phase deletes redundant entries of affected

nodes. When dealing with multiple edge insertions, we can defer

the DeleteRedundant phase until all the new entries using the added

edges are generated. The reason is that these redundant entries

do not affect the correctness and if such redundant entries have a

negligible impact on the queries, we can delete redundant entries

when the AddEntries phase is processed for all nodes in the batch.

To determine if the redundant entries will have a negative impact

on the query processing, we present a pre-probing based approach

to choose whether to remove redundant entries step by step or

postpone the redundant entries removal in a batch. Our pre-probing

strategy mainly compares the running time of a batched insertion of

a small set of edges, 300 in our case, against the single edge-insertion

version. We check if the performance of batched insertion, which

postpones the 𝐷𝑒𝑙𝑒𝑡𝑒𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 phase for all nodes, will degrade

the performance compared to the insertion algorithm to process

edge insertions one by one. If the performance degrades, then the

collective insertion will not help reduce the DLCR insertion cost.

Thus, we process the DLCR insertion algorithm for each edge one

by one. Otherwise, collective insertion helps reduce running cost

and we will make full use of the batch insertion.

Batch Deletion. In DLCR deletion algorithm, recall that it includes

three steps, which firstly delete outdated entries, then find skipped

paths, and finally add entries. If we delete edges one by one and

each time we process a single-edge in the DLCR deletion algorithm,

for the skipped paths discovered, it might become invalid if later an

existing edge on the skipped path is deleted. For the entries added

earlier, it might become invalid if an edge on the path is deleted.

Motivated by this observation, our batch deletion algorithm

first deletes outdated entries for each node in a batch. Then, the

set P𝑓 of forward affected node and P𝑏 of backward affected

nodes are returned. Notice that the set of affected nodes may

also overlap in different deletions and this avoids repetitive tasks

in the 𝐹𝑤𝑑𝑆𝑘𝑖𝑝𝑝𝑒𝑑𝑃𝑎𝑡ℎ step as well. Then, during the skipped

path discovery, it avoids skipped paths that include any of deleted

edges in the batch, and the size of remaining valid skipped paths

will be much smaller compared with single edge deletion, mak-

ing the second stage LocateSkippedPath much faster. Finally, in the

𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step, it again reduces computations. To explain,

if entries are updated after each edge deletion, entries generated

in 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step by prior deletion might be deleted due

to subsequent edge deletions. Our batch deletion separates the

outdated entry deletion process from the new entry generation

process such that new entries will not be deleted once added into

the index. Moreover, in the 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐸𝑛𝑡𝑟𝑖𝑒𝑠 step, it combines

multiple skipped paths all together with the same source and can

help reduce the running cost of pruned LC-BFSs. As we will show

in the experiment, batch deletion significantly reduces update costs.

We have further included an example to show how the batch

insertion and deletion may support more efficient update. Due to

the space limit, we leave it in our full version of technical report.

Time Complexity Assume that there are 𝑐 updates in a batch. If

they are all insertion, then the time complexity of batch insertion is

𝑂

(
2
|2Λ | · 𝑛 · ( |𝐿𝑎𝑑𝑑 | · 𝑛 + |𝐵 | · (𝑛 +𝑚))

)
, which is the same as the

single insertion in Section 3.1). However, notice that the number of

affected nodes |𝐿𝑎𝑑𝑑 | in these batch tends to be much larger than

that of single insertion. Moreover, notice that in the worst case,

|𝐿𝑎𝑑𝑑 = 𝑛 |, and we have the same time complexity as that of index

reconstruction. Similarly, the time complexity of batch deletion is

𝑂

((
|𝐵 | · ( |Λ| + log𝑛) + |𝐶 | · 22 |Λ | · 𝑛

)
(𝑛 +𝑚)

)
, which is the same

as that of single deletion in Section 3.2).

4.3 Dealing with Large-Label Graphs

To be self-contained, we briefly recall how P2H+ tackle large labels

and then illustrate how to integrate into DLCR and how to dynami-

cally update the indices. To deal with graphs with a large number of

labels, P2H+ introduces a two-level index scheme which includes a

primary index and a secondary index. The primary index includes

a small set Λ′ of frequent labels chosen from the label set Λ. Then,
the index construction is processed on the subgraph which only

includes edges whose label is from Λ′. In P2H+, the size of Λ′ is set
to 6 and it chooses the 6 labels with the highest frequency. For the

secondary index, it first maps all labels in Λ \ Λ′ to |Λ′ | number

of virtual labels. The mapping of the labels used in the primary

index is consistent with the mapping in the secondary index. In

P2H+, the number of virtual labels is thus also 6. Then, the index is

constructed on the virtual labels. Given a query from 𝑠 to 𝑡 via label

set Ψ, it first queries with primary index and sees if 𝑠 can reach 𝑡

via Ψ ∩ Λ′. If the answer is yes, then it returns true immediately.

Otherwise, it queries with the secondary index. If the secondary

index returns false, then the query can return false. Otherwise, it

conducts an LC-BFS online to get the query answer. In our update
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Table 6: Indexing time or initialization time (IT) in seconds,

index size (IS) in megabytes. The index size equals the prod-

uct of the number of index entries and the size of each entry.

(“OOM”: out of memory, “OOT”: initialization time ≥ 24ℎ.)

Name

DLCR DLCR-BST P2H+ ARRIVAL

IT IS IT IS IT IS IT

RB 0.00797 0.243 0.00975 0.243 0.011 0.061 0.0222

AG 0.0251 0.926 0.025 0.926 0.069 0.232 0.0465

AX 100 470 1.46K 470 334 118 0.307

EP 1.11 23.4 1.69 23.4 4.4 5.85 0.632

SH 0.52 5.01 0.72 5.01 2.53 1.25 0.583

ND 5.91 138 12.3 138 14.8 34.6 0.969

BG 0.815 13.5 1.24 13.5 4.2 3.38 0.856

CT 208 1.51K 1910 1.51K 374 378 1.79

SF 0.827 4.66 1.1 4.66 3.79 1.17 0.952

WS 18.4 240 50.8 240 49.9 60.1 2.04

WG 69.1 760 163 760 193 190 16.8

YT 140 68 739 68 840 17 5.63

ZS 2.07K 10.7K 17.5K 10.7K 6.34K 2.68K 19.7

SP 79.8 675 142 675 432 169 35.9

WL 158 989 319 989 1.24K 247 87.5

DBP 393 3.83K 672 3.83K 3.43K 956 167

WLE 544 3.3K 1.06K 3.3K 4.87K 824 300

T3W 3.69K 14.6K 7.39K 14.6K 40.6K 3.64K OOT

TM 4.74K 17.6K 9.94K 17.6K 52.6K 4.4K OOT

FS 4.37K 19.1K OOM OOM 50.6K 4.78K OOT

SPL 68.2 1.25K 83.6 1.25K 713 313 42.9

FB 1.16K 26.3K 1.59K 26.3K 8.54K 6.58K 5.43K

Table 7: Query time in nanoseconds. (TQ: true query, FQ:

false query, Acc: Accuracy. "OOM" & "OOT": Ref. to Table 6.

Dataset

DLCR DLCR-BST P2H+ ARRIVAL

TQ FQ TQ FQ TQ FQ TQ Acc. FQ Acc.

RB 21 1.56K 27 7.51K 296 204 65.1K 0.582 9.57K 1

AG 22 478 39 47.2K 268 237 210K 0.973 20.2K 1

AX 270 4.82K 948 70.3K 2.53K 2.53K 198K 0.0078 72K 1

EP 67 2.39K 127 11.6K 911 786 591K 0.98 38.2K 1

SH 44.5 2.51K 104 13K 484 396 253K 0.985 52.1K 1

ND 97 1.19K 216 8.43K 1.37K 1.33K 785K 0.104 268K 1

BG 75 885 95 10K 755 676 1.48M 0.562 1.82M 1

CT 1.04K 3.76K 4.27K 24.6K 4.48K 2.09K 699K 0.0085 94.5K 1

SF 41.5 779 68.5 1.21K 480 401 263K 0.984 97.9K 1

WS 349 1.79K 1.06K 3.73K 2.06K 1.83K 420K 0.0337 209K 1

WG 370 1.63K 1.14K 5.12K 2.49K 1.92K 3.25M 0.0203 305K 1

YT 477 1.48K 1.89K 5.46K 4.21K 4.37K 1.42M 0.427 1.33M 1

ZS 685 3.76K 2.35K 13K 3.83K 2.88K 1.87M 0.01 157K 1

SP 120 1.31K 176 2.12K 2.25K 2.13K 6.99M 0.985 88K 1

WL 130.5 1.27K 200 2.06K 2.69K 2.49K 8.86M 0.966 114K 1

DBP 163 1.37K 207 2K 4.16K 3.75K 13.1M 0.908 72.5K 1

WLE 169 1.4K 196 1.99K 4.01K 3.61K 11.5M 0.314 91.4K 1

T3W 190 1.69K 220 2.53K 5.5K 5.12K OOT OOT OOT OOT

TM 196 1.75K 263 17K 5.74K 5.34K OOT OOT OOT OOT

FS 229 4.84K OOM OOM 5.83K 4.89K OOT OOT OOT OOT

SPL 629K 3.72M 633K 3.76M 7.57B 2.82B 2.1M 0.938 43.3K 1

FB 31.1M 43M 30.9M 42.7M 531M 54.2M 1.39M 0.845 374K 1

algorithm, we will update the primary index and secondary index

using exactly the same DLCR insertion and deletion algorithms.

5 EXPERIMENTS

5.1 Experimental Setup

Setting. We implement all our algorithms in C++ and compile

with g++ with full optimization. The source code of P2H+ is kindly

provided by its inventors [21]. All experiments are conducted on a

Linux machine with Intel Xeon 2.3GHz CPU and 384GB memory.

Datasets & Query sets.We conduct experiments on 22 real-world

graph datasets from various types of complex large networks, in-

cluding social networks, web networks, citation networks, and

biological networks. Table 5 summarizes the statistics of tested

datasets. All the datasets used in this experiment are publicly avail-

able from SNAP[18] and KONECT[17]. For datasets without edge

labels, we synthesize edge labels in exponential distribution fol-

lowing the setting in [21]. The number of synthetic labels is set

to 8 by default. The number |Λ′ | for the large label graphs is set
to 4 by default. We compare two kinds of queries which are true

queries and false queries. The generation strategy is the same as

[21], and we generate each type of query with three types of label

set numbers which are 2, 4, and 6. We generate 10, 000 queries for

each label set number and calculate the average query time.

Compared Algorithms. We compare our DLCR, which adopts

the query-friendly dynamic array design, against the following

methods: DLCR-BST, which uses binary search tree to stores the

index; ARRIVAL, the state-of-the-art approximate algorithm for

regular path queries [28] on dynamic graphs; P2H+, the state-of-

the-art 2-hop index for LCR queries [21] on static graphs.

Due to limited space, we cannot include all experimental results

in the paper. The additional experimental results and discussions are

included in our full version of technical report, which is available

at our source code repository. The additional experiments examine

more query workloads, the impact of graph density and the number

of label size to DLCR update and query performance, when update

is more efficient than index re-construction, the impact of number

of virtual labels, and the performance under mixing workload.

5.2 Experimental Comparisons

Exp 1: Indexing Cost.As shown in Table 6, the index construction

time of DLCR is about one order of magnitude smaller than that of

P2H+ and is nearly 2x smaller than that of DLCR-BST on average.

This is mainly due to the query-friendly design of our DLCR index

that reduces the query cost as we will show in Table 7. DLCR-BST is

further 2x faster in index construction compared to P2H+ on almost

all datasets. The main reason is that DLCR-BST only maintains a

single BST for each 𝐿𝑖𝑛 (𝑣) or 𝐿𝑜𝑢𝑡 (𝑣) while in P2H+, multiple BSTs

are maintained for different nodes in 𝐿𝑖𝑛 (𝑣) or 𝐿𝑜𝑢𝑡 (𝑣).
Next, we examine the index size of three methods. Due to the

inverted indices and other extra information we maintained in each

index entry, e.g., the last edge, the index size of DLCR, and DLCR-

BST are about 4x that of P2H+. Additionally, the initialization time

of ARRIVAl can not be ignored as its initialization for T3W, TM

and FS cannot finish within 24 hours while our DLCR finishes the

index construction for all 22 datasets within one and a half hours.

Exp 2: Query Performance. For the true query set, Table 7 shows

that DLCR is nearly one order of magnitude faster than P2H+ in

terms of query processing due to the query-friendly design of DLCR.

DLCR-BST is still around 2x faster than P2H+. DLCR is nearly four

orders of magnitude faster than ARRIVAL while DLCR could give

the exact answer. In contrast, ARRIVAL may return approximate

solutions with low accuracy on both real labeled graph (e.g., RBwith

58%, BG with 56%, YT with 43%, and FB with 85%) and synthetically-

generated labeled graphs (e.g., ND with 10%, WG with 2%, andWLE

with 32%) on true queries. Table 7 also shows that DLCR is nearly 4x
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Figure 2: Single edge deletion and batch deletion evaluations.
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Figure 3: Single edge insertion and batch insertion evaluations.

faster than P2H+ for the false query set. DLCR-BST will be around

2x faster than P2H+ in most datasets. In addition, DLCR is nearly

two order of magnitude faster than ARRIVAL. For false queries,

notice that ARRIVAL will always achieve 100% accuracy.

Exp 3:DeletionEvaluation. In this set of experiments, the deleted

edges are chosen randomly from the uniform distribution. The

number of deleted edges is set as 10𝐾 , 20𝐾 , 40𝐾 , and 80𝐾 . For each

number of deleted edges, we repeat 10 rounds and calculate the av-

erage deletion time. Remarkably, our update latency can be as small

as a few milliseconds (about 0.1 ms) even on billion edge graphs like

T3W, TM and FS. In addition, our batch deletion algorithm signifi-

cantly reduces the update cost compared to the single-edge DLCR

deletion algorithm. In particular, the batch deletion algorithm is

up to 2 orders of magnitude faster than the single-edge deletion

algorithm, e.g., on AX and CT datasets. To explain, such graphs are

citation networks and are well connected, where a single deletion

may need to update a large portion of indices. In such scenarios, our

batch deletion algorithm thus avoids a large number of unnecessary

updates and make batch deletion super efficient on such networks.

Moreover, with our batch deletion algorithm, the average update

cost is always bounded by tens of milliseconds.

Exp 4: Insertion Evaluation. The settings are similar to that in

Exp 3, where the only difference is that we insert the delete edges

in Exp 4 back. Figure 3 indicates that both single edge insertion and

batch insertion methods are efficient. In most datasets, the average

insertion time could range between 10
−3

and 10
−5

second, while

batch insertion could enhance the performance by up to an order

of magnitude when collective updates may help, e.g., on citation

networks AX and CT. Generally speaking, the DLCR insertion

algorithm is around 5x-10x faster than deletion algorithm; the batch

insertion algorithm is 2x-5x faster than the batch deletion algorithm.

6 RELATED WORK

Label Constrained Reachability (LCR) Queries. The first work

on LCR queries is proposed by [15]. They introduce a new tree-

based index framework that utilizes the directed maximal weighted

spanning tree algorithm and sampling techniques to condense the

generalized transitive closure for labeled graphs to the maximum

extent possible. The state-of-art indexing technique is P2H+, a

2-hop index with novel pruning rules and order strategies [21].

Compared with the landmark index-based algorithm[26], P2H+ has

smaller index and better query performance.

Dynamic Graph Methods. Due to the dynamic nature of real-

world networks, there is a pressing need to develop fully dynamic

solutions for graph problems. Fan et al. present a theoretical study

on what are doable and undoable for incremental graph algorithms

[10]. [19] proposes efficient algorithms for hierarchical core main-

tenance against the insertion/removal of one edge, with effective

local update techniques. The algorithms are also extended to han-

dle multiple inserted/removed edges in a batch. [9, 12, 23, 24] pro-

pose algorithms for incrementally maintaining transitive closures

on dynamic graphs. Nevertheless, these methods can not scale to

billion-scale graphs which are shown by [16]. [5, 8, 25] propose

methods to update the 2-hop labeling index. [14, 32, 33] present al-

gorithms for performing updates on a reachability index. TOL [33]

proposes incremental update methods for the 2-hop labeling index,

where TOL focuses on removing or inserting a vertex from a graph.

However, these methods cannot be extended to LCR queries on

dynamic graphs, which is the main contribution of our DLCR.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we present DLCR, an efficient 2-hop index based frame-

work for LCR queries on dynamic graphs. Extensive experiments

show the efficiency and effectiveness of our proposed algorithms.

For future work, we plan to investigate devising efficient parallel

algorithms for index construction and update algorithms.
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