
SNARF: A Learning-Enhanced Range Filter
Kapil Vaidya

MIT

kapilv@mit.edu

Subarna Chatterjee

Harvard University

subarna@g.harvard.edu

Eric Knorr

Harvard University

eric_knorr@g.harvard.edu

Michael Mitzenmacher

Harvard University

michaelm@eecs.harvard.edu

Stratos Idreos

Harvard University

stratos@seas.harvard.edu

Tim Kraska

MIT

kraska@mit.edu

ABSTRACT
We present Sparse Numerical Array-Based Range Filters (SNARF),

a learned range filter that efficiently supports range queries for

numerical data. SNARF creates a model of the data distribution to

map the keys into a bit array which is stored in a compressed form.

The model along with the compressed bit array which constitutes

SNARF are used to answer membership queries.

We evaluate SNARF onmultiple synthetic and real-world datasets

as a stand-alone filter and by integrating it into RocksDB. For range

queries, SNARF provides up to 50x better false positive rate than

state-of-the-art range filters, such as SuRF and Rosetta, with the

same space usage. We also evaluate SNARF in RocksDB as a filter

replacement for filtering requests before they access on-disk data

structures. For RocksDB, SNARF can improve the execution time

of the system up to 10x compared to SuRF and Rosetta for certain

read-only workloads.

PVLDB Reference Format:
Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher,

Stratos Idreos, and Tim Kraska. SNARF: A Learning-Enhanced Range

Filter . PVLDB, 15(8): 1632 - 1644, 2022.

doi:10.14778/3529337.3529347

1 INTRODUCTION
Filters are space efficient, but approximate, data structures that are

used to answer membership queries on a set 𝑆 . Filters allow signifi-

cant improvements in the performance for an array of applications,

including big data systems [44] and networking [4]. For example

RocksDB [15], a Log-Structure-Merge Tree (LSM) [39] based key-

value store, stores data onto disks in blocks (called SST’s). However,

because of the LSM structure, RocksDB often needs to load several

blocks from disk into main memory to determine which block con-

tains the data for a given search key. To avoid loading disk blocks

that do not contain the search key, RocksDB creates a filter per

block for all keys stored in the block.

Point filters, such as Bloom Filters, support point queries of the

form: "Is 𝑥 in the set 𝑆?". Range membership filters answer more

general queries of the form "Is there a key in the set S in between

values 𝑝 and 𝑞?" [1, 34, 47]. Here we are focused on approximate

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.

doi:10.14778/3529337.3529347

filters that guarantee that there are no false negatives. This is an
important property many applications/systems require. There may,

however, be false positives. For point queries, if the filter returns

true for a search key, the key might or might not be contained in

the block, but if it returns false it is guaranteed that the key is not

in the set/block; and this extends similarly to range queries. The

probability of a false positive for a key not in the set is the false

positive rate (FPR) of the filter; the FPR can be defined similarly for

range queries.

In RocksDB, filters are usually orders of magnitude smaller than

the blocks and are cached in main memory. Before loading a disk

block into main memory, the filters are checked if the key might be

contained in the block. A filter with low false positive rate helps

to significantly reduce the number of unnecessary I/O requests to

disk blocks to find the key. The benefit a filter can provide depends

on the trade-off between its false positive rate and the size of the

filter; the smaller and the more precise, the better it is. Interestingly,

the latency of a filter to process a query normally matters less as

they tend to protect against very expensive operations (e.g., disk

or other cold storage access) that are often orders of magnitude

slower (see also Experiment 6.2.1).

Range Filters: Range queries are often used in social web appli-

cations [9], distributed key-value storage replication [43], statistics

aggregation for time series workloads [27], and SQL table accesses

[32]. For example, from a table of customer orders, one might ask

the following SQL query to retrieve all the orders between two

particular dates: SELECT * FROM Orders WHERE Order_Date BE-

TWEEN "07-14-2014" AND "07-21-2014" . Past work has shown

that range filters can significantly improve the performance of sys-

tems for synthetic and real-world workloads. For example, [34, 47]

showed that workloads on RocksDB can benefit from range filters,

whereas [1] showed the advantages of range filters for Hekaton,

which is part of the MS SQL Server.

Existing Range Filter Designs: Past efforts to provide range

filtering resulted in the current state-of-the-art filters Succinct

Range Filter (SuRF) [47] and Rosetta [34]. SuRF utilizes a com-

pact trie-like data structure which can filter arbitrary range queries,

whereas Rosetta utilizes a different approach by using a Bloom filter

(a point query filter) [3] for range queries along with the help of a

hierarchy of prefix Bloom filters. Unfortunately, which of the two

filters is better depends highly on the workload. For the same filter

size, Rosetta has a lower false positive rate for very short range

sizes because of its clever combination of Bloom and prefix filters,

whereas SuRF has a lower FPR otherwise.

SNARF: In this paper, we introduce an entirely new approach

to range filters, called Sparse Numerical Array-Based Range Filters

1632

https://doi.org/10.14778/3529337.3529347
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3529337.3529347

CDF ModelSet (S) ={12, 35, 51, 68 ..}

Bit Positions = {1, 5, 11, 17,...}

0 0 1 0 0 00 0 0 1 ……..0
Bit Array (B)

MCDF(x) = {0.01, 0.05, 0.11, 0.17,...}

|B| = |S| x K

0 0 1 1 0 11 0 ... 1 0Compressed Bit Array (CBA)

f(x) = |B| x MCDF(x)

0 0 1 001

Figure 1: SNARF Idea: Given a set of keys 𝑆 , SNARF builds a model
𝑀𝐶𝐷𝐹 (𝑥) to estimate the empirical cdf of the keys, which it then
uses to set corresponding bits in a large bit array 𝐵 for all 𝑥 ∈ 𝑆 .
This sparse bit array which encodes key information is then com-
pressed. Themodel and the compressed bit array are themain parts
of SNARF data structure.

(SNARF). SNARF is a learning enhanced range filter
1
that models

the data distribution of the underlying key set 𝑆 . SNARF then uses

the model to encode partial information of the data in a sparse bit

array. SNARF controls the false positive rate by changing the size of

the bit array. The sparse bit array is then compressed to store it effi-

ciently. SNARF answers range queries by using the model to extract

the relevant information from the compressed bit array. Exploiting

the data distribution and using effective compression schemes al-

low SNARF to encode the data set more effectively than previous

schemes, leading to better space/false positive rate tradeoffs, while

being competitive in terms of query latency.

SNARF Results:We evaluate SNARF on multiple synthetic and

real-world numerical datasets against state-of-the-art range filters,

such as SuRF and Rosetta, and also against point filters, such as

Bloom filters [3] and Cuckoo filters [16]. We use a variety of query

workloads, such as uniform, sampled from real-world, skewed (cer-

tain part of data is queried more often), and correlated (query end-

point is close to existing key) to test the effectiveness of the filters.

For range queries on both real-world and synthetic datasets, SNARF

is consistently able to provide up to a 50x better FPR than SuRF

under the same space budget, and SNARF has up to 100x better FPR

than Rosetta under same space budget. We do note, however, that

performance depends on the dataset and query structure; for exam-

ple, we have found that Rosetta is better than SNARF specifically

in the case where the query workload has very short range queries

and high correlation between queries and keys. Moreover, for point

queries, SNARF can empirically provide FPRs that are better than

Bloom filters and slightly better than Cuckoo filters under the same

space budget across a diversity of query workloads.

Finally, we measured SNARF’s impact on performance of an

end-to-end system by integrating it with RocksDB. Here we found

that SNARF can improve the workload execution time by up to 10x

compared to SuRF and Rosetta for certain read only workloads.

In summary, we make the following contributions:
• We introduce SNARF, a novel range filter which combines

models and compression schema (Section 2).

• We provide a heuristic theoretical analysis of SNARF that

matches our empirical experiments well (Section 3).

1
We acknowledge that the term "learned" range filter might be a misnomer as we use

simplistic modelling of the data using linear splines. However, the name is in line with

previous works [14, 17, 29, 30].

• We discuss possible extensions of SNARF, including sup-

port for updates and support for approximate count queries

(Section 4).

• We evaluate SNARF against state-of-the-art baselines and

test the impact SNARF can have on a real system like RocksDB

(Section 6).

2 SNARF: A LEARNED FILTER
We first explain the idea behind SNARF (see Sec.2.1). Later, we

describe the details of the model (see Sec.2.2) and the compressed

bit arrays (see Sec.2.3.1).

2.1 SNARF Description
2.1.1 SNARFConstruction: Given a set of keys 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},
we want to build a filter that answers range queries on this set.

SNARF maps the keys into a bit array 𝐵, which has |𝐵 | = 𝐾 × 𝑛
bits for a suitably large 𝐾2

, via a monotonic function 𝑓 . Initially, all

bits are 0, but bit position 𝑓 (𝑥𝑖) is set to 1 for all 𝑥𝑖 ∈ 𝑆 . The exact
mapping function 𝑓 is 𝑓 (𝑥) = ⌊𝑀𝐶𝐷𝐹 (𝑥) × 𝑛𝐾⌋, where MCDF is

a monotonic estimate of the empirical CDF (eCDF) of the keys in

𝑆 . Storing an entire sparse bit array directly is not space-efficient,

so SNARF stores a compressed version of the bit array. The com-

pressed bit array (CBA) encodes the locations of the one bits in the

array. Fig.1 illustrates the idea of SNARF.

Alg.1 has the pseudo-code for SNARF construction. Given a set

of keys 𝑆 and scale factor 𝐾 for the bit array, the construction

algorithm outputs a model of the eCDF of the keys in 𝑆 and the

compressed bit array. The first step is to train a model to estimate

the eCDF of the keys. In the next step, this model is used to generate

the set of bit positions in the bit array that are set to one. The bit

array is then compressed into the CBA.

2.1.2 SNARF Range Query: To answer a range query [𝑝, 𝑞],
SNARF uses the model to get the bit positions 𝑓 (𝑝) and 𝑓 (𝑞) corre-
sponding to the query endpoints. The data structure then returns

true if a one bit is found in the range [𝑓 (𝑝), 𝑓 (𝑞)] of 𝐵 and false oth-

erwise. Alg.2 shows the pseudo-code for SNARF range query. Note

that we want our CBA structure to efficiently support queries of the

form: "Is there a one bit between bit positions 𝑎 and 𝑏 (inclusive)?".

Standard rank-select structures [21, 24, 40, 49] can provide com-

pressed bit arrays with an efficient predecessor query which can

be used to answer such queries. (One can check if the first one bit

preceding 𝑏 is before or after 𝑎.) Such a structure is naturally more

efficient than decompressing the entire array and checking all bits

between 𝑎 and 𝑏. While rank-select structures could be used to

speed up the computation of the a predecessor operation, we find

they take more space than alternatives to do so. In our case, space

is the primary resource we want to optimize for. This is because

the latency of a filter to process a query normally matters less in

RocksDB (see Sec.6.2.1). Also, with exponentially growing data,

it is important to be able to filter more data with smaller filters.

Thus, SNARF uses encoding schemes which provide near-optimal

compression rather than fast query responses. We discuss simple

techniques to optimize query response times in Sec.2.3.2.

2
We use 𝐾 to control the FPR of the structure which we discuss in detail later on

1633

Algorithm 1 SNARF Construction:

Input 𝑆 - set of keys

Input 𝑛 - number of keys

Input 𝐾 - Scaling factor for the bit array size

Output𝑀𝐶𝐷𝐹 - Monotonic CDF estimate of keys

Output𝐶𝐵𝐴 - Compressed bit array

Function𝑇𝑟𝑎𝑖𝑛 (𝑆) - function that returns a model to estimate the cdf of keys in set S

Function 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑆) - function that encodes the numbers in the set S

1: procedure Construction(𝑆, 𝐾)

2: //Building the monotonic CDF model for set of keys

3: 𝑀𝐶𝐷𝐹 ← 𝑇𝑟𝑎𝑖𝑛 (𝑆)
4:

5: //Get Bit positions that are set to one

6: 𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ← {}
7: for 𝑘𝑒𝑦 in 𝑆 do
8: 𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 .add(⌊𝑀𝐶𝐷𝐹 (𝑘𝑒𝑦) × 𝑛𝐾 ⌋)
9:

10: //Compress the Bit Positions that are set to one

11: 𝐶𝐵𝐴← 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡)
12:

13: return𝑀𝐶𝐷𝐹,𝐶𝐵𝐴

Algorithm 2 SNARF Range Query

Input 𝑛 - number of keys

Input 𝐾 - Scaling factor for the bit array size

Input𝑀𝐶𝐷𝐹 - Monotonic CDF estimate of keys

Input𝐶𝐵𝐴 - Compressed bit array

Input 𝑝,𝑞 - the range query endpoints

Output 𝑟 - boolean answer of the range query

Function𝐶ℎ𝑒𝑐𝑘𝑂𝑛𝑒𝐵𝑖𝑡 (𝑎,𝑏) - function that returns true if there is a 1 bit between bit

locations [𝑎,𝑏] else false.
1: procedure RangeQuery(𝑀𝐶𝐷𝐹,𝐾,𝑛,𝐶𝐵𝐴, 𝑝,𝑞)
2: //Get the bit location of the query endpoints

3: 𝐿𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐 ← ⌊𝑀𝐶𝐷𝐹 (𝑝) ×𝐾𝑛⌋
4: 𝑈𝑝𝑝𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐 ← ⌊𝑀𝐶𝐷𝐹 (𝑞) ×𝐾𝑛⌋
5:

6: //Check if 1 bit exists in the range.

7: 𝑟 ← 𝐶𝐵𝐴.𝐶ℎ𝑒𝑐𝑘𝑂𝑛𝑒𝐵𝑖𝑡 (𝐿𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐,𝑈𝑝𝑝𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐)
8: return 𝑟

2.1.3 Essential properties of Mapping Function 𝑓 .
Monotonicity: The monotonicity of the mapping function, so that

𝑝 < 𝑞 =⇒ 𝑓 (𝑝) ≤ 𝑓 (𝑞), is an essential property that ensures

no false negatives in SNARF. Monotonicity ensures that for any

range query [𝑝, 𝑞] with 𝑝 < 𝑞, any key from 𝑆 between the query

endpoints will be mapped to a position between the bit positions of

these endpoints. That is, if 𝑥𝑖 ∈ [𝑝, 𝑞], then 𝑓 (𝑝) ≤ 𝑓 (𝑥𝑖) ≤ 𝑓 (𝑞);
there is a bit set in the range [𝑓 (𝑝), 𝑓 (𝑞)]. Note, however, that it is
possible that 𝑥𝑖 ∉ [𝑝, 𝑞], but either 𝑓 (𝑥𝑖) = 𝑓 (𝑝) or 𝑓 (𝑥𝑖) = 𝑓 (𝑞),
leading to false positives.

Uniform Mapping: SNARF aims for a uniform mapping into the

bit array 𝐵 for performance reasons; that is, we desire the bits

set in the array to be as equally spaced as possible. Mapping the

keys approximately uniformly allows the range filter to be robust

to skewed query workloads (workloads where certain part of the

range is queried more often) as we discuss in detail in Sec.3. The

empirical cumulative distribution function of a (discrete) set 𝑆 has

the property that it maps the keys uniformly over the range [0, 1].
Hence, SNARF makes use of a monotonic CDF model of the set 𝑆

to achieve a monotonic and approximately uniform mapping of the

keys. The details of the model we utilize are presented in Sec.2.2.

2.2 Model Details
As discussed before, the model needed for SNARF must be mono-

tonic and provide an estimate of the empirical CDF. Further, we

want the space overhead added by the model to be small. Here,

we present models for fixed size numerical values such as doubles,

floats, and 32/64/128 bit signed/unsigned integers. Recently, a hier-

archy of linear models have been used for indexing numerical keys

[14, 17, 25, 29]. This ensemble of linear models is both small in size

and provides fast evaluation for numerical values.
3
However, these

models do not always guarantee monotonicity.

Inspired by them, we use linear spline models for CDF estimation.

Given a set 𝑆 , the idea is to use a small sample of keys from the

input set and build linear models between consecutive keys in the

sample to estimate the CDF as shown in Fig.2. This sample is stored

in a sorted order, and we refer to it as the key array. The size of the

sample determines how large the model is and the quality of the

CDF estimation. Larger samples lead to better CDF approximation

and larger models which increase the space used by SNARF.

12 35 67 80Key Array (T)

L1
s1,y1

Array of
Linear Models

L2
s2,y2

L3
s3,y3

L4
s4,y4

L5
s5,y5

1.0

0.75

0.5

0.25

0.0
12 35 67 80

L1
L2

L3
L4 L5

Key (x)

CD
F

Set (S): 3 5 12 13 25 35 47 57 67 72 75 80

.08eCDF: .17 .25 .33 .41 .50 .58 .66 .75 .83 .91 1.0

CDF
Model

Figure 2: SNARF Numerical Model

Querying the Model: The number of keys stored by the model is

one less than the number of linear models. The first step is to binary

search in the sorted array of keys (𝑀𝐶𝐷𝐹 .𝑘𝑒𝑦𝑠). The number of

keys in the array that are less than the query point 𝑥 gives the index

to the linear model parameters that are supposed to be used. We

then use the corresponding line’s slope and intercept to obtain the

final estimated CDF value for the value. If the computed CDF is

outside the range [0, 1], we correct the value to 0 or 1 as appropriate.
Training the Model: During training, we sort the input set 𝑆 and

compute the empirical CDF. We then choose keys at regular in-

tervals (every (𝑁 /𝑅)𝑡ℎ key for a suitable 𝑅) and these keys form

endpoints for linear spline models. Between every pair of consec-

utive sample points, we compute the slope and 𝑦-intercept of the

line segment connecting the two points.

The number of line segments we use in our model can be tuned to

improve the tradeoff between the CDF estimate and overall model

size. The more lines the better one can potentially approximate the

CDF, but the more space used as well. A good value for number of

line segments will depend on the dataset. We empirically found that

using |𝑆 |/1000 line segments generally gives good CDF estimates

along with small model size. The space overhead of model when

using |𝑆 |/1000 line segments is approximately 0.2 bits per key.

3
We experimented with monotonic cubic splines [18] but found them to be slightly

worse than a series of linear models

1634

2.3 Managing the Bit Array
We describe compression schemes for bit arrays and simple tech-

niques to make range queries faster on the compressed bit array.

2.3.1 Compressing the Bit Array. The main idea for space effi-

cient encoding of a sparse bit arrays is to simply encode the posi-

tions of the one bits. We discuss two such specific techniques.

Golomb Coding: Golomb coding is a form of lossless delta com-

pression which is the optimal lossless compression scheme for a

sparse bit array with uniformly randomly spread one bits [20].
4

In general delta compression schemes, the values to be encoded

are sorted and then the differences, or deltas, between consecutive

values are stored efficiently. In Golomb coding, for each delta value

𝑋 to encode, 𝑋 is divided by a fixed constant𝑀 to obtain a quotient

⌊𝑋/𝑀⌋ and a remainder 𝑋%𝑀 . The remainder is stored in a fixed

length binary format using log
2
(𝑀) bits, whereas the quotient,

which is expected to be small, is encoded in unary. The choice

of the fixed constant is important in determining the size of the

compressed array. For uniformly randomly generated values, the

average delta value is the optimal constant. In our case, the average

delta value will be the bit array size 𝑛𝐾 divided by number of one

bits, which is approximately 𝑛. We therefore use 𝐾 as the constant

for our Golomb coding. Fig.3 describes an example of Golomb

encoding a sparse bit array.

Bit Positions: 3 5 11 16 24 25 28 32 35 41 43 47

Bit Array: 0 0 1 0 0 01 0 0 1 ……..0

Delta Values: 2 6 5 8 1 3 4 3 6 2 4

Golomb Coding:
(M=4)

1 10 01 10 01 01 001 00 ………. 01 00

Q = ⌊X/M⌋ R = X%M 000..01

Q zero’s
Q+1 bits

Unary
Encoding

Binary
Encoding

101..1

Log2(M) bits

Golomb Coding:
Of value X

1 2 3 4 5 6 7 8 9 10 11

 5-3 11-5 16-11 24-16 ……………………….. 47-43

1100110010100100….0100Final Compressed :
Bit Array

Figure 3: Golomb coding

In order to check if a bit is one in the range of bit positions [𝑎, 𝑏],
one needs to decode the array from the start by adding the deltas

one by one. This process continues until you either find a 1 after 𝑎

and before 𝑏 or you go past 𝑏. Decoding the array for each query

can be slow; we discuss better approaches shortly.

Elias-Fano Encoding: Elias-Fano is a form of entropy encoding

to represent a monotone non-decreasing sequence of 𝑁 integers.

The bit positions in our case form the non-decreasing sequence. In

Elias-Fano encoding, the integers are first binary encoded using

log
2
(𝑀) bits if [0, 𝑀) is the universe range. This representation

is split into two parts: an upper log
2
(𝑁) bits and the remaining

lower log
2
(𝑀/𝑁) bits. The lower bits are trivially stored by con-

catenating them and this uses 𝑁 log
2
(𝑀/𝑁) bits. The higher part

is represented by a bit vector of 2𝑁 bits as follows. We first create

a count of occurrences of upper bit values for all values between

[0, 𝑁 − 1]. We then put this count vector in unary notation; that

is, each count is represented in unary (a sequence of 1s) with 0

4
We expect nearly uniform randomly place one bits in our case.

stop bit between values. This leads to 2𝑁 total bits, with one bit

set to 1 for each of the 𝑁 elements and one 0 bit for each possible

values for the upper bits. Finally, the Elias-Fano representation is

the concatenation of these two vectors. Fig.4 describes a Elias-Fano

encoding for a set of integers. In our case, we will be encoding the

bit positions so 𝑀 = 𝑛𝐾 and 𝑁 = 𝑛. Thus, we will binary encode

the log
2
(𝐾) lower bits and unary encode the upper log

2
(𝑛) bits for

each bit position.

Bit Positions
(N=8):

2 3 5 7 11 13 24

Bit Array
(M=32):

1 0 1 0 1 01 0 0 1 ……..0 0

Elias Fano
Coding :

(M=32,N=8)
000 10 000 11 001 01 001 11 ………. 111 01

1 2 3 4 5 6 7 8 9 10 11 32

29

10 11 01 11 …... 01

Lower 2 bits

000 001 010 011 100 111

110110101000101

110101

Upper 3 bits

Unary Encode

Count: 2 2 1 1 0 0 1 1

10 11 01 11 … 01

Concatenate

Final Compressed :
Bit Array

110110101000101 10 11 01 11 … 01

Figure 4: Elias Fano Encoding

While checking if a bit is one in the range [𝑎, 𝑏], one can decode

the upper bit array from the start (similar to Golomb coding) but

accessing the lower part is not always necessary. Any bit position

with upper bit value less than ⌊ 𝑎

2
𝑀−𝑁 ⌋ will definitely be smaller

than 𝑎. This is because the value of the lower part can be at max

2
𝑀−𝑁 − 1 and that is not enough for it to be greater than 𝑎. Thus,

we only need to check the lower bits if the upper bits are relevant.

This property greatly reduces the amount memory accessed during

a range query compared to Golomb coding. On the other hand,

Elias-Fano coding uses slightly more space (≈ 0.4-0.5 bits per key)

than Golomb coding. Thus, Elias-Fano coding has a faster query

time compared to Golomb coding but with a slightly higher space

overhead.

2.3.2 Making Compressed Bit Arrays Efficient: As noted ear-
lier, simply decoding from the beginning is an expensive approach;

in the worst case, we might need to decode the entire bit array.

To avoid this, we split the bit array into equal sized segments and

then compress them separately. If 𝑛𝐾 is the bit array size and 𝑛

is the number of keys, we divide the bit array into 𝐾𝛽 sized seg-

ments generating 𝑛/𝛽 segments. Now to perform a range query

[𝑝, 𝑞] for 𝑆 we only need to decode the corresponding segments

that overlap the range [𝑓 (𝑝), 𝑓 (𝑞)] in the CBA. On an average each

segment has around 𝛽 one bits. While answering the range query

[𝑝, 𝑞], one only needs to consider segments from segment number

⌊𝑓 (𝑝)𝛽/𝑛⌋ to ⌊𝑓 (𝑞)𝛽/𝑛⌋. The first value greater then 𝑓 (𝑝) either
exists in segment number ⌊𝑓 (𝑝)𝛽/𝑛⌋ or in the next non-empty seg-

ment. Generally, decoding segment number ⌊𝑓 (𝑝)𝛽/𝑛⌋ is sufficient

as we find a number greater than 𝑝 in it or the next segment.

Even though the uncompressed bit array size is the same, the

compressed size of each segment differs. Hence, we need to store the

starting point of each compressed segment. This creates a tradeoff

between space used by SNARF and the range query response time

provided by SNARF. Using more segments would lead to faster

queries but larger metadata space overhead. Empirically, we found

that 𝛽 ≈ 50 − 100 provides good range query response times and

has negligible memory overhead (shown in Sec.6.1.6).

1635

3 ANALYSIS
In the following section, we provide an analysis regarding the trade-

off between the space used by SNARF and the corresponding false

positive rate. We show that for point queries SNARF is competitive

with Bloom filter variants. The results extend to queries over small

ranges in the natural way. While this analysis is only for certain

workloads, it provides understanding for why SNARF works well

in many scenarios.

We start by showing that SNARF for uniformly distributed queries

(point queries and small ranges) provides an FPR of approximately

1/𝐾 while using 2.4 + log
2
(𝐾) bits per key.

Initial Assumptions:We assume all key values are in the range

[0, 𝑧] for some suitably large 𝑧 with 𝑧 >> 𝑛𝐾 .5

Notation: Our set 𝑆 of 𝑛 keys 𝑆 = 𝑥1, 𝑥2, .., 𝑥𝑛 . We use a model with

𝑡 linear models and thus, we have one linear model per 𝑛/𝑡 points.
Recall we use a bit array of size 𝑛 × 𝐾 and divide it into blocks of

size 𝐾𝛽 bits for faster queries; we assume also a per block metadata

of 𝑐 bits.

Analysis: Our goal is to show that for uniform workload SNARF

provides a false positive rate of 1/𝐾 for point and small range

queries, while using around 2.4 + log
2
(𝐾) bits per key. For uniform

point queries, we have 𝑧 total queries out of which 𝑧−𝑛 are negatives.
We proceed by showing that SNARF only gives false positive for

(𝑧 − 𝑛)/𝐾 point queries.

We divide the key range into 𝑡 segments of size Δ𝑧1,Δ𝑧2, ...Δ𝑧𝑡 ,
where

∑𝑡
𝑖=1 Δ𝑧𝑖 = 𝑧 and each segment has a separate linear model.

Let the corresponding segment endpoints be 𝑧0, 𝑧1, . . . , 𝑧𝑡 . For each

segment the following holds:

• The number of keys from 𝑆 in the segment [𝑧𝑖−1, 𝑧𝑖) is 𝑛/𝑡
as we build separate linear model for every 𝑛/𝑡 keys.
• Over each segment [𝑧𝑖−1, 𝑧𝑖), we have a total of 𝑧𝑖 − 𝑧𝑖−1
distinct possible point queries out of which ((𝑧𝑖−𝑧𝑖−1)−𝑛/𝑡)
are negative queries.

• The keys of 𝑆 in the segment [𝑧𝑖−1, 𝑧𝑖) are evenly spread

over the range [(𝑖 − 1) (𝑛𝐾/𝑡), 𝑖 (𝑛𝐾/𝑡)) in the bit array.

An implication of these statements is that for a non-key in the range

[𝑧𝑖−1, 𝑧𝑖), the probability of false positive is at most the number of 1

bits in the range, which is at most 𝑛/𝑡 , divided by the corresponding
size of the range in the bit array, which is 𝑛𝐾/𝑡 . It follows that the
number of keys that give false positives is

𝑡∑
𝑖=1

((𝑧𝑖 − 𝑧𝑖−1) − 𝑛/𝑡)) ×
𝑛/𝑡
𝑛𝐾/𝑡 =

1

𝐾

𝑡∑
𝑖=1

((𝑧𝑖 − 𝑧𝑖−1) − 𝑛/𝑡)) .

But since

∑𝑡
𝑖=1 (𝑧𝑖 − 𝑧𝑖−1) = 𝑧 the summation collapses, giving the

total number of false positives is (𝑧 − 𝑛)/𝐾 . Since, we have 𝑧 − 𝑛
negatives in the range the false positive rate turns out to be 1/𝐾
for the uniform distribution. This shows that for uniform workload

using a bit array that is 𝐾 times larger than the number of keys

yields a false positive rate of approximately 1/𝐾 for point queries.

Extending to small ranges: Here, we perform a similar analysis

for uniform range queries of size 𝑅. The main idea is to show that

the total number of false positive range queries is at most the total

5
If 𝑧 < 𝑛𝐾 , then each value in the domain would likely map to a different bit position.

If each value has a different bit position then false positive rate would be zero.

number of false positive point queries. We show this for a region

and then aggregate across the entire domain.

Consider a region [𝑝, 𝑞] of the domain such that all points in the

region map to a one bit and values just outside the region map to

zero bits. That is, the bit at location 𝑓 (𝑝 − 1)) is 0, and the bit at

location 𝑓 (𝑞 + 1)) is 0, but for all 𝑥 ∈ [𝑝, 𝑞], the bit at 𝑓 (𝑥) is 0. Let
𝑙 be the number of keys in this region. The number of false positive

point queries is (𝑞 + 1− (𝑝 + 𝑙)). The total number of range queries

of size 𝑅 intersecting with the region would be (𝑞 + 1 + 𝑅 − 𝑝). Out
of the these, the number of true positive range queries is at least

(𝑙 + 𝑅) as we show later. Thus, the false positive range queries end

up being at most (𝑞 + 1 + 𝑅 − 𝑝) − (𝑙 + 𝑅) = (𝑞 + 1 − (𝑙 + 𝑝)) which
is exactly equal to the number of false positive point queries in the

region. Now, we can simply sum up the queries in each such region

to get the total number. Thus, we can conclude that total number

of false positive range queries is at most the total number of false

positive point queries.

We argue that the number of true positive range queries is at

least 𝑙 + 𝑅 in a region. Let 𝑘1, 𝑘2, ...𝑘𝑙 , be the keys in the region

[𝑝, 𝑞] in sorted order For the smallest key 𝑘1 in the region, we

have 𝑅 + 1 true positive ranges of size 𝑅 as enumerated by set

{(𝑘1 − 𝑅, 𝑘1), (𝑘1 − 𝑅 + 1, 𝑘1 + 1), ...(𝑘1 − 𝑅 + 𝑅, 𝑘1 + 𝑅)}. Now, if we
consider 𝑘2, then we can add a unique true positive range query

(𝑘2, 𝑘2 + 𝑅) to the set. Similarly, every subsequent addition of a key

increases the size of the set by at least one. Earlier, we showed that

the total number of false positive point queries is 𝑧/𝐾 . The number

of negative range queries is at least 𝑧 − 𝑛𝑅. Thus, the false positive
rate for range queries is at most

(𝑧/𝐾)
𝑧 − 𝑛𝑅 ≈

1

𝐾

Here the approximation holds for small ranges 𝑅, so that 𝑛𝑅 << 𝑧,

yielding a false positive rate close to 1/𝐾 .

Extending to skewed workloads: We assume there is a distri-

bution with cdf𝑤 (𝑥) that generates a point query, such that over

suitably small intervals [𝑧𝑖−1, 𝑧𝑖], the probability of querying any

point in the range is approximately uniform. Each segment would

independently have a false positive rate of approximately 1/𝐾 , thus
it follows that the false positive rate for point queries is:

𝐹𝑃𝑅 =

𝑡∑
𝑖=1

(𝑤 (𝑧𝑖) −𝑤 (𝑧𝑖−1)))×
𝑛/𝑡
𝑛𝐾/𝑡 =

1

𝐾

𝑡∑
𝑖=1

(𝑤 (𝑧𝑖) −𝑤 (𝑧𝑖−1))) .

The ratio in the summation is approximately 1/𝐾 , giving an

approximate false positive rate of 1/𝐾 .
We indeed observe that the false positive rate is approximately

1/𝐾 for point queries as well as range queries over various query

distributions for SNARF empirically for synthetically generated

datasets and workloads, as we discuss in Sec. 6.1.1.

Model Size: The size of the model is dependent on the number of

keys and linear models it stores. We assume the linear models utilize

2 double values and hence we use 128 bits per linear model. For

uint64 integers, we need 64 bits to store each key in the key array.

In our experiments, for example, we stored 𝑛/1000 models and thus,

the space used by model is around 192𝑛/1000. This accounts to
approximately 0.2 bits per key.

1636

Compressed Bit array Size: Given that the bit array is 𝐾𝑛 bits

long, the compressed version of the bit array using Golomb and

Elias Fano coding takes no more than 2𝑛 + 𝑛 log
2
(𝐾) bits in total

6
.

This is because the unary code for both Golomb and Elias Fano

coding takes no more than 2𝑛 bits and the binary representations

take log
2
𝐾 bits per key . The space overhead due to dividing the

compressed bit array into blocks of size 𝛽𝐾 bits is approximately

𝑛𝑐/𝛽 , bits where 𝑐 is the number of bits per block needed to store

the metadata. In our experiments, 𝑐 is around 20 bits and we fix 𝛽

to be around 100. Thus, the space used by SNARF per key is around

(2 + log
2
(𝐾) + 𝑐/𝛽 + 192𝑛/1000) ≈ (2.4 + log

2
(𝐾)) bits7.

Recall that our heuristic analysis gives a false positive rate for

point queries of 1/𝐾 . This is close to the theoretical space lower

bound of log
2
(𝐾) bits per key for Bloom filter variants [4]. Empir-

ically we observed that SNARF gives a similar false positive rate

for point queries as cuckoo filters with the same space usage on

synthetic datasets and workloads as shown in Sec.6.1.1.

4 DISCUSSION
We discuss here various aspects of SNARF behavior, including

performance on workloads with high key-query proximity, SNARF

use for other queries, and handling updates.

4.1 Key-Query Correlation in Workloads
For the purpose of range filters, we say that a workload is correlated

with the data, if the end point of a query is consistently close to

some key. Assume a data set contains all multiples of 10 from 1 to

1000 (e.g., 10, 20, 30,...,1000). A correlated workload would be one

which consistently ask for ranges close to these keys (e.g., 10.01-

11.01, 28.99-29.99, etc.). When a query end point is consistently

close to an actual key but the query does not include a key, it may

yield a false positive in SNARF and SuRF. Meanwhile, Rosetta is

relatively unaffected by correlated queries as it is uses Bloom filters

which are robust towards correlation.

The fact that performance degrades for SuRF and SNARF for

correlated queries in these ways is not surprising based on the

lower bound result in [22]. The lower bound shows that a range

filter that supports range queries up to size 𝑅 and guarantees a

false positive rate of FPR will take at least log
2
(𝑅) + log

2
(1/FPR)

bits per key. Hence, for a fixed memory budget, a range filter data

structure cannot handle large ranges and a low false positive rate

simultaneously without making further assumptions about the data

set or workload.

Due to this FPR degradation in SNARF with correlation, Rosetta

turns out to be the better filter for workloads with highly correlated

and very short range queries. We demonstrate these behaviors

empirically in Sec.6.1.1. In big data systems like RocksDB, data is

stored in multiple blocks (called SST’s in RocksDB) with each block

having its own filter. Even if a query is correlated to a key in a

certain block, SNARF is still useful for the rest of the blocks (as

shown in Sec.6.2).

6
Note this is the worst case space used. Golomb coding generally uses less space than

2𝑛 + 𝑛 log
2
(𝐾) bits.

7
In practice, we do even better than (2.0 +log

2
(𝐾)) bits per key

4.2 Handling Updates
A variety of systems like LSM-based key-value stores use immutable

files and thus do not need filters that support updates. On the other

hand, OLTP systems which are not based on log structured storage

schemes would benefit from an updatable range filter. SNARF is

able to naturally support updates owing to its design. To support

updates, we keep the mapping function static and only modify the

bit array. Because we divide SNARF into small blocks for query

efficiency, incremental updates only affect the corresponding block

without affecting other blocks.

Update Procedure: To perform an insertion/deletion of a key,

we use the mapping function to get the bit location of that key. The

bit location is used to identify the corresponding block. We simply

add/remove the bit location from the block depending on whether

it was an insert/delete. In our basic implementation, we allocate

a new block and copy all the bit locations from the old block to

the new one after adding/removing the bit location corresponding

to the update. Updates to a block can be made faster by using the

standard technique of over-allocating memory for that block.

Particularly with deletes, removing a bit location might lead to

inconsistency as multiple keys might be mapping to the same bit

location. A simple workaround for this is to store duplicates of

the bit location. If 𝑑 keys map to the same bit location, we store

precisely 𝑑 − 1 duplicates.8 We show some experiments with our

basic implementation of updatable SNARF in Sec.6.1.8.

Effect of Updates on SNARF’s FPR: We modify the bit array

but the mapping function(𝐶𝐷𝐹 (𝑥) × 𝑛𝐾) remains static during

updates. Updates can lead 𝑛 and𝐶𝐷𝐹 (𝑥) of the mapping function to

diverge from the ideal values.We refer to updates that do not change

the distribution of the data as in-distribution updates whereas the

ones who do as out-of distribution updates.

In-distribution updates do not change the data distribution but

may affect the number of keys. Let the final number of keys after

updates be 𝑛′. After the updates, the ideal mapping function would

have been 𝐶𝐷𝐹 (𝑥) × 𝑛′𝐾 to achieve an FPR of 1/𝐾 , whereas we
use𝐶𝐷𝐹 (𝑥) ×𝑛𝐾 . The FPR for SNARF thus ends up being 𝑛′/(𝑛𝐾)
instead of 1/𝐾 . If the in-distribution updates are dominated by

inserts, then the FPR becomes worse, and similarly with deletions

it gets better.

Out-of-distribution updates may change the data distribution

and the number of keys. For out-of distribution updates, predicting

the FPR is more complex and it also depends on distribution of

queries. We expect the combined effect of change in 𝑛 and 𝐶𝐷𝐹 (𝑥)
to worsen the FPR of SNARF more than in-distribution updates.

The above discussion also applies to the case of append-only

databases. In this setting, when a series of updates significantly

reduces the FPR sufficiently, the model should be re-trained and a

complete rebuild of the structure would be necessary.

5 RELATEDWORK
Filter Data Structures: There is a long history of using compact

filters to represent sets that are deemed too expensive to store and

query explicitly, for reasons including memory limitations, speed,

hardware amenability, and others. Indeed, there are now many

variants of the canonical Bloom filter [3] that use various hashing

8
Duplication adds small space and query latency overhead for small values of K and

the impact is not significant for larger K’s.

1637

schemes to encode the key set (e.g., Cuckoo filters, Quotient filters,

Xor filters, Ribbon filters [2, 13, 16, 23]). These filtering schemes are

limited to testing a single key at a time. In some ways, our technique

resembles compressed Bloom filters [37] and Golomb coded sets

[41]. However, these structures do not handle range queries nor do

they take advantage of the data distribution.

We note that theoretical results from [22] show that in the worst

case, a data structure that can answer a range query of size up

to 𝑅 with a false positive rate of FPR needs to store Ω(log
2
(𝑅) +

log
2
(1/FPR)) bits per key. Their lower bound suggests looking for

structures that may not have worst case guarantees, which can

obtain better performance in practical scenarios by focusing on the

data and query distributions.

Learning Enhanced Data Structures and Algorithms:We uti-

lize the incorporation of learned models into traditional struc-

tures and algorithms. This technique has been applied for indexing

[11, 14, 17, 19, 25, 28] and sorting [30, 31]. However, while both like

SNARF leverage a model of the eCDF, those structures cannot be

used as range filters unless they store all keys, which would not

make them space efficient (e.g., one should consider how a B-Tree

could be used as a space efficient Range or Bloom filter, which

is equally hard/impossible). Learning-enhanced approaches also

have been proposed for Bloom filters design [35, 38, 45] but again

they are not designed for range queries. Moreover, existing ml-

enhanced bloom filters are actually based on classification models,

not empirical CDFs.

LSM based Key Value Stores: An important application of fil-

ter structures are key-value store data systems [26] based on log-

structured merge trees (LSM) [39]. Numerous workloads served by

key-value stores (social media, networking, security) include heavy

portions of both point and range queries. LSM-based key-value sys-

tems store data in multiple immutable files on a disk. Retrieving a

particular item or set of items in a particular range leads to multiple

expensive I/O’s to look up the items in these immutable files. In

many settings, the item may not be present in the files, leading to

unnecessary I/O’s that degrade total query response time. Modern

LSM-based key-value systems have extended the basic LSM struc-

ture with in-memory filters to address this problem: if a query has

no corresponding item, the filter most likely returns false and saves

expensive I/O.

Adaptive Range Filter: The Adaptive Range Filter (ARF) [1] uses
a binary trie to encode integer key spaces. ARF only stores a number

of prefixes of the key set and range queries are then processed by

searching the trie for any prefixes of the given range. If a leaf node

results in a false-positive, then it is extended until it would no longer

do so and, if needed, an old branch is pruned to maintain memory

constraints. ARF is not a space efficient data structure for many

workloads and in some cases 1300× bigger than SuRF while having

a worst FPR (see [47]). Hence, we do not consider ARF further here.

SuRF: The Succinct Range Filter (SuRF) [47] utilizes a compact

trie-like data structure which can filter arbitrary range queries. The

trie is culled at certain prefix lengths. The basic version of SuRF

stores minimum-length prefixes such that all keys can be uniquely

represented and identified. Other SuRF variants store additional

information such as hash bits of the keys (SuRF-Hash) or extra bits

of the key suffixes (SuRF-Real). A weakness of SuRF is that for point

queries, SuRF can provide up to 100x worse FPR compared to Bloom

filter variants such as Cuckoo filters under the same space budget.

Rosetta: Rosetta utilizes a different approach that performs better

for point queries, correlated workloads, and very short ranges.

Rosetta essentially uses a Bloom filter for range queries along with

the help of a hierarchy of prefix Bloom filters that form an implicit

segment tree. Empirically, this design helps Rosetta achieve little

to no degradation for point queries compared to Bloom filters. On

the other hand, the FPR for Rosetta, while good for small ranges,

becomes worse with increasing range query size. For large range

queries, Rosetta provides almost no filtering.

LSM Range Queries: ElasticBF [33] proposes a method to adapt

Bloom filters in LSMs to query workload. The idea is to use larger

filters for hot regions which can be used with SNARF or any other

range filter as well. BloomRF [42] is another proposed filter which

uses the idea of implicit segment tree with hierarchy of filters

similar to Rosetta. It also suffers from FPR degradation with range

size like Rosetta. Orthogonal to our approach, REMIX [48] focuses

on making range queries faster by creating an alternative path on

top of an LSM tree that maintains range indexing info.

Compression Schemes: SNARF needs to compress a sparse bitmap

of size 𝑛𝐾 with 𝑛 one bits. Assuming a uniform random spread of

the one bits, the asymptotic information theoretic lower bound for

lossless compression of such a bit array would be log
2
(𝐾) bits per

key (log
2
(𝐾) −𝑂 ((log𝑛𝐾)/𝑛) bits per key to be precise). Golomb

Coding and Elias Fano Coding are near optimal coding schemes as

they use at most 2 bits per key over this lower bound (2𝑛+𝑛 log
2
(𝐾)).

Other compression techniques such as WAH[12], CONCISE[8], and

Roaring[5] are less space efficient for our particular task, though

they can be somewhat faster, so if speed was a concern they could

be substituted for our compression approach.

6 EXPERIMENTAL EVALUATION
We now demonstrate that SNARF can bring more than one order of

magnitude improvement when compared to state-of-the-art filters.

We evaluate SNARF both as a standalone filter as well as part of

RocksDB.
9

6.1 Standalone Analysis
Our experiments comparing SNARF against other baselines aim to

support the following key claims:

• SNARF offers a better FPR-space tradeoff curve than other

baselines on various synthetic and real world datasets/workloads.

• The FPR provided by SNARF is robust to increasing query

range sizes as well as skew in query workload (certain part

of data queried more often).

• SNARF performance drops with correlation (as discussed in

Sec. 4.1) resulting in Rosetta being better for very short and

highly correlated range queries.

• SNARF has a reasonable construction time and its query

response time can be tuned as needed. SNARF with Elias

Fano encoding has a faster query response time than with

Golomb Coding at a slightly higher space cost.

• SNARF supports updates at reasonable throughput.

9
For our experimental design, we follow the evaluation setup as done in SuRF and

Rosetta as much as possible.

1638

We now provide experiment details.

Baselines:We evaluate SNARF against three other baselines:

SuRF: We use the SuRF implementation from [7] with real

suffixes as they provided the best performance.
10

Rosetta: We use the original Rosetta implementation [34].

Cuckoo Filter: For our point queries, we compare against the

Cuckoo Filter implementation from [6] in the semi-sorted setting

as it achieved the best FPR-space tradeoff.

Datasets: For our experiments, we build a filter on 100 million

keys chosen from the following datasets.
11

We use two synthetic

datasets and three real world datasets from [36]:

Uniform Random: Keys are generated uniformly at random

in the range [0, 250].
Normal: Keys are generated from normal distribution (𝑁 (𝜇 =

100, 𝜎 = 20)) and are linearly scaled to range [0, 250].
wiki: Keys represent the time an edit was made on Wikipedia.

osm: cell IDs from Open Street Map representing a location.

fb: unique Facebook user IDs [46].

Workload: We use 100 million queries for our experiments. The

queries are of the type [left,left+range_size]. If range_size=0, then
the query is a point query. We first generate the left endpoint(left)
of the range query from a certain distribution and then the right

endpoint of the query is calculated by adding the left endpoint and

the range_size. The range query workloads use a range size of 256

while the mixed-query workloads use range sizes of 0, 16, 64 and

256 in equal proportion. We generate the left endpoint(left) of the
queries in following manner:

Uniform Random: left endpoint chosen uniformly at random

in the range [0, 250].
Exponential:We use an exponential distribution(𝑝 (𝑥) = 𝜆𝑒−𝜆𝑥 ; 𝜆 =

10) which results in certain part of the data being queried more

often. We then scale them to range [0, 250].
Correlated: This distribution generates queries which are close

to the keys. A key is chosen uniformly at random from the dataset

and then left endpoint is chosen uniformly at random from [key,

key+2
30∗(1−𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒)

]. Higher 𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 implies increased prox-

imity between keys and queries, so that 𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 = 1 generates

extremely correlated queries (left end point being 𝑘𝑒𝑦 + 1) whereas
𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 = 0 generates queries independent of the key value.

Sampled Data: This is used to generate range queries for real

world datasets (as previously done in SuRF). We first divide the

dataset into two equally sized parts by choosing keys uniformly at

random. A filter is built on one half of the dataset and the other half

is used as the left endpoints for queries in the respective workload.

SNARF parameters: The CDFmodel uses (𝑁 /1000) linear models

unless stated otherwise. By default, we choose 𝛽 = 100 and thus

divide the bit array into (𝑁 /100) equally sized segments. We use

Golomb coding for SNARF unless specified.

10
Note, SuRF has a limited range of operation as the implementation starts with

minimum of 10 bits per key (0 bits as the suffix length).

11
We evaluate on integer keys but would also work for floats. Floats are numerical

keys, the current CDF model for SNARF works for them. We expect minimal change

in the performance of SNARF for floating point values.

6.1.1 FPRvs Space Tradeoff for SyntheticDataset/Workloads:
In Fig.5(A), each subfigure corresponds to a particular key and query

distribution along with a particular query workload. Each subfigure

shows the space used by the baselines in bits per key and the FPR

achieved by them on the corresponding query workload. For point

queries, SNARF achieves performance similar to Cuckoo filters

for all cases. For range queries, SNARF consistently has a better

Pareto curve than all other baselines. When using 16 bits per key,

SNARF and SuRF provide false positive rates of 6.2 × 10
−5

and

1.1× 10−3, respectively. Rosetta is competitive for point queries but

its performance degrades as query range size increases.

Even with exponentially distributed data, SNARF maintains its

performance as the CDF model can capture this skew in data dis-

tribution. As discussed in Sec.3, mapping the keys evenly across

the bit array results in a robust false positive rate and consistent

performance across different skewed query distributions.

6.1.2 FPRvs SpaceUsedTradeoff forRealDataset/Workloads:
In Fig.5(B), each subfigure corresponds to a particular dataset along

with a particular query workload. Each dataset is divided into two

equal parts. One part forms the set of keys and the other half forms

the left endpoint of the query. The right endpoint is decided by the

range query size.

SNARF has a better Pareto curve than other baselines for all cases.

SNARF is able to perform particularly well on real-world datasets

due to certain patterns present in them. A common pattern we ob-

served in our real-world datasets is that they have large empty con-

tiguous ranges; for example, S={10,78,95,10045,10052,10089,30011,.....},

where the sorted keys suddenly jump by large amounts. While we

do not have a clear global reason for such behavior, it is natural

for settings such as when the set is a collection of numerical IDs;

different ID subranges may be assigned by different entities. Both

SNARF and SuRF effectively model large empty ranges in a way

that is both succinct and avoids false positives.

In some cases, while keys may be from a large domain, they may

be concentrated in a small range. For example, the keys may lie in

the domain [0, 232) but all appear in the small range [210, 212] . The
modelling step of SNARF automatically takes advantage of this type

of pattern to benefit performance
12
. For most cases, SNARF is able

to achieve a low FPR (below 10
−4
) using less than 10 bits per key. For

the osm dataset, SuRF also achieves a FPR below 10
−4

but still uses

more memory (≈ 15−16 bits per key). Similar to our previous exper-

iments on synthetic data, Rosetta is competitive for point queries

but its performance degrades as query range size increases.

6.1.3 Correlated Workload: As discussed in Sec.4.1, the corre-

latedworkloads arewhen the query endpoint is close to a key, which

is more likely to lead to a false positive in SNARF and SuRF. In Fig.6,

we show the FPR vs key-query correlation degree tradeoff for vari-

ous baselines for a fixed memory budget of 15 bits per key. Higher

the key-query correlation degree closer the queries are to the keys.

As expected, FPR of both SNARF and SuRF degrades with increasing

correlation. Both SNARF and SuRF provide virtually no filtering for

uniform dataset when workload is highly correlated. On the other

12
This is similar to the case when 𝑧 < 𝑛𝐾 and all values are mapped to distinct bit

positions leading to no false positives.

1639

Rosetta

U
ni

fo
rm

R

an
do

m
 K

ey
s

U
ni

fo
rm

R

an
do

m

Q
ue

rie
s

Point Queries
Range Queries

(sz=256)
Mixed Queries

(sz={0, 16, 64,256})

N
or

m
al

K

ey
s

U
ni

fo
rm

R

an
do

m

Q
ue

rie
s

U
ni

fo
rm

R

an
do

m
 K

ey
s

Ex
po

ne
nt

ia
l

Q
ue

rie
s

SNARF SuRF Cuckoo Filter

FB
 D

at
as

et
Sa

m
pl

ed

D
at

a
Q

ue
rie

s

W
ik

i D
at

as
et

Sa
m

pl
ed

D

at
a

Q
ue

rie
s

Fa
ls

e
Po

si
tiv

e
R

at
e

O
SM

 D
at

as
et

Sa
m

pl
ed

D

at
a

Q
ue

rie
s

(A) Synthetic

(B) Real

Fa
ls

e
Po

si
tiv

e
R

at
e

Space Used (bits per key)

Space Used (bits per key)

Figure 5: FPR vs Space Used(in bits per key) by various filters. Each subfigure shows the space-FPR tradeoff for a (A) synthetic (B) real dataset
and workload distribution and for a particular range query type (point, range query of size 256 andmixed query workload of size 0,16,64,256).

Rosetta

Un
ifo

rm
 R

an
do

m

Ke
ys

Point Queries
Range Queries

(sz=256)
Mixed Queries

(sz={0, 16, 64,256})

W
ik

i D
at

as
et

SNARF SuRF Cuckoo Filter

Fa
ls

e
Po

si
tiv

e
Ra

te

Key-Query Correlation Degree

Figure 6: FPR vs Key-Query CorrelationDegree of the queries on uniformly random/wiki keys.With increasing key-query correlation, SNARF
and SuRF become worse and Rosetta turns out to be the better filter for very short and highly correlated range queries.

hand, Rosetta is unaffected by this correlation and performs the

best for very short range queries and highly correlated workloads.

6.1.4 FPR vs Range Size: In Fig.7(A), we vary the range query

size from 1 to 10
6
and report the FPR of various range filters under

a memory budget of 15 bits per key. We use uniformly randomly

distributed keys and workloads for this experiment. As discussed

in Sec.3, the FPR of SNARF stays constant with the range query

size. SuRF also maintains its FPR with increasing range query size

but has a 17x worse FPR than SNARF. Rosetta becomes worse with

increasing range size and provides almost no filtering for range

sizes greater than 1000.

6.1.5 Filter Query Latency vs Space Used: In Fig.8, we show

the query latency of various filters with increasing filter sizes for

uniform random and FB datasets for mixed range queries. We skip

other datasets/workloads as we observed similar trends for them.

For this experiment, we fix the size of the dataset to 100 million

1640

(A) (B)

(C) (D)
Figure 7: (A) FPR with increasing range query size for fixed space
budget. (B) Filter Latency (in ns) against space used (bits per key) (C)
Build Time(in millisecs) with increasing number of keys. (D) Filter
Throughput as we vary the percentage of updates in the workload.

RosettaSNARF with Golomb
coding

SuRFSNARF with
EF coding

Fi
lte

r Q
ue

ry
 T

im
e

(in
 n

s)

Uniform Random Keys
Uniform Random Queries

FB Dataset
Sampled Data Queries

Space Used (bits per key)

Figure 8: Filter Query Time (in ns) vs Space used by various filters
across various datasets and workloads for mixed queries.

keys and vary the filter parameters that control its size. In both of

the subfigures, both variants of SNARF are slower than SuRF but

faster than Rosetta. SNARF with Elias Fano encoding is consistently

faster than SNARF with Golomb coding. This is because Golomb

coding (a form of delta coding) requires decoding of the first key

and the following delta values to retrieve a key, which is not the

case for Elias Fano coding. For SNARF, filter query time increases

slightly with increasing filter size. This is because as the filter size

increases, the model size remains constant but the encoded bit array

size increases, so SNARF then has to parse more data to decode the

bit array. The filter query latency increases drastically for Rosetta as

its filter size increases, as larger internal Bloom filters mean Rosetta

has to perform a greater number of random accesses.

6.1.6 Effect of Bit Array Division on Space and Query La-
tency: As discussed in Sec.2.3.2, for SNARF we can improve the

query latency by reducing the segment size. Recall we use small seg-

ments of size 𝛽𝐾 in the bit array, and using smaller 𝛽 can improve

latency at the cost of extra space overhead. The overhead arises

because when we have a larger number of segments in the bit array

there is more associated metadata. Fig.7(B) shows the query latency

and the space used by the various baselines to achieve a FPR of 2
−13

on uniform random keys and uniform randomly generated mixed

sized queries. We show multiple configurations for SNARF with

𝛽 values 10, 20, 50, and 100 (increasing marker size representing

larger 𝛽 values). The results show that with decreasing 𝛽 we get

better query latency. Elias Fano coding is faster than Golomb coding

for the same number of segments. By varying 𝛽 , Golomb coding

and EF coding with SNARF are able to achieve a query latency of

890 ns and 746 ns, respectively. SuRF is the fastest baseline with

latency of 480ns, but uses around 19.4 bits per key.

6.1.7 Build Time: In Fig.7(C), we vary the number of the keys

from 10
5
to 10

8
and report the build times of various range filters.

We use a uniformly random distribution for the keys. The build

times of all the filters grow linearly with the number of keys. The

build time for learned range filters is around 5x faster than Rosetta

and around 2x slower than SuRF. Depending on the application,

filter construction might play a more or less important role. For

example, for LSM trees, filter construction only plays a minor role

as part of the merge phase as shown in Sec.6.2.3.

6.1.8 Updates: In Fig.7(D), we vary the percentage of updates(50%
insertions and 50% deletions) in the query workload (the rest of the

workload is range queries) and report the throughput. SuRF and

Rosetta do not support both inserts and deletes, so we only analyze

SNARF here. We use the SNARF variant with duplication in order

to support deletes. We use a uniform random distribution for the

keys. The workload contains 1 million operations overall and is also

uniformly randomly distributed. Since, the updates do not change

the distribution of the data, the FPR stays constant. On average an

update takes around 12k ns whereas a range query takes around

1898 ns. The throughput of the filter decreases with increase in

proportion of updates as updates are slower than range queries.

6.2 RocksDB Experiments
Our experiments on RocksDB integrated with SNARF aim to sup-

port the following key claims:

• RocksDB with SNARF offers better read performance than

other baselines on various synthetic and real world datasets

and workloads.

• SNARF’s as well as other filters impact reduces as the pro-

portion of empty range queries in the workload decreases.

This leads to SNARF’s performance improvement over other

filters to reduce as well.

• In RocksDB with SNARF, read performance drops with cor-

relation (as discussed in Sec. 4.1) resulting in Rosetta being

better for very short (range size less than 16) and highly

correlated range queries.

• SNARF adds little overhead to RocksDB

• SNARF improves end-to-end performance of RocksDB for a

typical read-write workload.

Integration with RocksDB: We use a RocksDB integration and

workload generation setup identical to that of Rosetta [34]. We

utilized an API of filter functionalities such as populating, querying,

serializing, and deserializing the filter to integrate SNARF. RocksDB

stores its data in multiple immutable tables called SST (Sorted String

Tables). A SNARF instance is created for each SST file. We store the

filter on disk as a character array and the process of converting the

1641

Residual
Seek

CPU Time

(B) FPR comparison

(C) Number of I/O’s

Deserialize

SuRF RosettaSNARF

I/O Time

(D) Break Down of Total CPU Time

Filter
Probe

Query Range Size
(A) Workload Execution Time

Figure 9: SNARF outperforms other baselines when fully integrated
in RocksDB.

filter to char array is called serialization. In order to use the filter

we need to read it to memory from the disk and deserialize it
13
. We

enable the block cache and allow the caching of filters.
14

ImplementationOverviewof aRangeQuery: For a range query
[𝑝, 𝑞], RocksDB probes filter instances of all levels for existence

of keys within this range. If all filter instances return negative,

an empty result is returned. If one or more filters return positive,

RocksDB seeks the lower end (𝑝) incurring an I/O. When RocksDB

get a valid pointer, it reads data until 𝑞 is reached and incurs as

much I/O’s needed to reach 𝑞.

Setup andWorkloads: We use 14 bits per key for all the filter base-

lines(as previously done in SuRF)
15
. We first populate RocksDBwith

50 million 64-bit keys from a distribution and 512 byte values. Each

experiment has a description of the workload. After population,

we run the workload on this populated RocksDB instance. Total

execution time of this workload is usually the metric of interest.

We use uniform random distribution for keys/workload genera-

tion by default and we have 100k queries in a workload as default.

We used the same distributions of dataset and workload mentioned

in Sec.6.1. The workloads are primarily read only to highlight the

impact of filters, but we also have a few experiments with a mixture

of reads and writes. Each workload is run with read queries of

various range sizes (1, 16, 64, 256).

6.2.1 SNARF improves RocksDB Performance: For this ex-
periment, we generate YCSB key-value workloads that are varia-

tions of Workload E, a majority range scan workload modeling a

web application use case [10]. The quality of the filter is best judged

13
To reduce the deserialization overhead we maintain a dictionary that has the deseri-

alized bits for each filter instance and its corresponding SST similar to [34]

14𝑐𝑎𝑐ℎ𝑒_𝑖𝑛𝑑𝑒𝑥_𝑎𝑛𝑑_𝑓 𝑖𝑙𝑡𝑒𝑟_𝑏𝑙𝑜𝑐𝑘𝑠=true. We also ensure that the fence

pointers and filter blocks have a higher priority than data blocks when block

cache is used 𝑐𝑎𝑐ℎ𝑒_𝑖𝑛𝑑𝑒𝑥_𝑎𝑛𝑑_𝑓 𝑖𝑙𝑡𝑒𝑟_𝑏𝑙𝑜𝑐𝑘𝑠_𝑤𝑖𝑡ℎ_ℎ𝑖𝑔ℎ_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦=true,

𝑝𝑖𝑛_𝑙0_𝑓 𝑖𝑙𝑡𝑒𝑟_𝑎𝑛𝑑_𝑖𝑛𝑑𝑒𝑥_𝑏𝑙𝑜𝑐𝑘𝑠_𝑖𝑛_𝑐𝑎𝑐ℎ𝑒=true.
15
14 bits per key allows reasonable performance with fpr below 10% for all filters

with empty range queries as filters enhance performance by iden-

tifying empty queries for which an unnecessary seek can be avoided.

Thus, we compose our workload with 100, 000 empty range queries.

Fig.9(A) shows the workload execution time of various baselines.

The workload execution time consists of two parts, time spent by

the CPU and time spent on I/O. We observe that I/O time dominates

the CPU time. SNARF’s workload execution time is consistently

one order of magnitude less than the other baselines. SNARF has a

better FPR than SuRF and Rosetta leading to fewer I/O’s and hence

lower workload execution time. As shown in Fig.9(B), SuRF has a

FPR 40x worse than that of SNARF across all range sizes. Rosetta’s

FPR becomes worse with increasing range size. Worse FPR leads

to more block I/O’s as shown in Fig.9(C). In summary, Rosetta and

SuRF have significantly high I/O time due to their worse FPR.

SNARF adds little CPU overhead In the previous experiment,

we further break down the total CPU time for various baselines in

Fig.9(D). The CPU time is further divided into deserialization time,

filter probing time, and residual seek time. The residual seek time

is the time taken for routine jobs performed by RocksDB iterators –

looking for checksum mismatch and I/O errors; going forward and

backward over the data, filters and fence pointers; and creating and

managing database snapshots for each query. The filter probe time

is time taken to probe the filters and deserialization time is the time

taken for filter deserialization. The filter probe time accounts for at

most 20% of the total CPU time for even the slowest filter (Rosetta).

Residual seek time accounts for the dominant portion of the CPU

time. Thus, a CPU intensive filter does not affect the performance

of RocksDB much.

SNARF improvesRocksDBPerformance on realworld datasets
For this experiment, we populate RocksDB with 50 million keys

from real world datasets and use sampled-data workload consisting

of 100k empty range queries. Fig.10(A) shows the workload execu-

tion latency of this workload in RocksDB. SNARF exhibits a lower

workload latency than other baselines for all three datasets. Same

as previous experiment, this is due to the better FPR that SNARF

delivers compared to other filters.

As range size increases, SNARF improves RocksDB Perfor-
mance for correlated workloads As discussed in Sec.4.1, SNARF

and SuRF become worse with increased correlation between queries

and keys. For this experiment, we use a correlated workload consist-

ing of 100k empty range queries. In Fig.10(B), we vary the key-query

correlation degree of the queries and measure the workload execu-

tion latency. The execution time of SNARF and SuRF increases with

correlation but not beyond a certain level. This is because even if a

query is highly correlated to a key in a particular SST file, SNARF

and SuRF are still useful for the rest of the SST files. Rosetta is

the better filter for range size equal to one and a highly correlated

workload otherwise SNARF is the better filter.

6.2.2 SNARF performance for mixed workload (empty and
non-empty range queries): Here, we measure the workload ex-

ecution latency on a mixed read-only workload of empty and non-

empty range queries by varying the percentage of empty range

queries from 10 to 100. As shown in Fig.10(C), the workload execu-

tion time of all filters decreases with an increase in the proportion

of empty range queries. This is because filters are more effective

1642

(A) RocksDB Performance on real world datasets

Rosetta

Range Queries (sz=1) Range Queries (sz=256) Mixed Queries (sz={1, 16, 64,256})

SNARF SuRF

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e(
in

 s
ec

)

(C) Workload Exec Time v/s Percentage Empty Range Queries

FB Wiki OSM

(D)Performance on read-write
workload

(E)Performance with increasing
range size of queries.

Range Size

(B) Workload Exec Time v/s Key-Query Correlation Degree

Figure 10: Workload Execution time in RocksDB for (A) real world datasets/workloads (B) correlated workloads and (C) varying percentage
of empty queries (D) read-write workload (E) varying rnage query sizes

on empty queries than non empty queries. Notice, even with ma-

jority non-empty workload filters are still useful. This is because

non-empty range queries will return a true positive for one SST but

other SST’s might still return a false positive leading to additional

unnecessary scans. The decrease in execution time is faster for

SNARF than other baselines because SNARF has better FPR than

others and thus, is more effective in reducing unnecessary I/O’s.

6.2.3 SNARF performance for read-write mixed workload:
In order to simulate real working of RocksDB, we used a majority

write workload (only 1 percent reads) with 10 million operations

similar to YCSB workload A(majority updates). Read and writes are

performed in an interleaved manner. We first start with a RocksDB

instance that already has 50 million uniform randomly distributed

keys . Reads and writes are generated using the uniform random

distribution. Each write operation is a point write which inserts

a unique key into the RocksDB instance with a corresponding

randomly generated value. All the read queries are empty range

queries and we evaluate 4 different workloads for read queries with

4 different range sizes: 1, 16, 64 and 256.

Writing keys to RocksDB leads to compaction and creation of

new SST files. Creation of new SST files involves constructing the

filter and thus filter construction time gets accounted for in the over-

all execution time.While performing reads, the query response time

of the filter gets accounted for in the execution time. Thus, this ex-

periment evaluates the end-to-end filter performance as it accounts

for reduced I/Os due to filtering, filter query response time and filter

construction time. In Fig.10(D), we show the workload execution

time of the workload for various range sizes. Owing to its lower

FPR, SNARF has a lower workload execution latency than SuRF and

Rosetta. SNARF’s slightly slower filter query time and construction

time compared to SuRF is offset by gains produced in lower I/Os.

6.2.4 SNARF impact with increasing range query size: In
Figure 10(E), we show the workload execution time as we increase

query range size for uniformly randomly generated keys and work-

loads. The impact of filters decreases with increasing range size. For

range sizes around ≈ 10
3−104 most queries are empty; accordingly,

filters have a large impact and here SNARF outperforms other filters

by an order of magnitude. For range sizes around ≈ 10
7 − 108 most

queries are non-empty, touching a few SSTs, and filter have less

impact. For range sizes around ≈ 10
9 − 10

10
most queries touch

most SSTs and filters have negligible impact.

7 CONCLUSION
We introduce Sparse Numerical Array-Based Range Filters (SNARF),

a learning-enhanced range filter supporting both point and range

queries for numerical data. We have shown that SNARF appears

highly beneficial for point and range queries, both via an analysis

and empirically across various synthetic and real world datasets. For

future goals, we would like to extend this approach to other types of

data, most notably strings. Finding better learning models or prov-

ing via a theoretical framework that linear spline model is a near-

optimal model also remain open questions. Finally, making SNARF

workload dependent is an interesting direction for future work.

ACKNOWLEDGMENTS
This research is supported by Google, Intel, and Microsoft as part

of the MIT Data Systems and AI Lab (DSAIL), and NSF IIS 1900933,

CCF-2101140, CNS-2107078, and DMS-2023528. This research was

also sponsored by the US Air Force Research Laboratory and the

US Air Force Artificial Intelligence Accelerator under Cooperative

Agreement Number FA8750-19-2-1000. The views and conclusions

contained in this document are those of the authors and should not

be interpreted as representing the official policies, either expressed

or implied, of the US Air Force or the US Government. The US

Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation

herein. This work was partially supported by a gift to the Center

for Research on Computation and Society at Harvard University

and the USA Department of Energy Project DE-SC0020200.

1643

REFERENCES
[1] Karolina Alexiou, Donald Kossmann, and Paul Larson. 2013. Adaptive Range

Filters for Cold Data: Avoiding Trips to Siberia. In Proceedings of the VLDB
Endowment, Vol. 6, No. 14.

[2] Michael A Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C

Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane,

and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash. Proc.
VLDB Endow. 5, 11 (2012), 1627–1637.

[3] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable

Errors. (1970), 422–426.

[4] Andrei Z. Broder andMichael Mitzenmacher. 2003. Survey: Network Applications

of Bloom Filters: A Survey. Internet Math. 1, 4 (2003), 485–509.
[5] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better bitmap

performance with roaring bitmaps. Software: practice and experience 46, 5 (2016),
709–719.

[6] Efficient Lab CMU. 2020. https://github.com/efficient/cuckoofilter.

[7] Efficient Lab CMU. 2020. https://github.com/efficient/SuRF.

[8] Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Compressed

‘n’composable integer set. Inform. Process. Lett. (2010), 644–650.
[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). 143–154.

[11] Andrew Crotty. 2021. Hist-Tree: Those Who Ignore It Are Doomed to Learn. In

CIDR.
[12] François Deliège and Torben Bach Pedersen. 2010. Position List Word Aligned

Hybrid: Optimizing Space and Performance for Compressed Bitmaps (EDBT ’10).
228–239.

[13] Peter C Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than

Bloom and Xor. arXiv preprint arXiv:2103.02515 (2021).
[14] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

and et al. 2020. ALEX: An Updatable Adaptive Learned Index. Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (2020).

[15] Facebook. 2015. http://myrocks.io/.

[16] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.

2014. Cuckoo Filter: Practically Better Than Bloom. In Proc. CoNEXT.
[17] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index. Proceedings of

the VLDB Endowment 13 (2020).
[18] Frederick N Fritsch and Ralph E Carlson. 1980. Monotone piecewise cubic

interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238–246.
[19] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and

Tim Kraska. 2019. FITing-Tree: A Data-Aware Index Structure (SIGMOD ’19).
1189–1206.

[20] R. Gallager and D. van Voorhis. 1975. Optimal source codes for geometrically

distributed integer alphabets (Corresp.). IEEE Transactions on Information Theory
21, 2 (1975), 228–230.

[21] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. 2005.

Practical implementation of rank and select queries. In Poster Proc. Volume of 4th
Workshop on Efficient and Experimental Algorithms (WEA). 27–38.

[22] Mayank Goswami, Allan Grønlund, Kasper Green Larsen, and Rasmus Pagh.

2014. Approximate Range Emptiness in Constant Time and Optimal Space.

arXiv:1407.2907 [cs.DS]

[23] Thomas Mueller Graf and Daniel Lemire. 2020. Xor filters: Faster and smaller

than bloom and cuckoo filters. Journal of Experimental Algorithmics (JEA) 25
(2020), 1–16.

[24] Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. 2009. More

Haste, Less Waste: Lowering the Redundancy in Fully Indexable Dictionaries.

arXiv:0902.2648 [cs.DS]

[25] Ali Hadian and Thomas Heinis. 2021. Shift-Table: A Low-latency Learned Index

for Range Queries using Model Correction. arXiv:2101.10457 [cs.DB]

[26] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Pro-
ceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020.

[27] Tamer Kahveci and Ambuj Singh. 2001. Variable length queries for time series

data. In Proceedings 17th International Conference on Data Engineering. IEEE,

273–282.

[28] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned

Index. arXiv:2004.14541 [cs.DB]

[29] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. arXiv:1712.01208 [cs.DB]

[30] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. 2020.

The Case for a Learned Sorting Algorithm. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’20). 1001–1016.

[31] Ani Kristo, Kapil Vaidya, and Tim Kraska. 2021. Defeating duplicates: A re-design

of the LearnedSort algorithm. arXiv:2107.03290 [cs.DS]

[32] Cockroach Labs. 2015. https://github.com/cockroachdb/cockroach.

[33] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. Elasticbf:

elastic bloom filter with hotness awareness for boosting read performance in

large key-value stores. In 2019 {USENIX} Annual Technical Conference ({USENIX}
{ATC} 19). 739–752.

[34] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,

and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range Filter

for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference onManagement of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 2071–2086. https://doi.org/10.

1145/3318464.3389731

[35] Stephen Macke, Alex Beutel, Tim Kraska, Maheswaran Sathiamoorthy,

Derek Zhiyuan Cheng, and EH Chi. 2018. Lifting the curse of multidimen-

sional data with learned existence indexes. In Workshop on ML for Systems at
NeurIPS.

[36] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned

Indexes. arXiv:2006.12804 [cs.DB]

[37] M. Mitzenmacher. 2002. Compressed Bloom filters. IEEE/ACM Transactions on
Networking 10, 5 (2002), 604–612.

[38] Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and Optimizing

by Sandwiching. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf

[39] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
[40] Mihai Patrascu. 2008. Succincter. In 2008 49th Annual IEEE Symposium on Foun-

dations of Computer Science. 305–313.
[41] Felix Putze, Peter Sanders, and Johannes Singler. 2007. Cache-, hash-and space-

efficient bloom filters. In International Workshop on Experimental and Efficient
Algorithms. 108–121.

[42] Christian Riegger, Arthur Bernhardt, Bernhard Moessner, and Ilia Petrov. 2020.

bloomRF: On Performing Range-Queries with Bloom-Filters based on Piecewise-

Monotone Hash Functions and Dyadic Trace-Trees. arXiv:2012.15596 [cs.DB]

[43] Russell Sears, Mark Callaghan, and Eric Brewer. 2008. Rose: Compressed, log-

structured replication. Proceedings of the VLDB Endowment 1, 1 (2008), 526–537.
[44] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2011. Theory

and practice of bloom filters for distributed systems. IEEE Communications
Surveys & Tutorials 14, 1 (2011), 131–155.

[45] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. 2020. Par-

titioned Learned Bloom Filter. CoRR abs/2006.03176 (2020). arXiv:2006.03176

https://arxiv.org/abs/2006.03176

[46] Peter Van Sandt, Yannis Chronis, and Jignesh M. Patel. 2019. Efficiently Searching

In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings
of the 2019 International Conference on Management of Data (SIGMOD ’19). 36–53.

[47] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael

Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range

Query Filtering with Fast Succinct Tries (SIGMOD ’18). Association for Comput-

ing Machinery, New York, NY, USA, 323–336. https://doi.org/10.1145/3183713.

3196931

[48] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: Efficient

Range Query for LSM-trees. In FAST.
[49] Dong Zhou, David G Andersen, and Michael Kaminsky. 2013. Space-efficient,

high-performance rank and select structures on uncompressed bit sequences. In

International Symposium on Experimental Algorithms. Springer, 151–163.

1644

https://arxiv.org/abs/1407.2907
https://arxiv.org/abs/0902.2648
https://arxiv.org/abs/2101.10457
https://arxiv.org/abs/2004.14541
https://arxiv.org/abs/1712.01208
https://arxiv.org/abs/2107.03290
https://doi.org/10.1145/3318464.3389731
https://doi.org/10.1145/3318464.3389731
https://arxiv.org/abs/2006.12804
https://proceedings.neurips.cc/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://arxiv.org/abs/2012.15596
https://arxiv.org/abs/2006.03176
https://arxiv.org/abs/2006.03176
https://doi.org/10.1145/3183713.3196931
https://doi.org/10.1145/3183713.3196931

