
An I/O-Efficient Disk-based Graph System for Scalable
Second-Order RandomWalk of Large Graphs

Hongzheng Li★, Yingxia Shao★∗, Junping Du★, Bin Cui§♭, Lei Chen#
★School of Computer Science (National Pilot Software Engineering School), BUPT

§School of CS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University
♭Institute of Computational Social Science, Peking University (Qingdao), China

#Department of Computer Science and Engineering, Hong Kong University of Science and Technology

{Ethan_Lee,shaoyx}@bupt.edu.cn,junpingdu@126.com,bin.cui@pku.edu.cn,leichen@cse.ust.hk

ABSTRACT

Random walk is widely used in many graph analysis tasks, espe-

cially the first-order random walk. However, as a simplification

of real-world problems, the first-order random walk is poor at

modeling higher-order structures in the data. Recently, second-

order random walk-based applications (e.g., Node2vec, Second-

order PageRank) have become attractive. Due to the complexity of

the second-order random walk models and memory limitations, it

is not scalable to run second-order random walk-based applications

on a single machine. Existing disk-based graph systems are only

friendly to the first-order random walk models and suffer from ex-

pensive disk I/Os when executing the second-order random walks.

This paper introduces an I/O-efficient disk-based graph system for

the scalable second-order random walk of large graphs, called Gra-

Sorw. First, to eliminate massive light vertex I/Os, we develop a

bi-block execution engine that converts random I/Os into sequen-

tial I/Os by applying a new triangular bi-block scheduling strategy,

the bucket-based walk management, and the skewed walk storage.

Second, to improve the I/O utilization, we design a learning-based

block loading model to leverage the advantages of the full-load and

on-demand load methods. Finally, we conducted extensive experi-

ments on six large real datasets as well as several synthetic datasets..

The empirical results demonstrate that the end-to-end time cost

of popular tasks in GraSorw is reduced by more than one order of

magnitude compared to the existing disk-based graph systems.

PVLDB Reference Format:

Hongzheng Li, Yingxia Shao, Junping Du, Bin Cui, and Lei Chen. An

I/O-Efficient Disk-based Graph System for Scalable Second-Order Random

Walk of Large Graphs. PVLDB, 15(8): 1619 - 1631, 2022.

doi:10.14778/3529337.3529346

PVLDB Artifact Availability:

The source code has been made available at https://github.com/DuoLife-

QNL/GraSorw.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529346

*Yingxia Shao is the corresponding author.

1 INTRODUCTION

Random walk has been successfully used in a variety of graph

analysis tasks [7, 11, 13, 16, 17, 25, 32, 33, 35, 42, 48]. Most of the

existing tasks adopt first-order random walk models [21, 33], which

assume that the next vertex of a walk only relies on the information

of the current vertex. However, as a simplification of real-world

problems, the first-order randomwalk is poor at retaining historical

information. Previous studies [47] show that higher-order random

walk models can provide better support for graph analysis tasks

by selecting the next vertex based on more historical information.

Node2vec [15] is one of the most successful applications of the

second-order random walk model, and for the graph embedding

task, it has better performance than DeepWalk [33], which uses the

first-order random walk model. For the graph proximity measure-

ments, PageRank [18] and SimRank [17] are two popular metrics.

CoSimRank [36] is proposed to reduce the computation cost in

SimRank. All of these metrics adopt the first-order random walk

model. In recent years, Wu et.al. [47] proposed second-order ran-

domwalk-based PageRank and SimRank, and Liao et.al. put forward

the second-order CoSimRank [23]. They all demonstrated that the

second-order approaches achieve better results compared to the

standard ones through empirical studies. Second-order random

walk-based models are also widely used in community detection

tasks, such as overlapping community detection [10, 12] and arc-

community detection [9]. Moreover, many other interesting appli-

cations adopt second-order random walk to model different com-

plex systems. For example, in cloud services, ServiceRank [27] and

CloudRanger [45] apply the second-order random walk to identify

the culprit services which are responsible for cloud incidents. For

the intelligent transportation systems, R. Besenczi et.al. [8] intro-

duced a second-order random walk-based model on dual graph [34]

to analyze the traffic flow on urban streets.

Nowadays, many real-world graphs occupy hundreds of Giga-

bytes in CSR format, which exceeds the size of the RAM for most

commodity machines. Due to the limitation of memory, it is not

scalable to run random walk models on large graphs with memory-

based frameworks [39, 40] in a single machine. Many general disk-

based graph systems [20, 28, 51] are proposed to conduct first-order

random walks on large graphs. They originally partition the whole

graph into several blocks, i.e., subgraphs. During execution, these

systems load a block into memory, update all the activated vertices

and edges in the current block, and repeat this operation until a cer-

tain termination condition is satisfied. DrunkardMob [19] is the first

1619

https://www.acm.org/publications/policies/artifact-review-and-badging-current

0% 20% 40% 60% 80% 100%NV on UKNV on FRNV on TWDW on UKDW on FRDW on TW

Block
I/Os
Walk
I/Os

Vertex
I/Os
Walk
Updates

(a) I/O-percentage

DeepWalk Node2vec

0 200 400 600 800 1000
Time Slot

0%
20%
40%
60%
80%

100%

Ac
tiv

at
ed

 V
er

tic
es

 R
at

io 100%
80%
60%
40%
20%

0%

(b) Activated vertex Ratio

Figure 1: The profile of running random walk tasks in SOGW.

random walk oriented disk-based graph system, which proposes a

framework to start millions of random walks simultaneously, and

GraphWalker [46] follows its idea while using an asynchronous

walk update method to reduce the I/O overhead further.

However, none of the existing disk-based graph systems has

considered the second-order random walk model to the best of our

knowledge. In this paper, we aim to design a scalable disk-based

graph system for executing second-order random walk models

on large graphs. We also adopt the idea of processing the whole

graph into blocks to address the insufficiency of memory. The main

challenge of designing such a system is to deal with the extreme

I/O overhead, which is twofold:

Massive Light Vertex I/Os.When generating a random walk in

existing block-based graph systems, the walk is associated with the

block which contains its current vertex. Since the block is loaded

into memory before processing the walk, the current vertex and

its neighbors are in the block, and it is efficient to update the first-

order random walk without disk I/Os. However, when processing a

second-order random walk that requires both the current vertex

and previous vertex information, although the current vertex is

easily retrieved from memory, the previous vertex might be re-

trieved from any other blocks in the disk, leading to a vertex I/O.

These vertex I/Os are random and light and make it extremely I/O

expensive to realize second-order random walk models on existing

graph systems. Figure 1(a) visualizes the costs of running DeepWalk

(i.e., first-order) and Node2vec (i.e., second-order) random walk in

SOGW system (introduced in Section 6.1) with three large graph

datasets, and we decompose the cost into block I/Os, walk I/Os,

vertex I/Os and walk updating costs. It is clear to see that, in the

second-order random walk task, the efficiency bottleneck is the

cost of vertex I/Os.

LowUtilization of Block I/Os.Most of the existing block-based

graph systems load the whole block at once. However, when the

workload of a randomwalk task is light, or when the task is about to

finish, the activated vertexmight be just a small portion of thewhole

block, leading to a waste of block I/Os. Figure 1(b) visualizes the

activated vertex ratio with regard to the time slots when running

DeepWalk and Node2vec random walk tasks in SOGW system

with LiveJournal dataset. We see that at the end of the tasks (i.e.,

about the last 20% time slots), the ratio is close to zero. To address

low block I/O utilization, DynamicShards [44] and Graphene [24]

dynamically adjust the layout of graph blocks to reduce the loading

of useless data, but they do not consider the random walk features.

GraphWalker [46] determines a proper block size according to the

total number of random walks to improve the block I/O utilization,

but such a solution is static and fails when tasks are about to finish

and only few walks remain in the block.

To tackle the above two problems, we propose GraSorw, an I/O-

efficient disk-based graph system for scalable second-order random

walk, which is equipped with a bi-block execution engine and a

learning-based block loading model to improve the I/O efficiency.

The main techniques are as follows.

Bi-block Execution Engine. To solve the problem of massive

light vertex I/Os, we propose a bi-block execution engine, which

keeps two blocks (i.e., current block and ancillary block) in memory,

guaranteeing the previous and current vertices are in memory as

well. To realize an I/O-efficient bi-block execution engine, we need

to schedule the execution sequence of blocks and organize the walk

states properly, to reduce the block I/Os as much as possible. First,

we theoretically analyze the hardness of block scheduling problems

in the disk-based graph systems and discuss the influence between

block scheduling strategies and the I/O cost. Then we introduce a

triangular bi-block scheduling strategy which eliminates half block

I/Os compared to the standard scheduling strategy. Furthermore,

we develop a bucket-based in-memory walk management approach

which merges random vertex I/Os into the sequence block I/Os,

and a skewed walk storage to ensure the correctness of the new

scheduling strategy.

Learning-based Block Loading Model. To improve the uti-

lization of block I/Os, the challenge is to capture the dynamic work-

loads and estimate the costs of different block loading methods.

In this work, we introduce two block loading methods ś full load

and on-demand load. The former is the traditional block loading

method, and the latter only loads activated vertices. Then we build a

learning-based block loading model in GraSorw, which dynamically

selects proper block loading methods based on online statistics. The

model uses the linear regression method to learn cost estimation

models for the two block loading methods from historical data and

derives a simple threshold-based selection criterion.

Finally, combining with the above technical contributions, we

carefully implement GraSorw to efficiently process second-order

random walk tasks on large graphs with a single machine. Experi-

mental results on six large datasets show that GraSorw achieves

efficiency improvement of more than one order of magnitude in

common second-order random tasks such as random walk genera-

tion and PageRank query using Node2vec random walk model. To

summarize, our contributions are as follows:

1) We identify the I/O inefficiency of running second-order ran-

dom walk models on existing disk-based graph processing systems

and propose an I/O-efficient system GraSorw.

2) We propose an efficient bi-block execution engine, which

equips a triangular bi-block scheduling strategy, skewed walk stor-

age, and bucket-based in-memory walk management to eliminate

massive vertex I/Os.

3) We propose a learning-based block loading model to improve

the block I/O utilization when a few walks remain in the bucket.

4)We compare our GraSorwwith SOGWand SGSC on real-world

and synthetic large graphs. The results show that GraSorw signifi-

cantly reduces the end-to-end time of second-order random walk

tasks and improves the I/O efficiency. We also demonstrate the

effectiveness of GraSorw for the first-order random walk.

1620

Table 1: The symbols frequently used in this paper.

Symbol Description

𝐺 = (𝑉 , 𝐸) Graph𝐺 with a set of vertices𝑉 and a set of edges 𝐸.
𝑒 = (𝑢, 𝑣) An edge from 𝑢 to 𝑣.
𝑎𝑢𝑣 The weight of the edge (𝑢, 𝑣) .
𝑁 (𝑢) The set of neighbors of 𝑢.
𝐵 (𝑣) The ID of the block which vertex 𝑣 belongs to.
𝐵𝑖 The block whose ID is 𝑖 .
𝑏𝑖 The bucket whose ID is 𝑖 .
𝑁𝐵 The total number of partitioned blocks of graph𝐺 .

𝑤,W A walk and a set of walks, i.e.,W = {𝑤 }.
𝑤𝑣 A walk which currently resides on vertex 𝑣.

𝑤𝑣
𝑢 A walk whose current vertex is 𝑣, and previous vertex is 𝑢.

A The set of activated vertices.

𝑡𝑓
Total time of block loading and executing stage with the
full-load method.

𝑡𝑜
Total time of block loading and executing stage with the
on-demand load method.

𝜂0 The threshold of selecting block loading method.

2 PRELIMINARY

A graph 𝐺 = (𝑉 , 𝐸) is defined by a set of vertices 𝑉 , and a set of

edges 𝐸. Each edge is a pair of the form 𝑒 = (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉 , where

𝑢 is the source vertex and 𝑣 is the destination vertex of 𝑒 , and 𝑎𝑣𝑧
represents the corresponding weight. If such 𝑒 = (𝑢, 𝑣) exists, then

𝑣 is a neighbor of 𝑢, and we use 𝑁 (𝑢) to denote the set of neighbors

of𝑢. In disk-based graph systems, a graph is partitioned into several

blocks, and we use 𝐵(𝑣) to denote the ID of the block which vertex

𝑣 belongs to, and the 𝑖th block is denoted as 𝐵𝑖 . Given a graph

partition, we use 𝑁𝐵 to represent the number of partitioned blocks.

The notations frequently used in this paper are listed in Table 1.

2.1 Random Walk

A random walk 𝑤 on graph 𝐺 = (𝑉 , 𝐸) starts from a vertex, and

for each step, it selects the next vertex to visit following a transi-

tion probability distribution 𝑝 . In first-order random walk models,

𝑝 = 𝑝 (𝑧 |𝑣), which means the selection of the next vertex 𝑧 only

depends on the vertex 𝑣 that walk𝑤 currently resides on. A walk

𝑤 currently residing on vertex 𝑣 is denoted by𝑤𝑣 , and 𝑣 is called

the current vertex of 𝑤 . In second-order random walk models,

𝑝 = 𝑝 (𝑧 |𝑢𝑣), where 𝑢 is the vertex that walk𝑤 previously resided

on, and 𝑣 is the current vertex of𝑤 . Such a walk is denoted by𝑤𝑣𝑢
and the corresponding distribution is called edge-edge distribution.

Following the edge-edge distribution, selecting the next vertex 𝑧

depends on both vertex 𝑢 and 𝑣 .

Next, we briefly review two popular random walk models.

DeepWalkmodel. In this paper, the DeepWalkmodel represents

the first-order random walk model used by DeepWalk, a method

of learning graph embeddings. The transition distribution in Deep-

Walk model is 𝑝 (𝑧 |𝑣) = 𝑎𝑣𝑧/𝑍𝑣 , where 𝑍𝑣 =
∑
𝑡 ∈𝑁 (𝑣) 𝑎𝑣𝑡 . The same

distribution is used in most other first-order random walk models.

Node2vec model. In this paper, the Node2vec model represents

the second-order random walk used by Node2vec, which is also a

method of learning graph embeddings. In this model, for walk𝑤𝑣𝑢 ,

we define biased weight:

𝑎′𝑣𝑧 =

𝑎𝑣𝑧
𝑝 ℎ𝑢𝑧 = 0

𝑎𝑣𝑧 ℎ𝑢𝑧 = 1
𝑎𝑣𝑧
𝑞 ℎ𝑢𝑧 = 2

(1)

where 𝑧 ∈ 𝑁 (𝑣), 𝑝, 𝑞 ∈ R+ are two hyperparameters, and ℎ𝑣𝑧
is the shortest hops between 𝑣 and 𝑧. For edges (𝑣,𝑢) and (𝑢, 𝑧),

1 3

0

2

6

4

8 7

5

Block 0 Block 1

Block 2

Src Dst

0 1

1

0

2

3

4

6

2
1

6

Src Dst

3

1

4

5

4
1

3

5

3

6

7

Src Dst

6

1

2

5

7

8

7
5

6

8 6

Block 0 Block 1 Block 2

Disk

Figure 2: A partitioned graph and its storage in disk.

the edge-edge transition distribution 𝑝 (𝑧 |𝑢𝑣) = 𝑎′𝑣𝑧/𝑍
′
𝑣 , where

𝑍 ′𝑣 =
∑
𝑡 ∈𝑁 (𝑣) 𝑎

′
𝑣𝑡 .

2.2 Disk-based Random Walk System

In disk-based random walk systems, a graph is partitioned into

several blocks, and only one block is loaded into memory at a time

while updating the corresponding randomwalks. Figure 2 illustrates

a partitioned graph and its storage in disk. GraphWalker [46] is a

state-of-the-art disk-based randomwalk system. It first loads a block

into memory, then loads walks belonging to that block and updates

them asynchronously. These walks are called the current walks, and

the block loaded into memory is called the current block. It applies

a state-aware block scheduling strategy, which chooses the block

with most walks in it to be the current block. The updating of a

walk stops either when it moves out of the current block or when

it reaches the termination condition. For the former situation, the

walk is associated with the new block where it currently moves into.

After updating all walks in the current block, the system chooses

the next current block and updates the corresponding walks in

memory. Such a cycle is called a time slot.

As introduced in the Introduction, there is extreme I/O overhead

when realizing second-order random walk models on existing disk-

based random walk systems because of the massive light vertex

I/Os and low utilization of block I/Os. In the next section, we will in-

troduce GraSorw, which is an I/O-efficient disk-based graph system

for the scalable second-order random walk over large graphs.

3 OVERVIEW OF GRASORW

GraSorw is an I/O-efficient disk-based graph system for the scal-

able second-order random walk. Similar to previous works, the

graph and intermediate walks are stored on the disk. The graph is

partitioned into blocks, and each block is associated with a walk

pool storing the intermediate walks. The difference is as follows:

to reduce the massive vertex and block I/Os, we design a bi-block

execution engine and a learning-based block loading model. Figure

3 describes the high-level execution flow of GraSorw. During the

execution, the bi-block execution engine iteratively selects a block

as the current block, uses the learning-based block loading model

to load an ancillary block into memory, and updates the intermedi-

ate walks associated with the current block. Next, we present the

execution flow of GraSorw in a time slot in detail.

In each time slot, 1○ the engine uses the bucket-based in-memory

walk manager to load the intermediate walks associated with the

current block into memory and merges them with the one in the in-

memory walk pool forming the current walks. 2○ Then the manager

1621

Triangular Bi-Block Scheduling

M
e

m
o

ry
D

is
k

Graph

Skewed Walk Storage

Block 0 Block 1 Block 2 Block 3

B
u

ck
e

ts
𝑏0 𝑏1 𝑏2 𝑏3

C
u

rr
e

n
t

B
lo

ck

Block 0

A
n

cilla
ry

 B
lo

ck

Block 1

Learning-based Block Loading Model

Full Load On-demand Load

Update Walk Update Walk

Walk Pool

WP 0

WP 1

WP 2

Lo
a

d
 W

a
lk

s

B
i-B

lo
ck

 E
xe

cu
tio

n
 E

n
g

in
e

F
lu

sh
 to

 d
isk

Bucket-based In-Memory Walk Manager

①

②

③

④ ⑤

Extend Bucket

④

④

⑤

Block Loading

0 1 2 3

0 0.65 0.5 0.55𝜂0 𝜂0
Generate
Threshold

Table

Figure 3: The execution flow of GraSorw. A semi-circle is a vertex

in a walk, and the color of a semi-circle indicates the block that the

vertex belongs to. Best viewed in color.

splits current walks into buckets, and each bucket stores the walks

having the same block set, in which the pair of blocks contains

their previous and current residing vertices. Such bucket-based

in-memory walk management merges massive vertex I/Os into a

single block I/O, and the details are described in Section 4.3.

Considering that the previous and current residing vertices are

involved in two blocks, before processing a bucket, we need to

load another block into memory, called the ancillary block. In Gra-

Sorw, each ancillary block is corresponded with a bucket, while

the current block is shared among all buckets. 3○ In each time slot,

the bi-block execution engine uses triangular bi-block scheduling

method to determine the loading sequence of ancillary blocks and

also uses the learning-based block loading model to load the block.

After loading the blocks, 4○ the engine asynchronously updates

the walks in the bucket. The current vertex of walks in this bucket

can be either in the current block or the ancillary block, as the blue

and orange arrows show. Moreover, since there are some edges

connecting the two blocks, walks can also be updated across the two

blocks. The updating of a walk stops when it moves to any vertex

not belonging to the blocks in memory or when the termination

condition is reached. 5○ For the former situation, walk persistence

is needed to preserve the information of these intermediate walks

and update them in future. Intermediate walks have two places

to go. Most of them are stored in the in-memory walk pool with

skewed walk storage (introduced in Section 4.3.1), and others may

be moved into buckets, caused by the bucket-extending strategy

introduced in Section 4.3.1. When the size of a walk pool reaches the

pre-defined threshold, the in-memory walk pool is flushed to disk.

After all walks in the bucket have terminated or been persisted, the

next ancillary block is chosen with triangular bi-block scheduling,

and the corresponding bucket is executed iteratively.

Note that the learning-based block loading model in GraSorw is

proposed to improve the I/O utilization when the number of current

walks is small. It uses a linear regression model to predict the cost

by learning from historical logs, and on top of the model, we derive

thresholds for each block and use the threshold to select the block

loading method. The details are introduced in Section 5. In Figure

3, block 0 is fully loaded, and block 1 is loaded with the on-demand

load method.

4 BI-BLOCK EXECUTION ENGINE

The basic idea of the bi-block execution engine is to keep two

blocks (i.e., current block and ancillary block) in memory, thus

guaranteeing the current and previous vertices are both in memory.

To establish such an engine, we need to address the following two

research questions: (RQ1) how do we schedule the two blocks to

reduce block I/Os? and (RQ2) how do we manage the states of walks

in disk and memory to support I/O-efficient block scheduling?

4.1 Block I/O Cost Analysis and Scheduling
Strategy Revisit

Given a second-order random walk task and its input, the total

number of block I/Os in GraSorw is related to two factors: the

number of current block I/Os (i.e., time slots) and the number of

ancillary block I/Os in each time slot. Minimizing the total number

of block I/Os can be achieved by reducing the current block I/Os

and the ancillary block I/Os separately. However, we show that

obtaining the minimal number of current block I/Os is an NP-hard

problem. In the next subsection, we present our triangular bi-block

scheduling strategy, which focuses on reducing ancillary block I/Os.

Different block scheduling strategies incur different numbers of

current block I/Os. We define the optimization problem of minimal

current block I/Os as below:

Definition 1. (The minimal current block I/Os problem).

Given a graph 𝐺 = (𝑉 , 𝐸) which is partitioned into 𝑁𝐵 blocks B =

{𝐵1, 𝐵2, ..., 𝐵𝑁𝐵
}, and a task of the second-order random walk which

generates𝑀 random walks, where each random walk𝑤𝑖 has a certain

sequence of accessing current blocks, denoted by {𝐵𝑖0, 𝐵𝑖1, ..., 𝐵𝑖 𝑗 },

0 < 𝑖 ≤ 𝑀 , 𝐵𝑖 𝑗 ∈ B. The goal is to find a global block scheduling

strategy {𝐵1, 𝐵2,, 𝐵𝐾 } so that all𝑀 random walks are generated

and 𝐾 is minimized, where 𝐾 equals the number of current block I/Os.

The following theorem presents the hardness of the problem.

Theorem 1. The minimal current block I/Os problem is NP-hard.

Proof. The shortest common supersequence (SCS) problem [29, 38],

which is an NP-Complete problem, can be reduced to the minimal

current block I/Os problem in polynomial time. So this problem is an

NP-hard problem. For more details we refer the reader to our technical

report [22].

Although there are several approximation algorithms for the SCS

problem [43], they assume the sequences are known ahead. How-

ever, in our problem, the block access sequence for a second-order

random walk is unknown, and we need to design an online algo-

rithm to solve the above problem. As far as we know, most existing

heuristic online solutions to the SCS problem have no (or poor)

approximation error bound of the optimal solutions. Therefore,

we empirically studied the different scheduling strategies [31, 46]

for current blocks; and the results are reported in our technical

1622

report [22] because of the limited space. In short, the results show

that no single method performs optimally on all datasets, and the

performance of the same method on different datasets may vary

widely. But in general, the Iteration-based method, which loads

the block from 𝐵0 to 𝐵𝑁 iteratively, achieves the best result in

most cases. With such observations, in this paper, we adopt the

Iteration-based method to schedule the current block, and then

focus on developing a new scheduling strategy, which optimizes

the ancillary block I/Os.

4.2 Triangular Bi-Block Scheduling based
Execution (RQ1)

Asmentioned before, we use the Iteration-basedmethod to schedule

the current blocks, which sequentially loads the current blocks from

𝐵0 to 𝐵𝑁𝐵−1 iteratively into memory, and skips the loading of a

current block if there is no intermediate walk in it. Due to the

asynchronous walk updating method [46] in GraSorw, there is no

walk whose previous vertex and current vertex are in the same

block. Then for each current block, we at most process 𝑁𝐵 − 1

ancillary blocks, which incurs 𝑁𝐵 − 1 block I/Os in a time slot. In

other words, the total block I/Os of processing the whole graph

once is at most

𝑁 = 𝑁𝐵 + 𝑁𝐵 (𝑁𝐵 − 1) = 𝑁
2
𝐵 . (2)

With the help of our skewed walk storage introduced in the next

subsection, we can only load ancillary blocks whose ID is larger

than the one of the current block. This is the new triangular bi-

block scheduling strategy, and the total block I/Os is computed as

follows:

𝑁 = 𝑁𝐵 − 1 +

𝑁𝐵−2∑︁

𝑏=0

(𝑁𝐵 − 1 − 𝑏) =
1

2
(𝑁𝐵 + 2) (𝑁𝐵 − 1) . (3)

Compared to the Equation 2, the triangular bi-block scheduling

strategy saves about 50% block I/Os.

Algorithm 1 illustrates the execution procedure on the basis

of the triangular bi-block scheduling strategy. The current block

ID 𝑏 iterates from 0 to 𝑁𝐵 − 2 (Line 2), and in each time slot the

ancillary block ID iterates from 𝑏 + 1 to 𝑁𝐵 − 1 (Line 13). After

choosing the current block, the associated walks are loaded into

memory and collected into different buckets (Line 3). The details

of bucket collection is described in Section 4.3.2. Finally, walks are

processed in bucket id order (Line 16), and the update of walks in

each bucket can be accelerated in parallel. Note that the correctness

of Algorithm 1 is guaranteed by our skewed walk storage, which is

introduced in Section 4.3.1. For more details about the correctness

we refer the reader to our technical report [22], where we also

discuss the space and time complexity of Algorithm 1.

4.3 Walk Management and Processing (RQ2)

In this subsection, we first describe the skewed walk storage, which

supports the triangular bi-block scheduling strategy, and then in-

troduce the bucket-based in-memory walk storage, which helps

cluster the random vertex I/Os into blocks.

4.3.1 Skewed Walk Storage. Traditional walk storage methods as-

sociate a walk with the block to which its current vertex belongs.

This brings limitations when updating walks under the triangular

Algorithm 1 Triangular Bi-Block Scheduling in GraSorw

1: while has unfinished walk do

2: for 𝑏 = 0→ 𝑁𝐵 − 2 do

3: 𝑐𝑢𝑟𝑊𝑎𝑙𝑘𝑠 [] ← LoadWalks(𝑏) ⊲ From the skewed walk

storage

4: for 𝑤 ∈ 𝑐𝑢𝑟𝑊𝑎𝑙𝑘𝑠 [] do ⊲ Collect bucket

5: if PreBlockId(𝑤) = 𝑏 then

6: 𝑝 ← CurBlockId(𝑤)

7: else

8: 𝑝 ← PreBlockId(𝑤)

9: end if

10: 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑝] ← 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑝] ∪ 𝑤

11: end for

12: LoadSubGraph(𝑏)

13: for 𝑖 = 𝑏 + 1→ 𝑁𝐵 − 1 do

14: LoadSubGraph(i)

15: for 𝑤 ∈ 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] do

16: ProcessWalk(𝑤,𝑏, 𝑖, 𝑏𝑢𝑐𝑘𝑒𝑡) ⊲ Algorithm 2

17: end for

18: end for

19: end for

20: end while

bi-block scheduling strategy. First, suppose that 𝐵𝑏 is the current

block and𝐵𝑝 is the previous block.With the traditional walk storage

method, only walks currently in block 𝐵𝑏 are loaded into memory,

so only walks 𝑤𝑣𝑢 such that 𝑢 ∈ 𝐵𝑝 , 𝑣 ∈ 𝐵𝑏 get updated in the

triangular bi-block scheduling strategy. The walks 𝑤𝑣𝑢 such that

𝑢 ∈ 𝐵𝑏 , 𝑣 ∈ 𝐵𝑝 are still in disk, and cannot utilize the ancillary

block which has been loaded into memory more efficiently. Second,

traditional walk storage cannot correctly support the triangular

bi-block scheduling strategy. Because the walks currently in block

𝐵𝑏 might have the ones of which the block ID of previous vertex

is smaller than the ID of 𝑏𝑏 , then these walks would never be up-

dated with the triangular bi-block scheduling strategy. Therefore,

we design a simple but effective skewed walk storage, which not

only supports the triangular bi-block scheduling strategy but also

helps update as many walks as possible in a time slot.

The skewed walk storage in GraSorw takes both the previous

and current vertex of the walk into consideration to arrange the

walks. Specifically, a walk 𝑤𝑣𝑢 is associated with block 𝐵𝑖 , where

𝑖 =𝑚𝑖𝑛{𝐵(𝑢), 𝐵(𝑣)}. Compared to the traditional walk storage, the

new storage splits the walks whose current vertices belong to the

same block into two groups. One group contains the walks𝑤𝑣𝑢 such

that𝐵(𝑢) < 𝐵(𝑣), and the other group contains the remainingwalks.

Consequently, in the context of the triangular bi-block scheduling

strategy, the first group is processed when the corresponding 𝐵(𝑣),

i.e., the blocks which their current vertices belong to, are loaded as

the ancillary blocks, and the second group is processed when the

corresponding 𝐵(𝑣) is loaded as the current block.

4.3.2 Bucket-based in-Memory Walk Management. As introduced

in Section 3, tomerge random vertex I/Os into block I/Os, the bucket-

based in-memory walk manager splits the current walks into buck-

ets, and each bucket stores the walks having the same block set in

which the pair of blocks contain their previous and current residing

vertices. Specifically, let = {𝑏𝑖 , 0 ≤ 𝑖 < 𝑁𝐵} be the set of buckets,

then with the skewed walk storage, the current walks might also

1623

Algorithm 2 Walk processing in GraSorw

Parameters: walk: 𝑤, current block ID: 𝑏, ancillary block ID: 𝑖

1: function ProcessWalk(𝑤,𝑏, 𝑖, 𝑏𝑢𝑐𝑘𝑒𝑡 [])

2: 𝑤′ ← UpdateWalk(𝑤,𝑏, 𝑖)

3: 𝑐𝑢𝑟 ← CurBlockId(𝑤′)

4: if 𝑐𝑢𝑟 < 𝑏 then

5: AssociateWithBlock(𝑤′, 𝑐𝑢𝑟)

6: else if 𝑏 < 𝑐𝑢𝑟 < 𝑖 then

7: if PreBlockId(𝑤′) = b then

8: AssociateWithBlock(𝑤′, 𝑏)

9: else

10: AssociateWithBlock(𝑤′, 𝑐𝑢𝑟)

11: end if

12: else if 𝑐𝑢𝑟 > 𝑖 then

13: if PreBlockId(𝑤′) = b then

14: 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑐𝑢𝑟] ← 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑐𝑢𝑟] ∪ 𝑤′ ⊲ Bucket-Extending

15: else

16: AssociateWithBlock(𝑤′, 𝑖)

17: end if

18: end if

19: end function

20: function UpdateWalk(𝑤,𝑏, 𝑖)

21: while CurBlockId(𝑤) = 𝑏 or 𝑖 and walk not terminated do

22: 𝑤 ← SampleDestVertex(𝑤)

23: end while

24: return 𝑤

25: end function

contain walks whose previous vertex belongs to the current block

of the time slot. Let 𝐵𝑖 be the current block, then a walk 𝑤𝑣𝑢 is

distributed into bucket:

{
𝑏𝐵 (𝑣) if 𝑢 belongs to block 𝐵𝑖 ,

𝑏𝐵 (𝑢) if 𝑣 belongs to block 𝐵𝑖 .
That is to say, the bucket collection also relies on both the current

vertex and the previous vertex of the walk. Furthermore, combined

with the skewed walk storage, if the walk is collected to a bucket

according to its previous vertex, then the ID of the block to which its

current vertex belongs is smaller than that of the previous vertex,

and vice versa. This walk management supports the triangular

bi-block scheduling strategy.

4.3.3 Walk Processing. Finally, we describe the procedure of walk

processing by combining the techniques of triangular bi-block

scheduling and bucket-based walk management in Algorithm 2.

The association between updated walks and blocks follows the

organization in the skewed walk storage, denoted by the function

AssociateWithBlock, in which the walks are stored in the walk

pool corresponding to the given block. In Function ProcessWalk

in Algorithm 2, we first update the old walk𝑤 , and the new walk

after updating is denoted as𝑤 ′. Here we use 𝑝𝑟𝑒 and 𝑐𝑢𝑟 to denote

the previous block ID and the current block ID of the new walk𝑤 ′,

and 𝑏 and 𝑖 to represent the current block ID and ancillary block ID

which are in memory now. For the new walk𝑤 ′, if 𝑐𝑢𝑟 < 𝑏 then it

should be associated with block 𝑐𝑢𝑟 , since (𝑝𝑟𝑒 = 𝑏 or 𝑖) > 𝑐𝑢𝑟 , as

shown in Line 4 and Line 5. If 𝑐𝑢𝑟 is between 𝑏 and 𝑖 , the associa-

tion depends on whether its previous vertex belongs to the current

block or the ancillary block, as shown in Line 6 to 10. As Line 12

to 18 shows, when the new walk moves to the block whose ID is

larger than the one of the ancillary blocks in memory (i.e., 𝑖), we

1 3

0

2

6

4

8 7

5

Block 0 Block 1

Block 2

𝑤1(0)𝑤2(0)

𝑤6(2) 𝑤7(2)

𝑤5(1)
𝑤4(1)

Block 0 Block 1

Block 2

𝑤4(1)1(0) 𝑤1(0)3(1)

𝑤2(0)6(2)𝑤5(1)6(2)
𝑤7(2)5(1)𝑤6(2)1(0) 𝑤4(1)1(0) 𝑤6(2)1(0)

𝑤1(0)3(1) 𝑤2(0)6(2)
Walk Pool 0

Walk Pool 1

𝑤5(1)6(2) 𝑤7(2)5(1)

1

3

0

2

4

5

𝑤4(1)𝑤4(1)1(0)
𝑤1(0)3(1)

Bucket 1

𝑤4(1)1(0)𝑤1(0)3(1)
Bucket 2

𝑤6(2)1(0) 𝑤2(0)6(2)
Execution of Bucket 1

Current Block Ancillary Block
Block 0 Block 1

1
0

2

6

8
7

Current Block

Ancillary Block

Block 0

Block 2

𝑤6(2)1(0)
𝑤2(0)6(2) 𝑤6(2)𝑤2(0)

Bucket 2𝑤2(0)6(2)
Execution of Bucket 2

Time slot of Block 0 in Superstep 𝑆 + 2

Skewed

Walk Storage

B
u

ck
et B

a
sed

 W
a

lk
 M

a
n

a
g

em
en

t

𝑤3(1)5(1)
𝑤1(0)0(0)

𝑤6(2)7(2)

Superstep𝑆 + 1
All walks move

one step forward

Walk states after Superstep 𝑆 Walk states and storage after Superstep 𝑆 + 1

6
𝑤6(2)7(2)

𝑤1(0)6(2)Bucket-extending

1 3

0

2

6

4

8 7

5

𝑤1(0)6(2)
𝑤1(0) 𝑤1(0)6(2)

𝑤1(0)6(2)𝑤6(2)1(0)

Figure 4: An example of walk processing.
associate it with the block where the new walk previously moves

out from. An exception is shown in Line 14, where we develop a

bucket-extending strategy to improve the efficiency further. Specifi-

cally, when the new walk is previously moved out from the current

block 𝑏 (i.e., 𝑝𝑟𝑒=𝑏), instead of associating the new walk 𝑤 ′ with

the current block 𝑏, we add it to the bucket corresponding to the

current block 𝑐𝑢𝑟 of the new walk, which has not been executed

as an ancillary block yet in this time slot. The bucket-extending

strategy ensures new walks who meet the above condition are able

to update as many steps as possible in a time slot. However, it also

brings synchronization overhead when the updating of walks is

executed in parallel. In our technical report [22], we describe an

efficient implementation of bucket-extending.

During the updating, since there are two blocks in memory, the

walks keep moving when they jump between the two blocks in

memory, as Line 21 in Function UpdateWalk shown. Therefore, if

two blocks are strongly connected (i.e., they has many edges across

them), then walks can update much faster, without swapping the

blocks in memory.

Figure 4 illustrates the key procedures of the walk processing

with the skewed walk storage, bucket-based walk management, and

the execution of buckets. Here we use 𝑤
𝑣 (𝑐𝑢𝑟)

𝑢 (𝑝𝑟𝑒)
to denote a walk,

where 𝑝𝑟𝑒 = 𝐵(𝑢) and 𝑐𝑢𝑟 = 𝐵(𝑣). A Superstep shown in the figure

represents the procedure in which all walks in the task move at

least one step forward. In Superstep 𝑆 + 2, the walkers with red

color are the ones being updated in their corresponding time slots,

and the walkers in pink represent where the red walkers come from.

The blue walkers represent where the red walkers are going to visit

in the next step, and these walkers can be updated further in their

time slots. The green walker is similar to the blue ones, but they

have moved out the blocks in memory. In this example, the green

walker satisfies the condition of the bucket extending strategy.

5 LEARNING-BASED BLOCK LOADING
MODEL

The majority of block I/Os are caused by the ancillary block loading.

When only a small portion of vertices in a block have walks residing

1624

0 0 0 0 0 0 0 0 0 0

Current

Walks

B
u

c
k
e
t

1 𝑤14 𝑤13𝑤13 𝑤14

B
u

c
k
e
t

2 𝑤16 𝑤26𝑤26 𝑤16 8 11 13

1 4 5 1 3 3 6 7

Block 1
(Ancillary Block)

0 1 6

1 0 2 3 4 6 1 6

Block 0
(Current Block)

Vertex Map

(a) Full-load of block 1.

0 0 0 0 0 0 1 0 0 0

1 2 5 7 8

0 1 6

1 0 2 3 4 6 1 6

Vertex Map

Block 0
(Current Block)

Block 2
(Ancillary Block)

Current

Walks

B
u

c
k
e
t

1 𝑤14 𝑤13𝑤13 𝑤14

B
u

c
k
e
t

2 𝑤16 𝑤26𝑤26 𝑤16
(b) On-demand-load of block 2.

Figure 5: An example of different block loading methods.

on, it may lead to a waste of the block I/Os. To improve the I/O-

utilization, we introduce two block loading methods in GraSorw,

namely full load and on-demand load, and propose a learning-based

model to automatically select a block loading method for ancillary

block according to the run-time statistics.

5.1 Full load and On-Demand Load

Full-Load Method. This method means that a whole block is

loaded into memory at once. In GraSorw, the slice of Index File and

CSR File of the corresponding block is loaded into memory.

On-Demand-Load Method. This method means that only acti-

vated vertices in the corresponding block are loaded into memory.

To load a block 𝐵 with the on-demand-load method, we first check

the current vertex and the previous vertex of each walk in the walk

setW, and record all the vertices which belong to the block 𝐵. These

vertices are the activated vertices and will be used to update the

walks. For each ancillary block,W is composed of the walks in the

corresponding bucket. Then only the CSR segmentation related to

the activated vertices is loaded. In GraSorw, the on-demand loading

happens right before the execution of each bucket (as a replacement

of Line 14 in Algorithm 1). Note that if any walk is able to update

more than one step during execution and the information of the

current vertex is not in memory, we should get its CSR segmenta-

tion solely from disk, which incurs few random vertex I/Os, and

store it in memory as well.

Example. In Figure 5, we compare the I/O difference between

full load and on-demand load through an example. Assume that

there are eight walks being the current walks, and each value stored

in the Index File and CSR File occupies 4 bytes in disk. The system

decides to load block 2 with the on-demand-load method and load

block 1 with the full-load method. The Vertex Map is used to record

the activated vertices. Since block 1 is decided to be loaded with

the full-load method as shown in Figure 5(a), the whole slice of

the index file and the CSR file is loaded into memory, incurring 32

bytes I/O. After executing updates of walks in bucket 1, the memory

for block 1 is freed. Before executing bucket 2, all walks in it are

scanned to tally activated vertices for block 2. In the example shown

in Figure 5(b), only the information of vertex 6 is needed, so the

system only loads the CSR segmentation of vertex 6 into memory,

and 20 bytes I/O is needed. In total, 52 bytes I/O is required to load

the CSR information for the ancillary blocks. However, 64 bytes

disk I/Os would be incurred if the pure full-load method is used to

load both block 1 and block 2. In this example, block I/Os are saved

by 18.8% by mixing the full load and on-demand load methods.

Furthermore, there is no need to allocate memory to store the slice

of the index file of block 2. This example implies that it is worthy

of making a trade-off between two block loading methods.

5.2 Linear Regression Model for Block Loading

The key to selecting a loading method for a block is to estimate the

corresponding cost. However, it is difficult to develop heuristics

for the cost model since the number of activated vertices is task-

dependent and different data structures between the two block

loading methods also influence the efficiency. In this paper, we

develop a learning-based model to predicate the cost of each loading

method. Next, we will describe the model and its training method.

5.2.1 Linear Regression Models for Cost Estimation. A block pro-

cessing can be divided into the loading stage and the executing

stage. Under full-load mode, to process a block and the correspond-

ingW, the whole block is loaded into memory (loading stage), and

the walk updates (executing stage) are totally in memory without

disk I/Os. Under on-demand load mode, only a portion of the block

is loaded in the format of CSR segmentation (loading stage). The

walk updates incur new disk I/Os when newly activated vertices

are extended (executing stage). Compared with the full-load mode,

the loading stage of on-demand load might be shorter, and the exe-

cuting stage may get longer because of new disk I/Os. Therefore,

we treat the two phases together as a whole to estimate the cost.

For a certain block 𝐵, let 𝑁𝑣 be the number of total vertices

in the block, and A be the set of activated vertices. It is intuitive

that when |A| is very close to 𝑁𝑣 , it should be more efficient to

process the block under full-load mode than on-demand-load mode.

This is because under such circumstances loading an entire block

is faster than |A| small I/Os, which accelerates the loading stage,

and since there is no need to invoke I/Os when executing walk

updates, the executing stage is also faster. In random walk tasks, it

is very expensive to obtain the accurate |A| when |W| is large, so

we use |W| to roughly estimate |A|. Let 𝜂 = |W|/𝑁𝑣 , which roughly

represents the ratio of vertices whose information is needed in the

block 𝐵. Let 𝑡𝑓 and 𝑡𝑜 be the total time of the loading and executing

stage under full-load mode and on-demand load mode, respectively.

Empirical studies on datasets in Table 2 show that there exists an

𝜂0 such that in general:

{
𝑡𝑓 > 𝑡𝑜 if 𝜂 > 𝜂0;

𝑡𝑓 < 𝑡𝑜 if 𝜂 < 𝜂0 .

We further find out that 𝑡𝑓 -𝜂 follows a linear regression model

𝑡𝑓 = 𝛼 𝑓 𝜂 + 𝑏 𝑓 for each block, and 𝑡𝑜 -𝜂 follows 𝑡𝑜 = 𝛼𝑜𝜂 when

𝜂 < 𝜂0. Here 𝑏 𝑓 means the cost of loading stage in full-load mode,

and no intercept exists in 𝑡𝑜 -𝜂 model because no separated loading

is needed whenW = ∅ under on-demand-load mode.

5.2.2 Model Training and Learning of Thresholds. To train the pa-

rameters 𝛼 𝑓 , 𝑏 𝑓 , 𝛼𝑜 , we run the task twice to get the running log.

Full-load mode is used for ancillary blocks in the first run, while in

the second run the on-demand load mode is used. After getting the

𝑡𝑓 -𝜂 and 𝑡𝑜 -𝜂 running logs, we use these data to train 𝛼 𝑓 , 𝑏 𝑓 and

𝛼𝑜 . Then we calculate 𝜂0 =
𝑏𝑓

𝛼𝑜−𝛼𝑓
, and use 𝜂0 as the loading mode

switching threshold for the ancillary block. Specifically, if 𝜂 > 𝜂0,

full-load mode is used; otherwise, on-demand-load mode is used.

6 EXPERIMENTS

In the following sections, we evaluate the advantages of GraSorw by

comparing with considerable baselines, and study the effectiveness

of our technical contributions. We also study the impact of different

graph partition methods to GraSorw, the parameter sensitivity of

1625

Table 2: Graph datasets and partition information.

Graph |V| |E|
Text
Size

CSR
Size

Block
Size

Block
Number

Edge-
Cut

LiveJournal (LJ) 4.8M 85.7M 1.2GB 364MB 20000KB 17 76.51%

Twitter (TW) 41.7M 2.4B 37GB 9.3GB 512MB 18 89.36%

Friendster (FR) 65.6M 3.6B 58GB 14GB 512MB 27 91.43%

UK200705 (UK) 105M 6.6B 6.6B 26GB 1GB 25 32.49%

Kron29 (KR) 277M 33.7B 497GB 128GB 10GB 13 92.66%

CrawlWeb (CW) 3.6B 226B 4.6TB 864GB 100GB 9 -

GraSorw, like the variation of walk distribution and block size, and

the applicability of GraSorw for first-order random walks.

6.1 Experimental Settings

We carefully implement GraSorw in C++. The graph is stored in the

Compressed Sparse Row (CSR) format and is by default sequentially

partitioned into blocks according to the IDs of the vertices. For

more details about the implementation we refer the reader to our

technical report [22]. All experiments are run on a server with 2

Intel Xeon(R) Gold 5220 CPU and 377 GB memory. The graph data

is stored on an SSD. Without specific clarification, each experiment

is run in parallel, and the number of threads is set to 72.

Datasets. We use 6 datasets in our experiments: LJ [4], TW [5],

FR [2], UK [6], KR, which is a synthetic graph generated byGraph500

kronecker [3] and CW [1]. The statistics are listed in Table 2. Block

Size is manually set by the user. All graphs are processed into

undirected. Results on more graphs with different distributions are

reported in our technical report [22].

Second-order randomwalkmodels.We use Node2vec models

in our experiments. Since we mainly focus on I/O performance

improvement, we set two hyper-parameters 𝑝 and 𝑞 to 1 by default.

Benchmarks.We choose two different benchmarks:

1) Random walk generation using the Node2vec model (RWNV).

Following the random walk sampling approach in Node2vec, every

node in the graph samples a set of randomwalks with a fixed length.

Here we use the same parameters from the original work [15], and

sample 10 walks per vertex with a walk length of 80.

2) PageRank Query using the Node2vec Model (PRNV). Given a

query node 𝑣 , we run the second-order random walk with restart to

estimate the second-order PageRank value [47]. The decay factor

is 0.85, the maximum length is 20, and the total sample size is 4|𝑉 |.

In addition, we randomly choose 10 to 100 query nodes for each

dataset according to their data size.

Baselines: Since there are no existing systems designed for

out-of-core second-order random walk processing, we take the

following two implementations as baselines:

1) Second-Order GraphWalker (SOGW). The naive solution im-

plemented on GraphWalker, which retrieves the previous vertex

information directly from the disk as small vertex I/Os. We set the

number of blocks in memory to 2 to make the memory cost equal

to that of the other two methods. That is, if the block going to be

loaded is already in memory, then no block loading is required. The

block replacement strategy is the same as that of GraphWalker.

2) Second-order GraphWalker with Static Cache (SGSC). A static

vertex cache whose size is the same as the block size is set in

memory. Before the execution starts, we tally the out-degrees of

all vertices in the graph and store the top-𝑘 vertices such that the

degree sum is no less than the maximum edge number in one block

according to the block size. There is no item replacement of the

vertex cache during the execution.

LJ TW FR UK KR CW
102

103

104

105

106

Ti
m

e
(S

ec
)

SOGW
I/O

GraSorw
Execution

SGSC

(a) Efficiency of RWNV.

LJ TW FR UK KR CW
101

102

103

104

Ti
m

e
(S

ec
)

SOGW
I/O

GraSorw
Execution

SGSC

(b) Average query time of PRNV

Figure 6: End-to-end performance comparison.

6.2 End-to-End Performance

We first evaluate the overall performance of GraSorw compared to

the two baseline systems, SOGW and SGSC. Due to the inefficiency

of SOGW and SGSC, they cannot finish the tasks with standard

parameters in reasonable time constraints when processing large

graphs except LiveJournal. In this paper, we estimate their costs on

graphs except for LiveJournal as below: According to the empirical

studies in GraphWalker [46], the total time increases linearly with

the walk length when it is not possible to put the whole graph in

memory. Besides, we find that when running second-order random

walk tasks on SOGW, since the previous vertex information should

be retrieved from disk, which accounts for most of the time as

shown in Figure 1(a), the total time also increases linearly with the

number of walks. Therefore, we shorten the walk length for RWNV

and start fewer walks from a vertex for both RWNV and PRNV.

After obtaining the cost of the small-scale task, we estimate the

cost by multiplying the corresponding coefficients. In addition, all

results of GraSorw are obtained by running the complete task.

Figure 6 presents the results of RWNV and PRNV on various

graphs. The results of SOGW on CrawlWeb are missing because

the small-scale task used to estimate the total time cannot finish in

two days. With this lower bound of the small-scale task execution

time, we estimate that SOGW cannot finish the complete task in

two weeks for both RWNV and PRNV. For SGSC, the time of the

vertex cache initialization is included in I/O time. Among three

systems, we can see that GraSorw achieves the best performance

in both tasks on all these graphs. In particular, on Twitter, SOGW

takes more than two days to finish the RWNV task, while Gra-

Sorw only takes 47 minutes, which achieves 95× speed up. On a

larger graph that occupies hundreds of Gigabytes in CSR format

such as Kron29, performing second-order random walk tasks is

much more challenging, as the traditional disk-based methods cost

about 20 days, evaluated by SOGW. Fortunately, with the help of

GraSorw, such a task can be finished in half a day, which is much

more reasonable. On CrawlWeb, which takes almost 900GB of mem-

ory in CSR format, GraSorw still achieves the best efficiency for

both tasks, with a speedup of 1.81× for RWNV and 1.43× for PRNV,

compared to SGSC. In most graphs, the SGSC is slightly faster than

SOGW, as a result of the existence of the static vertex cache in

memory, which makes it possible to retrieve the information of

some important vertices from memory rather than by invoking

vertex I/Os. However, SGSC takes more time to run such a task on

Friendster. One possible reason is that for Friendster, the cache hit

rate in SGSC is low so that the time of initiating the static vertex

cache is longer than the time saved from its benefits. From the

result comparison between SGSC and GraSorw, we can see that for

1626

Table 3: I/O efficiency of different execution engines. Wall time is the total running time of the task, and it is decomposed into execution time,

block I/O time and other overheads such as walk initiating and walk loading. Execution time is the cost of walk updating. The percentages in

parentheses are the ratio of the cost of Bi-Block to the one of PB, respectively.

graph Method
RWNV PRNV

Wall

Time (s)

Execution

Time (s)

Block I/O

Number

Block I/O

Time(s)

Wall

Time (s)

Execution

Time (s)

Block I/O

Number

Block I/O

Time(s)

LJ
PB 332 189 13584 90 9.8 5.7 38 3

Bi-Block 175 (53%) 100 (53%) 6299 (46%) 42 (46%) 5.8 (6%) 3.6 (63%) 21 (56%) 2 (64%)

TW
PB 6868 1905 15779 4463 249.8 83.5 419 138.2

Bi-Block 2960 (43%) 1198 (63%) 8090 (51%) 1384 (31%) 111.6 (45%) 44.2 (53%) 255 (61%) 43.9 (32%)

FR
PB 14526 3982 34117 9743 439.9 103.6 964 283.5

Bi-Block 6716 (46%) 3217 (81%) 18550 (54%) 2882 (3%) 240 (55%) 102.7 (99%) 581 (6%) 94.3 (33%)

UK
PB 20707 4143 29309 16043 554.1 102.1 659 379.6

Bi-Block 3789 (18%) 744 (18%) 10039 (34%) 2596 (16%) 146.5 (26%) 32 (30%) 312 (47%) 81.0 (21%)

Kron29
PB 133491 24312 19592 104962 5793.3 827.0 878 4728

Bi-Block 49694 (37%) 12738 (52%) 11608 (59%) 34024 (32%) 2102.5 (36%) 366.9 (44%) 520 (59%) 1582.3 (34%)

CrawlWeb
PB 911114 316320 6384 568576 39649 22296 100 12309.4

Bi-Block 249529 (27%) 21206 (7%) 2624 (41%) 228256 (40%) 6218.1 (16%) 892.8 (4%) 45 (45%) 3772.6 (31%)

fixed memory size, rather than leverage the memory space to store

as many large-degree vertices as possible, it is more efficient to use

the memory to load blocks (i.e., ancillary blocks) with the triangu-

lar bi-block scheduling. Overall, GraSorw has achieved 1.81× to

95× performance improvement in RWNV task, and 1.43× to 19.1×

improvement in PRNV task.

In the figure, we also present the time cost breakdown for each

result, visualized as Execution time and I/O time. We see that the

I/O time cost for each task on all graphs has decreased significantly

in GraSorw. GraSorw reduces the I/O overhead most on Twitter,

increasing efficiency by 213× in RWNV and 138× in PRNV, com-

pared to SOGW. In SOGW, the expensive I/O cost comes from the

massive light vertex I/Os, while in GraSorw, with the help of buck-

ets and the ancillary block, these vertex I/Os invoked to retrieve

the information of the previous vertex of walks are converted into

block I/Os, which are more efficient.

6.3 The I/O-Efficiency of Bi-Block Execution
Engine

Here we compare the I/O efficiency of two execution engines in

GraSorw, the plain bucket engine (PB) and the bi-block execution

engine (Bi-Block). The former organizes walks in buckets without

the triangular bi-block scheduling strategy and the skewed walk

storage. In the plain bucket engine, walks are associated with their

current blocks, and the current walks are distributed to buckets

according to their previous blocks. There are also two block slots

in memory called the current block and the ancillary block, yet

no triangular bi-block scheduling is used, where the schedule of

the ancillary block starts from 𝑏0 to 𝑏𝑁𝑏−1. We use the state-aware

block scheduling strategy proposed by GraphWalker to schedule

the current block.

The results of the two engines are shown in Table 3. The wall

time with Bi-Block is 18% to 53% of the one with PB for RWNV,

and 16% to 60% for PRNV. The performance improvement is more

significant on larger graphs such as UK, Kron29 and CrawlWeb,

which are more than 60%. Next, we deeply compare the block I/Os

and execution time of the two engines.

Block-I/O comparison.We first focus on the block I/O over-

head of two engines. The block I/O number in the bi-block execution

engine is only 34% to 59% of the one in the plain bucket model for

RWNV, and 45% to 61% for PRNV, respectively. This is consistent

with the theoretical analysis that the triangular bi-block schedul-

ing strategy approximately cuts half of the block I/Os, according

to Equation 3. Concretely, the reason for block I/O reduction is

twofold. First, during each time slot, half of the ancillary block

loading whose ID is less than the current block is saved. Second,

the current block loading stops on 𝑏𝑁𝑏−2, so one block loading for

the current block is saved in each time slot. Another observation is

that when processing large graphs except for LJ, the block I/O time

of the bi-block engine is reduced to 16% to 40% on both tasks, which

is less than the reduction factor (i.e., 50%) of block I/O number. One

reason is that some expensive random I/Os of loading blocks in

the plain bucket engine are converted to sequential block I/Os in

the bi-block execution engine during the block scheduling. In the

plain bucket engine, after loading the current block, the loading

of ancillary blocks starts from 𝑏0, which incurs a random block

I/O, while in GraSorw, the loading starts from the next block to the

current block, which is sequential.

Execution time comparison. The execution time of the bi-

block execution engine also decreases compared to the one of the

plain bucket execution engine. For example, on UK, the execution

time of the bi-block execution engine decreases to 18% for RWNV

and 30% for PRNV, and on CrawlWeb, such decrease reaches 7% and

4% for RWNV and PRNV, respectively. One reason is that the bi-

block execution engine reduces the thread management overhead

by reducing the number of block I/Os in a time slot. Concretely, in

GraSorw the current walks are executed in parallel, and the system

needs to manage the threads, like the initiating, destroying. In both

two engines, each loading of the ancillary block corresponds to a

bucket execution. In the bi-block execution engine, the number of

bucket execution is only half of that in the plain bucket engine,

since the number of ancillary block I/Os has been reduced to around

50% as discussed above. Therefore, the initiating and destroying

overhead in thread management is decreased, leading to a decrease

of total execution time.

6.4 The Effectiveness of Learning-based Block
Loading

In this experiment, we first describe the efficiency of GraSorw when

using the learning-based block loading model, then analyze the

improvement of I/O utilization.

1627

Table 4: The performance of different loading methods with different partitions for the RWNV task.

Graph Partition
Pure Full Load Learning-based Load

Wall
Time(s)

Execution
Time(s)

Block I/O
Time(s)

Block
I/O Num

Wall
Time(s)

Execution
Time(s)

Block I/O
Time(s)

Block
I/O Num

On-demand
I/O Time(s)

On-demand
I/O Num

TW Seq 3434 1317 1689 9936 3229 1266 1419 8224 61 1714

TW METIS 2829 1039 1541 7540 2465 1053 1056 5145 96 2168

UK Seq 4798 662 3705 13587 2992 1467 749 2650 332 10628

UK METIS 1856 98 1044 3751 1165 166 294 998 38 2558

Twitter Friendster UK0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(S

ec
)

Execution
Full Load I/O
On-demand
Load I/O

Pure Full Load
Learning-based
Load

(a) RWNV

Twitter Friendster UK0
25
50
75

100
125
150
175
200

Ti
m

e
(S

ec
)

Execution
Full Load
I/O
On-demand
Load I/O

Pure Full Load
Learning-based
Load

(b) PRNV

Figure 7: Performance of the learning-based block loading model

on various datasets.

Efficiency. The overall performance of using the learning-based

block loading model is shown in Figure 7. The execution time is

the time cost of updating walks. Under pure full load mode, the

execution time does not include any I/O costs, while using the

learning-based block loading method, the execution time includes

some I/O costs which is incurred by the on-demand block loading

method because the on-demand block loading method might bring

in random vertex I/O during walk processing to get the vertex

information that has not been loaded at the beginning. Therefore,

in most of the results, the execution time of the learning-based

method is longer than that of the full-load mode. For example, in

Figure 7(a), the execution time increases by 805 seconds in graph

UK compared to the pure full-load mode. However, the total time

by using the learning-based block loading model is less because

of the reduction of block I/Os (see results of sequential partition

on UK in Table 4). To be concrete, the difference between block

I/O time in pure full load mode and the sum of block I/O time and

on-demand load I/O time in learning-based block loading model is

2624 seconds (see results of sequential partition on UK in Table 4),

which is much greater than the increase of execution time. Such

trade-off is leveraged by the learning-based model described in

Section 5.

I/O-Utilization. We then discuss the I/O utilization with the two

block loadingmethods.We take the I/O utilization of a specific block

(e.g., block 10) in Twitter when it is loaded as an ancillary block

as an example, and the results of other blocks in Twitter or other

graphs are similar. Figure 8 shows the results under the pure full-

load and learning-based block loading model. The I/O utilization

is tallied after the execution of the corresponding bucket, and the

x-axis represents the time slot of each block loading. The block

I/O-utilization remains stable around 0.87 in the first 300 loads, we

call this part the plateau. After the plateau, the block I/O-utilization

under pure full-load mode decreases close to 0. In this period, many

walks reach the termination condition, and less information is

required to update the few remaining walks. Since the pure full-

load method still loads the whole block into memory, it suffers

from low I/O utilization. Our learning-based block loading model

is aware of the decreasing of update walks and is able to switch to

on-demand loading mode. The on-demand loading ensures 100% of

0 150 300 450
Time Slot

0%

20%

40%

60%

80%

100%

I/O
 U

til
iza

tio
n

(a) Full block loading.

0 150 300 450
Time Slot

0%

20%

40%

60%

80%

100%

I/O
 U

til
iza

tio
n

(b) Learning-based block loading.

Figure 8: I/O-utilization with different block loading on Twitter.

I/O utilization, and only a small portion of the block is loaded into

memory.

6.5 The Influence of Different Partitions

Different graph partition methods influence the overall perfor-

mance. We compare the performance of GraSorw under METIS

partition and the default sequential partition with the RWNV task.

Since METIS fails to partition graph FR and Kron29 in memory on

our server, we only evaluate the performance of METIS partition on

Twitter and UK, and the results of running RWNV task are shown

in Table 4. The partitioned block number is the same as that in

sequential partitioning, and we ensure that the size of each block is

roughly the same, where the biggest block is not larger than 1.03×

the smallest one. We use the default k-way partition algorithm

provided by METIS. For graph UK, the edge-cut of the METIS graph

partition decreases significantly to 0.33%. For graph Twitter, the

edge-cut is 55.14%.

The block I/O number of METIS partition is reduced compared to

that in sequential partition for both loading methods. Specifically,

for UK, the number of block I/O dropped by 72% under METIS

partition in pure full load mode and 63% in the learning-based

load mode. This is because the density of blocks is increased, and

walks are more likely to update inside the block than moving out

of the block. Consequently, walks are able to move more steps

forward during a time slot, and the block I/O number is reduced.

Furthermore, according to the discussion in Section 6.3, the decrease

of block I/Os leads to the improvement of execution time as well.

Another observation is that METIS partition improves the effi-

ciency of GraSorw when using the learning-based block loading

model. Under sequential partition, the learning-based block loading

model reduces 6% of wall time in Twitter compared to the pure full

load method, while under METIS partition, the reduction reaches

13%. This is caused by the decrease of edge-cut. For a graph parti-

tion with a lower edge-cut, most of the walks are able to reach the

termination condition with fewer time slots because they tend to

move forward inside the block. However, there are still a few walks

that tend to jump between different blocks, thus causing lots of

block I/Os that have low I/O utilization under pure full-load mode.

With the learning-based block loading model, these block I/Os can

1628

Table 5: Results of First-order random walk execution.

Dataset
GraphWalker GraSorw-No-LBL GraSorw

Wall
Time (s)

Execution
Time (s)

Block
I/O Time (s)

Wall
Time (s)

Execution
Time (s)

Block
I/O Time (s)

Wall
Time (s)

Execution
Time (s)

Block
I/O Time (s)

LJ 137 84 53 133 86 48 135 88 47

TW 1366 851 515 1399 871 528 1302 793 509

FR 2122 1313 809 2200 1362 838 2128 1346 782

UK 2242 1463 779 1867 1189 677 1782 1123 660

LJ TW FR UK KR

103

104

105

106

Ti
m

e
(S

ec
)

SOGW
SGSC

GraSorw

(a) RWNV (𝑝 = 4, 𝑞 = 0.25)

LJ TW FR UK KR

103

104

105

106

Ti
m

e
(S

ec
)

SOGW
SGSC

GraSorw

(b) RWNV (𝑝 = 0.25, 𝑞 = 4)

LJ TW FR UK KR

101

102

103

104

Ti
m

e
(S

ec
)

SOGW
SGSC

GraSorw

(c) PRNV (𝑝 = 4, 𝑞 = 0.25)

LJ TW FR UK KR
101

102

103

104

Ti
m

e
(S

ec
)

SOGW
SGSC

GraSorw

(d) PRNV (𝑝 = 0.25, 𝑞 = 4)

Figure 9: Wall time (log-scale) of RWNV and PRNV under different walk distributions.

be completed by the on-demand loading method, thus increasing

the I/O utilization and improving efficiency.

6.6 Parameter Sensitivity

6.6.1 Random Walk Distribution. To study the performance of

GraSorw under different walk distributions, we add sensitivity

experiments with different 𝑝 , 𝑞 of Node2vec, and the results of wall

time are shown in Figure 9. We can see that GraSorw achieves the

least wall time (i.e., best efficiency) in all cases. For RWNV, since all

of the vertices are activated, the static cache strategy in SGSC does

not bring in significant improvement. In fact, on Kron29, the wall

time of SGSC is much longer, that is 1.7× and 1.8× that of SOGW

under the two randomwalk distributions, respectively. On the other

hand, GraSorw is able to handle this situation, and the wall time

is only 6% that of SOGW on Kron29 when 𝑝 = 4, 𝑞 = 0.25 and 7%

when 𝑝 = 0.25, 𝑞 = 4. For tasks such as PRNV in which only a few

vertices are initially activated, SGSC saves more time compared

to that of RWNV. However, GraSorw still achieves the best result.

For instance, when executing PRNV (𝑝 = 4, 𝑞 = 0.25) on Twitter,

the wall time of SGSC is 26% that of SOGW, while GraSorw is only

0.7%. Moreover, on Friendster, SGSC only saves sightly 3%~4% of

wall time of SOGW, the time saved by GraSorw still achieves 86%

for PRNV (𝑝 = 4, 𝑞 = 0.25) and 68% for PRNV (𝑝 = 0.25, 𝑞 = 4).

6.6.2 Block Size. We also study the performance of GraSorw with

a variation of block size and the number of blocks, and the results

on two representative graphs are shown in Figure 10. More results

are reported in our technical report [22]. Similar to previous tasks,

there is no significant difference between SOGW and SGSC for

RWNV, and for PRNV, the latter is only slightly faster. On the other

hand, GraSorw consistently outperforms the baselines. The only

exception happens when conducting RWNV on UK with the block

size set to 128MB. This is because when block size is small, the

number of partitioned blocks of large graphs is big (197 in this

case), and there are many ancillary block I/Os in GraSorw. Another

observation is that as the block size increases, the advantage of Gra-

Sorw becomes more and more obvious. For example, on Twitter, the

maximum performance improvement by GraSorw is achieved when

the block size is set to 2GB, which is 114× and 91× speedups for

128MB
(72)

256MB
(36)

512MB
(18)

1GB
(9)

2GB
(5)

4GB
(3)

8GB
(2)

102

103

104

105

Ti
m

e
(S

ec
)

SOGW
PRNV

GraSorw
RWNV

SGSC

(a) Twitter

128MB
(197)

256MB
(99)

512MB
(50)

1GB
(25)

2GB
(13)

4GB
(7)

8GB
(4)

102

103

104

Ti
m

e
(S

ec
)

SOGW
PRNV

GraSorw
RWNV

SGSC

(b) UK200705

Figure 10:Wall time (log-scale) of RWNV and PRNVunder different

block sizes. In x-axis, the number in parentheses represents the

number of partitioned blocks.

RWNV and PRNV, respectively, compared to SOGW. The third ob-

servation is that when the block size reaches to 8GB, the difference

between GraSorw and two baselines SOGW and SGSC becomes

less obvious. For example, on Twitter, the wall time of SOGW is

about 97× slower than the one of GraSorw when block size is 4GB

(3 blocks in total), while it decreases to 4× slower when block size

is enlarged to 8GB (2 blocks in total). This is because as the number

of blocks decreases, walks can move more steps inside one block,

and the number of walks crossing blocks becomes small, resulting

in fewer individual vertex I/Os. In summary, GraSorw achieves sig-

nificant time reduction under different block sizes and the number

of blocks.

6.7 The Performance of First-order Random
Walk in GraSorw

Finally, we evaluate the performance of first-order random walk in

GraSorw to demonstrate the applicability of our system. We take

DeepWalk as the benchmark of first-order random walk tasks and

compare GraSorw with the state-of-the-art disk-based first-order

random walk system GraphWalker. We also compare the results of

GraSorw without learning-based block loading (GraSorw-No-LBL),

which uses the Iteration-based method mentioned in Section 4.1 to

schedule the current blocks. The experimental results are shown

in Table 5. We see that GraSorw or GraSorw-No-LBL achieves the

best efficiency on three datasets, i.e., LJ, TW and UK, and is compa-

rable to GraphWalker on FR. Compared with GraphWalker, Gra-

Sorw saves 21%, 23% and 16% of the wall time, execution time and

1629

block I/O time on UK, respectively. With the help of learning-based

block loading method, the time cost of block I/Os in GraSorw is the

least among all these four datasets, and it is 85%~99% of the one

in GraphWalker. This is because some heavy I/Os of loading the

complete block is converted to light vertex I/Os when the number of

remained walks is small. In addition, comparing GraSorw-No-LBL

with GraphWalker, both the execution time and block I/O time are

similar. This demonstrates that the iterative block scheduling is

effective for first-order random walks, and it is feasible to replace

the state-aware block scheduling mechanism in GraphWalker with

the iterative block scheduling.

7 RELATED WORK

Many systems have been designed to analyze large graphs in recent

years. Some studies focused on how to migrate the benefits of dis-

tributed computing to graph processing. Pregel [30] proposes a syn-

chronizationmodel that represents various typical graph processing

tasks as a series of iterations to run them on a cluster of machines.

GraphLab [26] proposes a model for asynchronous processing, and

PowerGraph [14] takes into account the power-law property of

natural graphs for faster access to vertex information. However,

distributed systems have high requirements for the running envi-

ronment, which is expensive, and have high communication costs

between nodes.

As another solution that is lightweight, inexpensive, and scalable,

many single machine disk-based graph processing systems have

been proposed. GraphChi [20] first organizes the graph data on

disk in shards, thus converting random I/Os to sequential I/Os in

each shard. X-Stream [37] employs a new edge-centric graph com-

putation model that enables the system to stream the list of edges

read from disk directly. GridGraph [51] designs a more clever fine-

grained subgraph partitioning to avoid loading useless information

into memory and accelerate I/O processing. In addition, the features

of SSD are also considered by some systems. Liu et al. [24] designed

a disk-based full-granularity I/O management by reorganizing the

SSD format to store graph data completely on disk, which makes

the performance of dedicated SSD-based graph processing systems

closer to that of the memory-based graph processing systems. Due

to the generality, these aforementioned systems did not take into

consideration the features of random walks and entail more time

for random walk processing.

Meanwhile, due to the wide applicability of randomwalk, several

dedicated systems or frameworks have been proposed to acceler-

ate random walk processing. Most of them are designed in-core.

Shao et al. [40] proposed a framework for rational use of available

memory, which switches between different sampling algorithms

for different nodes to balance the time and space overheads. Thun-

derRW [41] designs a step-centric programming model to address

the high CPU pipeline slots stalled due to irregular memory access

in random walk tasks. UniNet [50] brings in a new edge sampler

based on Metropolis-Hastings to efficiently sample the next steps of

random walks and proposes a framework that provides a uniform

representation of different random walk models and allows users

to implement new graph representation learning models flexibly.

However, these frameworks use a memory-based model and cannot

provide help in the scalability of the large graph. KnightKing [49]

is a distributed system aiming to optimize random walk process-

ing and employs an efficient algorithm in second-order random

walk sampling. There are also systems focusing on out-of-core ran-

dom walk processing. DrunkardMob [19] encodes each walk and

stores them in memory to support parallelism for billions of random

walks. In a single block, it clusters vertices into batches and man-

ages walks belonging to the batch together in the corresponding

bucket. GraphWalker [19] adopts block-centric walk management

and also uses a disk to store walks. It proposes state-aware block

scheduling and asynchronous walk updating to reduce block I/Os.

Different from these systems, GraSorw focuses on optimizing a

large amount of random vertex I/Os in second-order random walk

tasks, and converts these I/Os into sequential by employing bi-block

execution engine and increases the I/O utilization with the help of

learning-based block loading model.

8 CONCLUSION

Second-order random walk is an important method for modeling

higher-order dependencies in data. The existing disk-based graph

system cannot efficiently support the second-order random walk.

We proposed an I/O-efficient disk-based second-order random walk

system. To reduce the massive light vertex I/Os, we developed

a bi-block execution engine with a triangular bi-block schedul-

ing strategy, which smartly converts small random I/Os into large

sequential I/Os. To improve the I/O-utilization, we introduced a

learning-based block loading model to select the proper block load-

ing method automatically. Finally, we empirically evaluated our

system on five large graphs, and the results demonstrated Gra-

Sorw significantly surpasses the existing disk-based random walk

systems. Furthermore, considering that the processing of second-

order random walks in most of these applications is an independent

phase, GraSorw can be easily embedded or integrated into existing

second-order random walk-based applications. On the other hand,

the techniques proposed in GraSorw is also promising in optimizing

graph sampling functions in the deep learning computing frame-

works, such as MindSpore1, and we treat this research as our future

work.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation

of China (Nos. U1936104, 61832001, 62192784), CAAI-Huawei Mind-

Spore Open Fund, and CCF-Tencent Open Fund. Lei Chen’s work is

partially supported by National Key Research & Development Pro-

gram of China Grant No. 2018AAA0101100, the Hong Kong RGC

GRF Project 16202218, CRF Project C6030-18G, C1031-18G, C5026-

18G, AOE Project AoE/E-603/18, RIF Project R6020-19, Theme-based

project TRS T41-603/20R, China NSFCNo. 61729201, Guangdong Ba-

sic and Applied Basic Research Foundation 2019B151530001, Hong

Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft

Research Asia Collaborative Research Grant, HKUST-NAVER/LINE

AI Lab, Didi-HKUST joint research lab, HKUST-Webank joint re-

search lab grants and HKUST Global Strategic Partnership Fund

(2021 SJTU-HKUST).

1https://www.mindspore.cn/

1630

REFERENCES
[1] April 17, 2022. Crawlweb. http://webdatacommons.org/hyperlinkgraph/index.

html
[2] April 17, 2022. Friendster. https://snap.stanford.edu/data/com-Friendster.html
[3] April 17, 2022. Graph500. https://graph500.org/
[4] April 17, 2022. LiveJournal. https://snap.stanford.edu/data/soc-LiveJournal1.

html
[5] April 17, 2022. Twitter. https://old.datahub.io/dataset/twitter-social-graph-

www2010
[6] April 17, 2022. UK200705. http://law.di.unimi.it/webdata/uk-2007-05/
[7] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat Fakcharoenphop, and Dror

Weitz. 2000. Approximating aggregate queries about web pages via random
walks. In Proceedings of the 26th International Conference on Very Large Data
Bases. 535ś544.

[8] Renátó Besenczi, Norbert Bátfai, Péter Jeszenszky, Roland Major, Fanny Monori,
and Márton Ispány. 2021. Large-scale simulation of traffic flow using Markov
model. Plos one 16, 2 (2021), e0246062.

[9] Paolo Boldi and Marco Rosa. 2012. Arc-community detection via triangular
random walks. In Proceedings of 2012 8th Latin American Web Congress. 48ś56.

[10] Xiaoheng Deng, Genghao Li, Mianxiong Dong, and Kaoru Ota. 2017. Finding
overlapping communities based onMarkov chain and link clustering. Peer-to-Peer
Networking and Applications 10, 2 (2017), 411ś420.

[11] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135ś144.

[12] Tim S Evans and Renaud Lambiotte. 2009. Line graphs, link partitions, and
overlapping communities. Physical Review E 80, 1 (2009), 016105.

[13] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards
scaling fully personalized pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics 2, 3 (2005), 333ś358.

[14] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX symposium on operating systems design and implementation.
17ś30.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855ś864.

[16] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork.
1999. Measuring index quality using random walks on the Web. Computer
Networks 31, 11 (1999), 1291ś1303.

[17] Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. 538ś543.

[18] Sanjeev Kumar. 1998. The PageRank Citation Ranking: Bringing Order to the
Web. In Proceedings of the 2012 IEEE International Symposium on Workload Char-
acterization. 111ś112.

[19] Aapo Kyrola. 2013. DrunkardMob: Billions of random walks on just a PC. In
Proceedings of the 7th ACM Conference on Recommender Systems. 257ś264.

[20] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a PC. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation. 31ś46.

[21] Amy N Langville and Carl D Meyer. 2011. Google’s PageRank and beyond. In
Google’s PageRank and Beyond. Princeton university press.

[22] Hongzheng Li, Yingxia Shao, Junping Du, Bin Cui, and Lei Chen. 2022. An
I/O-Efficient Disk-based Graph System for Scalable Second-Order Random Walk
of Large Graphs. arXiv preprint arXiv:2203.16123 (2022).

[23] Xueting Liao, Yubao Wu, and Xiaojun Cao. 2019. Second-Order CoSimRank for
Similarity Measures in Social Networks. In 2019 IEEE International Conference on
Communications. 1ś6.

[24] Hang Liu and H. Howie Huang. 2017. Graphene: Fine-grained IO management
for graph computing. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies. 285ś299.

[25] Qin Liu, Zhenguo Li, John C.S. Lui, and Jiefeng Cheng. 2016. PowerWalk: Scalable
personalized pagerank via random walks with vertex-centric decomposition. In
Proceedings of International Conference on Information and Knowledge Manage-
ment. 195ś204.

[26] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A framework for machine
learning and data mining in the cloud. In Proceedings of the VLDB Endowment.
716ś727.

[27] Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. 2021. ServiceRank: Root
Cause Identification of Anomaly in Large-Scale Microservice Architecture. IEEE
Transactions on Dependable and Secure Computing 5971, c (2021), 1ś15.

[28] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Ku-
mar, and Taesoo Kim. 2017. MOSAIC: Processing a trillion-edge graph on a single
machine. In Proceedings of the 12th European Conference on Computer Systems.
527ś543.

[29] David Maier. 1978. The Complexity of Some Problems on Subsequences and
Supersequences. J. ACM 25, 2 (1978), 322ś336.

[30] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-
scale graph processing. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 135ś145.

[31] Kang Ning and Hon Wai Leong. 2006. Towards a Better Solution to the Short-
est Common Supersequence Problem: A Post. In Computer and Computational
Sciences, International Multi-Symposiums on. 84ś90.

[32] Yun Peng, Byron Choi, and Jianliang Xu. 2021. Graph Learning for Combinatorial
Optimization: A Survey of State-of-the-Art. Data Science and Engineering 6, 2
(2021), 119ś141.

[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learn-
ing of social representations. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 701ś710.

[34] Sergio Porta, Paolo Crucitti, and Vito Latora. 2006. The network analysis of urban
streets: A dual approach. Physica A: Statistical Mechanics and its Applications
369, 2 (2006), 853ś866.

[35] Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. 2019.
FairWalk: Towards fair graph embedding. In Proceedings of the International Joint
Conference on Artificial Intelligence. 3289ś3295.

[36] Sascha Rothe and Hinrich Schütze. 2014. CoSimRank: A flexible & efficient
graph-theoretic similarity measure. Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, 1392ś1402.

[37] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles. 472ś488.

[38] Kari-Jouko Räihä and Esko Ukkonen. 1981. The shortest common supersequence
problem over binary alphabet is NP-complete. Theoretical Computer Science 16,
2 (1981), 187ś198.

[39] Yingxia Shao, Shiyue Huang, Yawen Li, Xupeng Miao, Bin Cui, and Lei Chen.
2021. Memory-aware framework for fast and scalable second-order random walk
over billion-edge natural graphs. VLDB Journal 30, 5 (2021), 769ś797.

[40] Yingxia Shao, Shiyue Huang, XupengMiao, Bin Cui, and Lei Chen. 2020. Memory-
Aware Framework for Efficient Second-Order Random Walk on Large Graphs.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 1797ś1812.

[41] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.
ThunderRW: An In-Memory Graph Random Walk Engine. In Proceedings of the
VLDB Endowment. 1992ś2005.

[42] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
VERSE: Versatile graph embeddings from similarity measures. In Proceedings of
the World Wide Web Conference. 539ś548.

[43] Jonathan S. Turner. 1989. Approximation algorithms for the shortest common
superstring problem. Information and Computation 83, 1 (1989), 1ś20.

[44] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the edges you need: A
generic I/O optimization for disk-based graph processing. In Proceedings of the
2016 USENIX Annual Technical Conference. 507ś522.

[45] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and
Pengfei Chen. 2018. CloudRanger: Root cause identification for cloud native
systems. In Proceedings of the 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. 492ś502.

[46] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C.S. Lui. 2020. Graph-
Walker: An I/O-efficient and resource-friendly graph analytic system for fast
and scalable random walks. In Proceedings of the 2020 USENIX Annual Technical
Conference. 559ś571.

[47] Yubao Wu, Yuchen Bian, and Xiang Zhang. 2016. Remember where you came
from: On the second-order random walk based proximity measures. In Proceed-
ings of the VLDB Endowment. 13ś24.

[48] Jianye Yang, Wu Yao, and Wenjie Zhang. 2021. Keyword Search on Large Graphs:
A Survey. Data Science and Engineering 6, 2 (2021), 142ś162.

[49] Ke Yang, Ming Xing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. Knightking: A fast distributed graph random walk engine. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 524ś537.

[50] Xingyu Yao, Yingxia Shao, Bin Cui, and Lei Chen. 2021. UniNet: Scalable network
representation learning with metropolis-hastings sampling. In Proceedings of
International Conference on Data Engineering. 516ś527.

[51] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
Proceedings of the 2015 USENIX Annual Technical Conference. 375ś386.

1631

